CPSC-663: Real-Time Systems Common Scheduling Approaches

Common A pproaches to Real-Time Scheduling

e Clock-driven (time-driven) schedulers

— Scheduling decisions are made at specific time instants, which are
typically chosen a priori.

e Priority-driven schedulers

— Scheduling decisions are made when particular events in the system
occur, e.g.

« ajob becomes available
* processor becomesidle
— Work-conserving: processor is busy whenever there is work to be done.

Clock-Driven (Time-Driven) -- Overview

e Scheduling decision time: point in time when scheduler decides which
job to execute next.

» Scheduling decision time in clock-driven schedulersis defined a priori.

« For example: Scheduler periodically wakes up and generates a portion of the
schedule.

/ schedulerjob\
A B 9 C| D i Cc| A | C

e Specia case: When job parameters are known a priori, schedule can be
precomputed off-line, and stored as a table (table-driven schedulers).

CPSC-663: Real-Time Systems

Common Scheduling Approaches

Priority-Driven -- Overview

* Basicrule: Never leave processor idle when there is work to be done.
(such schedulers are also called wor k conserving)

» Based on list-driven, greedy scheduling.
» Examples: FIFO, LIFO, SET, LET, EDF.

» Possibleimplementation of preemptive priority-driven scheduling:
— Assign prioritiesto jobs.
— Scheduling decisions are made when
« Job becomes ready
 Processor becomesidle
* Priorities of jobs change
— At each scheduling decision time, chose ready task with highest priority.

* In non-preemptive case, scheduling decisions are made only when processor
becomesidle.

Example: Priority-Driven Non-Preemptive Schedules

ProcJ%l 3 [3] L% [al,
Proc2| X [% | (%],

L=y 350 353,35, 36, 370 Jg)

|

ProclJ i [l 3 [% [u],

Proc, Jg J3 J7

LET=(35,J81J2|J61J1’J3'J4’J7)

|

Procll S FA A

PI‘OCzlJlI 3y | 3% [u]

L= 31,3535, 3, 3, 3. 3y)

CPSC-663: Real-Time Systems

Common Scheduling Approaches

Effective Timing Constraints

Timing constraints often inconsistent with precedence constraints.
Example: d; > d,, but J; - J,

Effective timing constraints on single processor:
Effectivereleasetime: ™ := max(ri ,{rje“ ‘\]j N Ji})

Effectivedeadiine: d* :=min(d, {d,“|3, - J,})

Theorem:

A set of Jobs J can be feasibly scheduled on a processor if and
only if it can be feasibly scheduled to meet all effective
release times and deadlines.

Interlude: The EDF Algorithm

The EDF (earliest-deadline-first) algorithm:
At any time, execute that available job with the earliest deadline.

Theorem:

Proof: by schedule transformation.

(Optimality of EDF) In a system one processor and with
preemptions allowed, EDF can produce a feasible schedule of a
job set J with arbitrary release times and deadlines iff such a
schedule exists.

CPSC-663: Real-Time Systems Common Scheduling Approaches

EDF Not Always Optimal

e Case 1: When preemption is not allowed:

ridiq
J = (0 10, 3
, = (2 14, 6
J, = (4 12

¢ Case 1: On more than one processor:

ridiq
J = (0 4 1)
J, = (0 4 1)
J = (0 5 5)

