
CPSC-663: Real-Time Systems Common Scheduling Approaches

1

Common Approaches to Real-Time Scheduling

• Clock-driven (time-driven) schedulers
– Scheduling decisions are made at specific time instants, which are

typically chosen a priori.

• Priority-driven schedulers
– Scheduling decisions are made when particular events in the system

occur, e.g.
• a job becomes available
• processor becomes idle

– Work-conserving: processor is busy whenever there is work to be done.

Clock-Driven (Time-Driven) -- Overview

• Scheduling decision time: point in time when scheduler decides which
job to execute next.

• Scheduling decision time in clock-driven schedulers is defined a priori.
• For example: Scheduler periodically wakes up and generates a portion of the

schedule.

• Special case: When job parameters are known a priori, schedule can be
precomputed off-line, and stored as a table (table-driven schedulers).

A B C D C A C

scheduler job

CPSC-663: Real-Time Systems Common Scheduling Approaches

2

Priority-Driven -- Overview

• Basic rule: Never leave processor idle when there is work to be done.
(such schedulers are also called work conserving)

• Based on list-driven, greedy scheduling.
• Examples: FIFO, LIFO, SET, LET, EDF.

• Possible implementation of preemptive priority-driven scheduling:
– Assign priorities to jobs.
– Scheduling decisions are made when

• Job becomes ready
• Processor becomes idle
• Priorities of jobs change

– At each scheduling decision time, chose ready task with highest priority.

• In non-preemptive case, scheduling decisions are made only when processor
becomes idle.

Example: Priority-Driven Non-Preemptive Schedules

J1 :1 J2 :2 J3 :1 J4 :1

J5 :3

J8 :3

J6 :2

J7 :1

Proc1
J1 J2 J3 J6 J4

Proc2
J5 J8 J7

L = (J1 , J2 , J3 , J4 , J5 , J6 , J7 , J8)

Proc1
J5 J2J1 J6 J4

Proc2
J8 J7

LET = (J5 , J8 , J2 , J6 , J1 , J3 , J4 , J7)

J3

Proc1
J5

J2J1 J6

J4

Proc2

J8

J7

L = (J8 , J1 , J2 , J3 , J4 , J5 , J6 , J7)

J3

CPSC-663: Real-Time Systems Common Scheduling Approaches

3

Effective Timing Constraints

• Timing constraints often inconsistent with precedence constraints.
Example: d1 > d2 , but J1 → J2

• Effective timing constraints on single processor:

• Effective release time:

• Effective deadline:

• Theorem: A set of Jobs J can be feasibly scheduled on a processor if and
only if it can be feasibly scheduled to meet all effective
release times and deadlines.

{ }()ji
eff

ji
eff

i JJddd →= ,min:

{ }()ij
eff

ji
eff

i JJrrr →= ,max:

Interlude: The EDF Algorithm

• The EDF (earliest-deadline-first) algorithm:
At any time, execute that available job with the earliest deadline.

• Theorem: (Optimality of EDF) In a system one processor and with
preemptions allowed, EDF can produce a feasible schedule of a
job set J with arbitrary release times and deadlines iff such a
schedule exists.

• Proof: by schedule transformation.

CPSC-663: Real-Time Systems Common Scheduling Approaches

4

EDF Not Always Optimal

• Case 1: When preemption is not allowed:

• Case 1: On more than one processor:

)4,12,4(
)6,14,2(
)3,10,0(

3

2

1

=
=
=

J
J
J

edr iii

)5,5,0(
)1,4,0(
)1,4,0(

3

2

1

=
=
=

J
J
J

edr iii

