
CPSC-663: Real-Time Systems Cache Partitioning and Locking

1

Caches in Real-Time Systems

[Xavier Vera, Bjorn Lisper, Jingling Xue, “Data Caches in Multitasking Hard Real-
Time Systems”, RTSS 2003.]

• Ignoring cache leads to significant resource under-utilization.

• Q: How to appropriately account for cache?

Schedulability
Analysis WCET Simple

Platforms

WCMP
(memory performance)

e.g.
no caches

Instruction Cache vs. Data Cache

• Computation of WCET with instruction cache for non-preemptive
systems (e.g. Static Cache Simulation)

• Extension: Computation of WCET with instruction cache in
preemptive systems.

• Analysis of Data Cache harder
– Single instruction can refer to multiple memory locations.
– Locality of reference harder to capture for data access.

CPSC-663: Real-Time Systems Cache Partitioning and Locking

2

WCET Analysis in the Presence of Data Caches (I)

• Static Analysis
– Attempts to classify statically the different memory accesses

as hits or misses.
– Typically does not consider preemptive systems
– Limited to codes free of data-dependent constructs

• Cache Preemption Delay
– Incorporate cache preemption cost as context switch

overhead into schedulability analysis.
– Cold-started cache after preemption?

• Might be unsafe on processors with out-of-order
instruction scheduling, where a cache hit under some
circumstances may be more expensive than a miss.

WCET Analysis in the Presence of Data Caches (II)

• Cache Locking
– Available on many current microprocessors (e.g. PowerPC 604e, 405

and 440 families, Intel-960, some Intel x86, Motorola MPC7400)
– Static Locking

• cache is loaded and locked at system start
– Dynamic Locking

• state of the cache is allowed to change during the system
execution

• Cache Partitioning.
– Eliminate inter-task conflicts by giving reserved portions of cache to

certain tasks.
– May give raise to fragmentation, and translate to a loss of

performance.

CPSC-663: Real-Time Systems Cache Partitioning and Locking

3

Program Model

• Programs consist of subroutines, calls, arbitrarily nested but well-
structured loops, and assignments possibly guided by IF
conditionals.

• Extensions possible to unstructured code.
• In this paper, all programs are in C. Thus, all arrays are assumed

to be in row major.
• Static analysis possible with additional constraints

– Calls are non-recursive.
– Bounds of all loops are known and affine.
– The IF conditionals are analyzable at compile time.

Cache Model

• Uniprocessor with two-level memory hierarchy
– virtually-indexed K-way set-associative data cache using LRU

replacement
– main memory.

• K-way set-associative cache
– Cache set contains K cache lines.
– Let C (L) be the cache (line) size in bytes. The total number of

cache sets is thus C/(L × K).
– A cache is called direct-mapped when K=1
– A cache is called fully-associative when K=C/L.

• Cache locking
– Cache locking mechanism allows a single cache line to be locked.

• Pre-fetch / Invalidate
– Processors can load and invalidate cache lines selectively. (This can

be emulated in software.)
• Cache partitioning

– Implemented either in hardware or software.
– Partition unit is a cache set.

CPSC-663: Real-Time Systems Cache Partitioning and Locking

4

Approach (Overview)

• Summary: Need method that allows obtaining an exact and safe
WCMPs of tasks for multitasking systems with data caches, so
that current schedulability analyses can be applied without
modifications.

• Cache partitioning to eliminate inter-tasks conflicts.
– This allows us to compute the WCMP of each task in

isolation.
• Compensate performance loss through use of compiler cache

optimizations (such as tiling and padding).
• Use Static Analysis to compute WCMP of a task.

– Transform the program issuing lock/unlock instructions to
ensure a tight WCMP estimate at static time.

– Cache pre-fetching added when necessary to improve
performance

Cache Partitioning

• Inter-task interference occurs when cache lines from different tasks
conflict in cache, which causes unpredictability.

• Partitioning:
– Divide the cache into disjoint partitions, which are assigned to tasks

in such a way that inter-conflicts are removed.
– Create n + 1 partitions, one for each real-time task and another one

which is shared among non-real-time tasks.
– Each task is only allowed to access its own partition, thus removing

inter-task conflicts.
• Tasks with same priority can share the same partition

– Only preempted by tasks with higher priority, and thus the
predictability of cache behavior is not affected. (Therefore, p
partitions are sufficient, where p is the number of different
priorities).

• Partition-size:
– Size of the partitions impacts performance.
– Optimal partitioning depends on the priorities and the reuse patterns

of tasks. Equally-sized partitions give significant improvement.

CPSC-663: Real-Time Systems Cache Partitioning and Locking

5

Predictable Cache Behavior

• Unpredictability caused by path merging and data dependent
memory access.

• Path Merging:
– Reduce overhead of analyzing loop constructs with multiple

paths inside (data-dependent conditionals, loops with unknown
loop bounds).

– Cache state at the end of the merged path is unknown.
• Data Dependent Memory Access:

– Indirection arrays (e.g., a[b[i]], where b[i] is not statically
known)

– Variables allocated dynamically (e.g., mallocs) and pointer
accesses that cannot be determined statically.

– Nonlinear array references that are not handled by static
analyzer (e.g., a[i*j])

– Library and operating system calls.
• Solution: Cache locking during unpredictable regions of code.

Cache Locking: Example

int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)
 a[i]=random(i);
for (i=0;i<100;i++)
 c[i]=b[a[i]]+c[i];
N=random(i)*100;
for (i=0;i<N;i++){
 if (c[i]>15)
 k++;
 c[i]=0;
}

Data-dependent accesses:
 b[a[i]]

Merging constructs:
 for (i=0;i<N;i++)
 if (c[i]>15)

int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)
 a[i]=random(i);
for (i=0;i<100;i++) {
 lock(); /*Region 1*/
 c[i]=b[a[i]]+c[i];
 unlock();
}
N=random(i)*100;
lock(); /*Region 2*/
for (i=0;i<N;i++){
 register int temp=(c[i]>15);
 lock();/*Region 2.1*/
 if (temp)
 k++;
 unlock();
 c[i]=0;
}
unlock();

Original Code Lock/Unlock Placement

CPSC-663: Real-Time Systems Cache Partitioning and Locking

6

Optimizing Lock Placement

• Rule 1. Lock/unlock instructions that lock the whole loop body
(including the test) are placed outside the loop.

loop;lock;S;unlock;endloop →
lock;loop;S;endloop;unlock

• Rule 2. Remove nested lock regions.
lock;lock;S;unlock;unlock → lock;S;unlock

• Rule 3. Fuse two consecutive locked regions.
lock;S1;unlock;lock;S2;unlock → lock;S1;S2;unlock

• Rule 4*. Move a statement past a lock instruction.
S1;lock;S2;unlock → lock;S1;S2;unlock

• Rule 5*. Move an unlock instruction past a statement.
lock;S1;unlock;S2 → lock;S1;S2;unlock

(*) May affect cache behavior.

Optimizing Lock Placement: Example

int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)
 a[i]=random(i);
for (i=0;i<100;i++) {
 lock(); /*Region 1*/
 c[i]=b[a[i]]+c[i];
 unlock();
}
N=random(i)*100;
lock(); /*Region 2*/
for (i=0;i<N;i++){
 register int temp=(c[i]>15);
 lock();/*Region 2.1*/
 if (temp)
 k++;
 unlock();
 c[i]=0;
}
unlock();

Lock/Unlock Placement

int a[100], b[100];

int c[100], k=0;

for (i=0;i<100;i++)

 a[i]=random(i);

IssueLoads(c);
IssueLoads(b);
lock(); /*Region 1*/
for (i=0;i<100;i++)

 c[i]=b[a[i]]+c[i];

unlock();
N=random(i)*100;

lock(); /*Region 2*/
for (i=0;i<N;i++){

 register int temp=(c[i]>15);

 if (temp)

 k++;

 c[i]=0;

}

unlock();

Final Version

CPSC-663: Real-Time Systems Cache Partitioning and Locking

7

Overview of System

Performance: Effect of Partitioned Cache

CPSC-663: Real-Time Systems Cache Partitioning and Locking

8

Performance: Static vs. Dynamic Locking

Worst-Case Performance

Compares utilization levels.

