
Integrating Bochs Environment with GDB

1. Start with installing GDB debugger: sudo apt-get install gdb

2. Debugging a file needs to access its symbol tables and the debugging information.

The “–g” flag helps in generating the required debugging information to be used by the GDB

debugger.

SYNTAX: $ gcc –g [options] [source files] [object files] [-o output file]

 The “-g” flag can be added to our existing makefile at each of the compile steps to

produce an object file containing the debug information. For example,

3. These object files need to be linked together to produce an executable. Note that, this

executable needs to retain the debugging symbols from the object files.

 In our projects we use a custom linker file (linker.ld) to define the different

memory segments (viz. Text, Data, BSS).

 The first line of our linker file defines the Output Format of the executable being

produced. It is by default defined to produce a “Binary” Output.

 A flat binary output file is usually stripped off its debugging information and thus

contains only the data part. This makes it impossible to debug using GDB.

 An alternative is to produce an ELF (Executable and Linkable Format) output that

retains the debugging information. Side Note: This is also the default output format

of the “a.out” we get on compiling a file using GCC.

 We can get an ELF output by not mentioning any output format in the linker file.

That is, by removing the first line of our linker.ld file.

 Extra Notes:

o To keep the naming of the output file relevant to its format, it is better to

rename our output file from “kernel.bin” to “kernel.elf” or just

“kernel”.

o This needs to be changed in the appropriate makefile and copykernel

files being used.

4. We can now generate the desired kernel disk image by following the usual steps of compile

and copy.

$ make –f <make file name>

$ sh copykernel.sh

5. GDB can be used to remotely debug the Bochs Environment, where the Bochs emulator acts

as a remote host and our Linux machine as the local host. For this to work, we need to

enable the GDB stub in Bochs configuration file.

 This can be done by adding the following line in bochsrc.brxc file as shown:

gdbstub: enabled=1, port=1234, text_base=0, data_base=0,

bss_base=0

 The port number mentioned can be any number above 1024, as long you connect to

the remote target using the same number (more on this below).

6. Loading up Bochs

 On running,

 bochs –f bochsrc.bxrc

Bochs will load up and wait for a connection from GDB.

7. Connecting from GDB

 Open a new terminal and run,

 gdb YOUR-KERNEL

YOUR-KERNEL is the ELF output file we compiled, i.e. “kernel.elf” or “kernel”

It loads up the symbol information contained in your output.

 GDB cannot automatically detect and support 64 bit architecture in Bochs. So we

need to change the architecture in GDB command line using set architecture

command as follows:

 (gdb) set architecture i386:x86-64:intel

 As we are going to debug the kernel running on Bochs, we need to connect to the

Bochs target with the command,

 (gdb) target remote localhost:1234

You can alternatively also connect by using the IP address of the computer running

Bochs, for example,

 (gdb) target remote 127.0.0.1:1234

1234 is the port number you have chosen to include in bochsrc.bxrc file in STEP 5

This breaks at the first instruction step of your BIOS in Bochs.

 Now, we can set a breakpoint in any part of the kernel code, for example,

 (gdb) b main()

 (gdb) b kernel.C:35

 Use the continue (c) command to continue the Bochs simulation,

 (gdb) continue

This shows up the main menu in your Bochs Emulator, press Enter to boot up your

kernel. It now halts at the breakpoint set by you.

 Debug your kernel code as desired using the GDB debugger.

 You can end the debugging session by running the kill (k) command to terminate the

debugging process and exit GDB with the quit (q) command

 (gdb) kill

 (gdb) quit

8. We can streamline the above GDB process by creating a file named ‘.gdbinit’ in the

project directory that contains the following steps:

file kernel

set architecture i386:x86-64:intel

target remote localhost:1234

 Thus, running the command

$ gdb

in our terminal loads up the symbols and connects to the remote host. This helps us

from typing these common commands every single time.

