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Abstract— Mix networks are designed to provide anonymity
for users in a variety of applications, including anonymous web
browsing and numerous E-commerce systems. Such networks
have been shown to be susceptible to flow correlation attacks
empirically. In this paper, we model the effectiveness of flow cor-
relation attacks. Our results illustrate the quantitative relation-
ship among system parameters such as sample size, noise level,
payload flow rate, and detection rate. Our analysis quantitatively
predicts how existing flow-based anonymous systems would fail
under flow-correlation attacks, thus providing useful guidelines
for the design of future anonymous systems.

I. I NTRODUCTION

Anonymityhas become necessary and legitimate in many
scenarios, such as anonymous web browsing, E-Voting, E-
Banking, E-Commerce, and E-Auctions. In each of these
scenarios, encryption alone cannot achieve the anonymity
required by participants [12].

So-called mix networks have been developed to support
anonymity in distributed systems, where a third party can ob-
serve the traffic flowing between participants [4], [8]. We focus
our study on a particular type of statistical flow-based timing
attack against mix networks, the so-calledflow-correlation
attack[13]. In this attack, an adversary attempts toreconstruct
the path of the communication flow through the mix network
from the sender to the receiver. The basic building block of
the flow correlation attack can be described as follows: given
timing data of a flow at the input of a mix and timing data
of aggregated traffic leaving the mix at each outgoing link,
what is the link taken by the flow? The effectiveness of flow
correlation attacks has been illustrated before for the case of
single mixes [3], [7], [13]. We will show in Section IV-A that
it is very effective for mix networks as well.

If sufficient data is available from all the links in the mix
network, this path reconstruction can be done on a mix-by-
mix basis all the way to the suspected receiver(s). If data is
available from a subset of links only, the corresponding mixes
can be clustered intosupermixes, and the path construction
can be done at the supermix level.

In this paper, we propose a general modeling framework for
mix networks, based on the detection rate, i.e., the probability
that an adversary correctly identifies the path taken by a
flow at the output of a mix (or mix network). Under this
framework, we can accurately predict detection rates given the
configuration of the mix network and the amount of available
data to an adversary. Our theories show that given enough

data, the adversary can achieve arbitrarily high detection rates,
which follow from the observations made in [13].

This paper gives an overview of the analysis of mix net-
works. The details are described in the companion technical re-
port [14]. The remainder of this paper is organized as follows:
Section II outlines our mix network model and threat model. In
Section III, after formally defining the flow-correlation attack
problem, we describe how to estimate the effectiveness of
the attack. In Section IV, we use simulation experiments to
validate the accuracy of our analytical results. We conclude
this paper in Section V and discuss the future work.

II. M ODELS

A mix [1] is a relay device for anonymous communication.
Figure 1 shows hosts communicating with each other by
way of a mix network. A single-mix network can achieve a
certain level of communication anonymity: The sender of a
message attaches the receiver address to a packet and encrypts
it using the mix’s public key. Upon receiving a packet, the
mix decodes the packet using its private key. Different from
an ordinary router, a mix usually will not relay the received
packet immediately. Rather, it collects several packets and
then sends them out in abatch. The order of packets may
be altered as well. Both batching and reordering are needed in
order to prevent timing-based attacks. Without, a simple timing
correlation of packets collected at the input and output links
may break the anonymity that the mix tries to maintain. As
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shown in Figure 1, mixes are often deployed asmix networks,
which are connected through overlays. Mix networks have the
benefit that they generally continue providing some level of
anonymity even in the presence of compromised mixes.

Batching strategies are designed to prevent not only simple
timing analysis attacks, but also powerful trickle attacks, flood
attacks, and many other forms of attacks [2], [3], [7], [9]. In



general, the transmission of a batch of packets can be triggered
by different events, e.g., queue length reaching a pre-defined
threshold, a timer having a time out, or some combination of
these two. In this paper, we focus on two batching strategies:
simple proxy and timed mix. They are denoted asSI andSII

respectively in this paper. Simple proxies are used in Tor [4]
and do not batch packets. Timed mixes fire cumulated packets
everyt seconds. The theorems deducted in this paper can also
be applied to all the other batching strategies by just employing
different queuing models.

We assume a global passive adversary who has knowledge
of the mix’s infrastructure. The adversary cannot correlate
a packet on an input link to another packet on an output
link based on content or on size. The former is prevented by
encryption and the latter by packet padding, respectively. We
evaluate how well the attacker can statistically correlate flows
based on timing despite batching in the mix. In this paper we
do not consider link padding with dummy packets, but rely
on naturally occurring cross traffic instead. This follows the
practice of existing mix networks such as Tor [4]. We assume
that the specific objective of the adversary is to identify the
output link of a traffic flow that appears on an input link.

III. F LOW CORRELATION ATTACKS AND DETECTION RATE

ANALYSIS

A. Flow Correlation Attacks

Define a traffic flow as a series of packets exchanged be-
tween a sender (Alice) and a receiver (Bob) in the network. For
the attacker who reconstructs the path of a flow, a fundamental
question must be answered:given a flow,f , into a mix or mix
network, which output link does the flow use?For example,
consider the network in Figure 2 wheref ′, c′1 andc′2 are output
flows of input flowsf , c1 andc2, respectively. The goal of the
adversary is to determine whether input flowf , after passing
through the mix, goes throughlinkM→R1 (link from mix M
to R1) or linkM→R2 .

Flow f is not alone in the mix network: a significant amount
of cross traffic either naturally exists, or is generated by the
mix network. We therefore assume that (i) there is noisy cross
traffic (for example,c1 and c2 in Figure 2) interfering with
the correlation analysis, and (ii) traffic average rates on all
the output links (for example,linkM→R1 and linkM→R2 in
Figure 2) are the same. The second assumption in particular
renders simple statistical attacks, such as average traffic rate
based attacks in [10], invalid. In this section, we will always
use the setup of Figure 2 as an example to demonstrate our
analysis technique.

1) Flow-Correlation Attack Algorithm:To determine which
output link the input flowf uses, an adversary has to collect
information and make a determination based on some statis-
tical analysis. In this paper, we consider that the adversary
adopts a method based on mutual information [13] of the
input flow and output link aggregated flows, (i.e., the flow
presumably embedded in the cross traffic) and chooses the
output link whose aggregated flow has the biggest mutual
information with the input flow. Using Figure 2 as the example,
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the adversary will collect a traffic sample from both input
and output links. Then, she calculates mutual information
I(f, lM→R1) and I(f, lM→R2), where lM→R1 = f ′ + c′1 is
the aggregated flow onlinkM→R1 and lM→R2 = c′2 is the
aggregated flow onlinkM→R2 . Mutual information measures
the dependence between flows. A decision will then be made
in the following way: if I(f, lM→R1) > I(f, lM→R2), the ad-
versary will declarelinkM→R1 asf ’s output link. Otherwise,
linkM→R2 will be chosen.

2) Mutual Information Estimation:From the discussion
above, we can see that an accurate estimation of mutual
information of input and output traffic is critical in flow-
correlation attacks.

We assume that the adversary uses the following packet
counting scheme to estimate the mutual information between
the input flowf and any aggregated flowl on an output link.

First, the adversary collects (by, say, sniffing) a sample of
traffic traces of the input flowf and the aggregated output
flow l. Next, each traffic trace is divided into segments. The
length of the segments is equal toT seconds, which is denoted
as sampling interval. The number of segments in a trace is
denotedN and is calledsample size. Then, the number of
packets in each segment of both traces is counted. Leta and
b represent the random variables of the numbers of packets
in a segment of traffic trace from an input flow and output
link aggregated flow, respectively. TheInput flow packet rate
time series fT = {a1, · · · , aN} is obtained, whereai is the
number of packets in theith segment of the input traffic flow
trace. Note thatai ∈ {0, · · · , r}, wherer = max(a). Similarly,
the Output link aggregated flow packet rate time serieslT =
{b1, · · · , bN} is obtained, wherebi is the number of packets in
the ith segment of the output link traffic flow trace. Note that
bi ∈ {0, · · · , s}, wheres = max(b). Then, the joint time series
JT = {(a1, b1), · · · , (aN , bN )} is derived, whereai andbi are
elements in the time seriesfT and lT , respectively. Finally,
the mutual information of the input flow and the output link
flow can beestimatedby the following formula:

Î(f, l) ≈
r∑

a=0

s∑
b=0

p̂(a, b) log
p̂(a, b)

p̂(a)p̂(b)
(1)

where p̂a, p̂b, and p̂a,b are thefrequenciesof a, b, and(a, b)
within fT , lT , andJT , respectively.

B. Derivation of the Detection Rate

The detection ratev is defined as the probability that the
adversary correctly recognizes the output link of the input flow



f . Without loss of generality, we assume that the input flow
f goes through a mix’s output linklinkM→R1 . Based on the
algorithm described in Section III-A.1, the general formula of
detection rate is as follows:

v = Pr
(
Î(f, lM→R1) > Î(f, lM→R2),

· · · , Î(f, lM→R1) > Î(f, lM→Rn)
)

(2)

1) Distribution of the Mutual Information:To calculate the
detection rate by using (2), we need to obtain the probability
distribution function of themutual information estimation
Î(f, l) in (1). According to [5], for a sufficiently large sample
sizeN , Î(f, l) should satisfy a normal distribution. To obtain
the distribution function, we therefore only need to estimate
Î(f, l)’s mean and variance, which are given in Lemma 1 and
2, respectively. Their proofs can be found in [14].

Lemma 1:The mean of the mutual information estimation
Î(f, l) is given by

E(Î(f, l)) ≈ I(f, l) + (r − 1)(s− 1)/N (3)

whereI(f, l) is theoriginal mutual information, andr ands
are as defined in Section III-A.2

Lemma 2:The variance of the mutual information estima-
tion Î(f, l) is given byvar(Î(f, l)) ≈ Cf,l

N , whereCf,l is a
constant and is defined as follows

Cf,l =
∑
a,b

p(a, b)
(

log
p(a, b)

p(a)p(b)

)2

−

∑
a,b

p(a, b) log
p(a, b)

p(a)p(b)

2

(4)

andp(a, b) is theoriginal probability distributionof (a, b).
2) Detection Rate Theorem:Based on the distribution func-

tion of estimated mutual information, we can calculate the
detection rate by the following theorem. Its proof can be found
in [14].

Theorem 1:For a mix with any number of output links, the
detection rate,v, is given by

v ≈ 1−
√

Cf,lM→R1

N

×
∫ −I(f,lM→R1 )

√
N

Cf,lM→R1

−∞
N(0, 1)dx (5)

where N is the sample size,I(f, lM→R1) is the mutual
information of the input flowf and its corresponding output
link aggregated flowlM→R1 , N(0, 1) is the density function of
the standard normal distribution, andCf,lM→R1

is a constant.
We note that Theorem 1 is very general. In particular, no
assumptions are made in Formula (5) about the batching
strategy of the mix or about the network topology. Theorem
1 is therefore valid for mix networks with arbitrary topology.
Similarly, no assumption is made about the type of traffic or
about the amount of cross traffic. Clearly, the detection rate is
an increasing function of sample sizeN . Thus, when sample

size N increases, the detection rate approaches 100%. This
formally proves the intuitive fact that any mix network will
fail and cannot maintain anonymity if the adversary has access
to a sufficiently large amount of traffic data.

3) Joint Distribution of(a, b): In Theorem 1, both constant
C and the original mutual informationI(f, l) depend on the
joint distribution functionp(a, b), which in turn is defined by
the strategy of the mix network and the type and amount of
traffic in the network. It can be estimated by two methods:

• Direct Estimation. That is, we can estimatep(a, b)
directly from the time seriesJT defined in Section III-
A.2. Specifically, fromJT , a frequency distribution of
(a, b) can be established. Then, we can use standard
statistical techniques to obtain an estimation ofp(a, b).
See [11] for details.

• Estimation based on Poisson Assumption.The joint
distribution p(a, b) can be calculated asp(a, b) =
p(b|a)p(a). To calculate the conditional probability
p(b|a), we need to apply proper queuing models in
accordance to mixing strategies. For example, if the input
flow is assumed to be a Poisson process, for a simple
proxy SI , a M/D/1 queuing model should be used. For
timed mix SII , we should use an embedded Markov
chain. Please refer [14] for a detailed derivation of the
probability from the models.

IV. EVALUATION

In this section, we assess the accuracy of methods we devel-
oped to estimate detection rate and to evaluate the performance
of mix networks that are under flow-correlation attacks. We use
the popular ns-2 network simulator for all the experimental
evaluations.

A. Failure of Mix Network

Before we proceed to evaluate the accuracy of our predictive
models for single mixes, we provide data to validate the claim
made in Theorem 1: for any size of mix network (in fact any
network), given sufficiently long data, flow correlation attack
will ultimately achieve a detection rate arbitrary close to 100%.
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The network topology for this experiment is shown in Figure
3: The senders and receivers are connected by a stratified
cascade of 2n mixes. Each flow traversesn mixes to reach
its receivers. Each link between mixes has a bandwidth of
10Mbit/s and propagation delay of 10ms. The senders and
receivers are connected to the mix network via links with



bandwidth of 100Mbit/s and propagation delay of 1ms. There
are five flows in the network: flowS1 → R1, flow S2 →
R1, flow S3 → R3, flow S4 → R2, and flow S5 → R4

respectively. FlowS1 → R1 and S2 → R1 traverse odd-
numbered mixes only, flowS5 → R4 traverses even-numbered
mixes only, flow S3 → R3 and S4 → R2 take the zigzag
path between the two horizontal lines of the mixes, and flow
S1 → R1 is the flow of interest to us. To ease the control of
noise traffic rate, only flowS1 → R1 is TCP and other flows
are UDP with Poisson arrival. The average traffic rate to all
the receivers are adjusted to roughly five times the average
rate of flow S1 → R1. The mixes in network are all timed
mixes with a batch interval of 10ms.
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Fig. 4. Effectiveness of Flow Correlation Attack vs Size of the Mix Network

Figure 4 shows the detection rates of a flow correlation
attack for different numbers of mixes in the network. The
length of sampling segments is set to be 10ms. We note
that, as stated in Theorem 1, the flow correlation attack
remains effective even for large mix networks. In fact, the flow
correlation attack achieves higher detection rates for larger mix
networks! The reason is the loop-control mechanism of TCP:
the more mixes on the path, the larger burstiness of the TCP
flow from Alice to Bob. In turn, this makes Alice’s flow more
recognizable compared with the background noise traffic.

B. Estimation Error of Detection Rate

Formula (5) for the detection rate is an estimated one due
to, at least, two reasons: First, the computation of mutual
information is estimated by a truncated Taylor expansion,
which introduces a certain error due to the limited number of
terms. Second, the methods to estimatep(a, b) will contribute
some error to the estimation of detection rate.

In this subsection, we would like to examine the accuracy
of our estimation in order to ensure the performance data we
derive in this paper are practicably meaningful. We use the
one-mix network setup in Figure 2.

We definee, the estimation error of the detection rate, as
follows:

e =
|approximated detection rate− exact detection rate|

exact detection rate
(6)

We obtain the exact detection rate in (6) by simulation.
In all our experiments mentioned earlier, to prevent attacks
based on analyzing average traffic rates, traffic average rates
on all output links are assumed to be the same. The traffic

10
1

10
2

10
3

10
4

0.00

0.05

0.10

0.15

0.20

0.25

Sample Size

E
rr

or
 (

e)

Estimation by Poisson Assumption
Direct Estimation

(a) No Batching, TCP Traffic

10
1

10
2

10
3

10
4

0.00

0.05

0.10

0.15

0.20

0.25

Sample Size

E
rr

or
 (

e)

Estimation by Poisson Assumption
Direct Estimation

(b) Batching, TCP Traffic

Fig. 5. Estimation Error of Detection Rate

type of payload flow can be either UDP or TCP, with traffic
rates of 100 KBps and 80KBps bps, respectively. Compounded
with noise traffic, each output link has an aggregated traffic
rate 500 KBps.T , the length of sampling segments is set
to be 10ms. Due to the space limitation, in this paper, we
will only report our findings for mix networks using batching
strategySI or SII . Evaluation of other batching strategies with
a variety of traffic conditions result in similar observations,
which are reported in [14].

Figure 5 depicts the estimation error in terms of sample size.
It shows that for all the traffic types and batching strategies,
if the sample size is small (say, less than 100), the estimation
error may be more than5%. The estimation error diminishes
and eventually approaches to zero for increasing sample sizes.
This observation suggests our estimation methods will be quite
useful in practical situations. The direct estimation method
results in smaller error than the estimation by Poisson assump-
tion. This is to be expected, as the traffic on the Internet is
not inherently Poisson.

In comparison with the networks using different batching
strategies, the estimation errors appear to be similar. However,
when we compare networks with different traffic types, UDP
traffic seems to result in less error. This is, perhaps, due to the
difficulty in statistical modeling of TCP traffic.

C. Detection Rate
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Fig. 6. Detection Rate

Figure 6 shows the detection rate in terms of sample size. In
all cases, the detection rate approaches 100% when the sample



size is sufficiently large. This demonstrates the challenges
posed by flow-correlation attacks and validates the claim made
in Section III-B.2.

The implication of the above two observations is serious: a
mix network would fail to provide anonymity under the flow-
correlation attacks if the adversary is allowed to collect its
sample for a time period of sufficient length. Note that, by
using our formulae, a system designer can relatively precisely
predict the situations where the failure may occur and invoke
other countermeasures (such as shortening the flow life time,
utilizing channel hoping in wireless networks, etc).

D. Minimum Sample Size

As mentioned earlier, one way to provide a countermeasure
against flow-correlation attacks is to reduce the flow life time
to prevent the adversary from obtaining a sample that is
sufficiently large. To provide some guidelines in this matter,
we performed some measurements to establish the minimum
sample size needed in order for the adversary to achieve a
given detection rate.

Table I compares minimum sample sizes for different traffic
types and batching strategies. As expected, in all cases the

detection Poisson Traffic TCP Traffic
rate Batching No Batching Batching No Batching

95% 130 120 195 135
99% 195 175 290 215

TABLE I

M INIMUM SAMPLE SIZE

minimum sample size increases with increasing detection
rate. For example, for the case of UDP traffic, the minimum
sample size increases from about 130 to almost 200 when the
detection rate requirement increases from 95% to 99%. While
this observation is expected, our formulae can provide useful
guidelines for system parameter selection here.

For UDP traffic, it appears that batching is not particularly
effective in terms of the minimum sample size. However,
effectiveness of batching to be much more interesting for TCP
traffic: We observe that the minimum sample size actually
decreaseswhen we add batching.

This is somehow against intuition: if sample size is a
measure of the level of difficulty for an adversary, our data
show that the adversary has more difficulty to achieve the
required detection rate in a network without batching than
that with batching. This phenomenon actually can be ex-
plained. When batching is performed, the TCP traffic may
start oscillating, due to the feedback mechanisms inherent to
TCP. Consequently, this oscillation seems to provide a much
better signature for the adversary to make a recognition by
correlating the traffic on input and output links. (The data
indicates that this happens to a lesser extent for UDB as well.
Again this can be explained by the additional patterns added by
batching – this time without amplification through feedback.)
We believe this is an important discovery which justifies the
necessity of our modeling and evaluation in this paper.

V. CONCLUSION

We have analyzed the anonymity of mix networks under
flow correlation attacks. We present a formal model of the
adversary and derived the detection rate as a performance
measure of the system. Our theory discloses the underlying
principle of flow-correlation attacks. As such, our results are
the first to illustrate the quantitative relationship among system
parameters, such as sample size, noise level, payload flow
rate, and detection rate. Our analysis quantitatively reveals that
flow-correlation attacks (by performing correlation of flows
into and out of a mix) can seriously degrade anonymity in
mix networks. Consequently, our results also provide useful
guidelines for the design of future anonymous systems where
additional countermeasures must be taken.

Future studies are needed on more effective countermea-
sures against flow-correlation attacks. Possible candidates are
control of flow life time, multi-path routing, and camouflag-
ing. Results in this paper and others [6] have repeatedly
demonstrated that in many cases, simple and intuitive coun-
termeasures in cyber security may not work as expected. A
general theory should be developed to help system designers
to quantify the security performance of the system and make
proper design choices.
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