Course Notes #1. 2-3 Trees

A set is a collection of elements. All elements of a set are different, which means no set can contain two copies of the same element. We will assume that elements of a set are linearly ordered by a relation, usually denoted “<” and read “less than” or “precedes”.

Let \(S \) be a set and let \(u \) be an arbitrary element of a universal set of which \(S \) is a subset. The fundamental operations occurring in set manipulation include:

- **Search\((u, S) \):** Is \(u \in S \)?
- **Insert\((u, S) \):** Add the element \(u \) to the set \(S \).
- **Delete\((u, S) \):** Remove the element \(u \) from the set \(S \).

When the universal set is linearly ordered, the following operations are also important:

- **Min\((S) \):** Report the minimum element of the set \(S \).
- **Split\((u, S) \):** Partition the set \(S \) into two sets \(S_1 \) and \(S_2 \), so that \(S_1 \) contains all the elements of \(S \) that are smaller than or equal to \(u \), and \(S_2 \) contains all the elements of \(S \) that are larger than \(u \).
- **Splice\((S, S_1, S_2) \):** Assuming that all elements in the set \(S_1 \) are smaller than any element in the set \(S_2 \), form the ordered set \(S = S_1 \cup S_2 \).

We will introduce a special data structure: 2-3 trees, which represent sets of elements and support the above set operations efficiently.

Definition A 2-3 tree is a tree such that each non-leaf node has two or three children, and every path from the root to a leaf is of the same length.

The following theorem can be proved using induction on \(n \), and the proof is left to the reader.

Theorem 1 A 2-3 tree of \(n \) leaves has height bounded by \(\log n \).

A linearly ordered set of elements can be represented by a 2-3 tree by assigning the elements to the leaves of the tree in such a way that for any non-leaf node \(v \) of the tree, all elements stored in the first child of \(v \) are less than any elements stored in the second child of \(v \), and all
elements stored in the second child of \(v \) are less than any elements stored in the third child of \(v \) (if \(v \) has a third child).

Each non-leaf node \(v \) of a 2-3 tree has two or three children, which will be named \(\text{child1}(v) \), \(\text{child2}(v) \), \(\text{child3}(v) \), respectively. The node \(v \) also keeps three values for the corresponding subtrees:

- \(l(v) \) : the largest element stored in the subtree rooted at \(\text{child1}(v) \).
- \(m(v) \) : the largest element stored in the subtree rooted at \(\text{child2}(v) \).
- \(h(v) \) : the largest element stored in the subtree rooted at its \(\text{child3}(v) \) (if \(\text{child3}(v) \) exists).

Remark. Strictly speaking, the third value \(h(v) \) is not needed. All algorithms can be implemented without the value \(h(v) \), and without increasing the time complexity. However, we suggest to keep the value \(h(v) \) in implementation, which will make the implementation easier.

1 Searching

The algorithm to search an element in a 2-3 tree is given as follows, where \(r \) is the root of the 2-3 tree, and \(x \) is the element to be searched in the tree.

```plaintext
Algorithm Search(r, x)
1. If (r is empty) return "NO";
2. If (r is a leaf node) return (value(r) == x);
3. If (l(r) >= x) return Search(child1(r), x);
   Else If (m(r) >= x) return Search(child2(r), x);
   Else If (r has a third child) return Search(child3(r), x);
   Else return "NO".
```

Since the height of a 2-3 tree is \(O(\log n) \), and the algorithm simply follows a path in the tree from the root to a leaf, and spends time \(O(1) \) on each level, the time complexity of the algorithm \(\text{Search} \) is \(O(\log n) \), where \(n \) is the number of leaves in the tree.

2 Minimum and Maximum

Given a 2-3 tree \(T \) we want to find out the minimum element stored in the tree. Recall that in a 2-3 tree the elements are stored in leaf nodes in ascending order from left to right. Therefore the problem is reduced to going down the tree, always selecting the left most link, until a leaf node is reached. This leaf node should contain the minimum element stored in the tree. Evidently, the time complexity of this algorithm is \(O(\log n) \) for a 2-3 tree with \(n \) leaves.

```plaintext
Algorithm Min(r)
1. If (r is empty) return failure;
2. If (r is a leaf) return value(r);
   Else return Min(child1(r)).
```

Similarly, the maximum element stored in a 2-3 tree can be found in time \(O(\log n) \).

3 Insertion

To insert a new element \(x \) into a 2-3 tree \(T \) rooted at \(r \), we apply a recursive algorithm that dose two things: (1) insert \(x \) into the tree \(T \) rooted at \(r \); and (2) report whether this insertion splits the tree \(T \) rooted at \(r \) into two 2-3 trees.
If the 2-3 tree T has at most one leaf, then the job is easy: (1) if T has no leaf (i.e., T represents an empty set), then we simply make a 2-3 tree that consists of a single node, which is both the root and the leaf of the tree, with a value x. (2) if T has only one leaf of value y, then the tree T is a single-node tree, inserting x into T makes a two-leaf tree, whose values are x and y, respectively, and the leaves are ordered properly.

Now suppose that the 2-3 tree T has a height at least 1 with at least two leaves, then we proceed at first as if we were searching x in the tree T. However, at the level just above the leaves, we start our insertion operation recursively. In general, suppose that we want to add a new child w to a node v in the 2-3 tree T. If v has only two children, we simply make w a new child of v, placing the children in the proper order and updating the information of the node v.

Suppose, however, that v already has three children v_1, v_2, and v_3. Then w would be the fourth child of v. We cannot have a node with four children in a 2-3 tree, so we split the node v into two nodes, which we call v and v'. With the new node v', we can let the first two of \{v_1, v_2, v_3, w\} (in terms of the linear order) be children of v, and let the rest two be children of v'. Now, the node v' is the root of a subtree and should be added as a new child to the parent of v. Thus, the operation now can be recursively done at the level of the parent of v.

One special case occurs when we wind up splitting the root. In that case we create a new root, whose two children are the two nodes into which the old root was split. This is how the number of levels in (i.e., the height of) a 2-3 tree increases.

The above discussion is implemented as the following algorithms, where r is the root of the 2-3 tree to which the element x is to be inserted.

Algorithm Insert(r, x)
1. If (the tree rooted at r has < 2 leaves) process directly; return;
2. AddLeaf(r, x, r');
3. If (r' != NULL) create a new node v; let r and r' be children of v; $r = v$.

The procedure AddLeaf(r, x, r') above is implemented by the following recursive algorithm, which inserts a new element x to the 2-3 tree rooted at r. Moreover, if this insertion causes splitting the node r due to exceeding the number of children, then a new node r' is created to take two children from r. Therefore, if r' is not empty when the procedure returns, then r and r', respectively, are the roots of two 2-3 trees of the same height.

Algorithm AddLeaf(r, x, r') /* the node r is not a leaf */
1. $r' = NULL$;
2. If (r is a parent of leaves) If (r has 2 children) add x as a new child of r;
 Else /* r has 3 children */
 order x and the three children of r in the linear order;
 let the first two be children of r; and the rest two be children of r';
 return;
3. If ($l(r) >= x$) $v = child1(r)$;
 Else If ($m(r) >= x$ or $child3(r)$==NULL) $v = child2(r)$;
 Else $v = child3(r)$;
4. AddLeaf(v, x, v');
5. If (v' == NULL) return;
6. If (v' != NULL and r has 2 children) add v' as a new child of r;
 Else /* r has 3 children and v' is not NULL */
 order v' and the three children of r in the linear order;
 let the first two be children of r; and the rest two be children of r';
 return.

Analysis: Clearly, the running time of the algorithm Insert is dominated by that of the procedure AddLeaf, which at each level of the 2-3 tree spends constant time (see steps 1-3, 5-6
of the procedure Addson). Since a 2-3 tree with \(n \) leaves has a height bounded by \(\log n \), we conclude that the algorithm Insert runs in time \(O(\log n) \).

4 Deletion

When we delete a leaf from a 2-3 tree, we may leave its parent \(v \) with only one child. If \(v \) is the root, delete \(v \) and let its lone child be the new root. Otherwise, let \(p \) be the parent of \(v \). If \(p \) has another child, adjacent to \(v \) on either the right or the left, and that child of \(p \) has three children, we can transfer the proper one of those three to \(v \). Then \(v \) has two children, and we are done.

If the children of \(p \) adjacent to \(v \) have only two children, transfer the lone child of \(v \) to an adjacent sibling of \(v \), and delete \(v \). Should \(p \) now have only one child, repeat all the above, recursively, with \(p \) in place of \(v \).

Summarizing these discussions together, we get the algorithm \texttt{Delete}, as shown below, where procedure \texttt{Delete() \hspace{1mm} is \hspace{1mm} merely \hspace{1mm} a \hspace{1mm} driver \hspace{1mm} for \hspace{1mm} sub-procedure Del()} in which the actual work is done.

The variables done and ison in \texttt{Del()} are boolean flags used to indicate successful deletion and to detect the case when a node in the tree has only one child, respectively.

In the worst case we need to traverse a path in the tree from root to a leaf to locate the leaf to be deleted, then from that leaf node to the root, in case that every non-leaf node on the path has only two children in the original 2-3 tree \(T \). Thus the time complexity of \texttt{Delete} algorithm for a 2-3 tree with \(n \) leaves is \(O(\log n) \).

```plaintext
Algorithm Delete(r, x)
1. If (r == Null) return failure;
2. If (r is a leaf)
   If (x == l(r)) r = Null; return;
   Else return failure;
3. Del(r, x, done, 1son);
4. If (done == false) return failure;
5. If (1son == true) r = child1(r); return.

Algorithm Del(r, x, done, ison)
1. done = true; ison = false;
2. If (r is a parent of leaves) process properly and return; /* i.e., delete x if it is in the tree; update done and ison */
3. If (x <= l(r)) r' = child1(r);
   Else if (x <= m(r)) or (child3(r) == Null) r' = child2(r);
   Else r' = child3(r);
4. Del(r', x, done', 1son');
5. If (done' == false) done = false; return;
6. If (ison' == true)
   If (r has at least 4 grandchildren)
      reorganize the grandchildren of r so that each of r and its children has either 2 or 3 children; return;
   Else make r a 1-child node (with 3 grandchildren);
   ison = true; return.
```

5 Splice

Splicing two trees into one big tree is a special case of the more general operation of merging two trees. Splice assumes that all the keys in one of the trees are larger than all those in the other tree. This assumption effectively reduces the problem of merging the trees into “pasting” the shorter tree into a proper position in the taller tree. “Pasting” the shorter tree is actually no more than performing an \texttt{AddLeaf} operation to a proper node in the taller tree.
To be more specific, let T_1 and T_2 be two 2-3 trees which we wish to splice into a single 2-3 tree T, where all keys in T_1 are smaller than that in T_2. Furthermore, assume that the height of T_1 is less than or equal to that of T_2 so that T_1 is “pasted” to T_2 as a left child of a leftmost node at the proper level in T_2. In the case where the heights are equal, the new tree T can be easily constructed by letting T_1 and T_2 be the two children of the root of T. Otherwise, a node v at a proper level in the tree T_2 is found, and T_1 is inserted as the left child of v. Note that the level of the node v in the tree T_2 is given by (assume the root of T_2 is at level 0):

$$\text{height}(T_2) - \text{height}(T_1) - 1$$

A more detailed description of the algorithm Splice is given as follows.

```plaintext
Algorithm $\text{Splice}(T, T_1, T_2)$
/* Assume all elements in $T_1$ are less than any elements in $T_2$ */
1. h1 = height of $T_1$; h2 = height of $T_2$;
2. If h1 == h2
   create a root r for T and let $T_1$ and $T_2$ be children of r; return;
3. If h1 < h2 find the leftmost node v in $T_2$ at level h2-h1-1,
   add $T_1$ as a new child of v; $T = T_2$; return;
4. If h1 > h2 find the rightmost node v in $T_1$ at level h1-h2-1,
   add $T_2$ as a new child of v; $T = T_1$; return.
```

Note that steps 3-4 in the algorithm Splice may cause nodes in a 2-3 tree with more than 3 children. Therefore, these steps should really be implemented as recursive procedures that are similar to the algorithm AddLeaf as given in the last subsection. However, instead of stopping at the level of nodes that are parents of leaves, here the recursions stop when the height of the taller tree is equal to 1 plus the height of the shorter tree.

The heights h_1 and h_2 of the trees T_1 and T_2, respectively, in step 1 can be computed by tracing a path in the trees from the root to (any) leaf. Thus, step 1 takes time $O(\log n)$. So the algorithm Splice runs in time $O(\log n)$. If we already know the values of h_1 and h_2 so step 1 of the algorithm can be omitted, then the algorithm follows a path in the taller tree from the root to a node a level h, where h is the difference of the heights of the two trees T_1 and T_2 minus 1. Thus, under this assumption, the running time of the algorithm Splice will be $O(h)$. We summarize the discussion in the following theorem.

Theorem 2 The algorithm Splice takes time $O(\log n)$. If the heights of the two trees are known, then the two trees can be spliced in time $O(h)$, where h is the difference of the heights of the two trees.

The algorithm Splice can be used in a more complicated operation Split on 2-3 trees, as shown in the next section.

6 Split

By splitting a given 2-3 tree T into two 2-3 trees, T_1 and T_2, at a given element x, we mean to split the tree T in such a way that all elements in T that are less than or equal to x go to T_1 while the remaining elements in T go to T_2.

The idea is as follows: based on the way we search the element x in the tree T, we in addition use two stacks to store, respectively, the subtrees to the left and the subtrees to the right of the traversed path (splitting path). Finally, the subtrees in each stack are spliced together to form the desired trees T_1 and T_2. The algorithm is given as follows.
Algorithm Split(T, x, T1, T2)
/* Split T into T1 and T2 such that all elements in T1 are <= x, and all elements in T2 are > x, where SL and SR are stacks. */
1. let r be the root of T;
2. While r is not a leaf Do
 If (x <= l(r))
 If (r has a third child) SR <-- child3(r);
 SR <-- child2(r);
 r = child1(r);
 Else If l(r) < x <= m(r)
 SL <-- child1(r);
 If (r has a third child) SR <-- child3(r);
 r = child2(r);
 Else /* x is in the third child of r */
 SL <-- child1(r); SL <-- child2(r);
 r = child3(r);
3. T1 <-- SL;
4. While SL is not empty Do
 t <-- SL;
 Splice(T1, t, T1);
5. T2 <-- SR;
6. While SR is not empty Do
 t <-- SR;
 Splice(T2, T2, t);

Note that we have omitted certain special cases in the above algorithm. For example, if x is smaller than all elements in T, then we would have T1 = ∅ and T2 = T. Similarly we can handle the case where x is larger than all elements in T. These cases can be tested and processed in time O(log n).

Suppose that the subtrees in the stack SL are τ₁, τ₂, ..., τᵦ, which were pushed into the stack SL in this order. By the properties of a 2-3 tree, we know that for all i, all elements in the subtree τᵢ are smaller than any element in the subtree τᵢ₋₁. Since the subtrees in SL are popped out from SL in the order of τᵦ, ..., τ₂, τ₁ and are spliced in the tree T1 (steps 3-4), we know that the splice operation Splice(T1, t, T1) is always valid. Similarly, steps 5-6 are valid.

It is easy to see that the While loop in step 2 takes time O(log n). The analysis for the rest of the algorithm is a bit more complicated. In each of steps 3-4 and steps 5-6, we may need to splice more than a constant number of subtrees. Thus, if we count the complexity of each splice as O(log n), we would not be able to bound the running time of these steps by O(log n).

Note that the heights of the subtrees in the stacks SL and SR can be easily computed while we traverse the path in T from its root in step 2 of the algorithm Split. By taking advantage of this fact and Theorem 2, we can have more precise analysis for the complexity of the algorithm Split.

The use of the stacks SL and SR to store the subtrees guarantees that the height of a subtree closer to a stack top is less than or equal to the height of the subtree immediately deeper in the stack. A crucial observation is that since we splice shorter trees first (which are on the top part of the stacks), the difference between the heights of two trees to be spliced is always very small. In fact, the total time spent on splicing all these subtrees is bounded by O(log n). We give a formal proof as follows.

Assume before we start step 4, the subtrees stored in the stack SL are

\[τ₁, τ₂, \ldots, τᵦ, \]

in the order from the top to the bottom in the stack SL. For a 2-3 tree τ, denote by \(ht(τ) \) the
height of \(\tau \). According to the algorithm \textbf{Split}, we have

\[
ht(\tau_1) \leq ht(\tau_2) \leq \cdots \leq ht(\tau_r)
\]

and no three consecutive subtrees in the stack have the same height. Thus, we can partition the sequence (1) into non-empty “segments” such that each segment contains subtrees of the same height in the sequence:

\[
s_1, s_2, \ldots, s_q
\]

Each \(s_i \) either is a single subtree or consists of two consecutive subtrees of the same height in sequence (1). Moreover, \(q \leq \log n \). Let \(ht(s_i) \) be the height of the subtrees contained in the segment \(s_i \). We have

\[
ht(s_1) < ht(s_2) < \cdots < ht(s_q)
\]

(2)

The \textbf{While} loop in Step 4 first splices the subtrees in segment \(s_1 \) into a single 2-3 tree \(T_1^{(1)} \), then recursively splices the 2-3 tree \(T_1^{(i-1)} \) and the subtrees in segment \(s_i \) into a 2-3 tree \(T_1^{(i)} \), for \(i = 2, \ldots, q \). We have the following lemma.

\textbf{Lemma 3} For all \(2 \leq i \leq q \), \(ht(s_{i-1}) \leq ht(T_1^{(i-1)}) \leq ht(s_i) \).

\textbf{Proof.} The inequality \(ht(s_1) \leq ht(T_1^{(1)}) \) is obvious since \(T_1^{(1)} \) is obtained by splicing subtrees in the segment \(s_1 \). For \(i > 2 \), since \(T_1^{(i-1)} \) is obtained by splicing the tree \(T_1^{(i-2)} \) and the subtrees in \(s_{i-1} \), and the subtrees in \(s_{i-1} \) have height \(ht(s_{i-1}) \). Thus, we must have \(ht(s_{i-1}) \leq ht(T_1^{(i-1)}) \).

Now consider the second inequality. The 2-3 tree \(T_1^{(1)} \) is obtained by splicing the subtrees in the segment \(s_1 \), which contains at most two subtrees, both of height \(ht(s_1) \). Thus, the height of the 2-3 tree \(T_1^{(1)} \) is at most \(ht(s_1) + 1 \), which, by (2), is not larger than \(ht(s_2) \). Thus, \(ht(T_1^{(1)}) \leq ht(s_2) \), and the second inequality in the lemma holds true for the case \(i = 2 \).

Now for the case \(i > 2 \), consider the height \(ht(T_1^{(i-1)}) \) of the 2-3 tree \(T_1^{(i-1)} \). The tree \(T_1^{(i-1)} \) is obtained by splicing the tree \(T_1^{(i-2)} \) (note \(i > 2 \)) and the subtrees in the segment \(s_{i-1} \). By the inductive hypothesis, \(ht(T_1^{(i-2)}) \leq ht(s_{i-1}) \). If the segment \(s_{i-1} \) consists of a single subtree \(\tau \) of height \(ht(s_{i-1}) \), then splicing the tree \(T_1^{(i-2)} \) of height at most \(ht(s_{i-1}) \) and the tree \(\tau \) of height \(ht(s_{i-1}) \) results in a 2-3 tree \(T_1^{(i-1)} \) of height at most \(ht(s_{i-1}) + 1 \), which, by (2), is not larger than \(ht(s_i) \).

Now suppose that the segment \(s_{i-1} \) consists of two subtrees \(\tau' \) and \(\tau'' \) of height \(ht(s_{i-1}) \), and that \(T_1^{(i-2)} \) is first spliced with \(\tau' \) to result in a tree \(\tau^+ \), then \(\tau^+ \) is spliced with \(\tau'' \) to result in the tree \(T_1^{(i-1)} \). The tree \(\tau^+ \) can have a height either \(ht(s_{i-1}) \) or \(ht(s_{i-1}) + 1 \) (note \(ht(T_1^{(i-2)}) \leq ht(s_{i-1}) \)). If the height of \(\tau^+ \) is \(ht(s_{i-1}) \), then splicing \(\tau^+ \) of height \(ht(s_{i-1}) \) and the tree \(\tau'' \) (also of height \(ht(s_{i-1}) \)) results in the tree \(T_1^{(i-1)} \) of height at most \(ht(s_{i-1}) + 1 \leq ht(s_i) \). If the height of the tree \(\tau^+ \) is \(ht(s_{i-1}) + 1 \), then the root of the tree \(\tau^+ \) must have only two children (see algorithm \textbf{Insert}, step 3). Thus, splicing \(\tau^+ \) and \(\tau'' \) will not increase the tree height (see algorithm \textbf{AddLeaf}, step 6), so the tree \(T_1^{(i-1)} \) resulted from the splicing has height \(ht(s_{i-1}) + 1 \), again not larger than \(ht(s_i) \). This concludes that we will always have \(ht(T_1^{(i-1)}) \leq ht(s_i) \), so the lemma is proved.

Now we are ready for the following theorem
Theorem 4 \textit{The algorithm Split runs in time} \(O(\log n)\).

\textbf{Proof.} \textit{It is obvious that steps 1, 2, 3, and 5 of the algorithm Split take time} \(O(\log n)\). \textit{Thus, to prove the theorem, we only need to prove that the While loops in steps 4 and 6 of the algorithm take time} \(O(\log n)\).

\textit{We first consider, for each} \(i\), \textit{the amount of time spent on splicing the 2-3 tree} \(T_{\text{1}}^{(i-1)}\) \textit{and the subtrees in the segment} \(s_{i}\) \textit{to get the 2-3 tree} \(T_{\text{1}}^{(i)}\). \textit{By Lemma 3,} \(ht(T_{\text{1}}^{(i-1)}) \leq ht(s_{i})\). \textit{If} \(s_{i}\) \textit{is a single subtree} \(\tau_{i}\), \textit{then by Theorem 2, the time for splicing} \(T_{\text{1}}^{(i-1)}\) \textit{and} \(\tau_{i}\) \textit{to get} \(T_{\text{1}}^{(i)}\) \textit{is bounded by a constant times} \(ht(s_{i}) - ht(T_{\text{1}}^{(i-1)})\).

\textit{Now suppose that} \(s_{i}\) \textit{consists of two subtrees} \(\tau_{i}'\) \textit{and} \(\tau_{i}''\), \textit{and that the tree} \(T_{\text{1}}^{(i-1)}\) \textit{is first spliced with} \(\tau_{i}'\) \textit{that gives a tree} \(\tau_{i}^+\), \textit{then the tree} \(\tau_{i}^+\) \textit{is spliced with} \(\tau_{i}''\) \textit{to get} \(T_{\text{1}}^{(i)}\). \textit{The time for splicing} \(T_{\text{1}}^{(i-1)}\) \textit{and} \(\tau_{i}'\) \textit{to get} \(\tau_{i}^+\) \textit{is again bounded by a constant times} \(ht(s_{i}) - ht(T_{\text{1}}^{(i-1)})\). \textit{Moreover, the height of the resulting tree} \(\tau_{i}^+\) \textit{is either} \(ht(s_{i})\) \textit{or} \(ht(s_{i}) + 1\). \textit{So splicing} \(\tau_{i}^+\) \textit{with} \(\tau_{i}''\) \textit{of height} \(ht(s_{i})\) \textit{takes only constant time. Therefore, in this case, the total time to construct} \(T_{\text{1}}^{(i)}\) \textit{from} \(T_{\text{1}}^{(i-1)}\) \textit{and} \(s_{i}\) \textit{is bounded by a constant times} \(ht(s_{i}) - ht(T_{\text{1}}^{(i-1)}) + 1\).

\textit{In summary, to construct the 2-3 tree} \(T_{\text{1}} = T_{\text{1}}^{(q)}\), \textit{the time of the While loop in step 4 of the algorithm Split} \textit{(noticing that the tree} \(T_{\text{1}}^{(1)}\) \textit{can always be constructed from} \(s_{1}\) \textit{in constant time) is bounded by a constant times}

\[\sum_{i=2}^{q} (ht(s_{i}) - ht(T_{\text{1}}^{(i-1)}) + 1) \]

\textit{By Lemma 3,} \(ht(s_{i-1}) \leq ht(T_{\text{1}}^{(i-1)})\) \textit{for all} \(i\). \textit{Thus, the time complexity of the While loop in step 4 is bounded by a constant times}

\[\sum_{i=2}^{q} (ht(s_{i}) - ht(s_{i-1}) + 1) = ht(s_{q}) - ht(s_{1}) + (q - 1) \]

\textit{Since the quantities} \(h(s_{q}), h(s_{1}), q\) \textit{are all bounded by} \(\log n\), \textit{we conclude that the While loop in step 4 takes time} \(O(\log n)\). \textit{The same conclusion applies for step 6 of the algorithm, thus completing the proof of the theorem.} \(\Box\)