1. VPP and BPP Recall that a problem Q_V is in VPP if there is a randomized algorithm A_V that (V1) on a yes-instance of Q_V, returns “yes” with probability δ, and (V2) on a no-instance of Q_V, returns “no” with probability 1 (where $\delta > 0$ is a fixed constant); and that a problem Q_B is in BPP if there is a randomized algorithm A_B that (B1) on a yes-instance of Q_B, returns “yes” with probability $2/3$, and (B2) on a no-instance of Q_B, returns “no” with probability $2/3$.

Give a formal proof that $\text{VPP} \subseteq \text{BPP}$.

2. We have described a proof that $\text{NP} \subseteq \text{PP}$ in class. Write a formal and detailed proof for this result.