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Abstract. We propose and analyze a simple new randomized algorithm, called ResolveSat, for finding
satisfying assignments of Boolean formulas in conjunctive normal form. The algorithm consists of two
stages: a preprocessing stage in which resolution is applied to enlarge the set of clauses of the formula,
followed by a search stage that uses a simple randomized greedy procedure to look for a satisfying
assignment. Currently, this is the fastest known probabilistic algorithm for k-CNF satisfiability for
k ≥ 4 (with a running time of O(20.5625n) for 4-CNF). In addition, it is the fastest known probabilistic
algorithm for k-CNF, k ≥ 3, that have at most one satisfying assignment (unique k-SAT) (with a
running time O(2(2 ln 2−1)n+o(n)) = O(20.386...n) in the case of 3-CNF). The analysis of the algorithm
also gives an upper bound on the number of the codewords of a code defined by a k-CNF. This is
applied to prove a lower bounds on depth 3 circuits accepting codes with nonconstant distance. In
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particular we prove a lower bound �(21.282...
√

n) for an explicitly given Boolean function of n variables.
This is the first such lower bound that is asymptotically bigger than 2

√
n+o(

√
n).

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: CNF satisfiability, randomized algorithms

1. Introduction

1.1. k-CNF SATISFIABILITY. Given that the problem of deciding whether a
given k-CNF formula is satisfiable is NP-complete for k ≥ 3, it is natural to look for
algorithms that improve significantly on the worst-case running time of the naive ex-
haustive search algorithm, which is poly(n)2n for a formula on n variables. Monien
and Speckenmeyer [1985] gave the first real improvement by giving a simple
algorithm whose running time is O(2(1−εk )n), with εk > 0 for all k. In a sequence of
results, algorithms with increasingly better running times (larger values of εk) have
been proposed and analyzed. Most of these concentrated on the case of 3-CNF.
Prior to the introduction of probabilistic algorithms, the fastest algorithm in this
field was Kullmann’s [1999], which achieved O(20.589n) for 3-CNF satisfiability.

All of these algorithms are backtrack search algorithms of a type originally
proposed by Davis et al. [1962] (which are sometimes called Davis–Putnam pro-
cedures). Such algorithms search for a satisfying assignment by assigning values
to variables one by one (in some order), backtracking if a clause is made false.
Paturi et al. [1997] proposed a randomized algorithm for k-SAT. This algorithm
is very simple and can be viewed as doing a very limited form of backtracking: if
the algorithm reaches a point where it must backtrack twice in succesion then it
restarts. The algorithm is not faster than the previous ones for k = 3, but it is for
larger values of k.

In this article, we present an algorithm that is a significant improvement of Paturi
et al.’s algorithm. When it was announced in the preliminary version of this article
[Paturi et al. 1998], it was the fastest algorithm for all values of k ≥ 3. Soon
after, Schöning [1999] discovered another algorithm, based on random walk on
the Boolean cube. His algorithm beats ours for k = 3, but is still worse for k ≥
4. Further improvements of his algorithm were found quite recently [Hofmeister
et al. 2002]. Both Paturi, Pudlák and Zane’s algorithm and Schöning’s algorithms
have been derandomized, see Paturi et al. [1997] and Dantsin et al. [2002] but the
deterministic versions perform significantly worse. Other work has investigated
related problems, such as solving satisfiability of general CNF formulas, proving
bounds on parameters such as formula length and number of literals [Hirsch 2000;
Kullman and Luckhardt 1998; Schiermeyer 1993; Zhang 1996].

Our algorithm is very simple. Given a k-CNF formula, we first generate clauses
that can be obtained by Resolution without exceeding a certain clause length. Then,
we take a random order of variables and gradually assign values to them in this
order. If a variable currently considered occurs in a unit clause, we assign the value
so that the clause is satisfied. If it occurs in contradictory unit clauses, we start over.
At each step, we also check if the formula is satisfied and if it is satisfied, we accept.
This subroutine is repeated until a satisfying assignment is found, or a given time
limit is exceeded. (The algorithm is defined precisely below.)
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TABLE I. THE EXPONENT c IN THE BOUND 2cn−o(n) OF OUR ALGORITHM FOR UNIQUE-k-SAT, FOR

k-SAT AND THE CORRESPONDING BOUNDS FOR SCHÖNING’S ALGORITHM SCHÖNING [1999] AND ITS

IMPROVED VERSION FOR 3-SAT [HOFMEISTER ET AL. 2002]

k unique-k-SAT general k-SAT Schöning [1999] Hofmeister et al. [2002]
3 0.386 . . . 0.521 . . . 0.415 . . . 0.410 . . .

4 0.554 . . . 0.56249 . . . 0.584 . . .

5 0.650 . . . 0.678 . . .

6 0.711 . . . 0.736 . . .

First, we analyze the algorithm on formulas that have a unique satisfying
assignment (more precisely, an assignment that has large Hamming distance
from all others). As for the previous algorithm of Paturi et al., this property of
the set of satisfying assignments causes frequent occurrence of unit clauses in
the process, thus the probability that a satisfying assignment is found is high. The
preprocessing by Resolution has the effect that there are more clauses that can be
reduced to a unit clause, thus there are more variables the value of which is forced.
The resulting bound is better than the running time for Schöning’s algorithm,
so our algorithm outperforms Schöning algorithm for formulas with a unique
satisfying assignment.

If a satisfying assignment does have close neighbors, it is not true that values of
many variables must be forced when the algorithm happens to guess this satisfying
assignment. Hence, the analysis of general k-CNFs is based on the idea that the
lower probability that a particular assignment is found is compensated by having
more satisfying assignments. The analysis is much more complicated and we do
not get as good bounds as for the case of uniquely satisfiable formulas. Namely,
the bounds are worse for k = 3 and 4, for k > 4, we get asymptotically the same
bound. Our bounds for unique-k-SAT and k-SAT, for k = 3, 4, 5, 6 are shown in
Table I, where we also compare them with the corresponding bounds of Schöning
[1999] and Hofmeister et al. [2002].

In a preliminary version of the article, which appeared before Schöning did his
work, we presented analysis to show that the exponent for the general k = 3 case
was at most 20.446n . In contrast with the analysis for the cases k >= 4, this analysis
is somewhat tedious and we have omitted it from this version for a few reasons.
First, the bounds we obtain from this analysis are not as good as those obtained in
Hofmeister et al. [2002] and Schöning [1999]. Second, we believe that it should
be possible to show for k = 3 and k = 4 that the bounds for the unique SAT case
extend to the general case (as we do for k ≥ 5), and thereby show that the algorithm
we give here has better worst-case bounds than those of Hofmeister et al. [2002]
and Schöning [1999]. Our existing analysis to obtain numerical bounds does not
seem useful towards this goal.

Our main aim was to find an asymptotically fastest algorithm; however, we
believe that, due to its simplicity, the algorithm is interesting also for practical
applications. The preprocessing phase in which new clauses are generated causes
larger space complexity of this algorithm if compared with Paturi et al. [1997] and
Schöning [1999]. But in practical applications, it is better to give up a little of the
time efficiency and use a stricter bound on the size of clauses. It turns out that the
biggest marginal gain in time efficiency is obtained for k-CNF’s when we use only
resolution up to clauses of length 2k − 1, and performing further resolution yields
diminishing returns.
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Furthermore, one can use other ideas to improve the practical performance such
as assigning the value to all unit clauses that appear, or resolving after each single
assignment to a variable. These improvements have not been analyzed theoretically
yet, but an algorithm that is based on a combination of ours and Schöning’s has
been tested on a number of benchmarks with quite promising results [Hirsch and
Kojevnikov 2002].

1.2. LOWER BOUNDS ON DEPTH 3 CIRCUITS. When starting this research our
objective was to prove better lower bounds for bounded depth circuits. It is quite
surprising that our techniques can be used both for upper bounds on the running
time of algorithms and for lower bounds on the size of certain circuits. In particular,
the techniques provide interesting information on the sets of satisfying assignments
of k-CNF formulas. We prove an upper bound on the number of code words of an
error correcting code accepted by a k-CNF formula. As in Paturi et al. [1997],
this implies lower bounds on the size of circuits computing such explicit codes.
Our bounds pertain to the restricted circuit classes �3, the set of unbounded fan-in
depth-3 circuits whose output gate is an OR gate, and �3

k , the set of �3 circuits with
bottom fan-in (i.e., the fan-in of gates closest to the inputs) at most k. Circuits of
this form have been studied extensively. One motivation for studying such circuits
is that sufficiently strong lower bounds on �3 circuits would resolve other long-
standing questions. Namely, using a technique of Valiant [1977], it can be shown
that a lower bound of 2n/ log log n on �3

nε circuits would imply nonlinear lower bounds
on the size of constant fan-in, logarithmic depth circuits.

Previously, the strongest lower bounds on the size of such circuits for explicitly
functions were proven for the parity function: �3 circuits of size �(n1/42

√
n) and

�3
k circuits of size 2n/k+o(n) are necessary and sufficient to compute parity Paturi

et al. [1997]. Here, we obtain better bounds 2c
√

n−o(n) for the membership function
for an error correcting code, where c = π/

√
6 = 1.282 . . . . This is the first lower

bound for an explicitly given Boolean function with the constant in the exponent
c > 1. Although these lower bounds are only slightly better, they have the significant
property that f log2 S

n > 1, where f is the bottom fan-in of the circuit and S is the
size of the circuit. This is interesting, because proving f log2 S

n > ω(1) would give
a nonlinear lower bound for series-parallel circuits [Valiant 1977]. Earlier lower-
bound techniques [Håstad 1986; Razborov 1986; Håstad et al. 1993] do not seem to
be able to give such lower bounds. Note that one can get easily an explicit Boolean
function that has the same asymptotic complexity for both �3 and �3 circuits by
combining these functions with their negations. It is also interesting to note that we
get a polynomial gap between the �3 and �3 complexities of some error-correcting
codes, since all linear codes over GF2 have complexity at most poly(n)2

√
n .

2. Definitions and Statements of the Main Results

For our purposes, a CNF Boolean formula F(x1, x2, . . . , xn) is viewed as both a
Boolean function and a set of clauses. We say that F is a k-CNF if all the clauses have
size at most k. For a clause C , we write var(C) for the set of variables appearing
in C . If v ∈ var(C), the orientation of v is positive if the literal v is in C and
is negative if v̄ is in C . Recall that if F is a CNF Boolean formula on variables
(x1, x2, . . . , xn) and a is a partial assignment of the variables, the restriction of F
by a is defined to be the formula F ′ = F�a on the set of variables that are not set
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by a, obtained by treating each clause C of F as follows: if C is set to 1 by a, then
delete C , and otherwise replace C by the clause C ′ obtained by deleting any literals
of C that are set to 0 by a. Finally, by a unit clause, we mean a clause that contains
exactly one literal.

To define our algorithm ResolveSat, we first define some subroutines. The
following simple function takes as input an arbitrary assignment y, a CNF for-
mula F , and a permutation π and produces an assignment u, which is obtained by
considering the variables of y in the order given by π and modifying their values
in an attempt to satisfy F .

Function Modify(CNF formula G(x1, x2, . . . , xn),
permutation π of {1, 2, . . . , n}, assignment y) −→ (assignment u)

G0 = G.
for i = 1 to n

if Gi−1 contains the unit clause xπ (i)

then uπ (i) = 1
else if Gi−1 contains the unit clause x̄π (i)

then uπ (i) = 0
else uπ (i) = yπ (i)

Gi = Gi−1�xπ (i)=uπ (i)

end /* end for loop */
return u;

The algorithm Search is obtained by running Modify(G, π, y) on many pairs
(π, y) where π is a random permutation and y is a random assignment.

Search(CNF-formula F , integer I )
repeat I times

π = uniformly random permutation of 1, . . . , n
y = uniformly random vector ∈ {0, 1}n

u = Modify(F, π, y);
if u satisfies F

then output(u); exit;
end/* end repeat loop */
output(‘Unsatisfiable’);

The algorithm we investigate here is obtained by combining Search with a
preprocessing step consisting of bounded resolution. We recall the definition of
resolution. If C1 and C2 are two clauses, we say that C1 and C2 conflict on variable
v if one of them contains v and the other contains v̄ . C1 and C2 is a resolvable pair
if they conflict on exactly one variable v . For such a pair their resolvent, denoted
R(C1, C2) is the clause C = D1 ∨ D2 where D1 and D2 are obtained by deleting v
and v̄ from C1 and C2. It is easy to see that any assignment satisfying C1 and C2 also
satisfies C . Hence, if F is a satisfiable CNF formula containing the resolvable pair
C1, C2, then the formula F ′ = F∧R(C1, C2) has the same satisfying assignments as
F . We say that the resolvable pair C1, C2 is s-bounded [Galil 1975] if |C1|, |C2| ≤ s
and |R(C1, C2)| ≤ s. The following subroutine extends a formula F to a formula
Fs by applying as many steps of s-bounded resolution as possible.

Resolve(CNF Formula F , integer s)
Fs = F .
while Fs has an s-bounded resolvable pair C1, C2

with R(C1, C2) �∈ Fs

Fs = Fs ∧ R(C1, C2).
return (Fs).
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Our algorithm for k-SAT is the following simple combination of Resolve and
Search:

ResolveSat( CNF-formula F , integer s, positive integer I )
Fs = Resolve(F, s).
Search(Fs, I ).

The running time of ResolveSat(F, s, I ) can be bounded as follows.
Resolve(F, s) adds at most O(ns) clauses to F by comparing pairs of clauses, so
a naive implementation runs in time n3spoly(n) (this time bound can be improved,
but this will not affect the asymptotics of our main results). Search(Fs, I ) runs in
time I (|F | + ns)poly(n). Hence, the overall running time of ResolveSat(F, s, I ) is
crudely bounded from above by (n3s + I (|F | + ns))poly(n). If s = o(n/ log n), we
can bound the overall running time by I |F |2o(n) since ns = 2o(n). For our purposes,
it will be sufficient to choose s either to be some large constant or to be a slowly
growing function of n, by which we mean that s(n) tends to infinity with n but is
o(log n).

The algorithm Search(F, I ) always answers “unsatisfiable” if F is unsatisfiable.
Thus, the only problem is to upper bound the error probability in the case that F
is satisfiable. Define τ (F) to be the probability that Modify(F, π, y) finds some
satisfying assignment. Then for a satisfiable F the error probability of Search(F, I )
is equal to (1 − τ (F))I ≤ exp (−I τ (F)), which is at most exp (−n) provided that
I ≥ n/τ (F). Hence, it suffices to give good upper bounds on τ (F).

To state our results on the algorithm ResolveSat, we need to define certain
constants µk for k ≥ 2:

µk =
∞∑
j=1

1

j
(

j + 1
k−1

) .

It is straightforward to show that µ3 = 4 − 4 ln 2 > 1.226 using Taylor’s series
expansion of ln 2. Using standards facts, it is easy to show that µk is an increasing
function of k with the limit

∑∞
j=1

1
j2 = (π2

6 ) = 1.644 . . . .1

Our results on the algorithm ResolveSat are summarized in the following three
theorems:

THEOREM 1.

(i) Let k ≥ 5, let s(n) be a function going to infinity. Then, for any satisfiable
k-CNF formula F on n variables,

τ (Fs) ≥ 2−(1− µk
k−1 )n−o(n).

Hence, ResolveSat(F, s, I ) with I = 2(1− µk
k−1 )n+o(n) has error probability o(1)

and running time 2(1− µk
k−1 )n+o(n) on any satisfiable k-CNF formula, provided that

s(n) goes to infinity sufficiently slowly.
(ii) For k ≥ 3, we get the same bounds provided that F is uniquely satisfiable.

1Alternatively, the bound can be expressed in terms of standard functions as follows: µk/(k − 1) =
γ + �′(k/(k − 1))/�(k/(k − 1)), where γ = 0.577 . . . is the Euler constant and � is the standard
Gamma function.
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We shall compare this bound with the bound in Schöning’s algorithm [Schöning
1999]. The exponent in that algorithm is 1 + log2(1 − 1

k ). Since

−(k − 1) log2

(
1 − 1

k

)
< lim

k→∞
−(k − 1) log2

(
1 − 1

k

)
=

1

ln 2
= 1.442 · · · < 1.470 · · · = µ7 ≤ µk,

for k ≥ 7, we have 1 + log2(1 − 1
k ) > 1 − µk

k−1 for k ≥ 7. The inequality for k < 7
can be checked by direct computations, see Table I.

Theorem 1 is proved by first considering the uniquely satisfiable case and then
relating the general case to the uniquely satisfiable case. When k ≥ 5, our analysis
shows that the asymptotics of the general case is no worse than that of the uniquely
satisfiable case. When k = 3 or k = 4, our analysis gives somewhat worse bounds
for the general case than for the uniquely satisfiable case.

THEOREM 2. Let s = s(n) be a slowly growing function. For any satisfiable
n variable 3-CNF formula, τ (Fs) ≥ 2−0.521n and so ResolveSat(F, s, I ) with
I = n20.521n has error probability o(1) and running time 20.521n+o(n).

THEOREM 3. Let s = s(n) be a slowly growing function. For any satisfiable
n variable 4-CNF formula, τ (Fs) ≥ 2−0.5625n and so ResolveSat(F, s, I ) with
I = n20.5625n has error probability o(1) and running time 20.5625n+o(n).

Let z be a satisfying assignment to a formula F . For integer d ≥ 1, we say that
z is d-isolated in F if there is no other satisfying assignment within Hamming
distance d of z. Define

ε
(d)
k = 3

(d − 1)(k − 2) + 2
. (1)

THEOREM 4. Let n, k, d be integers with k ≥ 3, d ≥ 1. Let F be a CNF formula
on n variables and suppose that F has at most L clauses of size larger than k. Then,
L the number of d-isolated satisfying assignments of F is at most

2(1− µk
k−1 +ε

(d)
k )n + Lnd2n−k .

We believe that the gap between the bounds for the general case and the uniquely
satisfiable case when k ∈ {3, 4} is due to a weakness in our analysis, and we
conjecture that the asymptotic bounds for the uniquely satisfiable case hold in
general for all k. If true, the conjecture would imply that our algorithm is also faster
than any other known algorithm in the k = 3 case.

Recall that a set E ⊆ {0, 1}n is an error correcting code with minimum distance
d if e1, e2 ∈ E, e1 �= e2 implies that the Hamming distance between e1 and e2 is at
least d. Elements of E are referred to as codewords. Abusing notation slightly, let
E(x) be the function which is 1 iff x ∈ E . Our lower bounds on depth 3 circuits
will apply to any code E with minimum distance d > log n and at least 2n−(n/ log n)

codewords. These are fairly lenient choices of parameters, and constructions of
codes with these properties are well known. For example, a BCH code with designed
distance log n has at least 2n−log2 n codewords, see, for example, MacWilliams and
Sloane [1977]. We prove:
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THEOREM 5. Let E be an error correcting code of minimum distance d > log n
and at least 2n−(n/ log n) codewords. If C is a �3

k circuit computing E with k ≥ 3,
then C has at least 2

µk
k−1 n− 4n

log n gates.

For example, we obtain a lower bound of 20.612n on the size of �3
3 circuits

computing E . In addition, we obtain

THEOREM 6. Let E be an error correcting code of minimum distance d > log n
and at least 2n−(

√
n/ log n) codewords. If C is a �3 circuit computing E, then C has

at least 2( π√
6
− 5

log n )
√

n gates.

Note that since π√
6

> 1.282, this proves a lower bound of 21.282
√

n on the size of
such circuits.

The rest of the article is organized as follows: In Section 3, we prove our result
for unique SAT; in Section 4, we prove our results on general SAT; and in Section 5,
we prove Theorem 4 and the lower bounds on depth 3 circuits.

3. Unique SAT

3.1. OVERVIEW. In this section, we prove part (ii) of Theorem 1 which estab-
lishes the bound on the running time for our algorithm for the case of uniquely
satisfiable formulas. Let G be an arbitrary formula and z an assignment. Define
τ (G, z) to be the probability with respect to random π and y that Modify(G, π, y)
returns z. For our main results, we want to lower bound τ (G), which is the sum of
τ (G, z) over all satisfying assignments z of G.

The following is a more precise statement of the result for unique SAT
(Theorem 1(ii)).

THEOREM 7. Let F be a k-CNF formula on n variables with k ≥ 3, and suppose
that z is a d-isolated satisfying assignment of F. Then for s ≥ kd ,

τ (Fs, z) ≥ 2−(1− µk
k−1 +ε

(d)
k )n,

where ε
(d)
k is as defined in (1).

To deduce Theorem 1(ii) from this, note that when F is uniquely satisfiable, its
satisfying assignment is d-isolated for any d ≥ 1. Suppose s(n) tends to ∞ with
n and define d = d(n) = �logk s(n)�. Then ε

(d(n))
k = o(1) and so the bound of

Theorem 7 implies that of Theorem 1(ii).
To analyze τ (Fs, z), we initially ignore the fact that Fs is obtained from F by

s-bounded resolution and analyze τ (G, z) for an arbitrary formula G.
Consider the run of Modify(G, π, y). Recall that each variable xi is assigned

so as to satisfy some unit clause, or is set to yi . A variable whose assignment is
determined by a unit clause is said to be forced (with respect to π and y). Let
Forced(G, π, y) denote the set of variables that are forced. We first observe:

LEMMA 1. Let z be a satisfying assignment of G, and let π be a permutation of
{1, . . . , n} and y be any assignment to the variables. Then, Modify(G, π, y) = z
if and only if y and z agree on all variables outside of Forced(G, π, z).
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PROOF. If y agrees with z on all variables outside of Forced(G, π, z), then a
simple induction on i shows that in the execution of Modify(G, π, y), the output
bit uπ (i) is zi . If the variable xπ (i) is not in Forced(G, π, z), then uπ (i) is set to
yπ (i) = zπ (i). If variable xπ (i) is in Forced(G, π, z), then, by induction, for j < i ,
uπ ( j) = zπ ( j) and so the clauses of G force output bit uπ (i) to be zπ (i).

Now suppose y disagrees with z on some variable outside of Forced(G, π, z) and
let i be the first index such that yπ (i) �= zπ (i). Then it is easy to see that the output
bit uπ (i) will equal yπ (i) and hence Modify(G, π, y) �= z.

Thus, for fixed π , the number of y for which Modify(G, π, y) outputs z is
2|Forced(G,π,z)|, and we have:

LEMMA 2. Let z be a satisfying assignment of the formula G. Then

τ (G, z) = 1

2nn!

∑
π

2|Forced(G,π,z)| = 2−nEπ [2|Forced(G,π,z)|],

where Eπ denotes expectation with respect to random π .

By the convexity of the exponential function, the last expression is bounded
below by

2−n+Eπ [|Forced(G,π,z)|].

We next find an alternative expression for Eπ [|Forced(G, π, z)|]. If v is a variable
of formula G and z is a satisfying assignment we say that a clause C is critical for
(v, G, z) if C is in G, v ∈ var(C), and under the assignment z, the only true literal
in C is the one corresponding to v . Suppose that C is critical for (v, G, z), and that
π is a permutation such that v appears last among the variables of C . Then, in the
run Modify(G, π, z), by the time v is assigned, all of the other literals in C have
been falsified and so v ∈ Forced(G, π, z) (conversely, if v ∈ Forced(G, π, z) then
v must appear last in some critical clause for (v, G, z)). Let Last(v, G, z) be the set
of permutations π of the variables such that for at least one critical clause C for
(v, G, z), v appears last among all variables in var(C), and let

P(v, G, z)

denote the probability that a random permutation π belongs to Last(v, G, z), which
is equivalent to the probability that v ∈ Forced(G, π, z) for random π . By linearity
of expectation,

Eπ [|Forced(G, π, z)|] =
∑

v

P(v, G, z).

Putting things together we have:

LEMMA 3. For any satisfying assignment z of the CNF formula G:

τ (G, z) ≥ 2−n+∑
v P(v,G,z).

In particular, if P(v, G, z) ≥ p for all variables v then τ (G, z) ≥ 2−(1−p)n.

Hence, to bound τ (G, z) from below, it suffices to bound P(v, G, z) from below.
It is important to emphasize that while the function Modify depends on random π
and y, the probability represented by P(v, G, z) depends only on π and is indepen-
dent of y.
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To motivate the proof below, we first consider what happens if the preprocessing
by Resolution is omitted (which is essentially the algorithm studied in Paturi et al.
[1997]). Let z be the unique satisfying assignment for the k-CNF F . Then for each
variable v , F must contain at least one critical clause Cv for (v, F, z), otherwise
the assignment obtained from z by complementing the value in position v is also
a satisfying assignment. Since Cv has at most k variables, we conclude that for a
random permutation π , v appears last in Cv with probability at least 1/k, that is,
P(v, F, z) ≥ 1/k and so Lemma 3 implies

τ (F) = τ (F, z) ≥ 2−(1− 1
k )n.

In fact, this argument actually proves a more general result: if F is a k-CNF, and z
is an isolated satisfying assignment, in the sense that no assignment differing from
z in only one position satisfies F , then τ (F, z) ≥ 2−(1− 1

k )n . Our aim is to improve
the bound by showing that 1

k can be replaced by µk

k−1 assuming that z is isolated to
a nonconstant Hamming distance (recall that µk > 1).

Note that the argument above uses only the fact that each variable has at least
one critical clause; if there are more critical clauses for each variable we could
get a better lower bound. For example, suppose z = 1n is an isolated satisfying
assignment for the formula F , and that F contains the two clauses (x1 ∨ x̄2 ∨ x̄3)
and (x1 ∨ x̄4 ∨ x̄5) which are both critical for (x1, F, z). In this case, the probability
that a random permutation of the variables puts x1 last in some critical clause is at
least 7/15, rather than 1/3 obtained using only a single critical clause.

In general, even if F is uniquely satisfiable, F need contain only one critical clause
per variable, so we can’t hope for a general improvement of this kind. However, what
we will show is that for appropriately chosen s, Fs contains many critical clauses
for each variable. As an example, consider a formula F which contains clauses
C1 = (x1∨x̄2∨x̄3) and C2 = (x2∨x̄4∨x̄5), which are critical for x1, x2, respectively.
Resolution on the variable x2 will produce the clause C = (x1 ∨ x̄3 ∨ x̄4 ∨ x̄5), which
is also a critical clause for x1. Thus F4 contains both C1 and C , and the probability
that x1 will be forced increases.

Considering only critical clauses, however, may not produce any additional effect.
If instead of C2 the unique critical clause for x2 is, say, C3 = (x̄1 ∨ x2 ∨ x̄4), then
C1 and C3 are not resolvable, because they conflict on two variables x1 and x2
(resolving with C1 over x2 would produce a tautological clause (x1 ∨ x̄1 ∨ x̄3 ∨ x̄4)
which is useless). To get new critical clauses for z = 1n , we have to use essentially
the fact that z is d-isolated with d > 1. In particular, 2-isolation implies that 001n−2

is not a satisfying assignment; therefore, there is a clause that is not satisfied by
this assignment. Such a clause can be, for example, C4 = (x1 ∨ x2 ∨ x̄4), which is
resolvable with C1 and produces the critical clause (x1 ∨ x̄3 ∨ x̄4). It is clear that any
clause of the formula that is not satisfied by 001n−2 is either resolvable with C1, or
it is a critical clause for variable x1 that does not contain x2; thus, it is different from
C1. Hence, we always get another critical clause for x1. Then, we get another clause
by considering the nonsatisfying assignment 0101n−3. If d > 2, we can continue
and find more critical clauses, etc.

To describe the process of adding new critical clauses for a variable v , we shall use
labeled rooted trees. The root will be labeled by v , the children of the root will cor-
respond to the literals of a chosen critical clause for v . The next nodes will be given
by clauses that are resolvable with this clause etc. The formal description is below.
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We need some definitions. The degree of a node in a rooted tree is the number
of its children. The depth of a node is its distance from the root.

A tree is of uniform depth d if all of its leaves are at depth d. A subset A of nodes
is a cut if it does not include the root, and every path from the root to a leaf includes
a node of A. (This definition is not quite what one might expect, e.g., the set of all
leaves is a cut by this definition, while the root isn’t). If A is a set of nodes, write
var (A) for the set of variables that appear as labels of nodes of A.

Definition 1. A rooted tree is said to be admissible with respect to a given set
of Boolean variables if it has the following properties:

—the root is labeled by a variable;
—each node in the tree is either labeled by a variable or unlabeled;
—for any path P from the root to a leaf, no two nodes have the same label. In other

words, if node a is an ancestor of node b and both are labeled, then they have
different labels.

A tree is said to be a critical clause tree for variable v , formula G and satisfying
assignment z if it is admissible and in addition satisfies:

—the root label is v;
—for any cut A of the tree, G has a critical clause C(A) for (v, G, z) such that

var(C(A)) ⊆ var (A) ∪ {v}.
In the definition of critical clause tree, the portion of the tree below an unla-

beled node is essentially irrelevant (except for the third admissibility condition).
More precisely, we may replace the subtree from an unlabeled node by any subtree
consisting only of unlabeled nodes and all the conditions will be preserved. It would
be natural to impose the simplifying assumption that unlabeled nodes are leaves,
but we prefer not to do this since in our results on critical clause trees, the state-
ments and analysis are simplified if we consider trees of uniform depth. Hence, in
Section 3.2, where we describe a construction of a uniform depth critical clause
tree, unlabeled nodes of depth less than d are given a single unlabeled child.

We will show that if F is uniquely satisfiable, then for some appropriately large s,
there is a “large” critical clause tree for (v, Fs, z). This critical clause tree represents
multiple critical clauses for (v, Fs, z). This will enable us to derive a better lower
bound on the probability that v is forced.

We shall split the proof of Theorem 7 into two parts stated below as two lemmas.

LEMMA 4. Let F be a k-CNF formula, k ≥ 3, and z be a d-isolated satisfying
assignment of F. If v is any variable, then for any s ≥ kd , there exists a critical
clause tree for (v, Fs, z) of maximum degree k − 1 and uniform depth d.

The second lemma asserts that the existence of a sufficiently deep critical clause
tree for (v, G, z) of bounded degree implies a lower bound on P(v, G, z).

LEMMA 5. Let G be a formula, z a satisfying assignment, and v a variable. If
there is a critical clause tree for (v, G, z) with maximum degree k − 1 and uniform
depth d, then:

P(v, G, z) ≥ µk

k − 1
− ε

(d)
k .
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Combining these two lemmas with Lemma 3 immediately yields Theorem 7 and
hence also Theorem 1(ii). So it remains to prove these two lemmas.

3.2. PROOF OF LEMMA 4. We need one additional piece of notation: for a set
of variables U , z ⊕ U denotes the assignment obtained from z by complementing
the variables of U .

Fix a k-CNF formula F , and d-isolated assignment z; we will assume, without
loss of generality, that z = 1n . Furthermore, let a variable v be fixed. Note that
every critical clause of F for v consists of v and a set of negated variables. We will
construct a critical clause tree for (v, Fs, z). We “grow” the tree by the following
process. Start with a tree T0 consisting of one node labeled v . We construct a
sequence of trees T1, T2, . . . as follows. Having constructed Ti−1, if all leaves have
depth d stop. Otherwise, choose a leaf bi of depth less than d, and let Pi be the set
of nodes appearing on the path from bi to the root (including bi and the root). Since
z is d-isolated, and |Pi | ≤ d, z ⊕ var (Pi ) does not satisfy F ; choose a clause Ci
that is not satisfied by z ⊕ var (Pi ). For each variable w of var(Ci ) − var (Pi ), give
bi a child labeled w . If var(Ci ) − var (Pi ) is empty, give b an unlabeled child. Let
Ni denote the set of nodes corresponding to the children of bi .

Clearly, the above procedure terminates with an admissible tree T of maximum
degree k − 1 of uniform depth d. The total number of nodes in the final tree is
bounded above by

∑d
i= 0(k − 1)i ≤ kd , and hence any clause whose variables all

appear as node labels in the tree has size at most s.
It remains to prove that T is a critical clause tree for (v, Fs, z), that is, that for

any cut A, Fs contains a critical clause C(A) for (v, Fs, z) whose variable set is
contained in var (A) ∪ {v}. To this end, we will prove by induction on i that each
Ti is a critical clause tree. The result is vacuously true for T0, which has no cuts.
For T1, the tree has only one cut. T1 is constructed from a clause C which is not
satisfied by z ⊕ v , that is, a critical clause for v at z.

Now suppose i ≥ 2 and the result holds for Ti−1. Ti consists of Ti−1 together
with the node set N . Let A be a cut of Ti , and let A′ = A − N . Let the nodes of Pi
be denoted v = a0, a1, . . . , at = bi where t < d, let v, r1, . . . , rt be the labels of
these nodes. For each 1 ≤ j ≤ t , the set A j = A′ ∪ {a j } is a cut of Ti−1. Hence,
by the induction hypothesis, there is a critical clause C(A j ) for (v, Fs, z) such that
var(C(A j )) ⊆ var (A j ) ∪ {v}. Consider the following two cases:

(1) for some j ∈ {1, . . . , t}, var (A j ) ⊆ var (A′);
(2) for all j ∈ {1, . . . , t}, var (A j ) �⊆ var (A′), that is, r j �∈ var (A′).

In the first case, we can choose C(A) to be one of the clauses C(A j ) such that
var (A j ) ⊆ var (A′).

In the second case, rl does not occur in C(A j ) for every l �= j , since otherwise
rl would be in var (A′), hence var (Al) ⊆ var (A′). Thus

r j ∈ var(C(A j )) ⊆ (var (A′) \ {r1, . . . , rt}) ∪ {r j }. (2)

Now consider the clause Ci of F that is used to construct Ti from Ti−1. We can
write Ci in the form R ∨ U where R is a clause consisting of negated variables
from var (N ) and U is a clause consisting of positive variables from v, r1, . . . , rt .

We now prove, by reverse induction on j ∈ {0, . . . , t} that there is a clause D j
in Fs of the form D j = R ∨ Sj ∨ U j where R is defined in the last paragraph, Sj is
a clause consisting of negations of variables from A′ and U j is a clause consisting
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of (positive occurrences of) variables from {v, r1, . . . , r j }. D0 must then be of the
form R ∨ S0 ∨ U0 where U0 is empty or U0 = v . It can’t be that U0 is empty, since
then D0 would consist only of negated variables, and such a clause can not be in
Fs since z = 1n satisfies Fs . Thus, we may take C(A) to be D0.

To prove the existence of D j , for the basis we take Dt = Ci , with St being the
empty clause and Ut = U . For j < t , assuming we have constructed D j+1, if r j+1
does not appear in U j+1, then take D j = D j+1. Otherwise, the clause D j+1 can
be resolved with C(A j+1) to eliminate r j+1 and yield D j , since, by (2), r j+1 is the
unique conflict variable of the two clauses. As each of the D j has size at most s,
each is in Fs .

This finishes the proof of Lemma 4.

3.3. PROOF OF LEMMA 5. We now proceed to the proof of Lemma 5. We are
given a critical clause tree for (v, G, z) of maximum degree k − 1 and uniform
depth d and we want to deduce a lower bound on P(v, G, z), the probability with
respect to a random permutation π , that v appears last in some critical clause. More
precisely, we will estimate from below the probability that this happens for some
critical clause tree for v . The critical clauses of the tree are given by cuts of the tree,
so we need to estimate the probability that for some cut the variables on the cut
are before the variable v . This looks like a big mess, because the same variables
may occur on different places of the tree, so the events for different cuts may be
dependent. But we shall show that the correlation is always positive; hence, the
worst case is when all nodes of the tree are labeled by different variables.

Let us consider an example. Suppose the following is a critical clause tree for v
at z of depth 2.

T =
v̂x2̂x1 x3

x5̂x4 x6 . (3)

Such a tree is guaranteed if z is 2-isolated, which is always true if z is the unique
satisfying assignment (and n ≥ 2). The tree T is special, because all nodes are
labeled by different variables (thus, we shall refer to nodes by their labels), but
we shall show below that it is the worst case. This tree has four cuts, which are
combinations of one of the two cuts in the tree below x2 and of one of the two cuts
in the tree below x5. The root variable v is forced by a clause given by a cut, if
all variables of the cut precede v . Hence, the probability that v is forced, when we
have T , is equal to the probability that

((x1 and x3 are before v) or x2 is before v) and ((x4 and x6 are before v)
or x5 is before v).

Since all variables are different, the events that they are before v are independent.
Let us denote by pi the probability that xi is before v . Then the above probability
can be expressed as

(1 − (1 − p1 p3)(1 − p2))(1 − (1 − p4 p6)(1 − p5)). (4)

To compute this probability, we first choose the position of v , then the probabilities
pi are determined and are all the same. In general we get the formula for this
probability by recurrence.

For the analysis, it will be useful to view the permutation π as a random variable
on the following continuous probability space. A placement of the variables is a
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function α that maps each variable to the open interval (0, 1), thus a placement is a
point in (0, 1){x1,... ,xn} ∼= (0, 1)n . We take the set of placements as our sample space
and consider the uniform probability distribution, that is, we select α so that the
values α(u) are independent and uniformly distributed on (0, 1). An event A in this
probability space is a (Lebesgue measurable) subset of (0, 1)n and the probability
of an event is the Lebesgue measure of the subset.

Given a placement α we define a permutation π = πα obtained by ranking the
variables according to their α values, breaking ties by some (any) arbitrary rule. In
other words, variables with smaller α value will appear before variables with larger
α value. Since α is one-to-one with probability 1, π is uniformly distributed over
all permutations.

Henceforth, all probabilities we compute are with respect to the probability space
of placements.

For an admissible tree T with root labeled by variable v , we define the event
CutT to consist of all placements α such that for some cut A of T , α(w) < α(v) for
all w ∈ var (A). We define CutT (r ) for r ∈ [0, 1] to consist of all α such that for
some cut A of T , α(w) < r for all w ∈ var (A). We define QT (respectively, QT (r ))
to be the probability CutT (respectively, CutT (r )) occurs. From the definitions, we
have:

LEMMA 6. If T is a critical clause tree for (v, G, z), then P(v, G, z) ≥ QT .

So to prove Lemma 5, it suffices to bound QT from below in the case that T is
a tree of maximum degree k − 1 and uniform depth d. Now it is easy to see that
QT (r ) is just equal to the conditional probability of CutT given that α(v) = r (here
we need to use the fact that in an admissible tree, no other node has the same label
as the root). Hence:

QT =
∫ 1

0
QT (r )dr.

We say that T is trivial if it consists of one node; in this case QT = QT (r ) = 0
for all r . Otherwise, for each child a of the root, the subtree T (a) rooted at a is
admissible if and only if a is labeled.

The following lemma gives a simple recursive lower bound on QT (r ). In antici-
pation of what we will need in the next section, we state the lemma in a more general
form then is needed in this section: we consider distributions over placements where
each variable is placed independently in [0, 1] but where the distribution used to
place each variable may be arbitrary.

LEMMA 7. Let T be an admissible tree with at least two nodes and having
root labeled by v and let r ∈ [0, 1]. Let T1, T2, . . . , Tt be the (admissible) subtrees
rooted at those children of the root of T that are labeled; let vi be the label of the
root of Ti and let qi be the probability that α(vi ) ≤ r . Then:

QT (r ) ≥
t∏

i=1

(qi + (1 − qi )QTi (r )),

where an empty product is interpreted as 1.

PROOF. If none of the children of the root of T is labeled, then T has a cut
A such that var (A) = ∅ and so CutT (r ) occurs with probability 1. Otherwise, let
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vi be the variable labeling the root of Ti . The event CutT (r ) can be written as the
intersection of the events {Ki : 1 ≤ i ≤ t} where Ki = CutTi (r ) ∨ (α(vi ) < r ).

By the admissibility of Ti , vi does not appear elsewhere in Ti , so the events CutTi

and α(vi ) < r are independent. Thus, Prob[Ki ] = qi +(1−qi )QTi (r ), and we need
that Prob[

∧
1≤i≤t Ki ] ≥ ∏

1≤i≤t Prob[Ki ]. This follows from standard correlation
inequalities: For a placement α, let W = Wr (α) be the subset of variables w such
that α(w) < r . Then each event Ki depends only on W . Let Wi denote the set of
all subsets U of variables such that W = U implies Ki . We have (i) The set W is
selected according to a distribution where the events {s ∈ W : s ∈ S} are mutually
independent and (ii) each Wi is an increasing family of subsets, that is, if U ∈ Wi
then so is any superset of U . Harris’ inequality ([Harris 1960], special case of the
FKG inequality, cf. Theorem 3.2 from Chapter 6 of Alon et al. [1992]) says that (i)
and (ii) are sufficient to conclude:

Prob

[ ∧
1≤i≤t

Ki

]
=Prob[W ∈ ∩1≤i≤tWi ] ≥

∏
1≤i≤t

Prob[W ∈ Wi ]=
∏

1≤i≤t

Prob[Ki ],

which completes the proof of Lemma 7. (Actually, Harris’ inequality appears in
the references only for the case t = 2; the well known general case follows by a
routine induction on t).

In this section, we will only need the case that all of the qi are equal to r . We
apply this lemma in the case that T is a tree of degree at most k − 1 and uniform
depth d. We need some definitions. Fix k ≥ 3 and r ∈ [0, 1].

—Let fk(x ; r ) = (r + (1 − r )x)k−1.

—Define the sequence (Q(d)
k (r ) : d ≥ 0) by the recurrence Q(0)

k (r ) = 0 and
Q(d)

k (r ) = fk(Q(d−1)
k (r ); r ).

—Define Q(d)
k = ∫ 1

0 Q(d)
k (r )dr .

Lemma 7 together with induction on d yields:

QT (r ) ≥ Q(d)
k (r ),

hence:

QT ≥ Q(d)
k .

Finally, we will prove:

LEMMA 8. Let k ≥ 3. Then, for each d ≥ 1,

Q(d)
k ≥ µk

k − 1
− ε

(d)
k .

Lemmas 6 and 8, and the inequalities above, give P(v, G, z) ≥ QT ≥ µk

k−1 −ε
(d)
k ,

as required for Lemma 5. So it remains to prove this lemma.

PROOF. In order to bound Q(d)
k from below, we will show that for each k and

r , the sequence (Q(d)
k (r ) : d ≥ 0) converges and also give bounds on the rate of

convergence. We need the following definitions.
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—For r ∈ [0, 1] define Rk(r ) to be the smallest nonnegative x that satisfies
fk(x ; r ) = x . Rk(r ) is well defined and has range [0, 1], since for each r ,
fk(x ; r ) − x is a polynomial in x , having 1 as a root.

— Rk = ∫ 1
0 Rk(r ) dr .

—For t ∈ [0, 1], define Sk(t) as

Sk(t) = t
1

k−1 − t

1 − t
, t ∈ [0, 1), Sk(1) = k − 2

k − 1
.

It turns out that Sk(.) is the inverse of the function Rk(.).

We shall show that Rk(r ) (respectively, Rk) is the limit of Q(d)
k (r ) (respectively,

Q(d)
k ) for d → ∞. So the meaning of Rk(r ) is the probability that a variable v

placed on r will be forced by a critical clause of a critical clause tree of v assuming
the tree is of infinite depth and all labels are different (the worst case). Rk is the
same probability over all placements of v . Of course, we shall use only finite trees,
therefore we need an estimate on the convergence.

We first establish:
CLAIM 1. Fix k ≥ 3.

—For r ∈ [ k−2
k−1 , 1], Rk(r ) = 1.

—On the interval [0, k−2
k−1 ], Rk(.) is a strictly increasing continuous map onto [0, 1],

and its inverse is Sk(.).

PROOF. Fix r and let ε = 1 − Rk(r ), so ε ∈ [0, 1]. Substituting into Rk(r ) =
fk(Rk(r ); r ), yields g(ε; r ) = 1 where g(ε; r ) = (1 − (1 − r )ε)k−1 + ε. If ε > 0,
then g(ε; r ) > 1 for r ∈ ( k−2

k−1 , 1], a contradiction. Thus, for r ∈ [ k−2
k−1 , 1], we have

ε = 0 and thus Rk(r ) = 1.
Now, for fixed 0 < r < k−2

k−1 , g(ε; r ) is a continuous function of ε. Since g(0; r )−
1 = 0, g′(0; r ) < 0 and g(1; r ) − 1 > 0, we conclude that for all r < k−2

k−1 there is a
positive ε∗ satisfying g(ε∗; r ) = 0, which implies that Rk(r ) < 1.

Thus, for r ∈ [0, k−2
k−1 ), Rk(r ) ∈ [0, 1). Then, the equation fk(Rk(r ); r ) = Rk(r )

can be solved for r to obtain r = Sk(Rk(r )). By elementary calculus, Sk(t) is a
continuous increasing function of t mapping [0, 1) onto [0, k−2

k−1 ), from which it
follows that its inverse Rk(r ) is a continuous increasing function mapping [0, k−2

k−1 )
to [0, 1).

Next we define the sequences {
(d)
k (r ) : d ≥ 0} and {
(d)

k : d ≥ 0} by:

—

(d)
k (r ) = Rk(r ) − Q(d)

k (r ),

—

(d)
k = Rk − Q(d)

k .

CLAIM 2. Let k ≥ 3. For all d ≥ 1,

0 ≤ 

(d)
k ≤ ε

(d)
k .

PROOF. For simplicity of notation, we omit the subscript k. For each r ∈ [0, 1],

(d)(r ) ≥ 0 since Q(d)(r ) is nondecreasing in d and R(r ) = Q(∞)(r ). It then follows

(d) = ∫ 1

0 
(d)(r ) ≥ 0. Now


(d)(r )= R(r )−Q(d)(r )= R(r )− f (Q(d−1)(r ); r )= R(r )− f (R(r )−
(d−1)(r ); r ).
(5)
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To bound 
(d)(r ) = k, we show that for any γ ∈ [0, R(r )],

0 ≤ R(r ) − f (R(r ) − γ ; r ) ≤ γ
(k − 1)(1 − r )R(r )

r + (1 − r )R(r )
. (6)

The first inequality follows since for fixed r ∈ (0, 1), f (x ; r ) is an increasing
function of x and f (R(r ); r ) = R(r ). For the second inequality, we use xk−1 −
yk−1 = (x − y)

∑k−2
i= 0 xi yk−2−i (which can be proved by induction on k) to show:

R(r )− f (R(r )−γ ; r ) = f (R(r ); r ) − f (R(r ) − γ ; r )
= (r + (1 − r )R(r ))k−1 − (r + (1 − r )(R(r ) − γ ))k−1

= γ (1−r )
k−2∑
j=0

(r +(1−r )R(r ))k−2− j (r +(1−r )(R(r )−γ )) j

≤ γ (1 − r )(r + (1 − r )R(r ))k−2)(k − 1)

= γ
(1 − r )R(r )

r + (1 − r )R(r )
(k − 1).

Taking γ = 
(d−1)(r ) and using induction on d with (5) and (6) yields:


(d)(r ) ≤
(

(k − 1)(1 − r )R(r )

r + (1 − r )R(r )

)d

.

Hence:


(d) ≤
∫ 1

0

(
(k − 1)(1 − r )R(r )

r + (1 − r )R(r )

)d

dr.

We split the range of integration into two intervals. For r ∈ [ k−2
k−1 , 1] we have

R(r ) = 1 and the integral over this range is easily calculated to be 1
(d+1)(k−1) .

For r ∈ [0, k−2
k−1 ], R(r ) maps the interval bijectively to [0, 1], and r = S(R(r )).

Make the substitution u = R(r )1/(k−1), so r (u) = u−uk−1

1−uk−1 and (1−r )R(r )
r+(1−r )R(r ) = (1−u)uk−2

1−uk−1 .

Also dr
du = 1−(k−1)uk−2+(k−2)uk−1

(1−uk−1)2 which, for u ∈ [0, 1], is nonnegative and

1 − (k − 1)uk−2 + (k − 2)uk−1

(1 − uk−1)2
= (1 + 2u + 3u2 + · · · + (k − 2)uk−3)(1 − u)2

(1 + u + u2 + · · · + uk−2)(1 − u)(1 − uk−1)

= (1 + 2u + 3u2 + · · · + (k − 2)uk−3)(1 − u)

(1 + u + u2 + · · · + uk−2)(1 − uk−1)

≤ ((k − 1) + (k − 1)u + (k − 1)u2 + · · · + (k − 1)uk−3 + (k − 1)k−2)(1 − u)

(1 + u + u2 + · · · + uk−2)(1 − uk−1)

= (k − 1)(1 − u)

1 − uk−1
.
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This gives:∫ k−2
k−1

0

(
(k − 1)(1 − r )R(r )

r + (1 − r )R(r )

)d

dr ≤
∫ 1

0
(k − 1)d+1 (1 − u)d+1u(k−2)d

(1 − uk−1)d+1
du

=
∫ 1

0

u(k−2)d

( 1
k−1 (1 + u + · · · + uk−2))d+1

du

≤
∫ 1

0

u(k−2)d

u( k−2
2 )(d+1)

du

= 2

kd − 2d − k + 4
= 2

(k − 2)(d − 1) + 2
.

The next-to-last inequality follows from the arithmetic-geometric mean inequality.
Summing the two integrals over the two ranges gives the desired upper bound

(d) ≤ 3

(k−2)(d−1)+2 , which finishes the proof of Claim 2.

Since Q(d)
k = Rk − 


(d)
k , to finish the proof of the lemma it remains to show

Rk = µk

k−1 for k ≥ 3.
For k = 3, we can explicitly solve for R3(r ) to get

R3(r ) =
{ (

r
1−r

)2
r < 1

2

1 r ≥ 1
2 .

Integrating this from 0 to 1 yields R3 = 2 − 2 ln 2 ≥ 0.6137.
For general k ≥ 3, we evaluate

∫ 1
0 Rk(r )dr by a change of variables. As we

noted, Rk(r ) = 1 on [ k−2
k−1 , 1], and is continuous and strictly increasing function on

[0, k−2
k−1 ] with inverse given by Sk(t). One can then see (either geometrically, or by

a change of variables) that
∫ 1

0 Rk(r )dr = ∫ 1
0 (1 − Sk(t))dt. We have:

1 − Sk(t) = 1 − t
1

k−1 − t

1 − t
=

∞∑
i= 0

t i − t i+ 1
k−1 .

As t i − t i+ 1
k−1 ≥ 0 on [0, 1], for all i ≥ 0, the monotone convergence theorem

allows us to evaluate the integral from 0 to 1 of this sum term by term:

Rk =
∫ 1

0
(1 − Sk(t))dt =

∞∑
i= 0

1

i + 1
− 1

i + 1 + 1
k−1

=
∞∑
j=1

1

j
− 1

j + 1
k−1

= 1

k − 1

∞∑
j=1

1

j( j + 1
k−1 )

= µk

k − 1
.

This finishes the proof of Lemma 5, hence also of Theorem 7.

4. General k-SAT

4.1. OVERVIEW. We now proceed to the analysis of general k-CNF formulas.
Theorem 7 applies to any formula that has a sufficiently isolated satisfying as-
signment, but a satisfiable formula need not have such an assignment. Intuitively,



An Improved Exponential-Time Algorithm for k-SAT 355

though, if F has few satisfying assignments, then it should be close to the unique-
SAT case, and if it has many satisfying assignments, then finding one should be
easy. Our aim is to formalize this intuition.

As described in the Section 2, upper bounding the running time of Search(Fs, I )
is accomplished by lower bounding τ (Fs), the probability that Modify(Fs, π, y)
returns a satisfying assignment. In the uniquely satisfiable case, we proved such a
lower bound, and we will prove a similar lower bound in the general case. However,
several new technical difficulties arise.

As we did in the uniquely satisfiable case, we initially consider a general formula
G and only later let G = Fs for some formula F and positive integer s. The method
for bounding τ (G) applied in the uniquely satisfiable case focused on the probability
τ (G, z) of accepting a particular assignment z, where z was d-isolated. We need to
refine this approach. We start with a simple combinatorial lemma. If a is a partial
assignment to the variables {x1, . . . , xn}, the subcube defined by a is the set of all
assignments that extend a.

LEMMA 9. Let A be a nonempty set of assignments (i.e., points in {0, 1}n). Then
{0, 1}n can be partitioned into a family (Bz : z ∈ A) of distinct disjoint subcubes
so that z ∈ Bz for each z ∈ A.

PROOF. If |A| = 1, the result is trivial. Otherwise, there are at least two assign-
ments, and one variable u which occurs both as 0 and 1 in S. Split {0, 1}n into two
subcubes, one with u = 0 and one with u = 1, and recursively partition each.

If G is a satisfiable formula, we apply this lemma in the case that A is the set
sat(G) of satisfying assignments of the formula G, and we fix any such collection
{Bz : z ∈ sat(G)} of disjoint subcubes. We will analyze the probability τ (G) that
Modify(G, π, y) finds some satisfying assignment by conditioning according to the
subcube Bz that contains y. For satisfying assignments w and z, write τ (G, w |Bz)
for the probability that Modify(G, π, y) returns w given y ∈ Bz . We have:

τ (G) ≥
∑

z∈sat(G)

τ (G, z|Bz)Prob[y ∈ Bz] ≥ minz∈sat(G) τ (G, z|Bz).

So, to lower bound τ (G), it suffices to consider a single fixed satisfying assign-
ment z and the subcube B = Bz that contains it, and then to give a lower bound on
the conditional probability τ (G, z|B) that Modify(G, π, y) returns z given y ∈ B.
In the analysis, the only property of B we will need is that it is a subcube containing
z and no other satisfying assignment of G.

For the rest of this section, z represents a fixed satisfying assignment of the
formula G and B is a subcube containing z and no other satisfying assignment of
G. (Later, we will take G to be Fs for some formula F and positive integer s.) D
denotes the set of variables that defines the subcube B (i.e., the set of variables
which are constant over that subcube) and let N be the remaining variables. The
variables in D are referred to as the defining variables of B and those in N are
referred to as nondefining.

To lower bound τ (G, z|B), we try to generalize the argument leading to Lemma
3. Since y ∈ B, y agrees with z on the defining variables, so Modify(G, π, y)
returns z if and only if the nondefining variables are set according to z. Writ-
ing Forcedz(G, π, y) for the set of nondefining variables in Forced(G, π, y) (i.e.,
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Forcedz(G, π, y) = N ∩ Forced(G, π, y)) we have the following generalization of
Lemma 2:

τ (G, z|B) = 2−|N |E[2|Forcedz(G,π,z)|]. (7)

Continuing the argument, one obtains the following generalization of Lemma 3: if
the average of P(v, G, z) over nondefining variables is at least p, then

τ (G, z|B) ≥ 2−(1−p)|N |. (8)

One might hope that restricting to the cube B in which z is the unique satisfying
assignment, would reduce the analysis of the general case to the uniquely satisfiable
case, where we proved P(v, G, z) ≥ µk

k−1 − o(1). It is generally not true that
P(v, G, z) = P(v, G ′, z) where G ′ is obtained by fixing all of the defining variables
to their values in B. Consider the following example. Let C = {v, x1, x2}be a clause,
let z be an assignment in which v = 1, x1 = x2 = 0 and let B be the subcube defined
by x1 = 0. If we substitute x1 = 0 in the formula, C will be reduced to {v, x2}.
Hence, if we apply the algorithm to the reduced formula, v will be forced whenever
x2 precedes v . But if we apply our algorithm to the original formula, this does not
suffice, we need that both x1 and x2 precede v . (It is important to keep in mind that
the algorithm does not know z or the cube B and so it cannot first substitute for
defining variables of B.)

So we still have some work to do. We do have that for a nondefining variable v ,
P(v, G, z) ≥ 1

k . This is because z is the unique satisfying assignment in B, hence
flipping v produces a nonsatisfying assignment. This implies that there is a critical
clause for v at z, and v is last in that critical clause with probability at least 1

k .
Hence, we get from (7):

LEMMA 10. Let G be a k-CNF formula, z a satisfying assignment and let B be
a subcube of {0, 1}n that contains z and no other satisfying assignment. Then:

τ (G, z|B) ≥ 2−(1− 1
k )|N |.

Let us note, in passing, that this is enough to prove the bound for the Paturi,
Pudlák and Zane algorithm [Paturi et al. 1997]:

τ (G) ≥ min
z∈sat(G)

τ (G, z|B) ≥ 2−(1− 1
k )|N | ≥ 2−(1− 1

k )n.

We shall not need this here. What we shall need, however, is the following
observation. If the number of nondefining variables is strictly less than n, then
the conditional probability τ (G, z|B) is strictly larger than 2−(1− 1

k )n . In particular,
if |D| ≥ δn for some constant δ ≥ 0, then Lemma 10 gives τ (G) ≥ 2−(1− 1

k )(1−δ)n;
thus, we get a smaller constant than n in the exponent.

Thus, this observation suffices to get the bounds we want provided that the
subcube under consideration is small enough (has enough defining variables), even
without considering the gain from resolution. If the subcube under consideration has
relatively few defining variables, we need to consider the critical clauses produced
by resolution. We would like to use the critical clause tree of uniform depth d but
there is a new problem. Recall the proof of Lemma 4, where to extend the tree from
a given leaf bi we used a clause Ci that was not satisfied by z ⊕ var (Pi ), and the
existence of such a clause was guaranteed by the fact that z ⊕ var (Pi ) does not
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satisfy the formula (because of the d-isolation of z). Now, however, such a clause
Ci need not exist—since z need not be d-isolated, z ⊕ var (Pi ) might satisfy G
(because it might be outside of the subcube B). But we do know that if var (Pi )
consists only of nondefining variables then z ⊕ var (Pi ) does not satisfy G since
z is the only satisfying assignment in B. We now modify the rule for building the
tree to say that we never try to expand the tree from a leaf labeled by a defining
variable. In this way, we maintain the property that defining variables appear only
at leaves. By the above observation, it is always possible to expand any other leaf.
Thus, we deduce the following counterpart to Lemma 4.

LEMMA 11. Let F be a k-CNF formula, z an arbitrary satisfying assignment,
and let B be a subcube of {0, 1}n containing z and no other satisfying assignment
of F. If v is any nondefining variable of B, and d is any positive integer, and
s ≥ kd , then there exists a critical clause tree for (v, Fs, z) of maximum degree
k − 1 such that

(i) the only nodes labeled by defining variables of B are leaves,
(ii) any leaf labeled by a nondefining variable of B is at depth d.

A tree satisfying the conclusion of the lemma is said to be of uniform depth d
with respect to the set N . Such trees are nice, but not good enough to give directly
a result such as Lemma 5. For instance, it could be that the tree consists of a root
together with k − 1 children all labeled by defining variables. (The k − 1 children
of the root always exist; we have used this fact in Lemma 10.) In this case, we get
only 1/k as the probability QT , leading to a bound no better than that given in
Lemma 10. As we noted, this bound gives a good improvement on the unique-sat
analysis if |D| is a large enough fraction of n. The “bad case” for this bound is
when D is not too big a fraction of n and there are many shallow leaves labeled by
defining variables.

Thus, the lower bound of (8) does not seem strong enough to derive running
times for the general case better than the 2(1−1/k)n bounds of Paturi et al. [1997].
So we need to return to (7). There we had τ (G, z|B) = 2−|N |E[2|Forcedz(G,π,z)|]
and the next step was to use convexity to say E[2|Forcedz(G,π,z)|] ≥ 2E[|Forcedz(G,π,z)|].
The problem is that this step gave too much away. For a random variable X , the
inequality E[2X ] ≥ 2E[X ] is tight if X is constant and is very loose if X has
a significant probability of being much larger than the mean. This may well be
the case for the random variable |Forcedz(G, π, z)|. Since |Forcedz(G, π, z)| only
counts nondefining variables that are forced by critical clauses, it can only increase
if the order π is replaced by an order π ′ having the same relative order of the
nondefining variables and of the defining variables as π but whose defining variables
are pushed closer to the beginning of the order. Thus, |Forcedz(G, π, z)| will have
a higher average when π is restricted to orderings with the defining variables
placed first.

This leads to the key idea for handling the general case. We will improve our lower
bound on E[2|Forcedz(G,π,z)|] by identifying a set � of placements having reasonably
large probability in which the defining variables tend to appear early, so that the
conditional expectation |Forcedz(G, π, z)|, given that α ∈ � is much larger than
the overall average. We have the trivial lower bound:

E[2|Forcedz(G,π,z)|] ≥ E�[2|Forcedz(G,π,z)|]Prob[α ∈ �],
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where E� denotes the conditional expectation given that α ∈ �. Letting P�(v, G, z)
denote the conditional probability that π ∈ Last(v, G, z) given α ∈ � we obtain a
straightforward generalization of Lemma 3.

LEMMA 12. Let � be a (Lebesgue measurable) subset of placements. For any
satisfying assignment z of the CNF formula G, if P�(v, G, z) ≥ p for all nondefining
variables v of B, then

τ (G, z|B) ≥ 2−(1−p)|N |Prob[α ∈ �].

The potential advantage of this lemma over (8) is that the quantity p which was
a lower bound on P(v, G, z) is now a lower bound on P�(v, G, z) which may be
much larger. On the other hand, this potential increase in 2−(1−p)|N | is attained
at the cost of the new factor Prob[α ∈ �], which is why we need � to have
“large” probability.

So we want to choose a suitable �. There are various ways that one might try to
define such a biased set � of placements. Here we will begin by analyzing a simple
and natural choice. This choice enables us to prove bounds on the running time for
our algorithm for general k-SAT that match the bounds for the running time for
unique k-SAT for all k ≥ 5 and nearly match the bounds for k = 4. For k = 3,
however, there is a substantial gap between the general 3-SAT bounds obtained
from the simple choice of � and the unique 3-SAT bounds.

To motivate our initial choice of �, let us start by considering an example.
Suppose that instead of getting a tree such as T , see (3), we get only the following
one

T ′ =
v̂

x2
x5̂x4 x6,

because x2 is a defining variable. Hence, instead of the bound (4) for the tree T , we
get only

p2(1 − (1 − p4 p6)(1 − p5)).

This truncated subtree under x2 contributes less than we need towards forcing
v . However, if we condition on x2 coming earlier in the ordering, then we can
compensate for this lost contribution. More precisely, we take a suitable subset of
placements � such that the probability that x2 occurs before v is higher and then
we get higher probability that v is forced.

With this motivation, we now define the set �. � depends on the set D of defining
variables of the subcube B and also on a parameter θ ∈ [0, 1] that we will choose
later. � = �(D, θ ) is the placements is defined to be the set of placements α
satisfying α(v) ≤ θ for all v ∈ D.

We want to use this choice of � in Lemma 12 to lower bound τ (G, z|B). Prob[α ∈
�] = θ |D| so to apply the lemma, we need only give a lower bound on P�(v, G, z)
that holds for all nondefining variables v . For this we need a counterpart to Lemma 6.
For an admissible tree T , let QT,�(r ) = Prob�[CutT (r )] and QT,� = Prob�[CutT ].
Exactly as before, we have:

P�(v, G, z) ≥ QT,� =
∫ 1

0
QT,�(r )dr.
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In the previous section, we used Lemma 7 and induction to show that for a critical
clause tree of uniform depth d, QT ≥ Q(d)

k . Now the tree T we are dealing with
is only uniform depth d with respect to the set N of nondefining variables. This
complicates the induction. As suggested in the example above, the conditioning �
is used to compensate for this. In the following lemma, we prove a lower bound,
for QT,�. For this bound, we need to fix the parameter θ to be (k − 2)/(k − 1).

LEMMA 13. Let F, z, B, D, N be as above. Suppose v ∈ N and that T is a
critical clause tree of degree k − 1 and of uniform depth d with respect to N. Let
� = �(D, k−2

k−1 ).
Then for each r ∈ [0, 1]

QT,�(r ) ≥ Qd
k (r )

and therefore

QT,� ≥ Qd
k .

PROOF. It suffices to fix r and prove the first inequality. We use induction on
d. If d = 0, the conclusion is true since Q(0)

k (r ) = 0. So assume d ≥ 1 and that
T is of uniform depth d with respect to N . Let T1, . . . , Tt be the subtrees rooted
at labeled children of the root (where t ≤ k − 1), let vi be the label of Ti and let
v1, . . . , vs be those labels in D. This implies that the trees Ti for i ≤ s consist of
the single node labeled vi .

We apply Lemma 7, which was stated for the general case that the place-
ment of variables is done according to arbitrary independent distributions. For
i ∈ {1, . . . , s}, the probability that α(vi ) ≤ r conditioned on � is min{1, (k −
1)r/(k − 2)}. Then, by Lemma 7 and the induction hypothesis:

QT,�(r ) ≥ (min{1, r (k − 1)/(k − 2)})s
t∏

i=s+1

[r + (1 − r )QTi ,�(r )]

≥ (min{1, r (k − 1)/(k − 2)})s(r + (1 − r )Qd−1
k (r ))t−s

≥ (min{1, r (k − 1)/(k − 2)})s Qd
k (r )(t−s)/(k−1).

To complete the proof, we now show that that min{1, r (k − 1)/(k − 2)} ≥
Rk(r )1/(k−1) (where Rk(r ) is as defined in the proof of Lemma 8). Since Rk(r ) ≥
Qd

k (r ) (Claim 2 within the proof of Lemma 8), we can then lower bound the last
expression of the above chain of inequalities by Qd

k (r ))t/(k−1) ≥ Qd
k .

To prove min{1, r (k − 1)/(k − 2)} ≥ Rk(r )1/(k−1), we assume r ≤ (k − 2)/(k −
1), since otherwise the result is trivial. Since Rk(r ) is the smallest nonnegative x
satisfying fk(x ; r ) − x = 0, where fk(x ; r ) = (r + (1 − r )x)(k−1); it is sufficient to
show that there is an x ∈ [0, (r (k − 1)/(k − 2))k−1] satisfying fk(x ; r ) − x = 0.

Since fk(x ; r )−x is continuous and is positive at x = 0 we can infer the existence
of the desired x if we show that fk(x ; r ) − x < 0 at x = (r (k − 1)/(k − 2))k−1, and
this inequality is equivalent to:

1 + (1 − r )rk−2((k − 1)/(k − 2))k−1 ≤ (k − 1)/(k − 2).

The expression on the left-hand side achieves its maximum value of (k−1)/(k−2)
at r = (k − 2)/(k − 1) on the interval [0, (k − 2)/(k − 1)].

Thus, min{1, r (k−1)/(k−2)} ≥ Rk(r )1/(k−1), as required to prove the lemma.
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We deduce the following lower bound on τ (Fs, z, B).

COROLLARY 14. Let F be an n-variable k-CNF formula with k ≥ 3. Let s =
s(n) be any function tending to ∞ with n. Let z, B, D, N be as above and let
δ = |D|/n. Then

τ (Fs, z|B) ≥ 2−(1− µk
k−1 )n

(
(k − 2)21− µk

k−1

k − 1

)δn

2o(n).

PROOF. Let d = �logk s�. By Lemma 11, there is a critical clause tree T for
(v, Fs, z) of maximum degree k − 1 that is uniform of depth d with respect to N .
By Lemma 13,

τ�(v, G, z) ≥ QT,� ≥ Qd
k .

Using Lemma 12, we obtain:

τ (Fs, z|B) ≥ 2−(1−Qd
k )(1−δ)n

(
k − 2

k − 1

)δn

(9)

≥ 2−(1− µk
k−1 )n

(
(k − 2)21− µk

k−1

k − 1

)δn

2o(n). (10)

The last inequality comes from Lemma 8 which says that µk

k−1 − Qd
k ≤ ε

(d)
k , which

tends to 0 as d gets large.

We can now complete the analysis of the algorithm in the case that k ≥ 5.

PROOF OF THEOREM 1(i). Recall that we have an n-variable k-CNF formula F
and s = s(n) is a function tending to infinity with n. We want to bound τ (Fs) from
below. As shown following Lemma 9, it suffices to give a bound τ (Fs, z|B) that
holds for every choice of a satisfying assignment z and subcube B that contains z
and no other satisfying assignment. If δ is the fraction of defining variables of B,
then Corollary 14 implies:

τ (Fs, z|B) ≥ 2−(1− µk
k−1 )n

(
(k − 2)21− µk

k−1

k − 1

)δn

2o(n).

Now for k ≥ 5, the quantity (k−2)21− µk
k−1

k−1 is more than 1, which is easy to check
using the fact that for all k, µk ≤ ∑

j≥1 1/j2 = π2/6. Thus, the above lower bound
on τ (Fs, z|B) is smallest when δ = 0, and taking δ = 0 gives the lower bound
claimed by the theorem.

PROOF OF THEOREMS 2 AND 3. When k = 3 and k = 4, the quantity

(k − 2)21− µk
k−1

k − 1
is less than 1, which means that the bound on τ (Fs, z|B) is minimized when δ = 1.
But we can do better than just subsitute δ = 1 into this bound. Lemma 10 gives the
alternative bound:

τ (Fs, z|B) ≥ 2−(1−1/k)(1−δ)n.
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Since this bound increases with δ and the other decreases with δ, the minimum
of the maximum of the two of them occurs when δ is chosen to make them equal.
This occurs when we choose:

δ =
µk

k−1 − 1
k

µk

k−1 − 1
k + log2

k−1
k−2

.

Substituting this value of δ into either bound gives

τ (Fs, z|B) ≥ 2−ζk n,

where

ζk =
(
1 − 1

k

)
log2

k−1
k−2

µk

k−1 − 1
k + log2

k−1
k−2

.

When k = 4, one can calculate ζ4 ≤ 0.5625. We conclude that τ (Fs) ≥ 2−0.5625n

which proves Theorem 3. Note that ζ4 is only slightly larger than 1 − µ4

3 ≈ .555,
which is what we’d need to match the results for unique 4-SAT.

When k = 3, one can calculate ζ3 ≤ 0.521. This gives τ (Fs) ≥ 2−0.521n , which
is still pretty far from the lower bound 2−0.386n for unique 3-SAT.

We know that it is possible to improve the bound for the case of k = 3 using a
more refined choice of �, but we do not know the best bound on the running time
of our algorithm. In particular, we do not know, whether it runs faster than that of
Hofmeister et al. [2002] and whether it runs asymptotically the same time as for
the unique 3-SAT.

5. Lower Bounds for Depth-3 Circuits

In this section, we prove Theorems 4, 5 and 6.
In proving lower bounds on the size of �3

k and �3 circuits needed to compute
specific Boolean functions, we follow the general approach used in Paturi et al.
[1997]. In that article, the key observation was that a lower bound on the probability
that Modify(G, π, y) returns a satisfying assignment places an upper bound on the
number of isolated solutions that a k-CNF formula can have. This, in turn, is used
to prove a lower bound on the size of depth 3 circuits. Here, we use Theorem 7 to
prove the stronger bound of Theorem 4.

Let F be a function, formula, or a circuit. Then Id(F) will denote the number of
d-isolated satisfying assignments of F .

PROOF OF THEOREM 4. First, consider the case that L = 0, which means
that F is a k-CNF. By Theorem 7, if s = kd , then for each d-isolated satisfying
assignment z to F , the probability τ (Fs, z) that Modify(Fs, π, y) outputs z is at
least 2−(1− µk

k−1 +ε
(d)
k )n . Since Modify(G, π, y) outputs at most one assignment, we

have 1 ≥ ∑
z τ (Fs, z) ≥ Id(F)2−(1− µk

k−1 +ε
(d)
k )n . The upper bound on Id(F) follows.

Now let F be a general CNF. Write F = Fsmall ∧ Flarge where Flarge consists of the
clauses of size more than k. For each clause C of Flarge, let ZC be the set of points
that do not satisfy C and let Z = ⋃

C∈Flarge
ZC . Note that F−1(1) = F−1

small(1) − Z .
If x ∈ Id(F), then
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(i) x ∈ Id(Fsmall), or
(ii) there is a point x ′ ∈ Z that is within d of x .

The number of points satisfying (i) is at most 2(1− µk
k−1 +ε

(d)
k )n by the L = 0 case.

To upper bound the number of points satisfying (ii), note that each point x ′ ∈ Z
has at most nd points within distance d of it. Since for a large clause C , |ZC | =
2n−|C | < 2n−k , we have that the number of points satisfying (ii) is at most L2n−knd

as required.

Before proving Theorem 4, we review some simple facts about depth 3 circuits.
We may assume that every �3 circuit is constructed in a leveled fashion: the inputs
are connected to OR gates, these OR gates are connected to AND gates, and these
AND gates are connected to the output OR gate. A circuit that does not have this
property can be easily converted into this form. Because the gates have unbounded
fan-in, two gates of the same type which are connected can simply be collapsed into
one gate. If an input xi is directly connected to an AND gate or to the output gate,
we modify the circuit to maintain this leveled property by introducing new gates of
fan-in one at the levels which it skips. Since this process introduces at most O(n)
gates, it has negligible impact on the exponential lower bounds we prove, and we
may assume that all circuits are leveled.

Call the AND gates of the circuit CNF gates, since they compute functions
which are ANDs of ORs of inputs, and call the circuit rooted at such a gate a CNF
subcircuit. Similarly, call the nonoutput OR gates of the circuit clause gates. As
usual, given a circuit C or a formula F , we use C(x) and F(x) to denote the Boolean
functions they compute.

Theorem 4 also implies an upper bound on the number of d-isolated points
accepted by any �3 circuit in terms of the number of gates:

LEMMA 15. Let C be a �3 circuit on n variables and let k, d be positive integers
with k ≥ 3. Let Q be the number of CNF gates and R be the number of clause
gates having fan-in more than k. Then

Id(C) ≤ 2n
(

Q2(− µk
k−1 +ε

(d)
k )n + R2−knd

)
.

PROOF. Let G1, . . . , G Q be the CNF gates of C. Each d-isolated point of
F−1(1) is accepted by at least one Gi and is still d-isolated in G−1(1). As in the
proof above, divide each Gi into Gi,small ∧Gi,large. The number of d-isolated inputs
that are accepted by some Gi,small is

≤
Q∑

i=1

Id(Gi,small) ≤ Q2(1− µk
k−1 +ε

(d)
k )n.

The number of the others is ≤ R2n−knd , where R = | ⋃i Gi,large|.
An immediate consequence of Lemma 15 is:

COROLLARY 16. Let F be Boolean function with n variables and let k ≥ 3.
Any �3

k circuit computing F has at least

Id(F)2−(1− µk
k−1 +ε

(d)
k )n
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CNF gates.

This gives immediately our first lower bound on depth 3 circuits.

PROOF OF THEOREM 5. Recall that we want to prove a lower bound on the
smallest �3

k circuit computing membership in an error correcting code E with
|E | ≥ 2n−(n/ log n) and distance greater than log n. For d = �log n�, every element
of E is d-isolated and so by Corollary 16, any circuit computing C has at least

|E |2−(1− µk
k−1 +ε

(d)
k )n gates. Since ε

(d)
k = 3

(d−1)(k−2)+2 ≤ 3
(d−1)+2 ≤ 3

d+1 ≤ 3
log n we

conclude that C has at least 2
µk

k−1 n− 4n
log n gates.

Finally we consider lower bounds on �3 circuits with no restriction on fan-in.
Again, we first prove a lower bound on the number of satisfying assignments and
then derive a lower bound on the number of gates in the circuit.

COROLLARY 17. Let F be a Boolean function with n variables. Any �3 circuit
computing F has at least

Id(F)2−n+min{( µk
k−1 −ε

(d)
k )n,k−d log n}

gates.

PROOF. By Lemma 15, for any circuit C, Id(F) ≤ 2n(Q + R)

max{2(− µk
k−1 +ε

(d)
k )n, 2−k+d log n}. Since Q + R lower bounds the number of gates of C,

the corollary follows.

PROOF OF THEOREM 6. Again, we are looking at the membership function for
the code E . In applying Corollary 17, we are free to choose k to make min{( µk

k−1 −
ε

(d)
k )n, k − d log n} as large as possible.

First, we note:

π2

6
− µk =

∞∑
j=1

1

j2
− 1

j
(

j + 1
k−1

) =
∞∑
j=1

1
j(k−1)

j
(

j + 1
k−1

) ≤
∞∑
j=1

1
k−1

j
(

j + 1
k−1

) = µk

k − 1

and so µk

k−1 ≥ π2

6k

As for ε
(d)
k , as long as k and d are both growing functions of n, then for sufficiently

large n, ε
(d)
k = 3

(d−1)(k−2)+2 ≤ 4
dk .

Since d = log n, the first term in the min is at least n
k (π2

6 − 4
log n ) and the second

is at least k − log2 n. Choose k = �
√

π2n
6 �. Then, both terms in the min are at least√

π2n
6 − 4

√
n

log n . Since Id(E) = |E | ≥ 2n−√
n/ log n , Corollary 17 gives a circuit size

lower bound

2
√

π2n
6 − 5

√
n

log n

proving the theorem.
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