Introduction to
Tractability and Approximability
of Optimization Problems

JIANER CHEN

Computer Science Department
Texas A&M University

July 8, 2003

Chapter 1

Introduction

This chapter starts with a number of samples of optimization problems
and introduces the formal definition for optimization problems. Necessary
background in computer algorithms will be reviewed. We then discuss in
detail two important sample optimization problems: the MINIMUM SPAN-
NING TREE problem and the MATRIX-CHAIN MULTIPLICATION problem.
Algorithms and analysis are given for the problems. Two basic techniques,
the greedy method and the dynamic programming method, are illustrated
in the study of these two problems. Finally, we give a brief discussion on
NP-completeness theory, which will play an important role throughout the
book.

1.1 Optimization problems

Most computational optimization problems come from practice in industry
and other fields. The concept of optimization is now well rooted as a princi-
ple underlying the analysis of many complex decision or allocation problems.
In general, an optimization problem consists of a set of instances, which take
a certain well-specified format. Each instance is associated with a set of so-
lutions such that each solution has a walue given the instance. Solving the
optimization problem is concerned with finding for each given instance a best
(or optimal) solution which should have either the largest or the smallest
associated value, depending on the description of the optimization problem.

Let us start with some sample problems.

The most famous optimization problem is the TRAVELING SALESMAN
problem (or simply TSP).

TRAVELING SALESMAN (TSP)

2 INTRODUCTION

Given the cities in a territory and the cost of traveling between
each pair of cities, find a traveling tour that visits all the cities
and minimizes the cost.

Here each instance of the problem consists of a collection of cities and the
costs of traveling between the cities, a solution to the instance is a traveling
tour that visits all the cities, the value associated with the solution is the cost
of the corresponding traveling tour, and the objective is to find a traveling
tour that minimizes the traveling cost.

Another optimization problem comes from mathematical programming,
the LINEAR PROGRAMMING problem, which has played a unique role in
the study of optimization problems. In fact, a vast array of optimization
problems can be formulated into instances of the LINEAR PROGRAMMING
problem.

LINEAR PROGRAMMING (LP)

Given a vector (ci,...,¢,) of real numbers, and a set of linear
constraints
1171 + a12%2 + ... +a1pTy, > a1
r1%T1 + @r2T2 + oo + QrpTp 2> Gy
bi1x1 + b1owo + ... + binzn, < by
...... (1.1)
bs1x1 + bsoxo + ... + bgpzy, < by
di1z1 + digzo + ... + dinz, = di

dpz1 +dipra + ... +dpz, = dy
find a vector (z1,...,z,) of real numbers such that the value
C1T1 + -+ crp
is minimized.

Here an instance consists of a vector (c1,...,c,) of real numbers plus a set
of linear constraints of the form given in (1.1), a solution to the instance is
a vector (z1,...,z,) of real numbers satisfying the linear constraints, the
value associated with the solution is ¢;z1 + - -+ + ¢,z,, and the objective is
to find a solution (z1,...,z,) that minimizes the value c1z1 + - - - + ¢z

OPTIMIZATION PROBLEMS 3

Both problems above are minimization problems. Below we give an
example of maximization problem, which arises naturally in academic school
administration.

OPTIMAL COURSE ASSIGNMENT

Given a set of teachers T' = {t1,...,t,} and a set of courses C' =
{c1,...,¢q}, and a set of pairs (7;,&;) indicating that the teacher
7; can teach the course &, 7; € T, & € C, and 1 = 1,...,n, find
a course assignment in which each teacher teaches at most one
course and each course is taught by at most one teacher such
that the maximum number of courses get taught.

Here an instance consists of the set of the pairs (7,&), 1 = 1,...,n, a
solution to the instance is a subset of the pairs in which each teacher appears
at most once and each course appears at most once, the value associated
with the solution is the number of pairs in the subset, and the objective is
to find such a subset with the maximum number of pairs.

Formally, an optimization problem can be given as follows.

Definition 1.1.1 An optimization problem @ is a 4-tuple (Ig, Sq, fo, optQ),
where I is the set of input instances, Sg is a function such that for each
input z € Ig, Sg(z) is a set of solutions to z, fg is the objective function
such that for each pair € Ig and y € Sg(z), fo(z,y) is a real number,
and optg € {max, min} specifies the problem to be a mazimum problem or
a minimum problem.

Solving the optimization problem () is that given an input instance z € Iy
to find a solution y in Sg(z) such that the objective function value fgo(z,y) is
optimized (maximized or minimized depending on optg) among all solutions
in SQ (.’E)

Based on this formulation, we list a few more examples of optimization
problems. The list shows that optimization problems arise naturally in many
applications.

The MINIMUM SPANNING TREE problem arises in network communica-
tion, in which we need to find a cheapest subnetwork that connects all nodes
in the network. A network can be modeled by a weighted graph, in which
each vertex is for a node in the network and each edge is for a connection
between two corresponding nodes in the network. The weight of an edge
indicates the cost of the corresponding connection.

MINIMUM SPANNING TREE (MSP)

4 INTRODUCTION

Ig: the set of all weighted graphs G
Sg: S@(G) is the set of all spanning trees of the graph G
fo: fo(G,T) is the weight of the spanning tree T of G.

optg: min

In path scheduling or network communication, we often need to find
the shortest path from a given position to another specified position. This
problem is formulated as the SHORTEST PATH problem

SHORTEST PATH

Ig: the set of all weighted graphs G with two specified
vertices u and v in G

Sg: Sg(G) is the set of all paths connecting v and v in G

fo: fo(G,u,v,P) is the length of the path P (measured by
the weight of edges) connecting v and v in G

optg: min

The next optimization problem takes its name from the following story:
a thief robbing a safe finds a set of items of varying size and value that he
could steal, but has only a small knapsack of capacity B which he can use to
carry the goods. Now the thief tries to choose items for his knapsack in order
to maximize the value of the total take. This problem can be interpreted
as a job scheduling problem in which each job corresponds to an item. The
size of an item corresponds to the resource needed for finishing the job while
the value of an item corresponds to the reward for finishing the job. Now
with limited amount B of resource, we want to get the maximum reward.

KNAPSACK

Ig: the set of tuples T' = {s1,...,S,;v1,...,v,; B}, where s;
and v; are for the size and value of the ith item,
respectively, and B is the knapsack size

Sq: Sq(T) is a subset S of pairs of form (s;,v;) in T such that
the sum of all s; in S is not larger than B

fo: fo(T,S) is the sum of all v; in S
optg: max

The following optimization problem arises in job scheduling on parallel
processing systems. Suppose that we have a set of jobs Ji, ..., J,, where the

OPTIMIZATION PROBLEMS)

processing time of job J; (on a single processor) is t;, and a set of identical
processors P, ..., Py,. Our objective is to assign the jobs to the processors
so that the completion time of all jobs is minimized. This problem can be
formulated as follows.

MAKESPAN

Ig: the set of tuples T' = {t1,...,t,;m}, where ¢; is the
processing time for the ¢th job and m is the number
of identical processors

Sq: Sq(T) is the set of partitions P = (T1,...,Ty,) of the
numbers {t1,...,t,} into m parts

fo: fo(T,P) is equal to the processing time of the largest
subset in the partition P, that is,

fo(T, P) = maxi{ ¥, 1, 15}
optg: min

The following optimization problem has obvious application in scientific
computing. Suppose that we use the ordinary matrix multiplication method
to compute a matrix product M7 x My of two matrices, where M; is a p X g
matrix and My is a ¢ X 7 matrix. Then we need to perform pgr element
multiplications, and the resulting product is a p X r matrix. Now suppose
that instead of multiplying two matrices, we need to compute the product
My x My x --- x M, of a chain of more than two matrices, n > 2, where M;
is a d;—1 X d; matrix (verify that this condition guarantees the validity for
the matrices to be multiplied.) Since matrix multiplication is associative,
we can add balanced parentheses to the sequence and change the order
of the multiplications without affecting the final product matrix. On the
other hand, changing the order may make significant difference in terms
of the total number of element multiplications needed to compute the final
product matrix. For example, consider the product M; x My x M3. Suppose
that both My and M> are 100 x 100 matrices, while M3 is a 100 x 1 matrix.
Then to obtain the final product matrix, the order (M; x M3) X M3 needs
1,010, 000 element multiplications, while the order My x (Ms x M3) requires
only 20,000 element multiplications. Therefore, given a chain of matrices,
it is desired to find the order that requires the minimum number of element
multiplications

MATRIX-CHAIN MULTIPLICATIONS

Ig: the set of tuples T' = {dy, dy, ..., dy}, where suppose that
the ith matrix M; is a d;_1 X d; matrix

6 INTRODUCTION

Sg: Sq(T) is the set of the sequences S that are the sequence
M x - - - x My with proper balance parentheses inserted,
indicating an order of multiplications of the sequence

fo: fo(T,S) is equal to the number of element multiplications
needed in order to compute the final product matrix
according to the order given by S

optg: min

We close this section with a graph optimization problem, which will play
an important role in our discussion.

INDEPENDENT SET
Ig: the set of undirected graphs G = (V, E)

Sg: Sg(G) is the set of subsets S of V such that no two
vertices in S are adjacent

fo: fo(G,S) is equal to the number of vertices in S

optg: max

1.2 Algorithmic preliminary

The objective of this book is to discuss how optimization problems are solved
using computer programs, which will be described by computer algorithms.
The design and analysis of computer algorithms have been a very active
research area in computer science since the introduction of the first modern
computer in middle 1900’s. In this section, we briefly review the fundamen-
tals for design and analysis of computer algorithms. For further and more
detailed discussion, the reader is referred to the excellent books in the area,
such as Aho, Hopcroft, and Ullman [1], Cormen, Leiserson, and Rivest [28],
and Knuth [83, 84].

Algorithms

The concept of algorithms came far earlier than modern computers. In
fact, people have been using algorithms as long as they have been solv-
ing problems systematically. Since the introduction of modern computers
in middle 1900’s, however, it has become popular to refer “algorithms” to
“computer algorithms”. Informally, an algorithm is a high level description
of a computer program, which is a step-by-step specification of a procedure

ALGORITHMIC PRELIMINARY 7

for solving a given problem. Each step of an algorithm consists of a finite
number of operations, which in general include arithmetical operations, log-
ical comparisons, transfer of control, and retrieving or storing data from/to
computer memory. The language used in this book to describe algorithms
is similar to the PASCAL programming language with certain grammatical
flexibilities.

We say that an algorithm A solves an optimization problem @ =
(Ig,Sq, fq,optg) if on each input instance z € Iy, the algorithm produces
an optimal solution y € Sg(z) (by “optimal solution” y we mean that the
solution satisfies the condition fg(z,y) = optg{fo(z,2) | z € Sg(z)}).

Encodings

To study the computational complexity of algorithms, we first need to dis-
cuss how input instances and solutions of an optimization problem are rep-
resented in a computer. In general, an input instance or a solution to an
input instance can be given as a sequence of symbols in a finite alpha-
bet 3. For example, an input instance of the MAKESPAN problem is a se-
quence starting with the symbol “(”, then a sequence of integers separated
by commas, then a symbol “” followed by an integer m, and closed with
the symbol “)”. Thus, the alphabet for the input instances of MAKESPAN is
¥=40,...,9,(,),;,[,]), (where [,] means the symbol “”). Another exam-
ple is the input instances of the TRAVELING SALESMAN problem, which are
weighted graphs and can be given by the adjacency matrix for the graphs
organized in row major in a sequence of numbers. Now suppose that the
finite alphabet ¥ is fixed, then we can encode each sequence in X into a
binary sequence as follows. Let g be the number of symbols in ¥, then each
symbol in ¥ can be easily encoded into a distinct binary string of length
[log q]. Therefore, each sequence of length n in ¥ can be encoded into a
binary sequence of length n[logq]. Since g is in general a small constant,
the binary representation of the sequence is not significantly different in
length from the original sequence. Moreover, it is straightforward to covert
a sequence in ¥ into the corresponding binary sequence and vice versa. It is
convincing that in general, input instances and solutions of an optimization
problem, even they are compound objects such as a polygon, a graph, or a
formula, can be effectively and efficiently encoded into binary sequences.

Therefore, we will use size or length of an object w, denoted |w|, to refer
to the length of the binary representation of the object w, where the object
w can be an input instance, a solution to an input instance, or some other
component of an optimization problem.

8 INTRODUCTION

Asymptotic notations

Suppose that A is an algorithm solving an optimization problem Q. It is
reasonable to assume that for input instances of large size, the algorithm A
spends more computational time. Thus, we will evaluate the performance
of the algorithm A in terms of the size of input instances.

It is in general difficult and improper to calculate the precise number of
basic operations the algorithm A uses to find an optimal solution for a given
input instance. There are several reasons for this. First, the computer model
underlying the algorithm is not well-defined. For example, the operation
“a++” (add 1 to a) can be implemented in one basic operation (using C
compiler) or three basic operations (retrieve a, add 1, and store the value
back to a). Second, the time complexity for each different basic operation
may vary significantly. For example, an integer multiplication operation
is much more time-consuming than an integer addition operation. Third,
one may not be happy to be told that the running time of an algorithm
is 37|z + 13|z|log(|z|) — 472310g?(|z|). One would be more interested in
“roughly what is the complexity?”

It has become standard in computer science to use asymptotic bounds
in measuring the computational resources needed for an algorithm in order
to solve a given problem. The following notations have been very useful in
the asymptotic bound analysis. Given a function #(n) mapping integers to
integers, we denote by

e O(t(n)) : the class C; of functions such that for any g € C1, there is a
constant ¢, such that t(n) > ¢yg(n) for all but a finite number of n’s.
Roughly speaking, O(t(n)) is the class of functions that are at most
as large as t(n).

e o(t(n)) : the class Cy of functions such that for any g € Oy,
lim, o0 g(n)/t(n) = 0. Roughly speaking, o(t(n)) is the class of func-
tions that are less than #(n).

e (t(n)) : the class Cs of functions such that for any g € Cj3, there is a
constant ¢, such that t(n) < ¢gg(n) for all but a finite number of n’s.
Roughly speaking, ©(¢(n)) is the class of functions which are at least
as large as t(n).

e w(t(n)) : the class Cy of functions such that for any g € Cy,
lim,,_, t(n)/g(n) = 0. Roughly speaking, w(t(n)) is the class of func-
tions that are larger than #(n).

ALGORITHMIC PRELIMINARY 9

e O(t(n)) : the class C5 of functions such that for any g € Cs, g(n) =
O(t(n) and g(n) = Q(t(n)). Roughly speaking, ©(¢(n)) is the class of
functions which are of the same order as t(n).

Complexity of algorithms

There are two types of analyses of algorithms: worst case and expected case.
For the worst case analysis, we seek the maximum amount of time used by
the algorithm for all possible inputs. For the expected case analysis we
normally assume a certain probabilistic distribution on the input and study
the performance of the algorithm for any input drawn from the distribu-
tion. Mostly, we are interested in the asymptotic analysis, i.e., the behavior
of the algorithm as the input size approaches infinity. Since expected case
analysis is usually harder to tackle, and moreover the probabilistic assump-
tion sometimes is difficult to justify, emphasis will be placed on the worst
case analysis. Unless otherwise specified, we shall consider only worst case
analysis.

The running time of an algorithm on an input instance is defined to
be the number of basic operations performed during the execution of the
algorithm on the input instance.

Definition 1.2.1 Let A be an algorithm solving an optimization problem
Q@ and let f(n) be a function. The time complezity of algorithm A is O(f(n))
if there is a function f'(n) € O(f(n)) such that for every integer n > 0, the
running time of A is bounded by f’(n) for all input instances of size n.

Based on these preparations, now we are ready for presenting an impor-
tant terminology.

Definition 1.2.2 An algorithm A is a polynomial-time algorithm if there
is a fixed constant ¢ such that the time complexity of the algorithm A is
O(n¢). An optimization problem can be solved in polynomial time if it can
be solved by a polynomial-time algorithm.

Note that this terminology is invariant for a large variety of encoding
schemes and different definitions of input length, as long as these schemes
and definitions define input lengths that are polynomially related. As we
have seen above, the binary representation and the original representation of
an input instance differ only by a small constant factor. Thus, the running
time of a polynomial-time algorithm is not only bounded by a polynomial of
the length of its binary representation, but also bounded by a polynomial of

10 INTRODUCTION

the length of its original representation. Even more, consider the INDEPEN-
DENT SET problem. Let n be the number of vertices in the input instance
graph G. Then n is polynomially related to the binary representation of
the graph G — if we use an adjacency matrix for the graph G, the binary
representation of the matrix has length ©(n?). Therefore, a running time
of an algorithm solving INDEPENDENT SET is bounded by a polynomial in
n if and only if it is bounded by a polynomial in the length of the input
instance.

We must be a bit more careful if large numbers are present in an input
instance. For example, consider the problem FACTORING for which each
input instance is an integer n and we are asked to factor n into its prime
factors. For this problem, it is obviously improper to regard the input size
as 1. The standard definition of the input length regards the input length
as [logn] = O(logn), which is not polynomially related to the quantity 1.

Further assumptions on optimization problems

Polynomial-time algorithms are regarded as “easy”, or feasible, computa-
tions. In general, given an optimization problem, our main concern is
whether an optimal solution for each input instance can be found in poly-
nomial time. For this, we should assume that the other unimportant parts
of the optimization problem can be ignored, or can be dealt with easily.
In particular, we make the following assumptions using the terminology of
polynomial-time computability. Let Q = (I, Sg, fg,0optg) be an optimiza-
tion problem. Throughout the book, we assume that

e there is a polynomial-time algorithm that can identify if a given string
z represents a valid input instance in Ip;

e there is a polynomial-time algorithm that, given an input instance
z € Ig and a string y, can test if y represents a valid solution to z,
ie., if y € Sg(z);

e there is a polynomial-time algorithm that, given z € I and y € Sg(z),
computes the value fg(z,vy).

1.3 Sample problems and their complexity

To illustrate the ideas for solving optimization problems using computer al-
gorithms, we consider in this section the computational complexity for two

SAMPLE PROBLEMS 11

sample optimization problems, and introduce two important techniques in
designing optimization algorithms. We present an algorithm, using greedy
method, to solve the MINIMUM SPANNING TREE problem, and an algorithm,
using dynamic programming method, to solve the MATRIX-CHAIN MULTI-
PLICATION problem.

1.3.1 Minimum spanning tree

As described in Section 1.1, an input instance to the MINIMUM SPANNING
TREE problem is a weighted graph G = (V, E), and a solution to the input
instance G is a spanning tree T' in G. The spanning tree T is evaluated by
its weight, i.e., the sum of weights of the edges in T'. Our objective is to find
a spanning tree with the minimum weight, which will be called a minimum
spanning tree.

Suppose that we have constructed a subtree 77 and that we know that
T is entirely contained in a minimum spanning tree Ty. Let us see how we
can expand the subtree 77 into a minimum spanning tree. Consider the set
E' of edges that are not in T;. We would like to pick an edge e in E’ and
add it to T} to make a larger subtree. For this, the edge e must satisfy the
following two conditions:

1. T1 4+ e must remain a tree. That is, the edge e must keep 171 + e
connected but not introduce a cycle in T; + e; and

2. the larger subtree T + e should be still contained in a minimum span-
ning tree.

The first condition can be easily tested. In fact, the condition is equivalent
to the condition that the edge e has exactly one end in the subtree T7. We
will call an edge e a fringe edge if it satisfies condition 1. Now let us consider
the second condition. Since we have no idea about any minimum spanning
trees (we are being constructing one of them), how can we justify that a
new edge e plus 717 is still contained entirely in a minimum spanning tree?
Naturally, a person working on this problem would think “well, since I am
looking for a spanning tree of minimum weight, I guess I should pick the
lightest fringe edge to keep my new subtree 77 + e small.” This presents
the main idea for an important optimization technique, which is called the
greedy method. In general, greedy method always makes the choice that
looks best at the moment in the hope that this choice will lead to a best
final solution for the problem.

It is conceivable that the greedy method does not always yield best solu-
tions for a given problem. However, for quite a few optimization problems,

12 INTRODUCTION

Figure 1.1: A cycle C in Ty + e, where heavy lines are for edges in the
constructed subtree 77, and dashed lines are for edges in the minimum
spanning tree 7j that are not in 7.

it does. The MINIMUM SPANNING TREE problem fortunately belongs to
this class, as shown in the following theorem.

Theorem 1.3.1 Suppose that the subtree Ty is entirely contained in a min-
imum spanning tree of G. Let e be the fringe edge of minimum weight. Then
the subtree T1 + e is entirely contained in a minimum spanning tree of G.

ProoFr. Let Tp be a minimum spanning tree that contains 77. If the edge
e is in Ty, then we are done. Thus, we assume that the edge e is not in the
spanning tree Ty. Let e = (u,v), where the vertex u is in the subtree T}
while the vertex v is not in T7.

Then there is a cycle C in Ty + e that contains the edge e = (u,v). Since
u is in 77 and v is not in 77, and T} is entirely contained in 7j, there must
be another edge ¢’ = (v, ') in the cycle C, €’ # e, such that v’ is in T} while
v' is not in T} (See Figure 1.1, where heavy lines are for edges in the subtree
T}, dashed lines are for edges in Tj that are not in 77). In other words, €’
is also a fringe edge. Moreover, Ty = Ty + e — €' is also a spanning tree for
the graph G. Since T is a minimum spanning tree, we conclude that the
weight of the tree T is not larger than weight of the tree Tj.

On the other hand, since €’ is also a fringe edge, by the choice we made in
selecting the fringe edge e, we must have weight(e) < weight(e'). Therefore,
the weight of the tree Tj is not smaller than the weight of the tree T} =
To+e—¢€.

In conclusion, the tree 7} is also a minimum spanning tree for the graph

SAMPLE PROBLEMS 13

G. Since the subtree T} + e is entirely contained in 7| (note that the edge
€' is not in T), the theorem is proved. []

Therefore, starting with a smaller subtree contained in a minimum span-
ning tree, the greedy method will lead to a larger subtree contained in a min-
imum spanning tree. Since a spanning tree has exactly n — 1 edges, where
n is the number of vertices in the graph G, applying the greedy method at
most n — 1 times should give us a subtree T' of n — 1 edges which should be
entirely contained in a minimum spanning tree. In other words, the tree T’
itself should be a minimum spanning tree.

What remains is how we start the above process, i.e., what is the first
such a subtree. But this is easy: pick any vertex v in G and let v be the
first such a subtree. The vertex v is obviously contained in every minimum
spanning tree of G.

We implement all these ideas into the following algorithm. Each vertex
in the graph G can be either an “in-tree” vertex if it is contained in the
currently constructed subtree 77, or an “out-tree” vertex if it is not. Each
edge in G may have one of the following four statuses: “tree-edge” if it
is contained in the currently constructed subtree 77, “cycle-edge” if it is
not a tree-edge but both ends of it are in-tree vertices, “fringe-edge” if it
has exactly one end in the currently constructed subtree 77, and “unseen”
otherwise. The formal algorithm is presented in Figure 1.2.

This algorithm is called Prim’s Algorithm and due to R. C. Prim [107].
We give some more explanations for the detailed implementation of Prim’s
Algorithm. Suppose that the graph G has n vertices and m edges. We
use an array of size n for the vertices and an array of size m for the edges.
The status of a vertex is recorded in the vertex array and the status of an
edge is recorded in the edge array. To find the fringe-edge of the minimum
weight, we only need to scan the edge array (the weight of an edge can be
directly read from the adjacency matrix for G). Moreover, to undate the
status of the edges incident to a vertex v, we can again scan the edge array
and work on those edges of which one end is v. Therefore, each execution
of the loop body for the loop in Step 4 takes time O(m). Since the loop
body is executed exactly n — 1 times, we conclude that the running time
of Prim’s Algorithm is bounded by O(nm), which is certainly bounded by
a polynomial of the length of the input instance G. In conclusion, the
MINIMUM SPANNING TREE problem can be solved in polynomial time.

It is possible to improve the running time of the algorithm. For exam-
ple, the edge array can be replaced by a more efficient data structure that
supports each of the following operations in time O(logm) = O(logn): find-

14 INTRODUCTION

Algorithm. PRIM

pick any vertex v and make it an in-tree vertex;
for each edge e incident on v do make e a fringe-edge;
let the subtree 77 be an empty tree;

L

loop n — 1 times
pick a fringe-edge e = (u,v) of minimum weight, where w is
in-tree and v is out-tree;
4.1 T1 =T: +e; make e a tree-edge;
4.2 for each edge € incident on v do
if ¢ is a fringe-edge
then make € a cycle-edge
else if € is an unseen-edge then make € a fringe-edge

4.3 make v an in-tree vertex.

Figure 1.2: Prim’s Algorithm for minimum spanning tree

ing the minimum weight edge, changing the weight for an edge (suppose we
make the weight 00 for each edge that is not a fringe-edge). Then since
each edge is selected as the fringe-edge of minimum weight as most once,
and the status of each edge is changed at most twice (from an unseen-edge
to a fringe-edge and from a fringe-edge to a tree-edge or to a cycle-edge), we
conclude that the running time of the algorithm is bounded by O(mlogn).
More detailed description of this improvement can be found in [28].

1.3.2 Matrix-chain multiplication

In this subsection, we describe another important optimization technique:
dynamic programming method. We illustrate the technique by presenting
an efficient algorithm for the MATRIX-CHAIN MULTIPLICATION problem.
Recall that each input instance of the MATRIX-CHAIN MULTIPLICATION
problem is a list of n + 1 positive integers D = (dy, ds, ... ,d,), representing
the dimensions for n matrices My, ..., M,,, where M; is a d;_1 X d; matrix.
A solution to the instance D is an indication R of the order of the matrix
multiplications for the product My x My x- - -x M,,. The value for the solution
R is the number of element multiplications performed to compute the matrix
product according to the order R. Our objective is to find the computation
order so that the number of element multiplications is minimized.

We start with a simple observation. Suppose that the optimal order is

SAMPLE PROBLEMS 15

to first compute the product P, = M7 X --- X M} and the product P, =
Myi1 X --- X My, and then compute the final product by multiplying P;
and P,. The number of element multiplications for computing P; X P» is
easy: it should be dydid,, since P, is a dy X di matrix and P is a di X d,
matrix. Now how do we decide the number of element multiplications for
the best orders for computing the products P and P,? We notice that for
the products P; and P,, the corresponding matrix chains are shorter than
n. Thus, we can apply the same method recursively to find the numbers
of element multiplications for the two products. The numbers of element
multiplications found by the recursive process plus the number dydid, give
us the total number of element multiplications for this best order.

However, how do we find the index k7 We have no idea. Thus, we try all
possible indices from 1 to n — 1, apply the above recursive process, and pick
the index that gives us the minimum number of element multiplications.

This idea is also applied to any subchain in the matrix-chain M; x My X
--+ X M,. For a subchain M; x --- x M; of h matrices, we consider factoring
the chain at the first, the second, ..., and the (h—1)st matrix multiplication
“x” in the subchain. For each factoring, we compute the desired number for
each of the two corresponding smaller subchains. Note that this recursive
process must terminate — since for subchain of one matrix, the desired
number is 0 by the definition of the problem.

We organize the idea into the recursive algorithm given in Figure 1.3,
which computes the minimum number of element multiplications for the
subchain M; x --- x M;. We use ind to record the index for the best fac-
toring we have seen so far, and use num to record the number of element
multiplications based on this factoring.

What is the time complexity for this algorithm? Let 7'(h) be the running
time of the algorithm Recursive-MCM when it is applied to a matrix chain
of h matrices. On the matrix chain of A matrices, the algorithm needs to
try, for K = 1,...,h — 1, the factoring at the kth “x” in the chain, which
induces the recursive executions of the algorithm on a chain of £ matrices
and on a chain of h — k matrices. Thus, we have

Th) > [TA)+Th-1D)]+[T2)+T(h—2)]+---+[T(h—1)+T(1)]

2r()y+7T2)+---+T(h—1)]
KT (h)2)

v

From the relation T'(h) > hT(h/2), it is easy to see that T'(h) > hl°&"~1,
Thus, for a chain of n matrices, i.e., if the input instance is a list of n + 1
integers, the running time of the algorithm Recursive-MCM is at least

16 INTRODUCTION

Algorithm. Recursive-MCM/(%, j)

1. if 4 > j then return 0; Stop;

2. num = o0; ind =0;

3. fork=itoj—1do

3.1 recursively compute the minimum number g; of element
multiplications for computing the product M; X --- X Mj:
call Recursive-MCM(i, k);

3.2 recursively compute the minimum number ¢» of element
multiplications for computing the product Mpy1 x -+ x M;:
call Recursive-MCM(k + 1, 5);

3.3 if num > q1 + q2 + di—1drd;
then ind=~Fk; num =q + q2 + d;—1dpd;;

4. return num and ind.

Figure 1.3: Recursive algorithm for MATRIX-CHAIN MULTIPLICATION

(n'°8"~1) which is much larger than any polynomial of n.

We now discuss how the above idea can be modified to achieve a more
efficient algorithm. Observe that in the above recursive algorithm, for each
subchain, the recursive process is applied on the subchain many times. For
example, suppose we apply the algorithm on the matrix chain M; X - - - x M7,
then the algorithm Recursive-MCM is applied to the subchain M; x M5 at
least once when we factor the original chain at the ith “x”, for 2 <4 < 6. It
is the repeatedly applications of the recursive process on the same subchain
that make the algorithm time-consuming.

A natural solution to this is to store the intermediate results when they
are computed. Therefore, when next time we need the results again, we
can retrieve them directly, instead of re-computing them. Now let us come
back to the original MATRIX-CHAIN MULTIPLICATION problem. We use two
2-dimensional arrays NUM[1..n,1..n] and IND[1..n, 1..n], where IND[3,] is
used to record the index in the subchain M; x --- x M; at which factoring
the subchain gives the minimum number of element multiplications, and
NUM[z, 5] is used to record the minimum number of element multiplications
for computing the product of the subchain. Since to compute the values for
NUM], j] and IND[;, 5], we need to know the values for NUM[¢', 5], for &' =4
and j' < j and for i > 7 and j' = j, the values for the two 2-dimensional
arrays IND and NUM will be computed from the diagonals of the arrays

SAMPLE PROBLEMS 17
diag j=i+diag
N N
AN A N
N
Con W= N0
i = N N
\\ N N \\
N N N N AN
N AN N N
N AN N AN
N N N A
AN N N
[N D ">
N N .y
NN)=
\\ \\
N N
N N N
S N
N AN
N A
N\

Figure 1.4: The order for computing the elements for NUM and IND.

then moving toward the upper right corner (See Figure 1.4). Note that the
values for the diagonal elements in the arrays IND and NUM are obvious:
NUM][4, 4] = 0, and IND[4, 7] has no meaning.

The algorithm is presented in Figure 1.5.

The analysis of the algorithm Dyn-Prog-MCM is straightforward:
Step 2 dominates the running time and consists of loops of depth 3. Each ex-
ecution of the inner loop body takes constant time. Thus, the running time
of the algorithm is O(n3). This concludes that the problem MATRIX-CHAIN
MULTIPLICATION can be solved in polynomial time.

We make a final remark to explain how a solution can be obtained from
the results of algorithm Dyn-Prog-MCM. With the values of the arrays
NUM and IND being available, by reading the value IND[1,n], suppose
IND[1,n] = k, we know that input matrix chain M; X --- X M,, should be
factored at the index k. Now with the values IND[1, k] and IND[k + 1, n],
we will know where the two subchains M7 X - -+ X My and M1 X -+ X M,
should be factored, and so on. A simple recursive algorithm can be written
that, with the array IND as input, prints the expression, which is the chain
M x- - -x M, with proper balanced parentheses inserted, indicating the order
for computing the matrix product with the minimum number of element
multiplications.

Algorithm Dyn-Prog-MCM illustrates the principle of an important
technique for optimization algorithms — the dynamic programming method.
A dynamic programming algorithm stores intermediate results and/or so-

18 INTRODUCTION

Algorithm. Dyn-Prog-MCM

1. for i =1 to n do NUM[;,] = 0;
2. for diag=1ton—1do
for : =1 to n — diag do
j =1+ diag;
num = oo;
for k=itoj—1do
if num > NUM[i, k] + NUM[k + 1, j] + di—1dxd;
then num = NUM[s, k] + NUM[k + 1, j] + di—1drdy;
IND[i, j] = k;
NUM[s, j] = num;

Figure 1.5: Dynamic programming for MATRIX-CHAIN MULTIPLICATION

lutions for small subproblems and looks them up, rather than recomputing
them when they are needed later for solving larger subproblems. In gen-
eral, a dynamic programming algorithm solves an optimization problem in
a bottom-up fashion, which includes charactering optimal solutions to a
large problem in terms of solutions to smaller subproblems, computing the
optimal solutions for the smallest subproblems, saving the solutions to sub-
problems to avoid re-computations, and combining solutions to subproblems
to compute optimal solution for the original problem.

1.4 NP-completeness theory

NP-completeness theory plays a fundamental role in the study of optimiza-
tion problems. In this section, we give a condensed description for NP-
completeness theory. For a more formal and detailed discussion, the reader
is referred to Garey and Johnson [50].

NP-completeness theory was motivated by the study of computational
optimization problems, in the hope of providing convincing lower bounds on
the computational complexity for certain optimization problems. However,
as a matter of discussion convenience and for mathematical accuracy, NP-
completeness theory is developed to be applied only to a class of simplified
optimization problems — decision problems. A decision problem is such
a problem for which each input instance only needs to take one of the two
possible answers—“yes” or “no”. An input instance taking the answer “yes”

NP-COMPLETENESS 19

will be called a yes-instance for the problem, and an input instance taking
the answer “no” will be called a no-instance for the problem.

The following Satisfiability (or shortly SAT) problem is a decision prob-
lem.

SATISFIABILITY (SAT)

Given a boolean formula F' in the conjunctive normal form, is
there an assignment to the variables in F' so that the formula F
has value TRUE?

Thus, every boolean formula in the conjunctive normal form that is satisfi-
able (i.e., it can take value TRUE on some assignment) is a yes-instance for
the SATISFIABILITY problem, while every boolean formula in the conjunctive
normal form that is not satisfiable is a no-instance for the SATISFIABILITY
problem.

An optimization problem () can be converted into a decision problem by
introducing a parameter, which is used to compare with the optimal value
of an input instance. For example, a decision version of the TRAVELING
SALESMAN problem can be formulated as follows. An input instance of the
decision problem is of form (G, k), where G is a weighted complete graph
and k is an integer. The question the decision problem asks on the instance
(G, k) is “Is there a traveling tour in G that visits all vertices of G and has
weight bounded by k7”

In general, the decision version of an optimization problem is somehow
easier than the original optimization problem. Therefore, the computational
hardness of the decision problem implies the computational hardness for the
original optimization problem. NP-completeness theory provides strong ev-
idence for the computational hardness for a large class of decision problems,
which implies convincingly the computational difficulties for a large variety
of optimization problems.

We say that an algorithm A accepts a decision problem @ if on every
yes-instance z of @, the algorithm A stops at a “yes” state (i.e., “accepts”
z), while on all other inputs z’ (including the inputs that do not encode an
input instance of @), the algorithm A4 stops at a “no” state (i.e., “rejects”
z').

Definition 1.4.1 A decision problem () is in the class P if it can be accepted
by a polynomial-time algorithm.

In a more general and extended sense, people also say that a problem
Q@ is in the class P if @) can be solved in polynomial time, even through

20 INTRODUCTION

sometimes the problem () is not a decision problem. For example, people do
say that the MINIMUM SPANNING TREE problem and the MATRIX-CHAIN
MULTIPLICATION problem are in the class P.

Unfortunately, many decision problems, in particular many decision
problems converted from optimization problems, do not seem to be in
the class P. A large class of these problems seem to be characterized by
polynomial-time algorithms in a more generalized sense, as described by the
following definition.

Definition 1.4.2 A decision problem @ is in the class NP if it can be ac-
cepted by a polynomial time algorithm A in the following manner. There is
a fixed polynomial p(n) such that

1. If z is a yes-instance for the problem (), then there is a binary string
y of length bounded by p(|z|) such that on input (z,y) the algorithm
A stops at a “yes” state;

2. If z is not a yes-instance for the problem @), then for any binary string
y of length bounded by p(|z|), on input (z,y) the algorithm A stops
at a “no” state.

Thus, a problem () in NP is the one whose yes-instances x can be easily
(i.e., in polynomial time) checked (by the algorithm A) when a short (i.e.,
bounded by the polynomial p of |z|) proof (i.e., y) is given. The polynomial
time algorithm A works in the following manner. If the input z is a yes-
instance for the problem @ (this fact is not known to the algorithm A in
advance), then with a correct proof (or “hint”) y, the algorithm A will be
convinced and correctly conclude “yes”. On the other hand, if the input z
is not a yes-instance for the problem @, then no matter what hint y is given,
the algorithm A cannot be fooled to conclude “yes”.

Therefore, the polynomial-time algorithm .4 simulates a proof checking
process for theorems with short proofs. The polynomial-time algorithm A
can be regarded as an experienced college professor. If a true theorem z
is given together with a correct (and short) proof y, then the professor will
conclude the truth for the theorem z. On the other hand, if a false theorem x
is presented, then no matter what “proof” is provided (it has to be invalid!)
the professor would not be fooled to conclude the truth for the theorem z.

We should point out that although the polynomial-time algorithm A can
check the proof y for an instance z, A has no idea how the proof y can be
derived. Alternatively, the class NP can be defined to be the set of those

NP-COMPLETENESS 21

decision problems that can be accepted by nondeterministic polynomial-
time algorithms, which can always correctly guess the proof. Therefore,
on an input z that is a yes-instance, the nondeterministic polynomial-time
algorithm guesses a correct proof y, checks the pair (z,y), and accepts z;
while on an input z that is not a yes-instance, with any guessed proof y, the
algorithm checking the pair (z,y) would conclude *

The decision version of the Traveling Salesman problem, for example, is
in the class NP: given an instance (G, k), where G is a weighted complete
graph and k is an integer, it is asked whether there is a traveling tour in
G that visits all vertices and has weight bounded by k. A polynomial-time
algorithm A can be easily designed as follows. On input pair (z,y), where
x = (G, k), the algorithm A accepts if and only if y represents a tour in G
that visits all vertices and has weight not larger than k. Thus, if z = (G, k)
is a yes-instance, then with a proof y, which is a tour in G that visits all
vertices and has weight not larger than k, the algorithm A will accept the
pair (z,y). On the other hand, if z = (G, k) is not a yes-instance, then no
matter what proof y is given, the algorithm .4 will find out that y is not the
desired tour (since there does not exist a desired tour in G), so A rejects
the pair (z,y).

We also point out that every decision problem in the class P is also in
the class NP: suppose that) is a problem in the class P and that A is
a polynomial-time algorithm solving (). The algorithm A can be used in
Definition 1.4.2 that ignores the hint y and computes the correct answer for
a given instance x directly.

Unlike the class P, it is not that natural and obvious how the concept
NP can be generalized to problems that are no decision problems. However,
based on the characterization of “having a short hint”, people did extend the
concept NP to optimization problems, as given in the following definition.
This definition has become standard.

LnO” .

Definition 1.4.3 An optimization problem @ = (I, Sg, fg,optg) is an
NP optimization (or shortly NPO) problem if there is a polynomial p(n)
such that for any instance z € I, there is an optimal solution y € Sg(z)
whose length |y| is bounded by p(|z|).

Most interesting optimization problems are NPO problems. In partic-
ular, all optimization problems listed in Section 1.1 plus all optimization
problems we are studying in this book are NPO problems. In general, if an
optimization problem is an NPO problem, then it has a decision problem
version that is in the class NP.

22 INTRODUCTION

Now let us come back to NP-completeness theory. A very important
concept in NP-completeness theory is the reducibility, which is defined as
follows.

Definition 1.4.4 Let @)1 and ()2 be two decision problems. Problem () is
polynomial-time (many-one) reducible to problem Q2 (written as Q1 <P, Q)2)
if there is a function r computable in polynomial time such that for any =z,
z is a yes-instance for @ if and only if 7(z) is a yes-instance for Qs.

The relation ;1 <P, ()2 indicates that up to a polynomial time compu-
tation, the problem (2 is not easier than the problem @; (or equivalently,
the problem 7 is not harder than the problem ;). Therefore, the rela-
tion Q1 <P ()2 sets a lower bound for the computational complexity for the
problem Qs in terms of the problem (), and also sets an upper bound for
the computational complexity for the problem (); in terms of the problem
Q2. In particular, we have the following consequence.

Lemma 1.4.1 Let Q1 and Q)2 be two decision problems. If Q1 <P Q2 and
Q2 is in the class P, then the problem Q1 is also in the class P.

PrROOF. Let r be the function that is computed by an algorithm A; of
running time O(n°) such that z is a yes-instance for @) if and only if r(z)
is a yes-instance for ()3, and let A, be another algorithm that accepts the
decision problem @9 and has running time O(n?), where both ¢ and d are
fixed constants. Now an algorithm A3 for the problem ()1 can be derived as
follows. On an input z, A3 first computes r(z) by calling the algorithm A;
as a subroutine. This takes time O(|z|). Note since the running time of A;
is bounded by O(|z|¢), the length |r(z)| of the output of A; is also bounded
by O(n®). Now the algorithm A3 calls the algorithm Ay to check whether
r(z) is a yes-instance for the problem Q3. This takes time O(|r(z)|?) =
O(((0(|z)9)%) = O(|z|*?). Now the algorithm Az concludes that z is a
yes-instance for @)y if and only if r(z) is a yes-instance for Q2. According
to the definitions, the algorithm 43 correctly accepts the decision problem
@1- Moreover, since the running time of the algorithm A3 is bounded by
O(|z|¢) + O(|z|*?), which is bounded by a polynomial of |z|, we conclude
that the problem Q; is in the class P. [

We give an example for the polynomial-time reduction by showing how
the SATISFIABILITY problem is polynomial-time reduced to the following
decision version of the INDEPENDENT SET problem.

NP-COMPLETENESS 23

DECISION-INDEP-SET

Given a graph G and an integer k, is there a set S of at least &
vertices in G such that no two vertices in S are adjacent?

The algorithm A computing the reduction function r from the SATIS-
FIABILITY problem to the DECISION-INDEP-SET problem works as follows.
Let F =Ci ACyA--- ACyp, be an instance to the SATISFIABILITY problem,
where each C; (called a clause) is a disjunction C; = (L1 V1o V-~ Viig,)
of boolean literals (a boolean literal is either a boolean variable or its nega-
tion). The algorithm A constructs a graph Gp that has) i, n; vertices
such that each vertex in Gy corresponds to a literal appearance in the for-
mula F' (note that each literal may have more than one appearance in F').
Two vertices in G are adjacent if one of the following two conditions holds:
(1) the two corresponding literal appearances are in the same clause, or (2)
the two corresponding literal appearances contradict to each other, i.e., one
is the negation of the other. Now, for the instance F' for the SATISFIABILITY
problem, the value of the function r(F') is (Gr, m), which is an instance for
the DECISION-INDEP-SET problem. It is easy to see that given the instance
F for SATISFIABILITY, the instance (Gr,m) for DECISION-INDEP-SET can
be constructed in polynomial time by the algorithm .A.

We show that F' is a yes-instance for SATISFIABILITY if and only if
(Gp,m) is a yes-instance for DECISION-INDEP-SET. Suppose that F is a
yes-instance for SATISFIABILITY. Then there is an assignment « to the vari-
ables in F' that makes F TRUE. Thus, for each clause C;, the assignment «
sets at least one literal appearance /; , in C; TRUE. Now pick the m vertices
in G that correspond to the m literal appearances l;5,, 1 = 1,...,m. No
two of these m vertices are adjacent by the construction of the graph G
since (1) they are not in the same clause and (2) the assignment « cannot
set two contradicting literals both TRUE. Therefore, r(F) = (Gp,m) is a
yes-instance for DECISION-INDEP-SET.

Now suppose that r(F') = (G, m) is a yes-instance for DECISION-INDEP-
SET. Let S = {v1,...,v,} be a set of m vertices in Gp such that no two
vertices in S are adjacent. Since any two literal appearances in the same
clause in F' correspond to two adjacent vertices in G, each clause in F' has
exactly one literal appearance I; 5, corresponding to a vertex in the set S.
Moreover, no two l;p, and l;p; of these m literal appearances contradict
each other — otherwise the two corresponding vertices in S would have
been adjacent. Therefore, an assignment « to the variables in F' can be
constructed that sets all these literal appearances /; ,, TRUE: if a boolean
variable z is one of the literal [; ,, then a(z) = TRUE; if the negation T of

24 INTRODUCTION

a boolean variable z is one of the literal /; , then a(z) = FALSE; if neither
x nor T is any of the literals /; p,, then « sets z arbitrarily. Note that the
assignment « sets at least one literal in each clause in ¥ TRUE, thus makes
the formula F' TRUE. Consequently, F' is a yes-instance for SATISFIABILITY.

This completes the polynomial-time reduction from the SATISFIABILITY
problem to the DECISION-INDEP-SET problem.

The foundation of NP-completeness theory was laid by the following
theorem.

Theorem 1.4.2 (Cook’s Theorem) Every decision problem in the class
NP is polynomial-time many-one reducible to the SATISFIABILITY problem.

PROOF. A formal proof for this theorem involves a very careful investi-
gation on the precise definitions of algorithms and of the underlying com-
putational models supporting the algorithms. Here we give a proof for the
theorem that explains the main proof ideas but omits the detailed discussion
related to computation models. A more complete proof for the theorem can
be found in Garey and Johnson [50].

Suppose that @ is a decision problem in NP, and that A is a polynomial-
time algorithm such that for any instance x of @, if x is a yes-instance,
then there is a binary string y, such that the algorithm A accepts (x,y;),
and if z is not a yes-instance, then for any binary string y, the algorithm
A rejects (z,y), where the length of the binary string v is bounded by a
polynomial of |z|. We show how the problem @ is polynomial-time reduced
to the SATISFIABILITY problem.

The algorithm A can be converted into a boolean formula F (this state-
ment needs a thorough justification but is not surprising: computer algo-
rithms are implementable in a digital computer, which basically can only do
boolean operations.) Moreover, the formula can be made in the conjunctive
normal form. The input to the formula F is of the form (z,y) such that for
any assignment zy and yg to z and y, respectively, F(zg,yo) = TRUE if and
only if the algorithm A accepts the pair (zg, o). Now for a given instance zg
for the problem @, the instance for SATISFIABILITY is Fy = F'(xg,*). That
is, the formula Fj is obtained from the formula F' with the first paramenter
z assigned by the value zy. It can be proved that there is a polynomial-time
algorithm that given zy constructs Fp.

Now if zg is a yes-instance for the problem (), then by the definition,
there is a binary string yo such that the algorithm A accepts (zg, o). Thus,
on this yg, the formula Fy(yo) = F (o, yo) gets value TRUE, i.e., the formula
Fy is satisfiable thus is a yes-instance for SATISFIABILITY. On the other

NP-COMPLETENESS 25

hand, if z is not a yes-instance, then the algorithm 4 does not accept
any pair (zo,y), i.e., the formula Fy(y) = F(zo,y) is not TRUE for any y.
Therefore, Fy is not satisfiable thus is not a yes-instance for SATISFIABILITY.

Thus, the problem) in NP is polynomial-time reduced to the SATISFI-
ABILITY problem. Since () is an arbitrary problem in NP, the theorem is
proved. []

According to the definition of the polynomial-time reduction, Theo-
rem 1.4.2 shows that no problems in the class NP is essentially harder than
the SATISFIABILITY problem. This hints a lower bound on the computational
complexity for the SATISFIABILITY problem. Motivated by this theorem, we
introduce the following definition.

Definition 1.4.5 A decision problem @) is NP-hard if every problem in the
class NP is polynomial-time many-one reducible to Q.

A decision problem @ is NP-complete if () is in the class NP and @ is
NP-hard.

In particular, the SATISFIABILITY problem is NP-hard and NP-complete
(it is easy to see that the SATISFIABILITY problem is in the class NP).

According to Definition 1.4.5 and Lemma 1.4.1, if an NP-hard problem
can be solved in polynomial time, then so can all problem in NP. On the
other hand, the class NP contains many very hard problems, such as the
decision version of the TRAVELING SALESMAN problem and of the INDEPEN-
DENT SET problem. It can be shown that if these decision versions can be
solved in polynomial time, then so can the corresponding optimization prob-
lems. People have worked very hard for decades to derive polynomial-time
algorithms for these decision problems and optimization problems, but all
failed. This fact somehow has convinced people that there are problems in
the class NP that cannot be solved in polynomial time. Therefore, if we can
show that a problem is NP-hard, then it should be a very strong evidence
that the problem cannot be solved in polynomial time. This essentially is
the basic philosophy in the development of the NP-completeness theory.

However, how do we show the NP-hardness for a given problem? It
is in general not feasible to examine all problems in NP and show that
each of them is polynomial-time reducible to the given problem. Techniques
used in Theorem 1.4.2 do not seem to generalized: Theorem 1.4.2 is kind
of fortuitous because the SATISFIABILITY problem is a logic problem and
algorithms happen to be characterized by logic expressions. Thus, to prove
NP-hardness for other problems, it seems that we need new techniques,
which are, actually not new, the reduction techniques we have seen above.

26 INTRODUCTION

Lemma 1.4.3 Let Q1, Q2, and Q3 be three decision problems. If Q1 <P Qo
and Q2 <, Qs, then Q1 <}, Qs.

PROOF. Suppose that r; is a polynomial-time computable function such
that z is a yes-instance for @1 if and only if 1 (z) is a yes-instance for @,
and suppose that r9 is a polynomial-time computable function such that
y is a yes-instance for @2 if and only if ro(y) is a yes-instance for Q3. It
is easy to verify that the function r(z) = r2(r1(x)) is also polynomial-time
computable. Moreover, z is a yes-instance for)1 if and only if 71 (z) is a yes-
instance for QQ2, which is true if and only if 7(z) = r2(r1(z)) is a yes-instance
for Qg.
This shows that Q1 <P, Q3. U

Corollary 1.4.4 Let Q1 and Q2 be three decision problems. Suppose that
the problem Q1 is NP-hard and that Q1 <P @2, then the problem Qg is
NP-hard.

PROOF. Let @ be any problem in NP. Since @)1 is NP-hard, by the
definition, @@ <P, @;. This together with @}; <P @2 and Lemma 1.4.3,
implies <P (2. Since @ is an arbitrary problem in NP, we conclude that
the problem @9 is NP-hard. []

Since we already know that the SATISFIABILITY problem is NP-hard
(Theorem 1.4.2) and that the SATISFIABILITY problem is polynomial-time
reducible to the DECISION-INDEP-SET problem, Corollary 1.4.4 enables us
to conclude directly that the DECISION-INDEP-SET is NP-hard. In conse-
quence, it is unlikely that the DECISION-INDEP-SET problem can be solved
in polynomial-time.

The idea of Corollary 1.4.4 has established an extremely useful working
system for proving computational hardness for problems: suppose we want
to show a given problem (@ is computationally hard, we may pick a known
NP-hard problem Q' (well, we already have two here) and show Q' <P Q.
If we succeed, then the problem () is NP-hard, thus it is unlikely that @
can be solved in polynomial time. Moreover, now the problem @ can be
added to the list of NP-hard problems, which may be helpful later in prov-
ing NP-hardness for other problems. In the last two decades, people have
successfully used this technique and derived NP-hardness for over thousands
of problems. Thus, all these thousands of problems are unlikely to be solved
in polynomial time. Of course, this working system is completely based on
the following assumption:

NP-COMPLETENESS 27

Working Conjecture in NP-completeness Theory

P # NP, that is, there are problems in NP that are not solvable
in polynomial time.

No proof for this working conjecture has been derived. In fact, very little
is known for a proof for the conjecture. However, the conjecture is strongly
believed by most people working in computer science.

In the following, we give a list of some NP-complete problems, whose
NP-hardness will be used in our latter discussion. The proof for the NP-
hardness for these problems can be found in Garey and Johnson [50]. For
those problems that also have an optimization version, we attach a “(D)” to
the end of the problem names to indicate that these are decision problems.

PARTITION

Given a set of integers S = {ai,a2,...,a,}, can the set S be
partitioned into two disjoint sets S1 and Sy of equal size, that is,
S=851US8,, S1NSy = @, and Eaie& a; = ZajESz a; ?

GrAPH COLORING (D)

Given a graph G and an integer k, can the vertices of G be
colored with at most k£ colors so that no two adjacent vertices in
G are colored with the same color?

GRAPH EDGE COLORING (D)

Given a graph G and an integer k, can the edges of G be colored
with at most k colors so that no two edges sharing a common
vertex are colored with the same color?

PLANAR GRAPH INDEP-SET (D)

Given a planar graph G and an integer k, is there a subset S
of at least k vertices of G such that no two vertices in S are
adjacent?

PLANAR GRAPH VERTEX-COVER (D)

Given a planar graph G and an integer k, is there a subset S of
at most k vertices of G such that every edge in G has at least
one end in S?

28

INTRODUCTION

HAMILTONIAN CIRCUIT

Given a graph G of n vertices, is there a simple cycle in G that
contains all vertices?

EUCLIDEAN TRAVELING SALESMAN (D)

Given a set S of n points in the plane and an integer k, is there
a tour of length bounded by k that visits all points in S?

MaxmvuMm Cut (D)

Given a graph G and an integer k, is there a partition of the
vertices of G into two sets Vi and V5 such that the number of
edges with one end in V7 and the other end in V5 is at least k7

3-D MATCHING

Given a set of triples M = X xY x Z, where X, Y, and Z are
disjoint sets having the same number g of elements, is there a
subset of M' of M of ¢ triples such that no two triples in M’
agree in any coordinate?

Part 1

Tractable Problems

29

Chapter 2

Maximum Flow

We start by considering the following problem: suppose that we have built a
network of pipes to transport oil in an area. Each pipe has a fixed capacity
for pumping oil, measured by barrels per hour. Now suppose that we want
to transport a very large quantity of oil from city s to city . How do we
use the network system of pipes so that the oil can be transported in the
shortest time?

This problem can be modeled by the MAXiMUM FLOW problem, which
will be the main topic of this chapter. The network of pipes will be modeled
by a directed graph G with two distinguished vertices s and t. Each edge
in the graph G is associated with an integer, indicating the capacity of the
corresponding pipe. Now the problem is to assign each edge with a flow,
less than or equal to its capacity, so that the maximum amount of flow goes
from vertex s to vertex t.

The MAXIMUM FLOW problem arises in many settings in operations re-
search and other fields. In particular, it can be used to model liquids flowing
through pipes, parts through assembly lines, current through electrical net-
works, information through communication networks, and so forth. Efficient
algorithms for the problem have received a great deal of attention in the last
three decades.

In this chapter, we introduce two important techniques in solving the
MaxmMuM FLow problem. The first one is called the shortest path satura-
tion method. Two algorithms, Dinic’s algorithm and Karzanov’s algorithm,
are presented to illustrate this technique. The second method is a more re-
cently developed technique, called the preflow method. An algorithm based
on the preflow method is presented in Section 2.3. Remarks on related topics
and further readings on the MAXIMUM FLOW problem are also given.

31

32 MAXIMUM FLOW

2.1 Preliminary
We start with the formal definitions.

Definition 2.1.1 A flow network G = (V, E) is a directed graph with two
distinguished vertices s (the source) and ¢ (the sink). Each edge [u,v] in G is
associated with a positive integer cap(u,v), called the capacity of the edge.
If there is no edge from vertex u to vertex v, then we define cap(u,v) = 0.

Remark. There is no special restriction on the directed graph G that
models a flow network. In particular, we allow edges in G to be directed
into the source and out of the sink.

Intuitively, a flow in a flow network should satisfy the following three
conditions: (1) the amount of flow along an edge should not exceed the
capacity of the edge (capacity constraint); (2) a flow from a vertex u to
a vertex v can be regarded as a “negative” flow of the same amount from
vertex v to vertex u (skew symmetry); and (3) except for the source s and
the sink ¢, the amount of flow getting into a vertex v should be equal to
the amount of flow coming out of the vertex (flow conservation). These
conditions are formally given in the following definition.

Definition 2.1.2 A flow f in a flow network G = (V, E)) is an integer-valued
function on pairs of vertices of G satisfying the following conditions:

1. For all u,v € V, cap(u,v) > f(u,v) (capacity constraint);
2. For all u,v € V, f(u,v) = —f(v,u) (skew symmetry);

3. For all u # s,t, 3, cy f(u,v) =0 (flow conservation).

An edge [u,v] is saturated by the flow f if cap(u,v) = f(u,v). A path P
in the flow network G is saturated by the flow f if at least one edge in P is
saturated by f.

Note that even when there is no edge from a vertex u to a vertex v, the
flow value f(u,v) can still be non-zero. For example, suppose that there is
no edge from u to v but there is an edge from v to u of capacity 10, and that
the flow value f(v,u) is equal to 8. Then by the skew symmetry property,
the flow value f(u,v) is equal to —8, which is not 0.

However, if there is neither edge from u to v and nor edge from v to
u, then the flow value f(u,v) must be 0. This is because from cap(u,v) =
cap(v,u) = 0, by the capacity constraint property, we must have f(u,v) <0

PRELIMINARY 33

74
44 8/4

2/0 V3 4/4 V4

Figure 2.1: A flow network with a flow.

and f(v,u) < 0. By the skew symmetry property, f(v,u) < 0 implies
f(u,v) > 0, which together with f(u,v) <0 gives f(u,v) =0.

Figure 2.1 is an example of a flow network G with a flow, where on each
edge e = [u,v], we label a pair of numbers as “a/b” to indicate that the
capacity of the edge e is a and the flow from vertex u to vertex v is b.

Given a flow network G = (V, E) with the source s and the sink ¢, let f
be a flow on G. The value of the flow is defined to be }_ <y f(s,v), denoted

by |f]-
Now the MAXIMUM FLOW problem can be formally defined using our

definition of optimization problems as a 4-tuple.

Maximmum Frow = (Ig, Sq, fg, optg)
Ig: the set of flow networks G
Sq: Sg(G) is the set of flows f in G
fo: fo(G, f) is equal to the flow value |f]
optg: max
Our first observation on the properties of a flow is as follows.

Lemma 2.1.1 Let G = (V, E) be a flow network with the source s and the
sink t, and let f be a flow in G. Then the value of the flow f is equal to

ZvEV f(lU, t)

PrROOF. We have

|f|=2f(8,’l)): Z Zf(’LU,U)—ZZf(w,U)

veV weV veV w#sveEV

By the skew symmetry property, f(w,v) = —f(v,w). Note that in the sum
Y wev 2vev f(w,v), for each pair of vertices w and v, both f(w,v) and

34 MAXIMUM FLOW

f(v,w) appear exactly once. Thus, we have), o >, ey f(w,v) = 0. Now
apply the skew symmetry property on the second term on the right hand

side, we obtain

w#sveV

Thus, we have

|f|:ZZf('U7w): Z Zf(’l),’w)—i-Zf(’U,t)

w#sveEV wg{s,t} veV veV

Finally, according to the skew symmetry property and the flow conservation
property, for each w # s,t, we have

S fww) ==Y f(w,0) =0

veV veEV

Thus, the sum 3,754 2pev f(v,w) is equal to 0. This gives the proof
that |f] = Syey F(0,6). O

The following lemma describes a basic technique to construct a positive
flow in a flow network.

Lemma 2.1.2 Let G = (V, E) be a flow network with the source s and the
sink t. There is a flow f in G with a positive value if and only if there is a
path in G from s to t.

PROOF. Suppose that there is a path P from the source s to the sink ¢.
Let e be an edge on P with the minimum capacity ¢ > 0 among all edges in
P. Now it is easy to see that if we assign flow ¢ to each edge on the path
P, and assign flow 0 to all other edges, we get a valid flow of value ¢ > 0 in
the flow network G.

For the other direction, suppose that f is a flow of positive value in the
flow network G. Suppose that the sink ¢ is not reachable from the source s.
Let V' be the set of vertices in G that are reachable from s. Then ¢t ¢ V.

Let w be a vertex in V'. We first show

Zf(wav):Zf(wv’U)_ Zf(w,’U)ZZf(w,v) (2'1)

veV’ veV vgV’ veV

In fact, for any v ¢ V', since v is not reachable from the source s, there is
no edge from w to v. Thus, cap(w,v) = 0, which implies f(w,v) < 0 by the
capacity constraint property.

PRELIMINARY 35

By Equation (2.1), we have

|f|:Zf(3’U)S Zf(sav)zz Zf(w,v)— Z Zf(’w,’l))

veV veV’ weV' vev! weV/!—{s} veV’

By the skew symmetry property, 3, cvr > pev f(w,v) = 0. Thus,

fl== > > flww)

weV'—{s} veV’

For each w € V' —{s}, according to Equation (2.1) and the flow conservation
property, we have (note t € V' so w is neither t)

Z fw,v) > Zf(w,v):O

veV! vEV

Thus, we have |f| < 0. This contradicts our assumption that f is a flow of
positive value. This contradiction shows that the sink ¢ must be reachable
from the source s, or equivalently, there is a path in the flow network G
from the source s to the sink ¢. [

Thus, to construct a positive flow in a flow network G, we only need to
find a path from the source to the sink. Many graph algorithms effectively
find such a path.

Now one may suspect that finding a maximum flow is pretty straight-
forward: each time we find a path from the source to the sink, and add a
new flow to saturate the path. After adding the new flow, if any edge be-
comes saturated, then it seems the edge has become useless so we delete it
from the flow network. For those edges that are not saturated yet, it seems
reasonable to have a new capacity for each of them to indicate the amount
of room left along that edge to allow further flow through. Thus, the new
capacity should be equal to the difference of the original capacity minus the
amount of flow through that edge. Now on the resulting flow network, we
find another path to add further flow, and so forth.

One might expect that if we repeat the above process until the flow
network contains no path from the source s to the sink ¢, then the obtained
flow must be a maximum flow. Unfortunately, this observation is incorrect.

Consider the flow network with the flow in Figure 2.1. After deleting
all saturated edges, the sink ¢ is no longer reachable from the source s (see
Figure 2.2). However, it seems that we still can push a flow of value 2 along
the “path” s — v3 — vo — t, where although we do not have an edge from
vg to v, but we still can push a flow of value 2 from v3 to vo by reducing

36 MAXIMUM FLOW

=<
<
N
N

2 Vg v,

Figure 2.2: The sink ¢ is not reachable from the source after deleting satu-

rated edges.
vy ya V2 202
t
714 4/2 a4
s 212 v, 44 v,

Figure 2.3: A flow larger than the one in Figure 2.1.

the original flow by 2 on edge [vg,v3]. This, in fact, does result in a larger
flow in the original flow network, as shown in Figure 2.3.

Therefore, when a flow f(u,v) is assigned on an edge [u, v], it seems that
not only do we need to modify the capacity of the edge [u, v] to cap(u,v) —
f(u,v) to indicate the amount of further flow allowed through the edge, but
also we need to record that a flow of amount f(u,v) can be pushed along the
opposite direction [v,u], which is done by reducing the original flow along
the edge [u,v]. In other words, we need add a new edge of capacity f(u,v)
from the vertex v to the vertex u. Motivated by this discussion, we have the
following definition.

Definition 2.1.3 Given a flow network G = (V, E) and given a flow f in
G, the residual network Gy = (V, E') of G (with respect to the flow f) is a
flow network that has the same vertex set V' as G. Moreover, for each vertex
pair u,v, if cap(u,v) > f(u,v), then [u,v] is an edge in Gy with capacity
Cap(“’a U) - f(u,'u).

Figure 2.4 is the residual network of the flow network in Figure 2.1 with

respect to the flow given in the Figure. It can be clearly seen now that in
the residual network, there is a path from s to t: s = v3 — v9 — ¢.

PRELIMINARY 37

=<
N
<
N
N

Vs v,
Figure 2.4: The residual network for Figure 2.1.

Remark. New edges may be created in the residual network Gy that were
not present in the original flow network GG. For example, there is no edge
from vertex w3 to vertex vy in the original flow network in Figure 2.1, but in
the residual network in Figure 2.4, there is an edge from vs to vy. However,
if there is neither an edge from u to v nor an edge from v to u, then, since
we must have cap(u,v) = f(u,v) = 0, there is also no edge from u to v in
the residual network. This implies that the number of edges in a residual
network cannot be more than twice of that in the original flow network.
This fact will be useful when we analyze maximum flow algorithms.

Lemma 2.1.3 Let G be a flow network and let f be a flow in G. If f* is
a flow in the residual network Gy, then the function f* = f + f*, defined
as ft(u,v) = f(u,v) + f*(u,v) for all vertices u and v, is a flow with value

[f ¥ =1+ 1f*] in G.

PROOF. It suffices to verify that the function f* satisfies all the three
constraints described in Definition 2.1.2. For each pair of vertices v and v
in G, we denote by cap(u,v) the capacity from u to v in the original flow
network G, and by capy(u,v) the capacity in the residual network G/.

The Capacity Constraint Condition. We compute the value cap(u,v) —
fT(u,v). By the definition we have

cap(u,v) - f+(u,'u) = cap(u,'u) - f(u,v) - f*(u,'u)

Now by the definition of capy, we have cap(u,v) — f(u,v) = capy(u,v).
Moreover, since f*(u,v) is a flow in the residual network G, capy(u,v) —
f*(u,v) > 0. Consequently, we have cap(u,v) — f(u,v) > 0.

The Skew Symmetry Condition. Since both f(u,v) and f*(u,v) are flows
in the flow networks G and G, respectively, we have f(u,v) = —f(v,u) and

38 MAXIMUM FLOW

f*(u,v) = —f*(v,u). Thus,

f+(u,v) = f(u”U) + f*(u,v) = —f('u,u) - f*(v,u) = —f+('u,u)

The Flow Conservation Condition. Again, since both f(u,v) and
f*(u,v) are flows in the flow networks G and Gy, respectively, we have
for all u # s,t

S) = Y flo) + Y) =0

veV veV veV

Thus, f1 is a flow in the flow network G. For the flow value of f*, we have

fF1= 22 (s0) =D f(s,0) + Y f(s,0) = f +f7]

vEV veV veV]

Now we are ready for the following fundamental theorem for maximum
flow algorithms.

Theorem 2.1.4 Let G be a flow network and let f be a flow in G. The flow
fis a mazimum flow in G if and only if the residual network Gy has no
positive flow, or equivalently, if and only if there is no path from the source
s to the sink t in the residual network Gy.

PROOF. The equivalence of the second condition and the third condition is
given by Lemma 2.1.2. Thus, we only need to prove that the first condition
and the second condition are equivalent.

Suppose that f is a maximum flow in G. If the residual network G has
a positive flow f*, |f*| > 0, then by Lemma 2.1.3, f* = f+ f* is also a flow
in G with flow value |f| + |f*|. This contradicts the assumption that f is a
maximum flow in G since |f*| > 0. Thus, the residual network G has no
positive flow.

For the other direction, we assume that f is not a maximum flow in G.
Let fmax be a maximum flow in G. Thus, |fmax| — |f| > 0. Now define
a function f~ on each pair (u,v) of vertices in the residual network G as
follows,

f_(U,U) = fmax(u,v) - f(u,v)
We claim that f~ is a valid flow in the residual network G.

The function f~ satisfies the capacity constraint condition: since
capy(u,v) = cap(u,v) — f(u,v), we have

capy(u,v) = [~ (u,v) = cap(u,v) — f(u,v) = f(u,v)

PRELIMINARY 39

Algorithm. Ford-Fulkerson

Input: a flow network G

Output: a maximum flow f in G

1. let f(u,v) =0 for all pairs (u,v) of vertices in G;

2. construct the residual network G'y;

3. while there is a positive flow in Gy do
construct a positive flow f* in Gy;
let f = f+ f* be the new flow in G;
construct the residual network Gy;

Figure 2.5: Ford-Fulkerson’s method for maximum flow

Note that f(u,v)+ f~ (u,v) = fmax(u,v). Since fimax is a flow in G, we have
cap(u,v) — fmax(u,v) > 0. Consequently, we have capy(u,v) — f~ (u,v) > 0.
The function f~ satisfies the skew symmetry condition:

F7(u,v) = fmax(u,v) = f(u,v) = — fmax(v,u) + f(v,u) = = (v,u)

The function f~ satisfies the flow conservation condition: for all u # s, t,

we have
Z f_(U,’U) = Z fmax(u,v) — Z f(u’fu) =0
veV veV vEV

Thus, f~ is a valid flow in the residual network Gy. Moreover, since we
have

1F71=2_ F(s,0) = D frmaa(s,0) = D f(5,0) = | fmaal = |f] >0

veV veV veV

We conclude that the residual network Gy has a positive flow.
This completes the proof of the theorem. []

Theorem 2.1.4 suggests a classical method (called Ford-Fulkerson’s
method), described in Figure 2.5 for constructing a maximum flow in a given
flow network.

According to Lemma 2.1.2, there is a positive flow in the residual network
G if and only if there is a directed path from the source s to the sink ¢ in
Gy. Such a directed path can be found by a number of efficient graph search
algorithms. Thus, the condition in the while loop in step 3 in the algorithm
Ford-Fulkerson can be easily checked. Theorem 2.1.4 guarantees that
when the algorithm halts, the obtained flow is a maximum flow.

40 MAXIMUM FLOW

The only problem left is how we construct a positive flow each time the
residual network G is given. In order to make the algorithm efficient, we
need to adopt a strategy that constructs a positive flow in the given residual
network G effectively so that the number of executions of the while loop
in step 3 is as small as possible. Many algorithms have been proposed for
finding such a positive flow. In the next section, we describe an important
technique, the shortest path saturation method, for constructing a positive
flow given a flow network. We will see that when this method is adopted,
the algorithm Ford-Fulkerson is efficient.

2.2 Shortest path saturation method

The method of shortest path saturation is among the most successful meth-
ods in constructing a positive flow in the residual network G to limit the
number of executions of the while loop in step 3 of the algorithm Ford-
Fulkerson, where the length of a path is measured by the number of edges
in the path.

In the rest discussions in this chapter, we always assume that the flow
network G has n vertices and m edges.

We first briefly describe an algorithm suggested by Edmond and Karp
[35]. Edmond and Karp considered the method of constructing a positive
flow for the residual network G by finding a shortest path from s to ¢ in
G and saturating it. Intuitively, each execution of this process saturates
at least one edge from a shortest path from s to ¢ in the residual network
Gy¢. Thus, after O(m) such executions, all shortest paths from s to ¢ in
G are saturated, and the distance from the source s to the sink ¢ should
be increased. This implies that after O(nm) such executions, the distance
from s to ¢ should be larger than n, or equivalently, the sink ¢ will become
unreachable from the source s. Therefore, if we adopt Edmond and Karp’s
method to find positive flow in the residual network G, then the while
loop in step 3 in the algorithm Ford-Fulkerson is executed at most O(nm)
times. Since a shortest path in the residual network G; can be found in
time O(m) (using, for example, breadth first search), this concludes that
Edmond-Karp’s algorithm finds the maximum flow in time O(nm?).

Dinic [33] proposed a different approach. Instead of finding a single
shortest path in the residual network Gy, Dinic finds all shortest paths from
s to t in Gy, then saturates all of them. In the following, we give a detailed
analysis for this approach.

Definition 2.2.1 Let G be a flow network. A flow f in G is a shortest

SHORTEST PATH SATURATION 41

saturation flow if (1) f(u,v) > 0 implies that [u,v] is an edge in a shortest
path from s to ¢t in G, and (2) the flow f saturates every shortest path from
stotin G.

For each vertex v in a flow network G with source s and sink ¢, denote
by dist(v) the length of (i.e., the number of edges in) the shortest path in
G from the source s to v (the distance from s to v). Similarly, if f is a flow
in G, we let disty(v) be the length of the shortest path from s to v in the
residual network G;.

Lemma 2.2.1 Let G be a flow network with source s and sink t, and let f
be a shortest saturation flow in G. Then dist(t) < dists(t).

PROOF. First we note that if a vertex v is on a shortest path P from the
source s to a vertex w in GG, then the subpath of P from s to v is a shortest
path from s to v.

We prove two facts.

Fact 1: Suppose [v,w] is an edge in G, then dist(w) < dist(v) + 1.

Suppose [v,w] is an edge in G. Then since any shortest path from s to
v plus the edge [v, w] is a path from s to w, whose length cannot be smaller
than dist(w), we have dist(w) < dist(v) + 1.

If [v,w] is not an edge in G, then since [v,w] is an edge in the residual
network Gy of G' with respect to the flow f, the flow value f(w,v) must be
larger than 0. Since f is a shortest saturation flow, only for edges in shortest
paths from s to ¢t in G, f may have positive flow value. Thus [w,v] must be
an edge in a shortest path P from s to ¢t in G. Then the subpath of P from
s to w is a shortest path from s to w, and the subpath of P from s to v is
a shortest path from s to v. That is, dist(w) = dist(v) — 1, which of course
implies dist(w) < dist(v) + 1.

Fact 2: For any vertex v, we have dist(v) < dists(v).

Suppose r = dists(v). Let (s,vi,v,...,v,—1,v) be a shortest path in
G from s to v. Then by Fact 1, we have dist(v) < dist(v,—1)+1, dist(v;) <
dist(v; 1)+ 1, for i =2,...,7 — 1, and dist(v;) < dist(s) + 1. Thus,

dist(v) < dist(vp—1) +1
< dist(vp_2) + 2
< dist(vy) + (r—1)
< dist(s)+r

42 MAXIMUM FLOW

= r = dists(v)

This proves Fact 2.

Now we are ready to prove our lemma.

Fact 2 shows that dist(t) < disty(t). Hence, to prove the lemma, we
only need to show that dist(t) and disty(t) are distinct. Let us assume the
contrary that dist(t) = dists(t) = r and derive a contradiction.

Let P = (vg,v1,---,v,_1,v;) be a shortest path in the residual network
Gy from the source s to the sink ¢, where vy = s and v, = t. By Fact 1, we
have

dist(v,) dist(vp—1) + 1

<
< dist(vy_2) + 2

< dist(vg) + 7
= dist(s)+r=r

By our assumption, we also have dist(v,) = dist(t) = r. Thus, all in-
equalities “<” in the above formula should be equality “=". This gives
dist(viy1) = dist(v;) + 1 for all ¢ = 0,...,r — 1. But this implies that all
[vi,vi+1] are also edges in the original flow network G. In fact, if [v;, v;41]
is not an edge in G, then since [v;,v;1+1] is an edge in the residual network
G¢, [vit1,v;] must be an edge in G with the flow value f(vit1,v;) > 0.
Since f is a shortest saturation flow, f(v;;+1,v;) > 0 implies that the edge
[vi+1,v4] is in a shortest path in G from s to ¢. But this would imply that
dist(vi+1) = dist(v;) — 1, contradicting the fact dist(v;11) = dist(v;) + 1.

Thus all [v;,v41],7=0,...,7 — 1, are edges in the original flow network
G, so P is also a path in G. Since P is of length r and dist(t) = r, P is a
shortest path from s to t. Since f is a shortest saturation flow, the path P
in G must be saturated by f, i.e., one of the edges in P is saturated by the
flow f, which, by the definition of residual networks, should not appear in
the residual network G';. But this contradicts the assumption that P is a
path in Gy.

This contradiction shows that we must have dist(t) < dist¢(t). [

Now we are ready to discuss how the shortest path saturation method
is applied to the algorithm Ford-Fulkerson.

Theorem 2.2.2 If in each execution of the while loop in step 8 in the
algorithm Ford-Fulkerson, we construct a shortest saturation flow f* for

SHORTEST PATH SATURATION 43

the residual network Gy, then the number of erecutions of the while loop is
bounded by n — 1.

ProoOF. Suppose that f* is a shortest saturation flow in the residual
network G;. By Lemma 2.2.1, the distance from s to ¢ in the residual
network (Gy)g+ (of Gy with respect to f*) is at least 1 plus the distance
from s to t in the original residual network G. Note that the residual
network (Gy)s+ of Gy with respect to f* is the residual network Gy g of
the original flow network G with respect to the new flow f + f*. This can
be easily verified by the following relation:

capy(u,v) — f*(u,v) = cap(u,v) = (f(u,v) + f*(u,v))
= cap(u,'u) - [f + f*](u,v)

Thus, capy(u,v) > f*(u,v) if and only if cap(u,v) > [f + f*](u,v), or
equivalently, [u,v] is an edge in (G¢) ¢+ if and only if it is an edge in Gy f+.

Therefore, the distance from s to ¢ in the current residual network Gy
is at least 1 plus the distance from s to ¢ in the residual network G in
the previous execution of the while loop. Since before the while loop, the
distance from s to t in Gy = G is at least 1 (the source s and the sink ¢ are
distinct in G), we conclude that after n — 1 executions of the while loop,
the distance from s to ¢ in the residual network G is at least n. This means
that the sink ¢ is not reachable from the source s in the residual network G'.
By Theorem 2.1.4, the algorithm Ford-Fulkerson stops with a maximum
flow f. U

The problem left is how a shortest saturation flow can be constructed
for the residual network Gy. By the definition, a shortest saturation flow
saturates all shortest paths from s to ¢t and has positive value only on edges
on shortest paths from s to t. Thus, constructing a shortest saturation flow
can be split into two steps: (1) finding all shortest paths from s to ¢ in G,
and (2) saturating all these paths.

Since there can be too many (up to ©(2°") for some constant ¢ > 0)
shortest paths from s to ¢, it is infeasible to enumerate all of them. In-
stead, we construct a subnetwork Lg in G, called the layered network, that
contains exactly those edges contained in shortest paths of Gy from s to t.

The layered network Lo of Gy can be constructed using a modification
of the well-known breadth first search process, given in Figure 2.6, where)
is a queue that is a data structure serving for “first-in-first-out”.

Stage 1 of the algorithm Layered-Network is a modification of the
standard breadth first search process. The stage assigns a value dist(v)

44 MAXIMUM FLOW

Algorithm. Layered-Network

Input: the residual network Gy = (Vy, Ey)
Output: the layered network Lo = (Vo, Eo) of Gy

Stage 1. {constructing all shortest paths from s to each vertex}
1. Vo=0; Eo=0;
2. for all vertices v in Gy do dist(v) = oc;
3. dist(s) =0; Q « s;
4. while Q is not empty do
v+ Q;
for each edge [v, w] do
if dist(w) = co then
Q + w; dist(w) = dist(v) + 1;
Vo =VoU{w}; Eo= EoU{[v,w]};
else if dist(w) = dist(v) + 1 then Eo = Ep U {[v,w]};

Stage 2. {deleting vertices not in a shortest path from s to ¢}
5. let Ly be Lo = (Vo, Eo) with all edge directions reversed,;

6. perform a breadth first search on Lg, starting from ¢;
7. delete the vertices v from Lg if v is not marked in step 6.

Figure 2.6: Construction of the layered network L

to each vertex v, which equals the distance from the source s to v, and
includes an edge [v,w] in Ly only if dist(v) = dist(w) — 1. The difference of
this stage from the standard breadth first search is that for an edge [v, w]
with dist(v) = dist(w) — 1, even if the vertex w has been in the queue @,
we still include the edge [v,w] in Ly to record the shortest paths from s to
w that contain the edge [v, w]. Therefore, after stage 1, for each vertex v,
exactly those edges contained in shortest paths from s to v are included in
the network Ly = (Vj, Ep).

Stage 2 of the algorithm is to delete from Lg all vertices (and their
incident edges) that are not in shortest paths from the source s to the sink
t. Since Ly contains only shortest paths from s to each vertex and every
vertex in Ly is reachable from s in Ly, a vertex v is not contained in any
shortest path from s to ¢ if and only if £ is not reachable from v in the network
Ly, or equivalently, v is not reachable from ¢ in the reversed network Lg.
Step 6 in the algorithm identifies those vertices that are reachable from ¢ in
Lj, and step 7 deletes those vertices that are not identified in step 6.

Therefore, the algorithm Layered-Network correctly constructs the
layered network Lo of the residual network Gy. By the well-known analy-

SHORTEST PATH SATURATION 45

sis for the breadth first search process, the running time of the algorithm
Layered-Network is bounded by O(m).

Having obtained the layered network Lj, we now construct a shortest
saturation flow so that for each path from s to ¢ in Lg, at east one edge is
saturated. There are two different methods for this, which are described in
the following two subsections.

2.2.1 Dinic’s algorithm

Given the layered network Lg, Dinic’s algorithm for saturating all shortest
paths from s to ¢ in G is very simple, and can be described as follows.
Starting from the vertex s, we follow the edges in L to find a maximal path
P of length at most dist(t). Since the network Ly is layered and contains
only edges in the shortest paths from s to ¢ in G, the path P can be found
in a straightforward way (i.e., at each vertex, simply follow an arbitrary out-
going edge from the vertex). Thus, the path P can be constructed in time
O(dist(t)) = O(n). Now if the ending vertex is ¢, then we have found a path
from s to t. We trace back the path P to find the edge e on P with minimum
capacity ¢. Now we can push ¢ amount of flow along the path P. Then we
delete the edges on P that are saturated by the new flow. Note that this
deletes at least one edge from the layered network Lj. On the other hand,
if the ending vertex v of P is not ¢, then v must be a "deadend”. Thus,
we can delete the vertex v (and all incoming edges to v). In conclusion,
in the above process of time O(n), at least one edge is removed from the
layered network Ly. Thus, after at most m such processes, the vertices s and
t are disconnected, i.e., all shortest paths from s to ¢ are saturated. This
totally takes time O(nm). A formal description for this process is given in
Figure 2.7.

For completeness, we present in Figure 2.8 the complete Dinic’s algo-
rithm for constructing a maximum flow in a given flow network.

Theorem 2.2.3 The running time of Dinic’s mazimum flow algorithm (Al-
gorithm Max-Flow-Dinic in Figure 2.8) is O(n*m).

Proor. Theorem 2.2.2 claims that the while loop in step 3 in the algo-
rithm is executed at most n — 1 times. In each execution of the loop, con-
structing the layered network Ly by Layered-Network takes time O(m).
Constructing the shortest saturation flow f* in G; from the layered net-
work Ly by Dinic-Saturation takes time O(nm). All other steps in the
loop takes time at most O(n?). Therefore, the total running time for the

46 MAXIMUM FLOW

Algorithm. Dinic-Saturation

Input: the layered network Lo
Output: a shortest saturation flow f* in Gy

1. while there is an edge from s in Lo do
find a path P of maximal length from s in Lo;
if P leads to ¢
then saturate P and delete at least one edge on P;
else delete the last vertex of P from L.

Figure 2.7: Dinic’s algorithm for a shortest saturation flow

algorithm Max-Flow-Dinic is bounded by O(n?m). 0O

2.2.2 Karzanov’s algorithm

In Dinic’s algorithm Max-Flow-Dinic, the computation time for each exe-
cution of the while loop in step 3 is dominated by the substep of constructing
the shortest saturation flow f* in Gy from the layered network Lg. There-
fore, if this substep can be improved, then the time complexity of the whole
algorithm can be improved. In this subsection, we show an algorithm by
Karzanov [80] that improves this substep.

Let us have a closer look at our construction of the shortest saturation
flow f* in the algorithm Max-Flow-Dinic. With the layered network L
being constructed, we iterate the process of searching a path in Ly from the
source s to the sink ¢, pushing flow along the path, and saturating (thus
cutting) at least one edge on the path. In the worst case, for each such
a path, we may only be able to cut one edge. Therefore, to ensure that
the source s is eventually separated from the sink ¢ in Ly, we may have to
perform the above iteration m times.

The basic idea of Karzanov’s algorithm is to reduce the number of times
we have to perform the above iteration from m to n. In each iteration,
instead of saturating an edge in Lj, Karzanov saturates a vertex in L.
Since there are at most n vertices in the layered network L, the number of
iterations will be bounded by n.

Definition 2.2.2 Let v be a vertex in the layered network Lo = (Vj, Ep).

SHORTEST PATH SATURATION 47

Algorithm. Max-Flow-Dinic

Input: a flow network G
Output: a maximum flow fin G

1. let f(u,v) =0 for all pairs (u,v) of vertices in G;
2. construct the residual network Gy;
3. while there is a positive flow in Gy do
call Layered-Network to construct the layered
network Lo for Gy;
call Dinic-Saturation on Lo to construct a shortest
saturation flow f* in Gy;
let f = f + f* be the new flow in G;
construct the residual network Gy;

Figure 2.8: Dinic’s algorithm for maximum flow

Define the capacity, cap(v), of the vertex v to be

cap(v) = min Z cap(w,v), Z cap(v,u)

[w,v]€Eo [v,ul€Eo

That is, cap(v) is the maximum amount of flow we can push through the
vertex v. For the source s and the sink ¢, we naturally define

cap(s) = Z cap(s,u) and cap(t) = Z cap(w,t)

[s,u]€Eq [w,t]€Eg

If we start from an arbitrary vertex v and try to push a flow of amount
cap(v) through v, it may not always be possible. For example, pushing
cap(v) = 10 units flow through a vertex v may require to push 5 units
flow along an edge (v,w), which requires that cap(w) is at least 5. But
the capacity of the vertex w may be less than 5, thus we would be blocked
at the vertex w. However, if we always pick the vertex w in Lo with the
smallest capacity, this problem will disappear. In fact, trying to push a
flow of amount cap(w), where w has the minimum cap(w), will require no
more than cap(v) amount of flow to go through a vertex v for any vertex v.
Therefore, we can always push the flow all the way to the sink ¢ (assuming
we have no deadend vertices). Similarly, we can pull this amount cap(w) of
flow from the incoming edges of w all the way back to the source s. Note

48 MAXIMUM FLOW

Algorithm. Karzanov-Initiation

Input: the layered network Lo
Output: the vertex capacity for each vertex

1. for each vertex v # s,t do inf[v] = 0; out[v] = 0;

N

in[s] = +o0; outft] = +oo;

@

for each edge [u,v] in Lo do
in[v] = in[v] + cap(u,v); out[u] = out[u] + cap(u,v);

)
4. for each vertex v in Lg do cap[v] = min{in[v], out[v]}.

Figure 2.9: Computing the capacity for each vertex

that this process saturates the vertex w. Thus, the vertex w can be removed
from the layered network Ly in the remaining iterations.

Now we can formally describe Karzanov’s algorithm. The first subrou-
tine given in Figure 2.9 computes the capacity for each vertex in the layered
network L.

We will always start with a vertex v with the smallest cap(v) and push a
flow f¥ of amount cap(v) through it all the way to the sink ¢. This process,
called Push(v, f¥) and given in Figure 2.10, is similar to the breadth first
search process, starting from the vertex v. We use the array fl[w] to record
the amount of flow requested to push through the vertex w, and fl[w] =0
implies that the vertex w has not been seen in the breadth first search
process.

We make a few remarks on the algorithm Push(v, f¥). First we assume
that there is no dead-vertex in the layered network Ly. That is, every edge
in Ly is on a shortest path from s to . This condition holds when the
layered network Lg is built by the algorithm Layered-Network. We will
keep this condition in Karzanov’s main algorithm when vertices and edges
are deleted from L.

The algorithm Push(v, f¥), unlike the standard breadth first search,
may not search all vertices reachable from v. Instead, for each vertex wu,
with a requested flow amount fl[u] through it, the algorithm looks at the
out-going edges from u to push the flow of amount fl[u] through these
edges. Once this amount of flow is pushed through some of these edges, the
algorithm will ignore the rest of the out-going edges from u. Note that since
the vertex v has the minimum cap(v), and no fl[u] for any vertex u is larger
than cap(v), the amount fl[u] can never be larger than cap(u). Thus, the

SHORTEST PATH SATURATION 49

Algorithm. Push(v, f¥)
Input: the layered network Lo

1. Q<+« v;{Q is a queue} fl[v] = cap(v);
2. while @ is not empty do
2.1. w4 Q; fo= fllu];
2.2. while fy > 0 do
pick an out-going edge [u, w] from wu;
if fljw] =0 and w # ¢t then Q + w;
2.2.1. if cap(u,w) < fo then
¥ (u,w) = cap(u,w); delete the edge [u, w];
fllw] = fllw] + cap(u,w); fo= fo— cap(u,w);
2.2.2. else {cap(u,w) > fo}
o (u,w) = fo; fllw] = fllw] + fo;
cap(u, w) = cap(u, w) — fo; fo=0;
2.3. if u # v then cap(u) = cap(u) — flu];
2.4. if u # v and cap(u) = 0 then delete the vertex u.

Figure 2.10: Pushing a flow of value cap(v) from v to ¢

amount fl[u] of flow can always be pushed through the vertex w.

When a flow f’ is pushed along an edge [u,w], we add f’ to fl[w] to
record this new requested flow through the vertex w. Note that when a
vertex u is picked from the queue @) in step 2.1, the flow requested along
in-coming edges to u has been completely decided. Thus, fI[u] records the
correct amount of flow to be pushed through .

Also note that in the subroutine Push(v, f”), we neither change the
value cap(v) nor remove the vertex v from the layered network Ly. This is
because the vertex v will be used again in the following Pull(v, f¥) algo-
rithm.

The algorithm Pull(v, f¥) is very similar to algorithm Push(v, f¥). We
start from the vertex v and pull a flow fY of amount cap(v) all the way
back to the source vertex s. Note that now the breadth first search is on the
reversed directions of the edges of the layered network L. Thus, we will also
keep a copy of the reversed layered network Ljj, which is Ly with all edge
directions reversed. The reversed layered network L can be constructed
from the layered network L in time O(m) (this only needs to be done once
for all calls to Pull). Moreover, note that the only vertex that can be seen in

50 MAXIMUM FLOW

Algorithm. Pull(v, f7)

Input: the reversed layered network Lg

1. Q<+« v;{Q is a queue} fl[v] = cap(v);
2. while @ is not empty do
2.1. w4 Q; fo= fllu];
2.2. while fy > 0 do
pick an in-coming edge [w, u] to u;
if fllw] =0 and w # s then Q + w;
2.2.1. if cap(w,u) < fo then
fP(w,u) = cap(w,w); delete the edge [w,u];
fllw] = flfw] + cap(w, u); fo= fo— cap(w,u);
2.2.2. else {cap(w,u) > fo}
fo(w,u) = fo; fllw] = fllw] + fo;
cap(w,w) = cap(w,u) — fo; fo=0;
2.3. cap(u) = cap(u) — fl[u];
2.4. if cap(u) = 0 then delete the vertex u.

Figure 2.11: Pulling a flow of value cap(v) from s to v

both algorithms Push(v, f”) and Pull(v, f¥) is the vertex v — Push(v, f?)
is working on the vertices “after” v in Ly while Pull(v, f) is working on
the vertices “before” v in Lj. Therefore, no updating is needed between the
call to Push(v, f¥) and the call to Pull(v, f¥). The algorithm Pull(v, f?)
is given in Figure 2.11.

After the execution of the Pull(v, f*) algorithm, the vertex v with min-
imum capacity always gets removed from the layered network Lg.

With the subroutines Push and Pull, Karzanov’s algorithm for con-
structing a shortest saturation flow f* in the residual network G is given
in Figure 2.12.

Some implementation details should be explained for the algorithm
Karzanov-Saturation.

The dynamic deletions of edges and vertices from in the layered network
Ly can be recorded by the two dimensional array cap(-,-): we set cap(u,w) =
0 when the edge [u,w] is deleted from Ly. The actual deletion of the item
[u, w] from the adjacency list representation of the layered network Ly or of
the reversed layered network Lj is done later: when we scan the adjacency
list and encounter an item [u,w], we first check if cap(u,w) = 0. If so, we

SHORTEST PATH SATURATION 51

Algorithm. Karzanov-Saturation

Input: the layered network Lo
Output: a shortest saturation flow f* in Gy

1. call Karzanov-Initiation to compute the vertex capacity cap(v)
for each vertex v;
2. fr=0;
3. while there is a vertex in Lo do
pick a vertex v in Lo with minimum cap(v);
if v is a dead-vertex then delete v from Lo
else call Push(v, f¥); call Pull(v, f*); f*=f"+f°

Figure 2.12: Karzanov’s algorithm for shortest saturation flow

delete the item (using an extra O(1) time) and move to the next item in the
list.

Similarly, we keep a vertex array to record whether a vertex is in the
layered network Lg. There are two ways to make a vertex v become a
dead-vertex: (1) cap(v) = 0, which means either all in-coming edges to v or
all out-going edges from v are saturated; and (2) v becomes a dead-vertex
because of removal of other dead-vertices. For example, suppose that v has
only one in-coming edge [u,v] of capacity 10 and one out-going edge [v, w]
of capacity 5. Then cap(v) = 5 # 0. However, if w becomes a dead-vertex
(e.g., because all out-going edges from w are saturated) and is deleted, then
the vertex v will also become a dead-vertex. For this, we also record the
number in[v] of in-coming edges and the number out[v] of out-going edges
for each vertex v. Once one of in[v] and out[v] becomes 0, we set cap(v) =0
immediately. Since in step 3 of the algorithm Karzanov-Saturation we
always pick the vertex of minimum cap(v), dead-vertices in Ly will always be
picked first. Consequently, when the subroutines Push and Pull are called
in step 3, there must be no dead-vertex in the current layered network Lg.

We now analyze the algorithm Karzanov-Saturation.

Lemma 2.2.4 The algorithm Karzanov-Saturation takes time O(n?).

PROOF. Step 1 takes time O(e) = O(n?). Since each execution of the
while loop deletes at least one vertex v from L (either because v is a dead-
vertex or because of the subroutine call Pull(v, f¥)), the while loop in step
3 is executed at most n times.

52 MAXIMUM FLOW

The first substep in step 3, finding a vertex v of minimum cap(v) in the
layered network Ly, takes time O(n). Thus, the total time spent by the
algorithm Karzanov-Saturation on this substep is bounded by O(n?).

The analysis for the time spent on the subroutine calls to Push and
Pull is a bit more tricky. Let us first consider the subroutine Push(v, f).
To push a flow of amount fi[u] through a vertex u, we take each out-going
edge from u. If the capacity of the edge is not larger than the amount of flow
we request to push (step 2.2.1 in the algorithm Push(v, f)), we saturate
and delete the edge; if the capacity of the edge is larger than the amount of
flow we request to push (step 2.2.2 in the algorithm Push(v, 7)), we let all
remaining flow go along that edge and jump out from the while loop in Step
2.2 in the algorithm Push(v, f). Moreover, once an edge gets deleted in
the algorithm, the edge will never appear in the layered network Lg for the
later calls for Push in the algorithm Karzanov-Saturation. Thus, each
execution of the while loop in step 2.2 of the algorithm Push(v, f”), except
maybe the last one, deletes an edge from the layered network L,. Hence,
the total number of such executions in the whole algorithm Karzanov-
Saturation cannot be larger than m plus n times the number of calls to
Push, where m is for the executions of the loop that delete an edge in Ly,
and n is for the executions of the loop that do not delete edges. Therefore,
the total number of executions of the while loop in step 2.2 in the algorithm
Push(v, f¥) for all calls to Push in the algorithm Karzanov-Saturation
is bounded by O(n?). Since each execution of this while loop takes constant
time and this part dominates the running time of the algorithm Push, we
conclude that the total time spent by Karzanov-Saturation on the calls
to Push is bounded by O(n?). Similarly, the total time spent on the calls
to the subroutine Pull is also bounded by O(n?). [

Now if we replace the call to Dinic-Saturation in the algorithm Max-
Flow-Dinic by a call to Karzanov-Saturation, we get Karzanov’s maxi-
mum flow algorithm, which is given in Figure 2.13.

By Theorem 2.2.2, Lemma 2.2.4, and the analysis for the algorithm
Layered-Network, we get immediately,

Theorem 2.2.5 Karzanov’s mazimum flow algorithm (algorithm Max-
Flow-Karzanov) runs in time O(n®)

2.3. PREFLOW METHOD 53

Algorithm. Max-Flow-Karzanov

Input: a flow network G
Output: a maximum flow f in G

1. let f(u,v) =0 for all pairs (u,v) of vertices in G;
2. construct the residual network Gy;
3. while there is a positive flow in Gy do
call Layered-Network to construct the layered
network Lo for Gy;
call Karzanov-Saturation on Lj to construct a
shortest saturation flow f* in Gy;
let f = f + f* be the new flow in G;
construct the residual network Gy;

Figure 2.13: Karzanov’s algorithm for maximum flow

2.3 Preflow method

The preflow method was proposed more recently by Goldberg and Tarjan
[65]. To describe this method, let us start by reviewing Karzanov’s max-
imum flow algorithm. Consider the subroutine Push(v, f) in Karzanov’s
algorithm. On each vertex u in the search, we try to push the requested
amount fl[u] of flow through the vertex u. Since the operation uses only
the local neighborhood relation for the vertex u and is independent of the
global structure of the underlying flow network, the operation is very effi-
cient. On the other hand, Karzanov’s algorithm seems a bit too conservative:
it pushes a flow of value fl[u] through the vertex u only when it knows that
this amount of flow can be pushed all the way to the sink t. Moreover, it
pushes flow only along the shortest paths from s to t. Can we generalize this
efficient operation so that a larger amount of flow can be pushed through
each vertex along all possible paths (not just shortest paths) to the sink ¢?

Think of the flow network as a system of water pipes, in which vertices
correspond to pipe junctions. Each junction has a position such that water
only flows from higher positions to lower positions. In particular, the posi-
tion of the sink is the lowest, and the position of the source is always higher
than that of the sink. For each junction u, we have a requested amount e[u]
of flow to be pushed through the junction, which at the beginning is sup-
posed to be stored in a private reservoir for the junction u. Now if there is
a non-saturated pipe [u, w] such that the position of w is lower than u, then

54 MAXIMUM FLOW

a certain amount of flow can be pushed along the pipe [u, w]. The pushed
flow seems to flow to the sink since the sink has the lowest position. In
case no further push is possible and there are still junctions with non-empty
reservoir, we “lift” the positions for the junctions with non-empty reservoir
to make further pushes possible from these junctions.

How do we decide the requested flow e[u] for each junction? According
to the principal “higher pressure induces higher speed,” we try to be a bit
aggressive, and let e[u] be the amount requested from the incoming pipes to
u, which may be larger than the capacity of u. It may eventually turn out
that this request is too much for the junction u to let through. In this case,
we observe that with the position of the junction u increased, eventually the
position of u is higher than the source. Thus, the excess flow e[u] will go
backward in the flow network all the way back to the source.

Let us formulate the above idea using the terminologies in the MAXIMUM
Frow problem.

Definition 2.3.1 Let G = (V, E) be a flow network with source s and sink
t. A function f on vertex pairs of G is a preflow if f satisfies the capacity
constraint property, the skew symmetry property (see Definition 2.1.2), and
the following nonnegative excess property: Y., oy f(v,w) > 0 for all w €
V —{s}. The amount >,y f(v,w) is called the ezcess flow into the vertex
w, denoted e[w].

The excess flow e[w] is the amount of further flow we want to push
through the vertex w.

The concept of the residual network can be extended to preflows in a
flow network. Formally, suppose that f is a preflow in a flow network G,
then the residual network Gy (with respect to f) has the same vertex set as
G, and [u,v] is an edge of capacity capy(u,v) = cap(u,v) — f(u,v) in Gy if
and only if cap(u,v) > f(u,v).

Note that both the processes described above of pushing along non-
saturated edges and of sending excess flow back to the source can be imple-
mented by a single type of push operation on edges in the residual network:
if an edge [u, v] is non-saturated then the edge [u,v] also exists in the resid-
ual network, and if there is a positive flow request from s to u along a path
that should be sent back to the source, then the reversed path from w to s
is a path in the residual network.

Each flow network G is also associated with a height function h such
that for any vertex u of G, h(u) is a non-negative integer. To facilitate
the analysis of our algorithms, we require that the height function be more

PREFLOW METHOD 55

Algorithm. Push(u,w)

{ Applied only when (f, h) is a preflow scheme, h(u) = h(w) + 1,
caps(u,w) > 0, and e[u] > 0. }

1. fo = min{e[u], capf(u, w)};

2. f(u,w):f(u,w)+f0, f(w,u):—f(u,w);

3. e[w] =elw]+ fo; elu] =e[u] — fo.

Figure 2.14: Pushing a flow along the edge [u, w]

restricted when it is associated with a preflow, as given in the following
definition.

Definition 2.3.2 Let G be a flow network, f be a preflow in G, and h be
a height function for G. The pair (f,h) is a preflow scheme for G if for any
edge [u,w] in the residual network G, we have h(u) < h(w) + 1.

Now we are ready to describe our first basic operation on a flow network
with a preflow scheme.

The operation Push(u,w) is applied to a pair of vertices u and w in
a flow network G only when the following three conditions all holds: (1)
h(u) = h(w) + 1; (2) caps(u,w) > 0; and (3) e[u] > 0. In this case,
the Push operation pushes as much flow as possible (i.e., the minimum
of caps(u,w) and e[u]) along the edge [u,w], and update the values for
elu], efw], and f(u,w). In other words, the operation shifts an amount of
min{cap(u,w),elu]} excess value, along edge [u,w], from u to w. A formal
description of the operation Push(u,w) is given in Figure 2.14.

Note that the operation Push(u,w) does not change the height function
value. On the other hand, the operation does change the flow value f(u,w),
and the excess values of the vertices u and w. The following lemma shows
that the operation Push preserves a preflow scheme.

Lemma 2.3.1 Let (f,h) be a preflow scheme for a flow network G. Suppose
that the operation Push(u,w) is applicable to a pair of vertices u and w in
G. Then after applying the operation Push(u,w), the new values for f and
h still make a preflow scheme.

PROOF. The Push(u,w) operation only changes values related to vertices
u and w and to edge [u,w]. For the new value for f, (1) the capacity

56 MAXIMUM FLOW

Algorithm. Lift(v)

{ Applied only when (f, h) is a preflow scheme, e[v] > 0, and for
all out-going edges [v, w] from v (there is at least one such
an edge), h(v) < h(w) +1. }

1. let wo be a vertex with the minimum h(wo) over all w

such that [v, w] is an edge in Gy;
2. h(v) = h(wo) + 1;

Figure 2.15: Lifting the position of a vertex v

constraint is preserved: since capy(u,w) > fo and capy(u,w) is equal to
cap(u, w) minus the old flow value f(u,w), thus, cap(u,w) is not smaller
than the old flow value f(u,w) plus fy, which is the new flow value f(u,w);
(2) the skew symmetry property is preserved by step 2; and (3) the non-
negative excess property is preserved: the excess e[u] of u is decreased by
fo < e[u] and the excess e[w] is in fact increased.

To consider the constraint for the height function, note that the only
possible new edge that is created by the Push(u, w) operation is edge [w, u].
Since the Push operation does not change the height function values, we
have h[w] = h[u] — 1, which is of course not larger than h[u] + 1. [J

Now we consider the second basic operation, Lift on a preflow scheme.
The Lift operation is applied to a vertex v in a preflow scheme (f, h) when
the position of v is too low for the Push operation to push a flow through
v. Therefore, to apply a Lift operation on a vertex v, the following three
conditions should all hold: (1) e[v] > 0; (2) there is an out-going edge
[v,w] from v in the residual network G; and (3) for each out-going edge
[v,w] from v in Gy, we have h(v) < h(w) + 1 (note that condition (3) is
equivalent to h(v) # h(w) + 1 since for a preflow scheme (f,h), we always
have h(v) < h(w)+1). The formal description of the Lift operation is given
in Figure 2.15.

Note that the operation Lift(v) does not change the preflow value.

Lemma 2.3.2 Let (f,h) be a preflow scheme for a flow network G. Sup-
pose that Lift(v) is applicable to a vertex v in G. Then after applying the

operation Lift(v), the new values for f and h still make a preflow scheme.

PROOF. Since the operation Lift(v) does not change the preflow value, we

PREFLOW METHOD o7

Algorithm. Max-Flow-GT

Input: a flow network G with source s and sink ¢
Output: a maximum flow fin G

1. for each vertex v in G do h(v) = 0; efv] = 0;
2. for each pair of vertices v and w in G do f(u,w) = 0;
3. h(s) =mn;
4. for each out-going edge [s,v] from s do
£(5,0) = — £(v,8) = cap(s,v); elo] = cap(s, v);

5. while there is a vertex v # s,t with e[v] > 0 do
5.1. pick a vertex v # s,t with e[v] > 0;
5.2. if Push is applicable to an edge [v, w] in G¢

then Push(v, w) else Lift(v).

Figure 2.16: Golberg-Tarjan’s algorithm for maximum flow

only need to verify that the new values for the height function h still make
a preflow scheme with the preflow f. For this, we only need to verify the
edges in the residual network Gy that have the vertex v as an end.

For any in-coming edge [u, v] to v, before the operation Lift(v), we have
h(u) < h(v) + 1. Since the Lift(v) increases the height h(v) of v by at least
1, we still have h(u) < h(v) + 1 after the Lift(v) operation.

For each out-going edge [v, w] from v, by the choice of the vertex wy, we
have h(w) > h(wg). Thus, the new value of h(v) = h(wg) + 1 is not larger
than h(w) + 1. [

Now we are ready to describe our maximum flow algorithm using the
preflow method. The algorithm was developed by Goldberg and Tarjan
[55]. The algorithm is given in Figure 2.16.

In the rest of this section, we first prove that the algorithm Max-flow-
GT correctly constructs a maximum flow given a flow network, then we

analyze the algorithm. Further improvement on the algorithm will also be
briefly described.

Lemma 2.3.3 Let f be a preflow in a flow network G. If a vertex ug has
a positive excess e[ug] > 0, then there is a path in the residual network Gy

from uqg to the source s.

PrOOF. Let Vj be the set of vertices reachable from ug in the residual

58 MAXIMUM FLOW

network Gy. Consider any pair of vertices v and w such that v € Vy and
w ¢ Vp. Since in Gy, the vertex v is reachable from the vertex uo while
the vertex w is not reachable from ug, there is no edge from v to w in Gy.
Thus, capy(v, w) = 0, which by the definition implies that in the original
flow network G we have f(v,w) = cap(v,w) > 0, f(w,v) < 0. Therefore,
for any v € Vj and w ¢ V4, we must have f(w,v) <0.

Now consider

Ze[’l)]: Z Zf(w,'u): Z Zf(wav)+z Zf(wav)

veVY vEVY wEV vEVH weVy veEVY wg Vo

The first term in the right hand side is equal to 0 by the skew symmetry
property, and the second term in the right hand side is not larger than 0
since for any v € V) and w ¢ V we have f(w,v) < 0. Thus, we have

D ef] <0 (2.2)

vEV)

Now if the source s is not in the set Vj, then since e[ug] > 0 and by the
non-negative excess property, for all other vertices v in Vp, we have e[v] > 0,
we derive), cy, e[v] > 0, contradicting to the relation in (2.2).

In conclusion, the source s must by reachable from the vertex wuy, i.e.,
there must be a path from ug to s in the residual network G . [1

Now we are ready to prove the correctness for the algorithm Max-flow-
GT.

Lemma 2.3.4 Goldberg- Tarjan’s mazimum flow algorithm (the algorithm
Max-Flow-GT in Figure 2.16) stops with a mazimum flow f in the given
flow network G.

PROOF. Steps 1-4 initialize the values for the functions f and h. It is easy
to verify that after these steps, f is a preflow in the flow network G. To
verify that at this point (f,h) is a preflow scheme, note that f has positive
value only on the out-going edges from the source s, and f saturates all
these egdes. Thus, in the residual network G, the source s has no out-
going edges. Moreover, all vertices have height 0 except the source s, which
has height n. Therefore, if [u,v] is an edge in the residual network G, then
u # s and h(u) = 0. In consequence, for any edge [u,v] in the residual
network Gy, we must have h(u) < h(v) + 1. This shows that at the end of
step 4 in the algorithm, (f, h) is a preflow scheme for the flow network G.

PREFLOW METHOD 59

An execution of the while loop in step 5 applies either a Push or a Lift
operation. By Lemma 2.3.1 and Lemma 2.3.2, if (f,h) is a preflow scheme
for G before the operations, then the new values for f and h after these
operations still make a preflow scheme. Inductively, before each execution
of the while loop in step 5, the values of f and h make (f,h) a preflow
scheme for the flow network G.

We must show the validity for step 5.2, i.e., if the operation Push does
not apply to any out-going edge [v, w] from the vertex v, then the operation
Lift must apply. By step 5.1, we have e[v] > 0. By Lemma 2.3.3, there must
be an outgoing edge [v, w] from v in the residual network G'y. Therefore, if
the operation Push does not apply to any out-going edge [v, w] from v, then
we must have h(v) # h(w)+1 for any such an edge. Since (f, h) is a preflow
scheme, h(v) < h(w) + 1. Thus, h(v) # h(w) + 1 implies h(v) < h(w) + 1
for all out-going edges [v,w] from v. Now this condition ensures that the
Lift(v) operation must apply.

Now we prove that when the algorithm Max-Flow-GT stops, the re-
sulting preflow f is a maximum (regular) flow in the flow network G. The
algorithm stops when the condition in step 5 fails. That is, for all vertices
v # s,t, we have e[v] = 0. By the definition, this means that for all ver-
tices v # s,t, we have }_, oy f(w,v) = 0. Thus, the function f satisfies the
flow conservation property. Since f is a preflow, it also satisfies the capac-
ity constraint property and the skew symmetry property. Thus, when the
algorithm stops, the resulting preflow f is actually a regular flow in G.

To prove that this flow f is maximum, by Theorem 2.1.4, we only have
to prove that there is no path from the source s to the sink ¢ in the residual
network. Suppose the opposite that there is a path P from s to ¢ in the
residual network G ;. Without loss of generality, we assume that the path P
is a simple path of length less than n. Let P = {vg,v1, ..., vk}, where vy = s,
v =t and k < n. Since [v;, vi41], for 0 <4 <k — 1, are edges in Gy and the
pair (f,h) is a preflow scheme for G, we must have h(v;) < h(vj41) + 1 for
all 1 <17 < k — 1. Therefore,

h(s) = h(vg) <
< h(vg)+2

IN
>
—~
]
=
~—
+
oyl

= h{t)+k

Since h(s) = n and h(t) = 0 the above formula implies n < k contradicting
the assumption n > k. Therefore, there is no path from the source s to the

60 MAXIMUM FLOW

sink ¢ in the residual network G ;. Consequently, the flow f obtained by the
algorithm is a maximum flow in the flow network G. U]

Now we analyze the algorithm Max-Flow-GT. The running time of the
algorithm is dominated by step 5, which is in turn dominated by the number
of subroutine calls to the operations Push and Lift. Thus, a bound on the
subroutine calls will imply a bound to the running time of the algorithm.

Lemma 2.3.5 Let (f,h) be the final preflow scheme obtained by the algo-
rithm Max-Flow-GT for a given flow network G. Then for any vertezr vy
of G, we have h(vg) < 2n — 1.

PrOOF. If the vertex vy never gets a positive excess e[v] > 0, then it is
never picked up in step 5.1. Thus, the height of v is never changed. Since
the initial height of each vertex in G is at most n, the lemma holds.

Now suppose that the vertex vy does get a positive excess e[vg] > 0
during the execution of the algorithm. Let (f’,h’) be the last preflow scheme
during the execution of the while loop in step 5 in which e[vg] > 0. By
Lemma 2.3.3, there is a path from vy to s in the residual network G . Let
P' = {vg,v1,...,v,} be a simple path in Gy from vy to s, where vy = s and
k < n—1. Then since (f’,h') is a preflow scheme, we have h'(v;) < h'(v;11)+
1, for all 0 <4 < k—1. This implies immediately h'(vg) < h'(s)+k < 2n—1,
since the height of the source s is n and is never changed.

Since the execution of the while loop on the preflow scheme (f’,h')
changes the excess e[vg] on vy from a positive value to 0, this execution
must be a Push on an out-going edge from vy, which does not change the
height value for vg. After this execution, since e[vg] remains 0 so vy is never
picked by step 5.1 and its height value is never changed. In consequence, at
the end of the algorithm, the height value h(vg) for the vertex vq is still not
larger than 2n — 1. [

Now we can derive a bound on the number of calls to the subroutine
Lift by the algorithm Max-Flow-GT.

Lemma 2.3.6 The total number of calls to the subroutine Lift by the algo-
rithm Max-Flow-GT is bounded by 2n? — 8.

ProOOF. By Lemma 2.3.5, the height of a vertex v cannot be larger than
2n — 1. Since each call Lift(v) increases the height of v by at least 1, the
number of calls Lift(v) on the vertex v cannot be larger than 2n — 1. Note

PREFLOW METHOD 61

that the operation Lift does not apply on the source s and the sink ¢. Thus,
the total number of calls to Lift in the algorithm Max-Flow-GT cannot
be larger than (2n — 1)(n — 2) < 2n% — 8 (note n > 2). [

Lemma 2.3.5 can also be used to bound the number of calls to the sub-
routine Push.

Lemma 2.3.7 The total number of calls to the subroutine Push by the
algorithm Max-Flow-GT is bounded by O(n*m).

PROOF. A subroutine call to Push(u,w) is a saturating push if it
makes f(u,w) = cap(u,w). Otherwise, the subroutine call is called a non-
saturating push.

We first count the number of saturating pushes.

Suppose that we have a saturating push Push(u, w) along the edge [u, w]
in the residual network Gy. Let the value of h(u) at this moment be hy.
After this push, there is no edge from u to w in the residual network G/.
When can the next saturating push Push(u,w) from u to w happen again?
To make it possible, we first have to make [u, w] an edge again in the residual
network Gy. The only way to make [u, w] an edge in the residual netowrk is
to push a positive flow from w to u, i.e., a call Push(w,u) must apply. In
order to apply Push(w, u), the height of vertex w must be larger than the
height of vertex u. Therefore, the new value of h(w) must be at least hy+ 1.
Now after the call Push(w,u), a new edge [u,w] is created in the residual
network. Now similarly, if we want to apply another call to Push(u,w) to
the edge [u, w] (no matter if it is saturating on non-saturating), the height
h(u) must be larger than the new height hA(w) of w. That is, the new height
h(u) is at lest hg + 2. Therefore, between two consecutive saturating pushes
Push(u,w) along the edge [u,w] in the residual network G, the height of
the vertex w is increased by at least 2. By Lemma 2.3.5, the height of the
vertex u is bounded 2n — 1. Thus, the total number of saturating pushes
Push(u, w) for the pair of vertices u and w is bounded by (2n —1)/2+1 <
n—+ 1. Now note that a push Push(u,w) applies only when [u,w] is an edge
in the residual network G, which implies that either [u,w] or [w,u| is an
edge in the original network G. Thus, there are at most 2m pairs of vertices
uw and w on which a saturating push Push(u,w) can apply. In summary,
the total number of saturating pushes in the algorithm Max-Flow-GT is
bounded by 2m(n + 1).

Now we count the number of non-saturating pushes.

Let V4 be the set of vertices u in V' — {s, ¢} such that e[u] > 0. Consider
the value B = 3, cy, h(u). The value B, is 0 before step 5 of the algorithm

62 MAXIMUM FLOW

Max-Flow-GT starts since at that point all vertices except s have height
0. The value 84 is again 0 at the end of the algorithm since at this point
all vertices u # s,t have e[u] = 0. Moreover, the value S can never be
negative during the execution of the algorithm. Now we consider how each
of the operations Push and Lift affects the value §,.

If Push(u, w) is a non-saturating push, then before the operation u € V.
and h(u) = h(w) + 1, and after the operation, the excess e[u] becomes 0 so
the vertex u is removed from the set V,. Note that the vertex w may be
a new vertex added to the set V. Thus, the operation subtracts a value
h(u) from B, and may add a value h(w) = h(u) — 1 to B4+. In any case, the
non-saturating push Push(u,w) decreases the value 54 by at least 1.

If Push(u,w) is a saturating push, then u belongs to the set V. before
the operation but w may be added to the set V. by the operation. By
Lemma 2.3.5, the height h(w) of w is bounded by 2n — 1. Thus, each
saturating push increases the value 84 by at most 2n — 1.

Now consider the Lift(v) operation. When the operation Lift(v) applies,
the vertex v is in the set V.. Since the height h(v) of v cannot be larger than
2n — 1, the operation Lift(v) increases the value 54 by at most 2n — 1. In
consequence, the operation Lift(v) increases the value 54 by at most 2n— 1.

By Lemma 2.3.6, the total number of calls to the subroutine Lift is
bounded by 2n? — 8, and by the first part in this proof, the total number
of saturating pushes is bounded by 2m(n + 1). Thus, the total value of S
increased by the calls to Lift and by the calls to saturating pushes is at
most

(2n —1)(2n% — 8 + 2m(n + 1)) < 4n® + 6n’m

Since each non-saturating push decreases the value 5 by at least 1 and
the value 8 is never less than 0, we conclude that the total number of non-
saturating pushes by the algorithm is bounded by 4n® + 6n%m = O(n?m).

This completes the proof for the lemma. [

Now we conclude the discussion for the algorithm Max-Flow-GT.

Theorem 2.3.8 Goldberg and Tarjan’s mazimum flow algorithm (algo-
rithm Max-Flow-GT in Figure 2.16) constructs a mazimum flow for a
given flow network in time O(n?m).

PROOF. The correctness of the algorithm has been given in Lemma 2.3.4.
The running time of the algorithm is dominated by step 5, for which we give
a detailed analysis.

PREFLOW METHOD 63

We keep two 2-dimensional arrays f[1..n,1..n] and cap[l..n,1..n] for the
flow value and the capacity for the original flow network G, respectively, so
that the flow value between a pair of vertices, and the capacity of an edge
in the residual network Gy can be obtained and modified in constant time.
Similarly, we keep the arrays h[l..n] and e[l..n] for the height and excess for
vertices in G so that the values can be obtained and modified in constant
time.

The residual network G’y is represented by an adjacency list L such that
for each vertex v in Gy, the edges [v,w] with h(v) = h(w) + 1 appear in the
front of the list Ls[v]. Finally, we also keep a list OF for the vertices u in
G with e[u] > 0.

With these data structures, the condition in step 5 can by checked in
constant time (simply check if the list OF is empty), and step 5.1 takes a
constant time to pick a vertex v from the list OF. Since the edges [v, w]
with h(v) = h(w) 4 1 appear in the front of the list L[v], in constant time,
we can check if the operation Push applies to an out-going edge from v.

For each Push(u,w) operation, the modification of the flow values and
the excess values can be done in constant time. Moreover, if [w,u] was
not an edge in G (this can be checked by comparing the values f[w,u]
and cap[w,u]) then the operation Push(u,w) creates a new edge [w,u] in
the residual network Gy. This new edge [w,u] shoud be added to the end
of the list L¢[w] since h(w) = h(u) — 1 # h(u) + 1. In conclusion, each
Push operation takes time O(1). By Lemmma 2.3.7, the total number of
Push operations executed by the algorithm Max-Flow-GT is bounded by
O(n?m). Thus, the total time the algorithm Max-Flow-GT spends on the
Push operations is bounded by O(n%m).

Now consider the Lift operation. A Lift(v) operation needs to find a
vertex wy with minimum h(wg) in the list Ls[v], which takes time O(n).
After increasing the value of h(v), we need to check each in-coming edge
[u,v] to v to see if now h(u) = h(v) + 1, and to check each out-going edge
[v, w] from v to see if now h(v) = h(w) + 1. If so, the edge should be moved
to the front of the list for the proper vertex in L;. In any case, all these
can be done in time O(m). According to Lemma 2.3.6, the total number of
Lift operations executed by the algorithm Max-Flow-GT is bounded by
2n? — 8. Thus, the total time the algorithm Max-Flow-GT spends on the
Lift operations is also bounded by O(n?m).

This concludes that the running time of the algorithm Max-Flow-GT
is bounded by O(n?m). O

We point out that it has been left totally open for the order of the ver-

64 MAXIMUM FLOW

tices selected by step 5.1 in the algorithm Max-Flow-GT, which gives us
further opportunity for improving the running time of the algorithm. In
fact, with a more careful selection of the vertex v in step 5.1 and a more
efficient data structure, it can be shown that running time of the algorithm
Max-Flow-GT can be improved to O(nmlog (n?/m)). For dense flow net-
works with m = Q(n?) edges, the bound O(nmlog(n?/m)) is as good as
O(n?), the bound for Karzanov’s maximum flow algorithm, while for sparse
flow networks with m = O(n) edges, the bound O(nmlog (n?/m)) becomes
O(n?logn), much lower than O(n3). A description of this improvement can
be found in [55].

2.4 Final remarks

Before closing the chapter, we give several remarks on the MAXIMUM
FLow problem. First, we show that the MAXIMUM FLOW problem is
closely related to a graph cut problem. This is given by the classical
Maz-Flow-Min-Cut theorem. Then, we briefly mention the updated status
in the research in maximum flow algorithms.

Max-Flow-Min-Cut theorem

Let G = (V, E) be a directed and positively weighted graph. A cut in
G is a partition of the vertex set V' of G into an orderd pair (Vi, V3) of two
non-empty subsets Vi and V5, i.e., ViUV, =V and Vi NV = (. The weight
of the cut (V1,V3) is the sum of the weights of the edges [u, w] with u € V}
and w € V5.

The MIN-CUT problem is to find a cut of minimum weight for a given
directed and positively weighted graph. Formally,

MIN-CuTt = (Ig, Sq, fg, optg)
Ig: the set of directed and positively weighted graphs G
So: Sq(G) is the set of cuts for G
fo: fo(G,C) is equal to the weight of the cut C for G
optg: min
A more restricted MIN-CUT problem is on flow networks. We say that
(V1, Vo) is a cut for a flow network G if (V1,V3) is a cut for G when G is

regarded as a directed and positively weighted graph, where the edge weight
equals the edge capacity in G, such that the source s of G is in Vi and

2.4. FINAL REMARKS 65

the sink ¢ of G is in V5. We now consider the MIN-CUT problem on flow
networks.

Definition 2.4.1 The capacity of a cut (V1,V3) for a flow network G is the
weight of the cut:

cap(V1,Va) = Z cap(v, w)

ueV3,weVa

A cut for G is minimum if its capacity is the minimum over all cuts for G.
Now we are ready to prove the following classical theorem.

Theorem 2.4.1 (Max-Flow Min-Cut Theorem) For any flow network
G = (V,E), the value of a mazimum flow in G is equal to the capacity of a
minimum cut for G.

PROOF. Let f be a flow in the flow network G and let (V4, V) be a cut for
G. By the definition, we have |f| = >, cv f(s,w). By the flow conservation
property, we also have > -y f(v,w) = 0 for all vertices v € V; — {s}.
Therefore, we have

‘f‘ = Zf(saw): Z f('u,w)

weV veEVL,WEV
= Z f(v,w) + Z f(v,w)
veV1,weVL veV,weVe

By the skew symmetry property, f(v,w) = —f(w,v) for all vertices v and
w in V1. Thus, the first term in the last expression of the above equation is
equal to 0. Thus,

Ifl= > fl,w) (2.3)

veV1,weVa

By the capacity constraint property of a flow, we have

f1< Y cap(v,w) = cap(Vi, Vo)
veEVI,weV,

Since this inequality holds for all flows f and all cuts (V1, V2), we conclude

max {|f|: f is a flow in G} < min {cap(V3,V2) : (V1,V2) is a cut for G}

66 MAXIMUM FLOW

To prove the other direction, let f be a maximum flow in the network
G and let G be the residual network. By Theorem 2.1.4, there is no path
from the source s to the sink ¢ in the residual network G;. Define V7 to be
the set of vertices that are reachable from the source s in the graph Gy and
let V5 be the set of the rest vertices. Then, s € V3 and t € V5 so (V4, V) is
a cut for the flow network G. We have

cap(Vi,Va) = Y cap(v,w) = > cap(v,w)
veEV,weVs [v,w]€EEweVI,weVs

Consider an edge [v,w] in G such that v € V; and w € V5. Since [v,w] is
not an edge in the residual network Gy (otherwise, the vertex w would be
reachable from s in Gf), we must have f(v,w) = cap(v,w). On the other
hand, for v € V; and w € V, suppose (v, w) is not an edge in G, then we
have cap(v,w) = 0 thus f(v,w) < 0. However, f(v,w) < 0 cannot hold
since otherwise we would have cap(v,w) > f(v,w) thus [v, w] would have
been an edge in the residual graph G, contradicting the assumption v € V1
and w € V5. Thus, in case (v, w) is not an edge in G and v € V; and w € V3,
we must have f(v,w) = 0. Combining these discussions, we have

ap(V1, Vo) = Z cap(v,w) = Z flv,w)

[v,wl€ EweVi,weVs vEVI wEVs
By equation 2.3, the last expression is equal to |f|. This proves
max {|f| : f is a flow in G} > min {cap(V1, V2) : (V1, V2) is a cut for G}
The proof of the theorem is thus completed. []

The Max-Flow-Min-Cut theorem used to be used to show that a max-
imum flow in a flow network can be found in finite number of steps (since
there are only 2" — 2 cuts for a flow network of n vertices). With more ef-
ficient maximum flow algorithms being developed, now the theorem can be
used in the opposite direction — to find a minimum cut for a flow network.
In fact, the proof of Theorem 2.4.1 has described such an algorithm: given
a flow network G = (V, E), construct a maximum flow f in G, let V; be
the set of vertices reachable from the source s in the residual network G
and let V5 =V — V3, then (V1, V%) is a minimum cut for the flow network
G. Thus, the MIN-CUT problem on flow networks can be solved in time
O(n3), if we use, for example, Karzanov’s maximum flow algorithm to solve
the MAxiMUM FLOW problem.

2.4. FINAL REMARKS 67

Date Authors Time Complexity
1960 Edmonds and Karp ~ O(nm?)

1970 Dinic O(n’m)

1974 Karzanov O(n?)

1977 Cherkasky O(n%\/m)

1978 Galil O(nd/3m?2/3)

1980 Sleator and Tarjan O(nmlogn)

1986 Goldberg and Tarjan O(nm log (n?/m))

Figure 2.17: Maximum flow algorithms

The MIN-CuUT problem for general graphs can be solved via the algo-
rithm for the problem for flow networks: given a general directed and posi-
tively weighted graph G, we fix a vertex v; in G. Now for each other vertex
w, we construct a flow network G,, that is G with v; the source and w the
sink, and construct another flow network G, that is G with w the source and
v1 the sink. Then we find the minimum cuts for the flow networks G,, and
G7,. Since in a minimum cut (V1, V2) for G as a general graph, the vertex v;
must be in one of V5 and V5 and some vertex w must be in the other, when
we construct the minimum cuts for the low networks G,, and G7, for this
particular w, we will find a minimum cut for G as a general graph. Thus,
the MIN-CUT problem for general graphs can be solved in polynomial time.

We remark that the maximum version of the cut problem, i.e., the
MAX-CuT problem that finds a cut of maximum weight in a directed
and positively weighted graph, is much more difficult that the MIN-CuT
problem. The MAX-CuUT problem will be discussed in more detail in later
chapters.

Updated status

Since the introduction of the MAXIMUM FLOW problem by Ford and Fulker-
son about thirty years ago, efficient solution of the MAXIMUM FLOW prob-
lem has been a very active research area in theoretical computer science.
In this chapter, we have discussed two major techniques for maximum flow
algorithms. Further extension and improvement on these techniques are
studied. The table in Figure 2.17 gives a selected sequence of maximum
flow algorithms developed over the past thirty years. For further discus-
sion on maximum flow algorithms, the reader is referred to the survey by
Goldberg, Tardos, and Tarjan [54].

68

MAXIMUM FLOW

Chapter 3

Graph Matching

A problem that often arises is an “effective assignment”, which optimally
pairs up objects based on given requirements. Recall the OPTIMAL COURSE
ASSIGNMENT problem introduced in Chapter 1.

OPTIMAL COURSE ASSIGNMENT

Given a set of teachers T' = {t1,...,t,} and a set of courses C' =
{c1,...,¢q}, and a set of pairs (7;,&;) indicating that the teacher
7; can teach the course &;, 1; € T, & € C,and 1 = 1,...,n, find
a course assignment in which each teacher teaches at most one
course and each course is taught by at most one teacher such
that the maximum number of courses get taught.

Similar problems arise in worker/job assignment, person/position decision,
boy/girl engagement, and so forth.

These problems have been formulated into a general fundamental prob-
lem on graphs that has been widely studied. Given a graph G, a matching
M in G is a subset of edges in G such that no two edges in M share a
common end. The GRAPH MATCHING problem is to find a matching given
a graph such that the matching has the maximum cardinality. Using our
formulation, the GRAPH MATCHING problem is given as a 4-tuple.

GRAPH MATCHING = (I, S, fo, optg)

Ig: the set of all undirected graphs G

Sg: Sg(G) is the set of all matchings in the graph G
fo: fo(G, M) is the number of edges in the matching M

optg: max

69

70 MATCHING

For example, the OPTIMAL COURSE ASSIGNMENT problem can be con-
verted into the GRAPH MATCHING problem as follows. We let each teacher
and each course be a vertex in the graph G. There is an edge between
a teacher and a course if the teacher can teach the course. A solution to
the GRAPH MATCHING problem on the graph G corresponds to an optimal
course assignment for the school.

The GRAPH MATCHING problem has attracted attention because of its
intuitive nature and its wide applicability. Its solution in the general case in-
volves sophisticated and beautiful combinatorial mathematics. In this chap-
ter, we will concentrate on analysis principles and fundamental algorithms
for the problem. Further applications of the problem will be mentioned in
later chapters.

Throughout this chapter, we will assume that n is the number of vertices
and m is the number of edges in the considered graph.

3.1 Augmenting paths

We first prove a fundamental theorem for the GRAPH MATCHING problem.
Based on this fundamental theorem, a general scheme of developing algo-
rithms for the problem will be presented.

Let M be a matching in a graph G = (V, E). A vertex v is a matched
verter (with respect to the matching M) if v is an endpoint of an edge in
M, otherwise, the vertex is an unmatched verter. An edge e is a matching
edge if e € M and an untamed edge if e ¢ M.

An important notion for the GRAPH MATCHING problem is that of an
augmenting path.

Definition 3.1.1 Let M be a matching in a graph G. An augmenting path
(with respect to M) is a simple path p = {ug,u1,...ugp+1} of odd length
such that the end vertices up and wugp41 are unmatched and that the edges
[ugi—1,u2;] are matching edges, for i = 1,...h.

Figure 3.1 shows a graph G and a matching M in G, where heavy lines
are for matching edges in M and light lines are for untamed edges not in M.
The path {vs, u3,v4,us, v2, uz2} is an augmenting path in G with respect to
M.

Note that an augmenting path is relative to a fixed matching M. More-
over, by the definition in an augmenting path p = {ug,u1,...,usp11}, the
edges [ugj_2,u2;—1] are untamed edges, for i+ = 1,...h + 1. The number

AUGMENTING PATHS 71

Vi Vo V3 Vg Vs

g U, Ug Uy Us

Figure 3.1: Alternating path and augmenting path in a matching

of untamed edges on an augmenting path p is exactly one larger than the
number of matching edges on p.

The following theorem serves as a fundamental theorem in the study of
graph matching and graph matching algorithms.

Theorem 3.1.1 Let G be a graph and let M be a matching in G. M is the
mazimum if and only if there is no augmenting path in G with respect to M.

PROOF. Suppose that there is an augmenting path p = {ug,u1,...,usp41}
in the graph G with respect to the matching M. Consider the set of edges
M' = M @ p, where @ is the symmetric difference defined by A & B =
(A— B)U (B — A). In other words, the set M' = M @ p is obtained from
the set M by first deleting all matching edges on p then adding all untamed
edges on p. Since the number of matching edges on p is one less than the
number of untamed edges on p, the number of edges in M’ is one more
than that in M. It is also easy to check that M’ is also a matching in G:
M =M@&p=(M-p)U(p— M), for any two edges e; and ey in M’,
(1) if both e; and ey are in M — p then they are in M so have no common
endpoint because M is a matching; (2) if both e; and eg are in p — M then
e1 and ey have no common endpoint because p is an augmenting path; and
(3) ife; isin M —p and e9 is in p — M then e; cannot have an endpoint on
p since the two endpoints of p are unmatched and all other vertices on p are
matched by edges on p.

Therefore, M' is a matching larger than the matching M. This proves
that if there is an augmenting path p with respect to M, then the matching
M cannot be the maximum.

Conversely, suppose that the matching M is not maximum. Let My ay
be a maximum matching. Then |Mpyax| > |M|. Consider the graph Gy =
Mpyax ® M = (M — Mpax) U (Mpax — M). No vertex in Gy has degree larger
than 2. In fact, if a vertex v in Gy had degree larger than 2, then at least

72 MATCHING

Algorithm. Maximum Matching
Input: an undirected graph G = (V, E)
Output: a maximum matching M in G
1. M= @;
2. while there is an augumenting path in G do
find an augmenting path p;
construct the matching M = M & p with one more edge

Figure 3.2: General algorithm constructing graph matching

two edges incident on v belong to either M or Mp,,y, contradicting the fact
that both M and My,ax are matchings in G. Therefore, each component of
Gy must be either a simple path, or a simple cycle. In each simple cycle
in G, the number of edges in Mpy,x — M should be exactly the same as
the number of edges in M — Mp,c. For each simple path in Gy, either
the number of edges in M — Mp,ax is the same as the number of edges in
Max — M (in this case, the path has an even length), or the number of
edges in M — M, is one more than the number of edges in My,,x — M, or
the number of edges in My, — M is one more than the number of edges in
M — Mmax. Since | Mmax| > | M|, we conclude that there is at least one path
p ={uo,U1,...,uspt1} in Go in which the number of edges in Mpy,x — M is
one more than the number of edges in M — My,,x. Note that the endpoint ug
of the path p must be unmatched in M. In fact, since [ug,u1] € Myax — M,
if uy is matched in M by an edge e, we must have e # [ug, u1]. Now since ug
has degree 1 in Gy, e € Gy, e is also contained in My,ax. This would make
the vertex ug incident on two edges [ug,u1] and e in the matching Mpax.
Similar reasoning shows that the vertex wugp1 is also unmatched in M. In
consequence, the path p is an augmenting path in the graph G with respect
to the matching M.
This completes the proof. [l

Based on Theorem 3.1.1, a general maximum matching algorithm can
be derived. The algorithm is given in Figure 3.2. Most algorithms for the
GRAPH MATCHING problem are essentially based on this basic algorithm.

Since a matching in a graph G of n vertices cannot contain more than
n/2 edges, the while loop in the algorithm Maximum Matching will
be executed at most n/2 times. Therefore, if an augmenting path can be
constructed in time O(t(n)) when a matching is given, then the GRAPH

BIPARTITE GRAPH 73

MATCHING problem can be solved in time O(nt(n)).

3.2 Bipartite graph matching

In this section, we consider the GRAPH MATCHING problem for a class of
graphs with a special structure. We illustrate how an augmenting path is
constructed for a matching in a graph with this special structure.

Definition 3.2.1 A graph G = (V, E) is bipartite if the vertex set V of G
can be partitioned into two disjoint subsets V' = Vi UV, such that every
edge in G has one end in Vj and the other end in V5.

The graph in Figure 3.1 is an example of a bipartite graph. The bipar-
titeness of a graph can be tested using a standard graph search algorithm
(depth first search or breadth first search), which tries to color the vertices
of the given graph by two colors such that no two adjacent vertices are col-
ored with the same color. Obviously, a graph is bipartite if and only if it
can be colored in this way with two colors. Another property of a bipartite
graph G is that G does not contain any cycle of odd length.

Many applications can be formulated by matching in bipartite graphs.
For example, the OPTIMAL COURSE ASSIGNMENT problem, as well as the
worker/job assignment, person/position decision, and boy/girl engagement
problems mentioned at beginning of this chapter, can all be formulated by
matchings in bipartite graphs.

Now we discuss how an augmenting path can be constructed in a bi-
partite graph. Let M be a matching in a bipartite graph G. The idea of
constructing an augmenting path with respect to M is fairly natural: we
start from each unmatched vertex vy, and try to find out whether an aug-
menting path starts from the vertex vy. For this, we perform a process
similar to the breadth first search, starting from the vertex vy. The vertices
encountered in the search process are classified into odd level vertices and
even level vertices, depending upon their distance to the vertex vy in the
search tree. For an even level vertex v, the process tries to extend the aug-
menting path by adding an untamed edge. The vertex v may be incident
on several untamed edges and we do not know which is the one we want.
Thus, we record all of them — just as in breadth first search we record all
unvisited neighbors of the current vertex. For an odd level vertex w, the
process either concludes with an augmenting path (when w is unmatched)
or tries to extend the augmenting path by adding a matching edge (note
that if w is a matched vertex then there is a unique matching edge that

74 MATCHING

Algorithm. Bipartite Augment

Input: a bipartite graph G and a matching M in G

1. for each vertex v do lev(v) = —1;

2. for each unmatched vertex vo with lev(vo) = —1 do
lev(ve) =0; Q =0; Q <« vo; {Q is a queue}
while Q # 0 do

u 4 @
2.1. case 1. lev(u) is even
for each neighbor w of u with lev(w) = —1 do
2.1.1. lev(w) =lev(u) +1; dad(w) =u; Q + w;
2.2. case 2. lev(u) is odd

if u is unmatched
2.2.1. then an augmenting path is found; stop.
else let [u, w] be the edge in M
2.2.2. lev(w) =lev(u) +1; dad(w) =u; Q + w;

3. no augmenting path in G.

Figure 3.3: Finding an augmenting path in a bipartite graph

is incident on w). Note that in case of an odd level vertex w, the search
process is different from the standard breadth first search: the vertex w may
have several unvisited neighbors, but we only record the one that matches
w in M and ignore the others.

If the search process starting from vg fails in finding another unmatched
vertex, then it starts from another unmatched vertex and performs the same
search process.

A formal description of this search process is given in Figure 3.3.

According to the algorithm, each vertex v is assigned a level number
lev(v) such that v has a vertex dad(v) at level lev(v) — 1 as its father. In
particular, if lev(v) is odd, then the edge [dad(v),v] is an untamed edge
while if lev(v) is even then v is the unique child of its father dad(v) and the
edge [dad(v),v] is a matching edge. The level is also used to record whether
a vertex v has been visited in the process. A vertex v is unvisited if and
only if lev(v) = —1.

Although the algorithm Bipartite Augment looks similar to the stan-
dard breadth first search, step 2.2 in the algorithm makes a significant dif-
ference. We first study the structure of the subgraph constructed by the

BIPARTITE GRAPH 75

algorithm Bipartite Augment.

Lemma 3.2.1 For each vertex vy picked at step 2, the algorithm Bipartite
Augment constructs a tree T(vg) rooted at vy and sharing no common
vertices with other trees. The tree structure is given by the relation dad(-).

PrOOF. To prove the lemma, we only need to show that by the time the
vertex w is to be included in the tree T'(vg) in step 2.1.1 or step 2.2.2, the
vertex w is still unvisited. This fact is clear when the father u of w is an
even level vertex, as described in the algorithm.

The case is much more complicated when the vertex u is an odd level
vertex. According to the algorithm, in this case the edge [u,w] is in the
matching M. Suppose the opposite, that lev(w) # —1 before the execution
of step 2.2.2. We will derive a contradiction as follows. Without loss of gen-
erality, assume that w is the first such vertex encountered in the execution
of the algorithm.

The vertex w cannot belong to any previously constructed tree T'(vj)) —
otherwise, the vertex u is either the father of w in T'(vj) (in case lev(w) is
even) or the unique child of w in T'(vg) (in case lev(w) is odd). Thus, the
vertex u would have also been visited before the construction of the tree
T'(vp). This contradicts our assumption that w is the first such vertex.

So we must have w in the same tree T'(vg). Since u is the current vertex
in this search process similar to the breadth-first search, the level lev(w) of
the vertex w is at most lev(u) + 1.

The level lev(w) cannot be lev(u) + 1 since otherwise, the vertex w was
included in the tree T'(vy) because of another vertex u' = dad(w) at level
lev(u) in the tree T'(vg). Since lev(u) is odd, this implies that [v/,w] is in
the matching M, contradicting the assumption that [u,w] is in M.

Thus, lev(w) = lev(u) — k for some nonnegative integer k. If k is an
even number, then let v be the least common ancestor of w and u in the
tree T'(vg) (note that by our assumption, the structure constructed so far
for T'(vg) is a tree before the edge [u, w] is added). Then the tree path from
v to w followed by the edge [w,u] then followed by the tree path from u to
v would form a cycle of odd length, contradicting the fact that the graph G
is a bipartite graph.

So lev(w) must be an even number and lev(w) < lev(u) since lev(u) is
odd. However, an even lev(w) implies that [dad(w),w] is in M thus dad(w)
must be u, contradicting the fact lev(w) < lev(u).

Therefore, in any case the inequality lev(w) < lev(u) + 1 is impossi-
ble. Consequently, before the execution of step 2.2.2, the vertex w must be

76 MATCHING

unvisited. This completes the proof. []

Now we are ready to show the correctness of the algorithm Bipartite
Augment.

Theorem 3.2.2 On a bipartite graph G and a matching M in G, the al-
gorithm Bipartite Augment stops at step 2.2.1 if and only if there is an
augmenting path in G with respect to M.

PROOF. Suppose that the algorithm stops at step 2.2.1. with an odd level
vertex u that is unmatched. Since for every even level vertex w, the tree
edge [dad(w),w] is a matching edge while for every odd level vertex w, the
tree edge [dad(w),w] is an untamed edge, the tree path from the root vy to
u is an augmenting path.

To prove the other direction, suppose that there is an augmenting path
with respect to M, we show that the algorithm Bipartite Augment must
find one and stop at step 2.2.1. Assume the opposite, that the algorithm
does not find an augmenting path and stops at step 3.

Then for each vertex vy picked at step 2, the constructed tree T'(vg)
contains no unmatched vertices except vg. Thus, every unmatched vertex
will be picked at step 2 of the algorithm and a tree rooted at it is constructed.
In particular, for every unmatched vertex vy, we must have lev(vg) = 0. Now
assume that p = {vg,v1,...,v9,41} is an augmenting path, where both vy
and vgk41 are unmatched vertices.

We show that for the vertex v;, 0 < ¢ < 2k+1, on the augmenting path p,
the level lev(v;) has the same parity as i. Since vy is an unmatched vertex,
we have lev(vg) = 0. Thus, it suffices to show that lev(v;) and lev(v;y1)
have different parity for all 4.

If the edge [v;,v;y+1] is a matching edge, then by the algorithm and
Lemma 3.2.1, the vertex v;y; is either the father of v; (in case lev(v;) is
even) or the unique child of v; (in case lev(v;) is odd) in the same tree.
Thus, lev(v;) and lev(v;;1) must have different parity.

Thus, if we let v; and v;11 be the first pair on p such that lev(v;) and
lev(v;y1) have the same parity, then the edge [v;,v;11] must be an untamed
edge. In other words, ¢ must be an even number. Since v; and v;;; make
the first such a pair, the level number lev(v;) of v; is also an even number.

The vertex v; and v;11 cannot belong to the same tree — otherwise since
both lev(v;) and lev(v;y1) are even, the edge [v;,v;+1] plus the tree paths
from v; and v;1, respectively, to their least common ancestor would form a
cycle of odd length, contradicting the fact that the graph G is bipartite.

BIPARTITE GRAPH 7

Suppose that v; is in the tree T'(vp), then v;11 cannot belong to a tree
constructed later than T'(vj) — otherwise, at the time the vertex v; is pro-
cessed in step 2.1 of the algorithm, the vertex v;;; is still unvisited. Since
v; is an even level vertex, the vertex v;1; would have been made a child of
v;, which would have included v;;1 in the same tree T'(vy).

Therefore, the vertex v;1; must belong to a tree T'(v{) constructed before
the tree T'(vg). Since lev(v;) and lev(v;+1) have the same parity, v;;1 is an
even level vertex. However, according to the algorithm, this would imply
that when the vertex v;11 is processed in step 2 of the algorithm, the vertex
v; 18 still unvisited. Thus, the vertex v; would have been included in the tree
T (vf).

Summarizing the above discussion, we conclude that there is no pair v;
and v; 41 on the augmenting path p such that lev(v;) and lev(v;+1) have
the same parity. In consequence, for each v; on p, lev(v;) has the same
parity as ¢. However, this would imply that the end vertex woxy; of the
augmenting path p is an odd level vertex, contradicting the fact that v
is an unmatched vertex so we must have lev(vggy1) = 0.

This contradiction shows that if there is an augmenting path with respect
to the matching M, then the algorithm Bipartite Augment must stop at
step 2.2.1 and produce an augmenting path.

This completes the proof of the lemma. [

Based on Theorem 3.1.1, algorithm Maximum Matching, algorithm
Bipartite Augment, and Theorem 3.2.2, an algorithm can be designed for
the GRAPH MATCHING problem on bipartite graphs.

Theorem 3.2.3 The GRAPH MATCHING problem on bipartite graphs can
be solved in time O(nm).

PRrROOF. We can use an array match[l..n] to represent a matching in the
graph such that match[i] = 7 if and only if [7, j] is a matching edge. Thus,
checking whether an edge is in a matching, adding an edge to a matching,
and deleting an edge from a matching can all be done in constant time.
The algorithm Bipartite Augment processes each edge in the graph at
most twice, one from each end of the edge, and each process takes constant
time. Moreover, once the algorithm stops at step 2.2.1, the found augment-
ing path can be easily constructed by tracing the tree path (via the array
dad(-)) from the current vertex u to the root of the tree. Therefore, the
running time of the algorithm Bipartite Augment is bounded by O(m).
Each execution of the while loop in step 2 of the algorithm Maximum
Matching calls the algorithm Bipartite Augment to find an augmenting

78 MATCHING

path and constructs a larger matching with one more edge. Since a matching
in a graph of n vertices contains no more than n/2 edges, we conclude that
the algorithm Maximum Matching runs in time O(nm) if it uses the
algorithm Bipartite Augment as a subroutine to find augmenting paths.
U

3.3 Maximum flow and graph matching

There is an interesting relation between the MAXIMUM FLOW problem and
the GRAPH MATCHING problem on bipartite graphs, which leads to a more
efficient algorithm for the GRAPH MATCHING problem on bipartite graphs.
In this section, we discuss this relation.

Let G be a flow network. A flow f in G is an integral flow if f(u,w) is
an integer for every pair of vertices 4 and w in G. If an integral flow f is a
maximum flow in G, then we call f an integral mazimum flow.

Lemma 3.3.1 Let G be a flow network in which all edge capacities are
integers. Then there is an integral mazimum flow in G.

PrOOF. It is easy to see that if all edge capacities in G are integers, then
for any integral flow f in G, the edge capacities in the residual graph Gy
are also all integers.

Consider Dinic’s maximum flow algorithm, which is given in Figure 2.8.
For the convenience of our reference here and later discussion, we present
the algorithm again in Figure 3.4. The algorithm starts with an integral
flow f = 0. Inductively, suppose that the flow f is integral; thus all edge
capacities in the residual network Gy are integers. In an execution of the
while loop in step 3, the algorithm saturates all shortest paths from the
source to the sink in the residual network G ;. Since all edge capacities in G ;
are integers, the flow f* constructed by the subroutine Dinic-Saturation
is also integral. This will make the new flow f + f* in G integral for the
next execution of the while loop. In conclusion, Dinic’s algorithm ends up
with a maximum flow that is integral. []

Given a bipartite graph B = (V5 U V5, E), where every edge in E has
one end in V; and the other end in V5, we can construct a flow network
G by adding a source vertex s and a sink vertex ¢, adding a directed edge
from s to each of the vertices in V7, adding a directed edge from each of
the vertices in V5 to £, giving each original edge in B a direction from V; to

MAXIMUM FLOW AND MATCHING 79

Algorithm. Max-Flow-Dinic

Input: a flow network G
Output: a maximum flow f in G

1. let f(u,v) =0 for all pairs (u,v) of vertices in G;

2. construct the residual network Gy;

3. while there is a positive flow in Gy do

3.1. call Layered-Network to construct the layered
network Lo for Gy;

3.2 call Dinic-Saturation on Lo to construct a shortest
saturation flow f* in Gy;

3.3. let f = f+ f* be the new flow in G;

3.4. construct the residual network Gy;

Figure 3.4: Dinic’s algorithm for maximum flow

V5, and setting the capacity of each edge in G to 1. See Figure 3.5 for an
example of this construction.

The connection of the MAxiMuM FLOwW problem and the GRAPH
MATCHING problem is given by the following theorem.

Theorem 3.3.2 Let G be the flow network constructed from the bipartite
graph B as above, and let f be an integral mazimum flow in G. Then the
set of edges e = [u,w] in G satisfying u € V1, w € Vo, and f(u,w) =1
constitutes a mazimum matching in B.

V1 V2 V1 V2

Figure 3.5: From a bipartite graph to a flow network

80 MATCHING

PrRoOOF. Consider the set M of edges e = [u, w] such that u € Vi, w € Va,
and f(u,w) = 1. No two edges in M share a common vertex. For example, if
both [u,w] and [u, w'] are in the set M, then since f(u,w) = f(u,w’) = 1 and
the vertex u has only one incoming edge, whose capacity is 1, we would have
> vev f(u,v) > 0, contradicting the flow conservation constraint. Therefore,
the set M is a matching in the bipartite graph B. Moreover, it is also easy
to see that the number of edges |M| in M is equal to the flow value |f|.

We show that the matching M is actually a maximum matching in B. Let
M'" = {[u;,w;] | i =1,...,k} be any matching of k edges in B, where u; € V;
and w; € Va. Then the function f’ defined by f'(s,u;) = 1, f'(uj,w;) = 1,
f'(w;,t) =1 for all 4, and f'(u,w) = 0 for all other pairs u and w is clearly
an integral flow in G with flow value k. Since f is a maximum flow, we have
k <|f| = |M]|. That is, the number of edges in the matching M’ cannot be
larger than |M|. This proves that M is a maximum matching. [

Thus, the GRAPH MATCHING problem on bipartite graphs can be re-
duced to the MAXIMUM FLOW problem. In particular, since the algorithm
Max-Flow-Dinic produces an integral maximum flow on flow networks
with integral edge capacities, by Theorem 2.2.3, the GRAPH MATCHING
problem on bipartite graphs can be solved in time O(n?m) using the algo-
rithm Max-Flow-Dinic.

Observe that O(n?m) is the worst case time complexity for the algorithm
Max-Flow-Dinic on general flow networks. It is thus natural to suspect
that the algorithm may have a better bound when it is applied to the flow
networks of simpler structure such as the one we constructed for a bipartite
graph. For this, we first introduce a definition.

Definition 3.3.1 A flow network G is a simple flow network if it satisfies
the following three conditions:
1. the capacity of each edge of G is 1;
2. every vertex v # s,t either has only one incoming edge or has only
one outgoing edge; and
3. there is no pair of vertices u and w such that both [u,w] and [w, u]
are edges in G.

Clearly, the flow network G constructed above from a bipartite graph is
a simple flow network.

Lemma 3.3.3 Let G = (V,E) be a simple flow network and let f be an
integral flow in G. Then the residual graph G is also a simple flow network.

MAXIMUM FLOW AND MATCHING 81

ProOOF. Since G is a simple flow network and f is an integral flow, the
flow value f(u,w) on an edge [u,w] in G must be either 0 or 1. By this it
is easy to verify that in the residual network Gy, every edge has capacity
exactly 1 and there is no pair u and w such that both [u,w]| and [w,u] are
edges in G .

Consider any vertex w in G, w # s,t. Suppose that the vertex w has
only one incoming edge e = [v, w].

If f(v,w) = 0 then f(w,u) = 0 for all u € V by the flow conservation
constraint. Thus, in the residual graph Gy, e is still the only incoming edge
for the vertex w.

If f(v,w) = 1 then since f is integral there must be an outgoing edge
[w, u] of w such that f(w,u) = 1, and for all other outgoing edges [w, u'] we
must have f(w,u') = 0. Therefore, in the residual graph G, the edge [v, w]
disappears and we add another outgoing edge [w,v], and the edge [w,u]
disappears and we add a new incoming edge [u,w], which is the unique
incoming edge of the vertex w in Gy.

The case that the vertex w has only one outgoing edge can be proved
similarly.

This completes the proof. []

Therefore, all residual networks G in algorithm Max-Flow-Dinic are
simple flow networks if G is a simple flow network. In particular, the layered
network Lg in step 3.1, which is a subgraph of G, is a simple flow network.

According to the discussion in section 2.2, the layered network in step
3.1 of the algorithm Max-Flow-Dinic can be constructed in time O(m). It
is also easy to see that steps 3.3 and 3.4 take time at most O(m) (note that
the residual network Gy has at most 2m edges if the original flow network
G has m edges). We show below that step 3.2 of the algorithm can be
implemented more efficiently when the layered network Lg is a simple flow
network.

Lemma 3.3.4 If the layered network Lg is a simple network, then the short-
est saturation flow f* for Gy in step 3.2 of the algorithm Max-Flow-Dinic
can be constructed in time O(m).

PRroOOF. We modify the algorithm Dinic-Saturation in Figure 2.7 to
construct the shortest saturation flow f*. Each time when we search for
a path p from s to ¢ in the layered network Lj, we keep a queue ¢(-) for
the vertices on p. In case we hit a dead end ¢(k) that is not the sink ¢, we

82 MATCHING

delete the edge [g(k — 1),q(k)] from Ly and continue the search from the
vertex g(k — 1). Once a path p from s to ¢ is found, we can saturate all
edges in p by a flow of value 1 along the path p, thus deleting all edges on
p from the layered network Lj. This is because the layered network L is
a simple flow network so all of its edges have capacity 1. Therefore, every
edge encountered in this search process will be deleted from Lgy. Since it
takes only constant time to process each edge in this search process, we
conclude that in time O(m), all shortest paths in the layered network Ly
are saturated. [

According to Lemma 3.3.3 and Lemma 3.3.4, the running time of each
execution of the while loop in step 3 of the algorithm Max-Flow-Dinic
can be bounded by O(m) when it is applied to a simple flow network. This
together with Theorem 2.2.2 concludes that the running time of the algo-
rithm Max-Flow-Dinic on simple flow networks is bounded by O(nm).
In particular, this shows that the GRAPH MATCHING problem on bipartite
graphs can be solved in time O(nm), which matches the time complexity of
the algorithm we developed in Section 3.2 for the problem.

In fact, the algorithm Max-Flow-Dinic can do even better on simple
flow networks. For this, we first prove a lemma.

Lemma 3.3.5 Let G = (V, E) be a simple flow network, and let f be a
mazimum flow in G, let 1 be the length of the shortest path from the source
s to the sink t in G. Then | < n/|f| + 1, where n is the number of vertices
in G.

PRrROOF. Define V; to be the set of vertices v of distance dist(v) = i from
the source s in G.
Fix an ¢, 0 < ¢ <[— 2. Define L; and R; by

Li=JV; and R =V-IL

That is, L; is the set of vertices whose distance from the source s is at most
i and R; is the set of vertices whose distance from the source s is larger than
i. Since dist(t) =1 and 0 < i <1 —2, (L;, R;) is a cut of the flow network
G.

We claim that for any edge e = [v,w] of G such that v € L; and w € R;,
we must have v € V; and w € V1. In fact, if v € V}, for some h < 1,
then the distance from s to w cannot be larger than h + 1 < 4. This would

MAXIMUM FLOW AND MATCHING 83

imply that w is in L;. Thus, v must be in V;. Now the edge [v,w] gives
dist(w) < dist(v) +1 =14+ 1. Now since w € R; we must have dist(w) > i.
Therefore, dist(w) =i+ 1 and w € Vj41.

Now consider

‘f‘ = Zf(saw): Z f(v,w)

wevV vEL; ,weV

= Z fv,w) + Z f(v,w)

vEL; , weL; vEL; , wER;

= Z f(an)

vel;,weR;

The second equality is because of the flow conservation constraint
Y wey fv,w) =0for allv € L; — {s} (note ¢t ¢ L;), and the fourth equality
is because of the skew symmetry constraint f(v,w) = — f(w,v) for all v and
w in L;. Note that if v is not in V; or w is not in V;1; then [v, w] is not an
edge in G thus we must have f(v,w) < 0. This combined with the above
equation gives

f1< Y flo,w)

'Ue‘/iawe‘/i+l

Now since G is a simple flow network, there is at most one unit flow through
a vertex v # s,t. Therefore, for i = 0 (i.e., V; = {s}), we have |f| < |V4], and
for 1 <14 <1-2, we have |f| < |Vj4+1]. Summarizing these [— 1 inequalities,
we get

C=DIf <M+ Vel 4+ [Vial <

which gives immediately [<n/|f|+1. O

Now we can give a more precise analysis on the number of executions of
the while loop in the algorithm Max-Flow-Dinic.

Lemma 3.3.6 On a simple flow network of n vertices, the while loop in
step 3 of the algorithm Max-Flow-Dinic is executed at most 2\/n+1 times.

PROOF. Let fiax be a maximum flow in G.
If | fmax| < 24/n, then of course the while loop is executed at most 24/n
times since each execution of the loop increases the flow value by at least 1.
Now assume | fmax| > 24/n. Let hg be the largest integer such that after
hg executions of the while loop, the flow fy constructed in Dinic’s algorithm
has value |fo| < |fmax| — v/n. A few interesting facts about hg are

84 MATCHING

e after the (hg + 1)st execution of the while loop, the constructed flow
has value larger than |fmax| — v/7;

e the value of the maximum flow in the residual network Gy, is | fmax| —

| fol > /.

By the second fact and Lemma 3.3.5, the distance dist(t) from the source s
to the sink ¢ in the residual network G, is bounded by n/y/n+1 = y/n+1.
By Lemma 2.2.1, each execution of the while loop increases the distance
dist(t) by at least 1. Since the algorithm starts with dist(t) > 0, we conclude
that ho < /7.

By the first fact, after the (hg+1)st execution of the while loop, the con-
structed flow f; has value larger than |fimax| — /7. Therefore, with another
at most /n executions of the while loop, starting from the flow network
G, , the algorithm must reach the maximum flow value fnax because each
execution of the while loop increases the flow value by at least 1.

In conclusion, the total number of executions of the while loop in step
3 of the algorithm Max-Flow-Dinic on a simple flow network is bounded
by ho + 1+ 4/n < 24/n + 1. This completes the proof. []

Theorem 3.3.7 The algorithm Max-Flow-Dinic runs in time O(y/nm)
on a simple flow network of n vertices and m edges.

PROOF. Follows directly from Lemma 3.3.4 and Lemma 3.3.6. [

Corollary 3.3.8 The GRAPH MATCHING problem on bipartite graphs can
be solved in time O(y/nm).

The bound O(y/nm) in Corollary 3.3.8 is still the best known bound for
the algorithms solving the GRAPH M ATCHING problem on bipartite graphs.

3.4 General graph matching

In this section, we discuss the GRAPH MATCHING problem on general
graphs.

Unfortunately, the network flow method does not seem to apply eas-
ily to the GRAPH MATCHING problem on general graphs. Thus, we come
back to the fundamental theorem, Theorem 3.1.1, and the basic algorithm
Maximum Matching in Figure 3.2 for the GRAPH M ATCHING problem.

GENERAL GRAPHS 85

Figure 3.6: Bipartite Augment fails to find an existing augmenting path

All known algorithms for the GRAPH MATCHING problem on general
graphs are based on Theorem 3.1.1 and the algorithm Maximum Match-
ing. The main point here is how an augmenting path can be found when a
matching M is given in a graph G. For the rest of the discussion, we assume
that G is a fixed graph and that M is a fixed matching in G.

Let us make a careful examination of the reason the algorithm Bipartite
Augment in Figure 3.3 may fail in finding an existing augmenting path.
Consider the matching in the graph in Figure 3.6, where heavy lines are
for matching edges and light lines are for untamed edges. Suppose that we
start from the unmatched vertex vi. In level 1 we get two vertices v and
v7 as children of vertex v; in the tree T'(v1). Now since both vo and v7 are
odd level vertices, vo will get v3 as its unique child and v7; will get vg as its
unique child. Note that although vertex w; is unvisited when we process
vertex vy, we ignore the vertex w; since vz is an odd level vertex. Now the
process continues the construction of the tree T'(v;), making v4 a child of vg
and vy a child of vg. Now the process gets stuck since neither of the vertices
vg and vz can use the matching edge [v4,vs5] to expand the tree T'(v1). Note
that this situation cannot happen for a bipartite graph as we proved in
Lemma 3.2.1, in which when we process an odd level matched vertex v, the
vertex matching v in M must be unvisited. Even if we ignore this abnormal
phenomena and continue the process, we still do not find an augmenting
path — the tree T'(u;1) contains a single vertex u; since the only neighbor
vy of u; has been visited. On the other hand, there exists an augmenting
path {v1, va, v3,v4, V5, v6,v7, u1 } with respect to the matching M.

It is clear that the troubles are caused by the odd length cycle
{v1,v2,v3,v4,v5,v6,v7}. Such a cycle does not exist in a bipartite graph.

Therefore, in order to ensure that the structure we construct starting
from an unmatched vertex is a tree, we need to modify the algorithm Bi-
partite Augment. For this, before we add a vertex to the tree, no matter

86 MATCHING

Algorithm. Modified BFS

1. for each vertex v do lev(v) = —1;
2. for each unmatched vertex v do
Q +v; {Q is a queue} lev(v)=0;
3. while no augmenting path is found and Q # () do
u 4 @
case 1. lev(u) is even
for each neighbor w of u with lev(w) = —1 do
dad(w) = u; lev(w) =lev(u)+1; Q + w;
case 2. lev(u) is odd
if [u,w] € M and lev(w) = —1 then
dad(w) = u; lev(w) =lev(u) +1; Q + w;

Figure 3.7: The modified breadth first search

whether it is a child of an even level vertex or an odd level vertex, we first
check that the vertex is unvisited.

Another modification for the algorithm Bipartite Augment is based
on the following observation. As shown in Figure 3.6, an augmenting path
may come from an unvisited and unmatched vertex w;, which cannot be
identified if the construction of the tree T(u1) does not start until the con-
struction of the tree T'(v1) is completed. To resolve this problem, we will
perform the breadth first fashion search starting from all unmatched vertices
simultaneously, and construct the trees rooted at the unmatched vertices in
parallel, instead of starting from a single unmatched vertex. Implementa-
tion of this modification is simple: we first put all unmatched vertices in
the queue () then perform the breadth first fashion search until either an
augmenting path is found or the queue @ is empty. It is easy to see that this
search will first construct the first level for all trees rooted at the unmatched
vertices, then the second level for all trees, and so on.

We call this search process the modified breadth first search process. The
formal description of this process is given in Figure 3.7.

The algorithm Modified BFS has not described how an augmenting
path is found, which is discussed in the rest of this section. We call an edge
in the graph G a cross-edge is it is not a tree edge in any of the search trees
constructed by the algorithm Modified BFS.

Definition 3.4.1 A cross-edge e is a good cross-edge if either e € M and e

GENERAL GRAPHS 87

links two odd level vertices in two different trees, or e € M and e links two
even level vertices in two different trees.

A good cross-edge commits an augmenting path, as shown by the fol-
lowing lemma.

Lemma 3.4.1 If a good cross-edge is given, then an augmenting path with
respect to the matching M can be constructed in time O(n).

PROOF. Let e = [vgs41,u2t+1] be a good cross-edge such that e € M,
{vo,v1,...,v2541} be the tree path in a search tree T'(vy) rooted at the un-
matched vertex vg, and {ug, U1, .., u2t+1} be the tree path in another search
tree T'(ug) rooted at the unmatched vertex ug, vy # ug. According to the al-
gorithm Modified BFS, the edges [vg;, v2;11] and [ugj, ugj41] are untamed
edges, for all i = 0,...,s and j = 0,...,t, and the edges [v9;+1,v2;12] and
[ugj+1, u2j+2] are matching edges, for alli =0,...,s—1and j =0,...,t—1.
Therefore, the path

{’Uo,’Ul, <oy V25, V2541, U241, U2ty - - - 7u17u0}

is an augmenting path. Since the augmenting path contains at most n
vertices, it can be easily constructed in time O(n) using the array dad(-)
given the edge e = [vost1,u2t41]-

The case that the good cross-edge is an untamed edge and links two even
level vertices can be proved similarly. [

Lemma 3.4.1 suggests how statements can be inserted in the algorithm
Modified BF'S so that an augmenting path can be constructed. This ex-
tension is given in Figure 3.8.

It had been believed that the algorithm Obvious Augment was suf-
ficient for constructing an augmenting path in a general graph until the
following structure was discovered.

Definition 3.4.2 A cross-edge e is a bad cross-edge if either e € M and e
links two odd level vertices in the same search tree, or e ¢ M and e links
two even level vertices in the same search tree.

The edge [v4,v5] € M in Figure 3.6 is a bad cross-edge. As we have
seen, when the bad cross-edge [vg4,v5] is encountered in our search process,
the construction of the tree T'(v1) gets stuck. Moreover, the bad cross-edge
cannot be simply ignored because it may “hide” an augmenting path, as we
pointed out before.

88

MATCHING

Algorithm. Obvious Augment

1. for each vertex v do lev(v) = —1;
2. for each unmatched vertex v do Q + v; lev(v) =0;
3. while no augmenting path is found and Q # () do
u 4 @
case 1. lev(u) is even
for each neighbor w of u do
if [u, w] is a good cross-edge
then an augmenting path is found; stop.
else if lev(w) = —1 then
dad(w) = u; lev(w) =lev(u) +1; Q + w;
case 2. lev(u) is odd; let [u,w] € M;
if [u, w] is a good cross-edge
then an augmenting path is found; stop.
else if lev(w) = —1 then

dad(w) = u; lev(w) =lev(u) +1; Q + w;

Figure 3.8: Finding an augmenting path based on a good cross-edge

A similar situation may occur when an edge e is a bad cross-edge and
e ¢ M. We can also construct a configuration in which the algorithm
Obvious Augment fails in finding an existing augmenting path.

This discussion motivates the following definition.

Definition 3.4.3 A blossom is a simple cycle consisting of a bad cross-edge

e = [v,v'] together with the two unique tree paths from v and v’

to their least

common ancestor v”. The vertex v" will be called the base of the blossom.

For example, the cycle {v1, ve, v3, v4,vs, V6, v7} in Figure 3.6 is a blossom

whose base is v.

Remark. There are a number of interesting properties of a
list those that are related to our later discussion.

blossom. We

e A blossom consists of an odd number of vertices. This is because either
both ends v and v’ of the bad cross-edge are odd level vertices or both
v and v' are even level vertices. Therefore, a bipartite graph cannot

contain a blossom.

e Suppose that the cycle b = {vg, v1,...,v2s, 0} is a blossom, where vy is
the base, then the edges [vas, vo] and [ve;, vo;41] for alli =0,...,s—1,

GENERAL GRAPHS 89

are untamed edges, and the edges [vyj_1,v9;] for all j = 1,...,s are
matching edges.

e If an edge ey is not contained in a blossom but is incident to a vertex
v in the blossom, then the edge ey cannot be a matching edge unless
the incident vertex v is the base of the blossom. This is because each
vertex, except the base, in a blossom is incident on a matching edge
in the blossom.

Identifying and constructing a blossom is easy, as described in the fol-
lowing lemma.

Lemma 3.4.2 During the execution of the algorithm Modified BFS, a
bad cross-edge can be identified in constant time. Given a bad cross-edge,
the corresponding blossom can be constructed in time O(n).

PROOF. For each search tree T'(v) starting from an unmatched vertex v,
we attach a different marker to the vertices of T'(v) so that in constant time
we can identify whether two given vertices belong to the same tree. This
marker plus the level number lev(v) enables us to identify in constant time
whether a given edge e = [v,v'] is a bad cross-edge. Once a bad cross-edge
is found, we can follow the tree edges to find the least common ancestor of
v and v'. Since a blossom contains at most n vertices, we conclude that the
blossom can be constructed in time O(n). U

Thus, blossoms are a structure that may make the algorithm Obvious
Augment fail. Is there any other structure that can also fool the algorithm?
Fortunately, blossoms are the only such structure, as we will discuss below.
We start with the following lemma.

Lemma 3.4.3 If a matching edge is a cross-edge, then it is either a good
cross-edge or a bad cross-edge.

PROOF. Let e = [v,v'] be a cross-edge such that e is in M. The vertices v
and v’ cannot be roots of the search trees since roots of the search trees are
unmatched vertices. Let w and w’ be the fathers of v and v', respectively.
The tree edges [w,v] and [w',v'] are untamed edges since [v,v'] is a matching
edge. Thus, v and v’ must be odd level vertices. Now if v and v' belong to
different search trees, then the edge e is a good cross-edge, otherwise e is a
bad cross-edge. [

90 MATCHING

According to Lemma 3.4.3, once we encounter a matching edge e that is
a cross-edge, either we can construct an augmenting path (in case e is a good
cross-edge) or we can construct a blossom (in case e is a bad cross-edge).

Lemma 3.4.4 If there is no blossom in the execution of the algorithm
Modified BFS, then there is a good cross-edge if and only if there is an
augmenting path.

ProoOF. By Lemma 3.4.1, if there is a good cross-edge, then there is an
augmenting path that can be constructed from the good cross-edge in linear
time.

Conversely, suppose there is an augmenting path p = {ug,u1, ..., U241}
If £ = 0, then the path p itself is a good cross-edge so we are done. Thus,
assume t > 0. Let vp, ..., vy be the roots of the search trees, processed in
that order by the algorithm Modified BFS. Without loss of generality, we
assume ug = vp where b is the smallest index such that v, is an end of an
augmenting path. With this assumption, the vertex u; is a child of ug in the
search tree T'(ug) rooted at ug — this is because u; must be a level 1 vertex.
If w1 is not a child of ug = v then u; must be a child of an unmatched vertex
vy for some b’ < b, thus {vy,u1,us,. .., uss1} would also be an augmenting
path, contradicting our assumption that vy is the first vertex from which an
augmenting path starts.

If any matching edge e on p is a cross-edge, then by Lemma 3.4.3, e is
either a good cross-edge or a bad cross-edge. Since there is no blossom, e
must be a good cross-edge. Again the lemma, is proved.

Thus, we assume that the augmenting path p has length larger than 1,
no matching edges on p are cross-edges, and u; is a child of ug in the search
tree T'(ug) rooted at uy.

Case 1. Suppose that all vertices on p are contained in the search trees.

Both ug and w911 are even level vertices. Since the path p is of odd
length, there must be an index i such that lev(u;—1) and lev(u;) have the
same parity. Without loss of generality, assume ¢ is the smallest index
satisfying this condition. The edge [u;_1,u;] must be a cross-edge. Thus, by
our assumption, [u;—1, u;] is not a matching edge.

Suppose that both u;_1 and u; are odd level vertices, then ¢ > 2. Since
[wi—2,uij—1] is a matching edge, u;_2 # ug. Moreover, by our assumption,
[uj—2,ui—1] is a tree edge. Thus, u;_2 is an even level vertex. Moreover,
since [u;—2,u;—1] is a matching edge, the index 7 — 2 is an odd number. Now
the partial path

Pi—2 = {uo,u1,..., Ui—2}

GENERAL GRAPHS 91

is of odd length and has both ends being even level vertices. This implies
that there is an index j such that j < ¢ —2 and lev(u;—1) and lev(u;) have
the same parity. But this contradicts the assumption that ¢ is the smallest
index satisfying this condition.

Thus, u; 1 and u; must be even level vertices. So [u; 1, u;] is either a
good cross-edge or a bad cross-edge. By the assumption of the lemma, there
is no blossom. Consequently, [u;—1,u;] must be a good cross-edge and the
lemma, is proved for this case.

Case 2. Some vertices on p are not contained in any search trees.

Let u; be the vertex on p with minimum ¢ such that wu; is not contained
in any search trees. Then ¢ > 2.

Suppose [u;—1,u;] € M. If u;_; is an odd level vertex then u; would have
been made the child of u; 1. Thus u;_1 is an even level vertex. However,
since u;_1 cannot be a root of a search tree, u;_; would have matched its
father in the search tree, this contradicts the assumption that u;_; matches
u; and u; is not contained in any search trees.

Thus we must have [u;—1,u;] € M. Then [uj_2,uj—1] is in M. Thus,
the index i — 2 is an odd number. By our assumption, [u;_o,u;—1] is a tree
edge. If u; 1 is an even level vertex, then u; would have been made a child
of u;—1. Thus, u;—1; must be an odd level vertex. Since [u;_2,u;—_1] is a tree
edge, u;_o is an even level vertex. Now in the partial path of odd length

Di—2 = {UOa Uyy--- alu'if?}a

all vertices are contained in the search trees, and the two ends are even level
vertices. Now the proof goes exactly the same as for Case 1 — we can find
a smaller index j < ¢ — 2 such that lev(uj_1) and lev(u;) have the same
parity and [u;_1,u,] is a good cross-edge.

This completes the proof of the claim. [

By Lemma, 3.4.4, if there is an augmenting path and if no bad cross-edge
is found (thus no blossom is found), then the algorithm Obvious Augment
will eventually find a good cross-edge. By Lemma 3.4.1, an augmenting path
can be constructed in time O(n) from the good cross-edge. In particular, if
the graph is bipartite, then the algorithm Obvious Augment will always
be able to construct an augmenting path if there exists one, since a bipartite
graph contains no odd length cycle, thus no blossom can appear in the search
process.

In order to develop an efficient algorithm for the GRAPH MATCHING
problem on general graphs, we need to resolve the problem of blossoms.

92 MATCHING

Surprisingly the solution to this problem is not very difficult, based on the
following “blossom shrinking” technique.

Definition 3.4.4 Let G be a graph and M a matching in G. Let B be
a blossom found in the search process by the algorithm Modified BF'S.
Define G/B to be the graph obtained from G by “shrinking” the blossom
B. That is, G/B is a graph obtained from G by deleting all vertices (and
their incident edges) of the blossom B than adding a new vertex vp that
is connected to all vertices that are adjacent to some vertices in B in the
original graph G.

It is easy to see that given the graph G and the blossom B, the graph
G/B can be constructed in linear time.

Since there is at most one matching edge that is incident to but not
contained in a blossom, for a matching M in G, the edge set M — B is a
matching in the graph G/B.

The following theorem is due to Jack Edmonds [34], who introduced the
concept of blossoms. This theorem plays a crucial role in all algorithms for
the GRAPH MATCHING problem on general graphs.

Theorem 3.4.5 (Edmonds) Let G be a graph and M a matching in G.
Let B be a blossom. Then there is an augmenting path in G with respect to
M if and only if there is an augmenting path in G/B with respect to M — B.

PROOF. Suppose that the blossom is B = {vg,v1,...,vs,v}, where v is
the base. We first show that the existence of an augmenting path in G/B
with respect to M — B implies an augmenting path in G with respect to M.
Let pp = {ug,u1,...,u;} be an augmenting path in G/B with respect to
M — B and let vp be the new vertex in G/B obtained by shrinking B.

Case 1. If the vertex vp is not on the path pp, then clearly pp is also
an augmenting path in G with respect to M.

Case 2. Suppose vp = 4. Then vp is an unmatched vertex in the
matching M — B. Consequently, the base vy of the blossom B is unmatched
in the matching M.

If the edge [us—1,ut) in G/B corresponds to the edge [us—1,vp] in G, then
the path

p={uo,u1,...,u—1,v0}
is an augmenting path in G. See Figure 3.9(a) (where heavy lines are for

matching edges, light lines are for untamed edges, and curved lines are for
paths of arbitrary length).

GENERAL GRAPHS 93

Ut-
Ut t-1

@ (b)
Figure 3.9: The vertex vp is an end of the augmenting path pp

If the edge [u;—1,u] in G/B corresponds to the edge [u;—1,v4] in G,
where vy, is not the base of B, then one of the edges [v,—1,vs] and [vp, vp11]
is in the matching M. Without loss of generality, suppose that [vp,vp 1] is
in M. Then, the path

P = {uo, U, .., Ut—1,Vh, Vpt1s---Us,V0}

is an augmenting path in G. See Figure 3.9(b).

The case vp = ug can be proved similarly.

Case 3. Suppose that vg = ug, where 0 < d < ¢t. Then without loss of
generality, we assume that [ug_1,ug| is an edge in the matching M — B and
[ug, ugs1] is not in M — B (the case where [ug_1,ug4] is not in M — B but
[tg, ug+1] is in M — B can be proved by reversing the augmenting path pp).
The matching edge [ug_1,u4] in G/B must correspond to a matching edge
[ug—1,v0] in G. Let the untamed edge [ug4,u4+1] in G/B correspond to the
untamed edge [vp,uq41] in G.

If vy, = vy, then the path

D =A{U0s- s Ug—1,V0, Ugt1y--- Ut}

is an augmenting path in G. See Figure 3.10(a).
If vp, # g, then as we proved in Case 2, we can assume that vy, vp11]
is an edge in M. Thus, the path

P = {’LL(), «eeyUd—1,V0,Vs;Us—15---9Un+1,Vh,Ud4+1,--- aut}

is an augmenting path in G. See Figure 3.10(b).
Therefore, given the augmenting path pp in G/B, we are always able to
construct an augmenting path p in G.

94 MATCHING

(@ (b)

Figure 3.10: The vertex vp is an interior vertex of the augmenting path pp

The proof for the other direction that the existence of an augmenting
path in G with respect to M implies an augmenting path in G/B with
respect to M — B is rather complicated based on a case by case analysis.
We omit the proof here. [

Corollary 3.4.6 Let G be a graph, M be a matching in G, and B be a
blossom. Given an augmenting path in G/B with respect to M — B, an
augmenting path in G with respect to M can be constructed in time O(n).

PROOF. The proof follows directly from the construction given in the
proof of Theorem 3.4.5. [

Now the idea is fairly clear for how we can find an augmenting path:
given the graph G and the matching M, we apply the modified breadth
first search, as described in the algorithm Modified BFS. If a good cross-
edge is found, then an augmenting path with respect to M is constructed
in time O(n), according to Lemma 3.4.1. If a bad cross-edge is found, then
we construct the corresponding blossom B in time O(n), as described in
Lemma 3.4.2. Now according to Theorem 3.4.5, there is an augmenting
path with respect to M in G if and only if there is an augmenting path with
respect to M — B in G/B. Thus, we recursively look for an augmenting
path with respect to M — B in G/B. Once an augmenting path pp is found
in G/B, we can construct from pp an augmenting path p with respect to
M in G in time O(n), according to Corollary 3.4.6. Finally, suppose that
neither good cross-edge nor bad cross-edge is found in the modified breadth
first search given G and M. Since no bad cross-edges means no blossoms, by
Lemma 3.4.4, no good cross-edges implies no augmenting paths with respect
to the matching M in G.

GENERAL GRAPHS 95

This gives a complete procedure that constructs an augmenting path
when a matching M in a general graph G is given. We summarize this
procedure in Figure 3.11.

Lemma 3.4.7 The algorithm General Augment runs in time O(nm) on
a graph of n vertices and m edges.

PROOF. Step 3 is the modified breadth first search process that examines
each edge at most twice. Thus, the total running time spent on step 3 is
bounded by O(m).

If a good cross-edge is found in the search process, then by Lemma 3.4.1,
the corresponding augmenting path can be constructed in time O(n). Thus,
in this case, the algorithm returns an augmenting path with respect to M
in time O(m).

If a bad cross-edge is found in the search process, then by Lemma 3.4.2,
the corresponding blossom B can be constructed in time O(n). Now the
graph G/B and the matching M — B in G/B can be constructed in time
O(m). A recursive execution is then applied to the graph G/B and the
matching M — B. Note that the graph G/B has at most n — 2 vertices since
each blossom consists of at least 3 vertices. Now if an augmenting path ppg is
found in G/B, then by Corollary 3.4.6, an augmenting path p with respect
to M can be constructed from pp in time O(n). Therefore, if we let t(n)
be the running time of the algorithm General Augment on a graph of n
vertices and m edges, then we have the following recurrence relation:

t(n) < t(n—2)+ O(m)
which immediately gives t(n) = O(nm). I

Theorem 3.4.8 The GRAPH MATCHING problem on general graphs can be
solved in time O(n?m).

PrROOF. We apply the algorithm Maximum Matching in Figure 3.2 and
use the algorithm General Augment as a subroutine to find augmenting
paths. By Lemma 3.4.7, given a matching M in a graph G, and augmenting
path can be found in time O(nm). Since an augmenting path results in
a larger matching with one more edge, and there are no more than n/2
edges in a matching for a graph of n vertices, the while loop in step 2 of
the algorithm Maximum Matching is executed at most n/2 times. In
conclusion, the algorithm Maximum Matching runs in time (n?m) and
constructs a maximum matching for the given graph. [

MATCHING

Algorithm. General Augment
Input: a graph G and a matching M in G

1. for each vertex v do lev(v) = —1;
2. for each unmatched vertex v do Q + v; lev(v) = 0;
3. while no augmenting path is found and Q # () do
u 4 @
case 1. lev(u) is even
for each neighbor w of u do
subcase 1a. lev(w) = —1 then
dad(w) = u; lev(w) = lev(u) + 1; Q + w;
subcase 1b. [u,w] is a good cross-edge
construct the augmenting path p; goto step 5;
subcase lc. [u,w] is a bad cross-edge
construct the blossom B; goto step 6;
case 2. lev(u) is odd
let [u, w] € M;
subcase 2a. lev(w) = —1 then
dad(w) = u; lev(w) = lev(u) + 1; Q + w;
subcase 2b. [u,w] is a good cross-edge
construct the augmenting path p; goto step 5;
subcase 2c. [u,w] is a bad cross-edge
construct the blossom B; goto step 6;
4. {at this point, neither good nor bad cross-edge is found.}
return “no augmenting path”; stop.
5. {at this point, an augmenting path p has been found.}
return the augmenting path p; stop.
6. {at this point, a blossom B has been found.}
construct the graph G/B and the matching M — B;
recursively apply the algorithm to G/B and M — B
to look for an augmenting path in G/B;
if an augmenting path pp is found in G/B
then construct an augmenting path p in G from pp;
return the augmenting path p

else return “no augmenting path”.

Figure 3.11: Finding an augmenting path in a general graph

3.5. WEIGHTED MATCHING PROBLEMS 97

We should point out that O(n?m) is not the best upper bound for the
GRAPH MATCHING problem. In fact, a moderate change in the algorithm
General Augment gives an algorithm of running time O(n?) for the prob-
lem [45]. The basic idea for this change is that instead of actually shrinking
the blossoms, we keep track of all vertices in a blossom by “marking” them.
A careful bookkeeping technique shows that this can be done in time O(n)
per blossom. More careful and thorough techniques and analysis have been
developed. The best algorithms developed to date for the GRAPH MATCH-
ING problem on general graphs run in time O(y/nm) [95], thus matching the
best algorithm known for the problem on bipartite graphs.

3.5 Weighted matching problems

A natural extension of the GRAPH MATCHING problem is matchings on
weighted graphs. Here we measure a matching in term of its weight instead
of the number of edges in the matching. Let G be an undirected and weighted
graph in which the weight for each edge e is given by wt(e). Let M be a
matching in G. The weight of M is defined by wt(M) = > s wt(e). The
matching problem on weighted graphs is formally given as follows.

WEIGHTED MATCHING = (Ig, Sq, fq,optq)

Ig: the set of all undirected weighted graphs G

Sq: Sg(G) is the set of all matchings in the graph G
fo: fo(G, M) is the weight wt(M) of the matching M

optg: max

The WEIGHTED MATCHING problem on bipartite graphs is commonly
called the ASSIGNMENT problem, in which we have a group of people and a
set of jobs such that the weight of an edge [p, j] from a person p to a job j
represents the benefit of assigning person p to job j, and we are looking for
an assignment that maximizes the benefit.

Introducing weights in the matching problem makes the problem much
harder. In particular, neither must a maximum weighted matching have
the maximum number of edges nor must matchings of maximum number of
edges be maximum weighted. Therefore, Theorem 3.1.1 does not directly
apply. On the other hand, we will see in the rest of this section that the
concepts of augmenting paths, modified breadth first search, and blossoms
can still be carried over. Due to the space limit, we will only give a brief

98 MATCHING

introduction to the theory and algorithms for the WEIGHTED MATCHING
problem. For more thorough and detailed descriptions, readers are referred
to more specialized literature [87, 102, 112].

3.5.1 Theorems and algorithms

Without loss of generality, we can assume that the weighted graph G, which
is an instance of the WEIGHTED M ATCHING problem, has no edges of weight
less than or equal to 0. In fact, any matching M in G minus the edges of
weight not larger than 0 gives a matching in G whose weight is at least as
large as wt(M). Again we fix a weighted graph G, and let n and m be the
number of vertices and the number of edges in G, respectively.

Definition 3.5.1 For each k > 0 such that there is a matching of k edges
in the graph G, let My, be a matching of k edges in G such that wt(My) is

the mazimum over all matchings of k edges in G. If there is no matching of
k edges in G, then we define My = ().

Therefore, for some k, the matching M, is a maximum weighted match-
ing in the graph G. We firest characterize the index k such that My makes
a maximum weighted matching in G.

Lemma 3.5.1 If the index k satisfies wt(My) > wt(My_1) and wt(My) >
wt(My1), then My is a mazimum weighted matching in the graph G.

PROOF. Assume the opposite, that the matching M} is not a maximum
weighted matching in G. Let Mpmax be a maximum weighted matching in
G. Consider the graph Gy = My & Mpyax. As we explained in the proof for
Theorem 3.1.1, each vertex in the graph Gy has degree at most 2. Thus,
each connected component of G is either a simple path or a simple cycle,
and in each connected component of G, the number of edges in My, and the
number of edges in My, differ by at most 1.

Since wt(Mmax) > wit(Mjy), there must be one connected component Cjy
in the graph Gy such that

Z wt(e) < Z wt(e)

e€CoNMy e€CoNMmax

It is easy to verify that M’ = M, @ () is also a matching in G. Moreover, we
have wt(M') > wt(My). Now a contradiction is derived: (1) if Cy contains
the same number of edges in M} and in Mp,,y, then the matching M’ has

3.5. WEIGHTED MATCHING PROBLEMS 99

exactly k edges, contradicting the assumption that M} has the maximum
weight over all matchings of k£ edges in G; (2) if Cy contains one more edge
in My, than in M.y, then M’ is a matching of k£ — 1 edges, contradicting the
assumption that wt(My) > wt(My_1); and (3) if Cy contains one more edge
in Mpyax than in My, then M’ is a matching of k + 1 edges, contradicting
the assumption that wt(My) > wt(My,1). U

Therefore, the problem remaining is to find the matchings My, for & > 0.
The following theorem indicates how the matching My, can be constructed
from the matching Mj. For an augmenting path p with respect to the
matching My, we define the differential weight of p, denoted dw(p), to be

the difference 3-.c, s, wt(€) — X ccpnng, wE(e)-

Theorem 3.5.2 Let p be an augmenting path with respect to My, such that
dw(p) is the mazimum over all augmenting paths with respect to My. Then
M' = My, @ p is a matching of k + 1 edges in G such that wt(M') is the
mazimum over all matchings of k + 1 edges in G.

PROOF. Since there is at least one augmenting path with respect to
Mj,, the matching My,1 is not empty. Moreover, note that My @ p is a
matching of k£ + 1 edges in G whose weight is wt(My) + dw(p). Thus,
wt(My) + dw(p) < wt(Mg41).

Consider the graph Gy = M} @& My, in which each connected compo-
nent is either a simple path or a simple cycle. Moreover, in each connected
component in Gy, the number of edges in M and the number of edges in
Mj, 1 differ by at most 1.

We say that a connected component C of the graph Gg is “balanced”
if the number of edges in C' N My is equal to that in C' N M1, is “Mg-
dominating” if the number of edges in CN M}, is 1 more than that in CNMj4,
and is “Mj1-dominating” if the number of edges in CNMj, is 1 less than that
in CN M. Since the number of edges in the matching My is 1 more that
the number of edges in the matching My, the number of My ;-dominating
components is exactly one larger than the number of M-dominating com-
ponents in Go. We pair arbitrarily each Mg-dominating component with
a My 1-dominating component, leaving one My i-dominating component
unpaired.

For each balanced component Cjy in Gy, we must have dw(Cjy) = 0. In
fact, if dw(Cp) < 0, then My, 1 @ Cj is a matching of k + 1 edges that has a
weight larger than wt(My 1), contradicting the definition of the matching
My, and if dw(Cp) > 0, then My, & Cj is a matching of k edges that has
weight larger than wt(Mjy), contradicting the definition of the matching M.

100 MATCHING

Algorithm. Weighted Matching
Input: an undirected weighted graph G = (V, E)

Output: a maximum weighted matching M in G
1. Mo=0;k=0;
2. while there is an augumenting path w.r.t M; do
find an augmenting path p of maximum differential weight;
let My4+1 = My, @ p;
if wt(Mp) > wt(Mg41)
then stop: M}, is the maximum weighted matching
else k =k +1;

Figure 3.12: An algorithm constructing a maximum weighted matching

For each Mj-dominating component Cy that is paired with an My -
dominating component Cyiq, we first note that the number of edges in
My, N (Ck U Cgy1) is equal to the number of edges in My1 N (Ck U Ck1).
Now if dw(Cy)+dw(Ck1) < 0, then My 1 ®Cx®Cyy1 is a matching of k+1
edges that has weight larger than wt(Mjy1), contradicting the definition of
the matching My 1, and if dw(Cy) 4+ dw(Cgy1) > 0, then My & Cy @ Cy1 is
a matching of k£ edges that has weight larger than wt(Mj), contradicting the
definition of the matching My. Thus, we must have dw(Cy)+dw(Cg4y1) = 0.

Therefore, if we let Cs; be the only unpaired My i-dominating com-
ponent in Go, we must have Y e, dw(C) = dw(Cs). By the definition,
Yceg, Aw(C) = wt(Mgy1) — wt(My). Since C; is an augmenting path
with respect to My, by our choice of the augmenting path p, we have
dw(p) > dw(Cs). Therefore, wt(My) + dw(p) > wt(Mgy1). Combining
this with the result we obtained in the beginning of this proof, we conclude
that wt(My) + dw(p) = wt(My1) and that My @ p is a matching of k + 1
edges such that wt(My @ p) is the maximum over all matchings of k + 1
edges in G. [

Lemma 3.5.1 and Theorem 3.5.2 suggest the algorithm described in Fig-
ure 3.12 for solving the WEIGHTED MATCHING problem. Theorem 3.5.2
guarantees that the constructed matching Mj of k edges for each k has
the maximum weight over all matchings of k£ edges in G, and Lemma 3.5.1
ensures that when the algorithm stops, the matching M}, is the maximum
weighted matching in the graph G.

3.5. WEIGHTED MATCHING PROBLEMS 101

According to the algorithm Weighted Matching, the problem
WEIGHTED MATCHING is reduced to the problem of finding an augmenting
path of maximum differential weight. If the graph G is bipartite, then find-
ing an augmenting path of maximum differential weight can be reduced to
solving the SHORTEST PATH problem, which was given in Section 1.1 and
can be solved using the well-known Dijkstra’s algorithm [28]! However, find-
ing an augmenting path of maximum differential weight in a general graph
is, though still possible [34], much harder because of, not surprisingly, the
existence of the blossom structure.

A different approach has been adopted in the literature. The approach is
based on the duality theory of linear programming, more specifically on the
primal-dual method. Due to the space limit here, we are unable to give the
details of this approach. Readers are referred to the excellent discussion in
[87, 102, 112]. Instead, we state the best solution to this problem as follows.

Theorem 3.5.3 The WEIGHTED MATCHING problem on general weighted
graphs can be solved in time O(n?).

Theorem 3.5.3 is the best known bound for the WEIGHTED MATCHING
problem on general graphs. With more efficient data structures and more
careful manipulation on blossoms, an algorithm of time complexity

O(nmlogloglog,, 11 n + n?logn)

has been developed [46], which is much faster than the O(n?) time algorithm
when applied to sparse graphs with only O(n) edges.

3.5.2 Minimum perfect matchings

The WEIGHTED MATCHING problem has a number of interesting variations
that have nice applications in computational optimization. In this subsec-
tion, we discuss one of these variations, which will be used in our later
discussion.

Let M be a matching in a graph G. The matching M is perfect if every
vertex in G is matched. In other words, the matching M contains exactly
n/2 edges in G if G has n vertices. The MIN PERFECT MATCHING problem
is to look for a minimum weighted perfect matching in a given weighted
graph, formally defined as follows.

'Dijkstra’s algorithm solving the SHORTEST PATH problem is very similar to Prim’s
greedy algorithm PRIM presented in Section 1.3.1 for solving the MINIMUM SPANNING
TREE problem. Readers are encouraged to work on this algorithm without looking at the
reference.

102 MATCHING

MIN PERFECT MATCHING = (I, Sg, fq,optqg)

Ip: the set of all undirected weighted graphs G

Sg: S@(G) is the set of all perfect matchings in the graph G
fo: fo(G, M) is the weight wt(M) of the matching M

opty: min

Of course, not all graphs have perfect matchings. In particular, a graph
of odd number of vertices has no perfect matchings. Therefore, the MIN
PERFECT MATCHING problem is only defined on weighted graphs that have
perfect matchings. Since whether a given graph G has perfect matchings
can be detected in time O(y/nm) by applying the algorithm Maximum
Matching in Figure 3.2 to the graph G, regarded as an unweighted graph,
we always assume in the following discussion that the given graph G has
perfect matchings.

We show how the MIN PERFECT MATCHING problem is reduced to the
WEIGHTED MATCHING problem. Let G be an instance of the MIN PERFECT
MATCHING problem. For each edge e in G, let wit(e) be the weight of e in G.
We construct a new weighted graph G’ as follows. Let wy be the maximum
|wt(e)| over all edges e of G. The graph G' has the same vertex set and
edge set as G. For each edge e in G', the weight wt'(e) of e in G’ is equal to
wt'(e) = (m + n)wy — wt(e).

Lemma 3.5.4 Let M' be a mazimum weighted matching in the graph G'.
Then the same set of edges in M' constitutes a minimum perfect matching
in the graph G.

Proor. By our assumption, the graph G has perfect matchings. Thus,
the number n of vertices of G is an even number.

First we show that any imperfect matching in G’ has weight strictly less
than that of any perfect matching in G’. Let M; be an imperfect matching
in G’ and let M), be a perfect matching G'. We have

wt' (M) = Y wt'(e) = Y ((m+n)wo — wt(e))

e€M; ecM;
< Z (m+n+ 1wy
e€M;

< (g —1)(m+n+ Dwy

3.5. WEIGHTED MATCHING PROBLEMS 103

where the first inequality is because of wy > |wt(e)| for any edge e, and the

last inequality is because M; is imperfect thus contains at most 5 — 1 edges.
Also

wt'(M,) = > wt'(e)= Y ((m+n)wy — wit(e))

ec€Mp ec My

= Z ((m +n — 1wy + (wo — wt(e)))
e€ My

> Y (m+n—1uwg
ec€ M,

= g(m +n — 1wy
where the first inequality is because wy — wt(e) > 0 for all edges e. Since
Z(m+4+n—1) > (% —1)(m+n+1), we derive that the perfect matching M,
has weight strictly larger than the weight of the imperfect matching M;. In
consequence, every maximum weighted matching in the graph G’ must be a
perfect matching.
Now for any perfect matching M, in the graph G’ we have

wt(My) = 3 wi(e) = X ((m+n)uo — wi(e))

ec My e€ My
= Sm+njuo— Y wie)
ec My
n
= i(m + n)wo — wt(M,)

Thus, for any two perfect matchings M, and M, in G', wt'(M,) >
wt' (M) if and only if wt(M,) < wt(M}). In conclusion, the maximum
weighted matching M’ in the graph G’ must constitute a minimum weighted
perfect matching in the graph G. [

Combining Theorem 3.5.3 and Lemma 3.5.4, we obtain

Theorem 3.5.5 The MIN PERFECT MATCHING problem can be solved in
time O(n®).

104 MATCHING

Chapter 4

Linear Programming

Recall that a general instance of the LINEAR PROGRAMMING problem is
described as follows.

LINEAR PROGRAMMING

minimize ary+ -+ cepxy
subject to
a1z + a19T2 + ... + a1y > a1
ar1T1 + a9 + ... + Qrpxy > Qg
bi1z1 + bioxo + ... + b1z, < by
...... (4.1)
bs1x1 + bsoxo + ... + bgpxy < by
diiz1 + diozo + ... +dipzy, = di

dpzi +dppro + ... + dyxy = dy

where c¢;, aj;, aj, by, by, di;, and d; are all given real numbers,
for 1 <i<n, 1<j<r,1<k<s,and1 <1 <t; and z;,
1 <7 < n, are unknown variables.

The LINEAR PROGRAMMING problem is characterized, as the name implies,
by linear functions of the unknown variables: the objective function is linear
in the unknown variables, and the constraints are linear equalities or linear
inequalities in the unknown variables.

105

106 LINEAR PROGRAMMING

For many combinatorial optimization problems, the objective function
and the constraints on a solution to an input instance are linear, i.e., they
can be formulated by linear equalities and linear inequalities. Therefore,
optimal solutions for these combinatorial optimization problems can be de-
rived from optimal solutions for the corresponding instance in the LINEAR
PROGRAMMING problem. This is one of the main reasons why the LINEAR
PROGRAMMING problem receives so much attention.

For example, consider the MAXIMUM FLOW problem. Let G be an in-
stance of the MAXIMUM FLOW problem. Thus, G is a flow network. Without
loss of generality, we can assume that the vertices of G are named by the
integers 1, 2, ..., n, where 1 is the source and n is the sink. Each pair of
vertices ¢ and j in G is associated with an integer c;;, which is the capacity
of the edge [i,;] in G (if there is no edge from i to j, then ¢;; = 0). To
formulate the instance G of the MAXIMUM FLOW problem into an instance
of the LINEAR PROGRAMMING problem, we introduce n? unknown variables
fij» 1 <4,5 < n, where the variable f;; is for the amount of flow from vertex
1 to vertex j. By the definition of flow in a flow network, the flow value
fi; must satisfy the capacity constraint, the skew symmetry constraint, and
the flow conservation constraint. These constraints can be easily formulated
into linear relations:

capacity constraint: f;; <¢; foralll1<i,j<n
skew symmetry: fi; = —f;; foralll<i,j<n

flow conservation: Z;Ll fij=0 fori#1,n

Finally, the MAXIMUM FLOW problem is to maximize the flow value, which
by definition is given by f11+ fio+-- -+ fin- This is equivalent to minimizing
the value —f11 — fio — -+ — fin. Therefore, the instance G of the MAXI-
MUM FLOW problem has been formulated into an instance of the LINEAR
PROGRAMMING problem as follows.

minimize —f11 — fi2 — -+ — fin
subject to
fij < cij foralll1 <i,57<n
fij+1i=0 foralll1<i,j7<n
Z?:l fii =0 fori#£1,n

An efficient algorithm for the LINEAR PROGRAMMING problem implies
an efficient algorithm for the MAXiMUM FLOW problem.

BASIC CONCEPTS 107

In this chapter, we introduce the basic concepts and efficient algorithms
for the LINEAR PROGRAMMING problem. We start by introducing the basic
concepts and preliminaries for the LINEAR PROGRAMMING problem. An al-
gorithm, the “simplex method”, is then described. The simplex method is,
though not a polynomial time bounded algorithm, very fast for most prac-
tical instances of the LINEAR PROGRAMMING problem. We will also discuss
the idea of the dual LINEAR PROGRAMMING problem, which can be used
to solve the original LINEAR PROGRAMMING problem more efficiently than
by simply applying the simplex method to the original problem. Finally,
polynomial time algorithms for the LINEAR PROGRAMMING problem will
be briefly introduced.

We assume in this chapter the familiarity of the fundamentals of linear
algebra. In particular, we assume that the readers are familiar with the
definitions of vectors, matrices, linear dependency and linear independency,
and know how a system of linear equations can be solved. All these can be
found in any introductory book in linear algebra. Appendix C provides a
quick review for these concepts. To avoid confusions, we will use little bold
letters such as x and ¢ for vectors, and use capital bold letters such as A
and B for matricies. For a vector x and a real number ¢, we write x > ¢ if
all elements in x are larger than or equal to c.

4.1 Basic concepts

First note that in the constraints in a general instance in (4.1) of the LINEAR
PROGRAMMING problem, there is no strict inequalities. Mathematically, any
bounded set defined by linear equalities and non-strict linear inequalities is
a “compact set” in the Euclidean space, in which the objective function
can always achieve its optimal value, while strict linear inequalities define a
non-compact set in which the objective function may not be able to achieve
its optimal value. For example, consider the following instance:

minimize —x1 — o
subject to
T +x9+23<1
120, 12 2>0, 23>0

The set S defined by the constraints 1 + z9 + z3 < 1, 1 > 0, z9 > 0,
and z3 > 0 is certainly bounded. However, no vector (z1,z2,z3) in S can
make the objective function —z1 — x5 to achieve the minimum value: for any

108 LINEAR PROGRAMMING

€ > 0, we can find a vector (z1, z2,r3) in the set S that makes the objective
function —z1 — z2 to have value less than —1 4 € but no vector in the set S
can make the objective function —z; — z2 to have value less than or equal
to —1.

Now we show how a general instance in (4.1) of the LINEAR PROGRAM-
MING problem can be converted into a simpler form.

The standard form for the LINEAR PROGRAMMING problem is given in
the following format

minimize Ty +czo+ -+ cpzy
subject to
a11x1 + a19T9 + ... + a1pT, = by
ao1x1 + a92xo + ... + aonxy = by
...... (4.2)
aAm1Z1 + amaxo + ... + @mnTn = by,
1 >0, 2020, ..., £, >0

The general form in (4.1) of the LINEAR PROGRAMMING problem can
be converted into the standard form in (4.2) through the following steps.

1. Eliminating > inequalities

Each inequality a;121 + ajox2 + ... + ajnxy, > a; is replaced by the
equivalent inequality (—a;1)z1 + (—@ai2)z2 + ... + (—ain) Ty < (—a;).

2. Eliminating < inequalities

Each inequality bjiz1 + bjaz2 + ... + bjpz, < bj is replaced by the
equality bj1z1 +bjoxs +... +bjnxy, +y; = b;j by introducing a new slack
variable y; with the constraint y; > 0.

3. Eliminating unconstrained variables

For each variable z; such that the constraint x; > 0 is not present,
introduce two new variables u; and v; satisfying u; > 0 and v; > 0,
and replace the variable z; by u; — v;.

The above transformation rules are not strict. For example, the > in-
equalities can also be eliminated using a “surplus variable”. Moreover, some-
times a simple linear transformation may be more convenient and more ef-
fective than the above transformations. We illustrate these transformations

BASIC CONCEPTS 109

and other possible transformations by an example. Consider the instance in
(4.3) for the LINEAR PROGRAMMING problem.

minimize 2x1 + x9 — 3x3

subject to
21 —T9 — Tx3 > 5 (4.3)
229 —x3 =3
To > 2

We apply the first rule to convert the first constraint 2z; — zo — 723 > 5
into —2x1 4+ x3 + Tx3 < —5. Then we apply the second rule and introduce a
new slack variable x4 with constraint z4 > 0 to get an equality —2z; + z2 +
Txs + x4 = —H.

For the constraint z2 > 2, we could also convert it into an equality using
the first and second rules. However, we can also perform a simple linear
transformation as follows. Let zf, = z2 — 2 and replace in (4.3) the variable
x2 by xh+2. This combined with the transformations on the first constraint
will convert the instance (4.3) into the form

minimize 2z1 + o, — 33
subject to
=2z +2h+ Txg + x4 = =T (4.4)
2z —z3 = -1

zy >0, £4>0

Note that after the linear transformation zo = z%, + 2, the objective function
2z1 4 z2 — 3z3 should have become 2z + x5, — 323 + 2. However, minimizing
2z1 + xb, — 3xz3 + 2 is equivalent to minimizing 2z + z}, — 3z3.

Now we need to remove the unconstrained variables in the instance (4.4).
For the unconstrained variable 1, by the third rule, we introduce two new
variables) and z/ with constraints 2} > 0 and z{ > 0, and replace in (4.4)
z1 by x| — 2. We obtain

minimize 22 — 22! + xb, — 33
subject to
=2z + 22 + 2h 4+ Twg + 4 = =7 (4.5)
21"2 — T3 = -1

) >0, 2/ >0 25>0, 24 >0

110 LINEAR PROGRAMMING

The unconstrained variable z3 could also be eliminated using the same rule.
But it can also be eliminated using a simple linear transformation. For this,
we observe the constraint 22/, — z3 = —1 so z3 = 2z} + 1. Thus, replacing z3
in (4.5) by 2z, + 1, we obtain the following standard form for the LINEAR
PROGRAMMING problem.

minimize 2z — 2z — bah,
subject to
=22 + 22! + 152, + x4 = —14 (4.6)
) >0, 2/ >0 25>0 2, >0

It is easy to verify that if we solve the instance (4.6) and obtain an op-
timal solution (z},zY,z},x4), then we can construct an optimal solution
(1, 22,z3) for the instance (4.3), where 21 = x| — 2!, zo = z}, + 2, and
z3 = 2xh + 1.

Note that the transformations do not result in an instance whose size is
much larger than the original instance. In fact, to eliminate an inequality,
we need to introduce at most one new variable y plus a new constraint
y > 0, and to eliminate an unconstrained variable we need to introduce at
most two new variables u and v plus two new constraints v > 0 and v > 0.
Therefore, if the original instance consists of n variables and m constraints,
then the corresponding instance in the standard form consists of at most
2n + m variables and 2n + 2m constraints.

Therefore, without loss of generality, we can always assume that a given
instance of the LINEAR PROGRAMMING problem is in the standard form.
Using our 4-tuple formulation, the LINEAR PROGRAMMING problem can
now be formulated as follows.

LINEAR PROGRAMMING = (Ig, Sg, fg, optg), where

e Iy is the set of triples (b, ¢, A), where b is an m-
dimensional vector of real numbers, ¢ is an n-dimensional
vector of real numbers, and A is an m X n matrix of real
numbers, for some integers n and m;

e for an instance a = (b, ¢, A) in I, the solution set Sg(«)
consists of the set of n-dimensional vectors x that satisfy
the constraints Ax = b and x > 0;

e for a given input instance a € I and a solution x € Sg(«),
the objective function value is defined to be the inner prod-
uct ¢?'x of the vectors ¢ and x;

BASIC CONCEPTS 111

e optg is min.

We make a further assumption that the m X n matrix A in an instance of
the LINEAR PROGRAMMING problem has its m rows linearly independent,
which also implies that m < n. This assumption can be justified as follows.
If the m rows of the matrix A are not linearly independent, then either the
constraint Ax = b is contradictory, in which case the instance obviously
has no solution, or there are redundancy in the constraint. The redundancy
in the constraint can be eliminated using standard linear algebra techniques
such as the well-known Gaussian Elimination algorithm.

Under these assumptions, we can assume that there are m columns in
the matrix A that are linearly independent. Without loss of generality,
suppose that the first m columns of A are linearly independent and let B be
the nonsingular m x m submatrix of A such that B consists of the first m
columns of A. Let x5 = (21, %2,...,Zn)T be the m-dimensional vector that
consists of the first 7m unknown variables in the vector x. Since the matrix
B is nonsingular, the equation

BXB — b
n—m
has a unique solution x% = B 'b. If we let x* = (x%,0,...,0), then obvi-
ously, x° is a solution to the system Ax = b. If the vector x* happens to
also satisfy the constraint x° > 0, then x° is a solution to the instance of
the LINEAR PROGRAMMING problem

minimize c'x
subject to (4.7)
Ax=Db and x>0

This introduces a very important class of solutions to an instance of the
LINEAR PROGRAMMING problem, formally defined as follows.

Definition 4.1.1 A vector x° = (29,29,...,2%)7 satisfying Ax’ = b and
x¥ > 0 is a basic solution if there are m indices 1 < i1 < iy < ... < iy <N
such that the i1th, ésth, ..., ¢,th columns of the matrix A are linearly
independent, and z? = 0 for all i & {i1,...,%m}. These m columns of the
matrix A will be called the basic columns for x°.

Note that we did not exclude the possibility that a:?j = (for some index

i; in the basic solution x°. If any element :1:?], = 0 in the above basic solution

0

x0, the basic solution x° is called a degenerate basic solution.

112 LINEAR PROGRAMMING

The following theorem is fundamental in the study of the LINEAR PRO-
GRAMMING problem.

Theorem 4.1.1 Let a = (b, ¢, A) be an instance for the LINEAR PRO-
GRAMMING problem. If the solution set Sg(a) is not empty, then Sg(a)
contains a basic solution. Moreover, if the objective function ¢’ x achieves
the minimum value at a vector x° in Sg(c), then there is a basic solution

x) in Sg(a) such that ¢Tx) = eTx".

PROOF. Suppose that Sg(a) # 0. Let x, = (z1, 2, ...,7,)T be a solution
to the instance o such that x; has the maximum number of 0 elements over
all solutions in Sg(a). We show that x; must be a basic solution.

For convenience, we suppose that the first p elements 1, z9, ..., 7, in
xp are larger than 0 and all other elements in x; are 0. Let the n column
vectors of the matrix A be aj, ag, ..., a,. Then the equality Ax, = b can
be written as z1a; 4+ z0as + -+ + zpa, = b. Since zp41 = -+ z, = 0, this

equality is equivalent to

zria; + T8z + -+ Tpa, = b (4.8)
If x; is not a basic solution, then the column vectors ay, ..., a, are linearly
dependent. Thus, there are p real numbers ¥y, ..., y, such that at least one

1y; is positive and that
yiar +ygaz + -+ ypa, =0 (4.9)

where 0 denotes the m-dimensional vector (0,0,...,0)”. Let e be a constant.
Subtract e times the equality (4.9) from the equality (4.8), we get

(5(21 — eyl)al + (.’122 — eyg)ag + o+ (.’L'p - eyp)ap =b (4.10)

Equality (4.10) holds for any constant €. Since at least one y; is positive,
the value ¢ = min{z;/y; | yi > 0} is well-defined and ¢y > 0 (note that
z; > 0 for all 1 <4 < p). Again for convenience, suppose that y, > 0 and
€0 = Tp/yp. With this choice of €y, we have z; — eqy; > 0 for all 1 <7 < p.
Thus, in equality (4.10), if we let z; = z; — egy; for all 1 < i < p, we will get

z1a1 + zag +---+2p_1ap_1 = b

and
2120, 2020, ..., 2120

BASIC CONCEPTS 113

Now if we let z = (21,22, ...,2y-1,0,0,...,0)T be the n-dimensional vector
with the last n — p + 1 elements all equal to 0, we will get

Az=Db and z>0

Thus, z is a solution to the instance a and z has at least n — p + 1 elements
equal to 0. However, this contradicts our assumption that the vector x; is a
solution to the instance a with the maximum number of 0 elements over all
solutions to «. This contradiction shows that the vector x; must be a basic
solution to a.

This proves that if Sg(«) is not empty, then Sg(«) contains at least one
basic solution.

Now suppose that there is a solution x° in Sg() such that ¢Tx? is
the minimum over all solutions in Sg(a). We pick from Sg(a) a solution
x) = (29,...,20) such that ¢"'x) = ¢'x? and x) has the maximum number
of 0 elements over all solutions x in Sg(«) satisfying ¢”x = ¢Tx?. We show
that xg is a basic solution.

As we proceeded before, we assume that the first p elements in xg are
positive and all other elements in x{ are 0. If x) is not a basic solution, then
we can find p real numbers yi, ..., y, in which at least one y; is positive
such that

(29 —ey)a; + (x5 — eyp)ag +--- + (:1:?, —eyp)a, =b

for any constant e. Now if we let y = (yl,yg,...,yp,O,...,O)T be the n-
dimensional vector with the last n — p elements equal to 0, then A (x) — ey)
= b for any €. Since z; > 0 for 1 <7 <pand z; = y; = 0 for j > p, we have
x) — ey > 0 for small enough (positive or negative) e. Thus, for any small
enough €, z, = xg — ey > 0 is a solution to the instance a. Now consider
the objective function value c’'z.. We have

clze = cTxy) —ecly

We claim that we must have ¢’y = 0. In fact, if ¢’y # 0, then pick a
proper small €, we will have ec”'y > 0. But this implies that the value ¢z, =
c'x)—ec’y is smaller than ¢’ x), and z, is a solution in Sg (), contradicting
our assumption that xg minimizes the value ¢’x over all solutions x in
So(a).

Thus, we must have ¢’y = 0. In consequence, c'z, = chg for any
€. Now if we let ¢ = min{z;/y; | y; > 0}, and let zp = x) — oy, then we

have c'zg = chg = ¢c¢?'x% Azy = b, zg > 0, and 2 has at least n —p+ 1

T

114 LINEAR PROGRAMMING

elements equal to 0. However, this contradicts our assumption that xg isa
solution in Sg(c) with the maximum number of 0 elements over all solutions
x satisfying ¢Ix = ¢”x°. This contradiction shows that the vector x) must
be a basic solution.

This completes the proof of the theorem. [

Theorem 4.1.1 reduces the problem of finding an optimal solution for an
instance of the LINEAR PROGRAMMING problem to the problem of finding
an optimal basic solution for the instance. According to the theorem, if the
instance has an optimal solution, then the instance must have an optimal
solution that is a basic solution. Note that in general there are infinitely
many solutions to a given instance while the number of basic solutions is
always finite — it is bounded by the number of ways of choosing m columns
from the n columns of the matrix A. Moreover, all these basic solutions can
be constructed systematically: pick every m columns from the matrix A,
check if they are linearly independent. In case the m columns are linearly
independent, a unique m-dimensional vector x = B™1b can be constructed
using standard linear algebra techniques, where B is the submatrix con-
sisting of the m columns of A. Now if this vector x also satisfies x > 0,
then we can expand x into an n-dimensional vector xg by inserting properly
n —m 0’s. The vector x(is then the basic solution with these m linearly
independent columns as basic columns.

Algorithmically, however, there can be still too many basic solutions
for us to search for the optimal one — the number of ways of choosing m
columns from the n columns of the matrix A is (), which is of order ©(n™).
In the next section, we introduce the simplex method, which provides a
more effective way to search for an optimal basic solution among all basic
solutions.

Theorem 4.1.1 has an interesting interpretation from the view of geom-
etry. Given an instance « of the LINEAR PROGRAMMING problem, each
solution x to a can be regarded as a point in the n-dimensional Euclidean
space £". Thus, the solution set Sg(a) of « is a subset in the Euclidean
space £". In fact, Sg(e) is a convez set in E™ in the sense that for any two
points x and y in Sg(c), the entire line segment connecting x and y is also
in Sg(a). An example of convex sets in 3-dimensional Euclidean space &3
is a convex polyhedron. An eztreme point in a convex set S is a point that
is not an interior point of any line segment in S. For example, each vertex
in a convex polyhedron P in £ is an extreme point of P. It can be formally
proved that the basic solutions in Sg(«) correspond exactly to the extreme
points in Sg(c). From this point of review, Theorem 4.1.1 claims that if

SIMPLEX METHOD 115

Sg(a) is not empty then Sg(a) has at least one extreme point, and that if
a point in Sg(«) achieves the optimal objective function value, then some
extreme point in Sg(c) should also achieve the optimal objective function
value.

4.2 The simplex method

Theorem 4.1.1 claims that in order to solve the LINEAR PROGRAMMING
problem, we only need to concentrate on basic solutions. This observation
motivates the classical simpler method. FEssentially, the simplex method
starts with a basic solution, and repeatedly moves from a basic solution to
a better basic solution until the optimal basic solution is achieved. Three
immediate questions are suggested by this approach:

1. How do we find the first basic solution?

2. How do we move from one basic solution to a better basic solution?
and

3. How do we realize that an optimal basic solution has been achieved?

We first discuss the solutions to the second and the third questions. A
solution to the first question can be easily obtained when the solutions to
the second and the third are available.

Many arguments in the LINEAR PROGRAMMING problem are substan-
tially simplified upon the introduction of the following assumption.

Nondegeneracy Assumption. For an instance @ = (b, ¢, A)
of the LINEAR PROGRAMMING problem, we assume that all basic
solutions to « are nondegenerate.

This assumption is invoked throughout our development of the simplex
method, since when it does not hold the simplex method can break down if
it is not suitably amended. This assumption, however, should be regarded
as one made primarily for convenience, since all arguments can be extended
to include degeneracy, and the simplex method itself can be easily modified
to account for it. After the whole system of methods is established, we will
mention briefly how the situation of degeneracy is handled.

In the following discussion, we will fix an instance a = (b, ¢, A) of the
LINEAR PROGRAMMING problem, where b is an m-dimensional vector, ¢ is

116 LINEAR PROGRAMMING

an n-dimensional vector, m < n, and A is an m X n matrix whose m rows
are linearly independent. Let the n column vectors of the matrix A be aj,
as, ..., ap.

How to move to a neighbor basic solution

Let x be a basic solution to the instance a = (b, ¢, A) such that the i;th,
ioth, ..., i, th elements in x are positive and all other elements in x are
0. Let x’ be another basic solution to « such that the 4{th, i5th, ..., i th
elements in x' are positive and all other elements in x’ are 0. The basic
solution x’ is a neighbor basic solution to x if the index sets {t1,...,t,} and
{t},...,t.} have m — 1 indices in common. For a give basic solution x, the
simplex method looks at neighbor basic solutions to x and tries to find one
that is better than the current basic solution x.

For the convenience of our discussion, we will suppose that the basic
solution x has the first m elements being positive:

x=(x1,.-.,Zm,0,...,0) (4.11)

Since x is a basic solution to the instance @ = (b, ¢, A), we have

ri1a] +ToXo + -+ Tpma, = b (4.12)
By the definition, the m m-dimensional vectors ai, ..., a,, are linearly
independent. Therefore, every column vector a; of the matrix A can be
represented as a linear combination of the vectors ay, ..., ay:
a; = Y1421 + Y2482 + - +Ymgam for ¢g=1,....n (4.13)
or
Y1421 + Y2482 + - - + Ymg@m — 8 =0 (4.14)

where 0 is the m-dimensional vector with all elements equal to 0. Let € be
a constant. Substract e times the equality (4.14) from the equality (4.12),

(z1 — eyig)ar + (2 — eyzq)as + - - + (T — €Ymg)am +€ag =b (4.15)

The equality (4.15) holds for all constant e. In particular, when € = 0, it
corresponds to the basic solution x and for € being a small positive number,
it corresponds to a non-basic solution (note that by the Nondegeneracy
Assumption, z; > 0 for 1 < 7 < m). Now if we let € be increased from
0, then the coefficient of the vector a,; in the equality (4.15) is increased,
and the coefficients of the other vectors a;, i # ¢, in the equality (4.15) are

SIMPLEX METHOD 117

either increased (when y;; < 0), unchanged (when y;, = 0), or decreased
(when y;q > 0). Therefore, if there is a positive y;4, then we can let € be the
smallest positive number that makes z, — eypq = 0 for some p, 1 < p < m.
This e corresponds to the value

€0 = ZTp/Ypqg = mMin{z;/yiq | yig >0 and 1 <i < m}

Note that with this value €, all coefficients in the equality (4.15) are non-
negative, the coeflicient of a, is positive, and the coefficient of a, becomes
0. Therefore, in this case, the vector
x' = (z1— €0Ylgs--->Tp—1 — €0Yp—1,¢: 0 Tp+1 — €0Yp+1,g5-- >

ey T — €0Ymg,0,-..,0,€,0,...,0) (4.16)

satisfies A x' = b and x’ > 0, and has at most m nonzero elements, where
the element ¢y in x’ is at the gth position. These m possibly nonzero elements
in x’ correspond to the m columns ay, ..., a,_1, apy1, ..., &y, a4 of the
matrix A. By our assumption y,, > 0, thus by equality (4.14), we have

ap = (—yig/Ypg)ar + -+ (—Up-1,4/Ypg)8p-1 + (—Up+1,4/Ypg)Bp+1 +
+ -+ (—Yma/Ypg)am + (1/ypg)ag (4.17)
That is, the vector a, can be represented by a linear combination of the
vectors ai, ..., ap 1, apy1, ---, Ay, 8. Since the vectors a;, ag, ..., a,,
are linearly independent, Equality (4.17) implies that the vectors ai, ...,
ap_1, Apt1, ---, &y, 84 are linearly independent (see Appendix C). Hence,
the vector x’ is in fact a basic solution to the instance o = (b, ¢, A).

Moreover, x’ is a neighbor basic solution to the basic solution x.

Let us consider how each column vector a; of the matrix A is represented
by a linear combination of this new group of linearly independent vectors
ai, ..., a1, Apy1, -- -, Ay, ag. By equality (4.13), we have

a; = yriar + Y2382 + -+ + Ymi@m (4.18)

Replace a,, in (4.18) by the expression in (4.17) and reorganize the equality,
we get

a; = (Y1 — YpiYig/Ypg)ar + -+ Yp-1 — YpiYp—1,q/Ypq)Ap-1
+(ypi/ypq)aq + (yp—|—1,i - ypiyp+1,q/ypq)ap+1 + (4.19)
++ (ymi - ypiqu/ypq)am

118 LINEAR PROGRAMMING

Thus, the column a; replaces the column a, and becomes the pth basic
column for the basic solution.

The above transformation from the basic solution x to the neighbor
basic solution x’ can be conveniently managed in the form of a tableau.

For the basic solution x = (z1,...,Zm,0,...,0), and suppose that the last
n —m columns a;, m + 1 < g < n, of the matrix A are given by the linear
combinations of the columns a;, as, ..., a, in equality (4.13), then the

tableau corresponding to the basic solution x is given as

a ceeoap st ap Am+1 ag an,
1 ... O DR O y17m+1 ... qu DR yln l‘l
O " 1 " O yp’m+1 LR ypq " ypn "L.p
0 0 1 Ymym+1 “ Ymg ** Ymn | Tm

In order to move from the basic solution x to the neighbor basic solution
x' by replacing the column a, by the column a, (assume that y,, > 0 and
Tp/Ypq is the minimum z;/y;q over all ¢ such that 1 < i < m and y;q > 0),
we only need to perform the following row transformations on the tableau:
(1) divide the pth row of the tableau by yp,; and (2) for each row j, j # p,
subtract y;, times the pth row from the jth row. After these transformations,
the tableau becomes

a; ap an, am+1 aq a,
/! ! ! !/
1 e ylp e 0 yl’m+1 e O e yln :1}1
! ! !/ !/
O ypp 0 yp,m+1 1 ypn l-p
! ! ! !
O e ymp e 1 ym,m+1 e O e ymn ‘Tm

Thus, the gth column in the tableau, which corresponds to column a4,
now becomes a vector whose pth element is 1 and all other elements are 0.
Consider the pth column a, in the tableau. We have

y;,p =1/ypq (4.20)

and
y;.p = —yjq/ypq for 1<i<m and j#p (4.21)

SIMPLEX METHOD 119

By equality (4.17), we get
a, = yipal + -+ y;)_]_’pap—l + y;paq + y;7+1,pap+1 tot y;npam

Therefore, the pth column in the new tableau gives exactly the coefficients of
the linear combination for the column a, in terms of the new basic columns
ai, ..., dp-1, g, Ap41, ---, Am-

For the ith column a; in the tableau, where m + 1 < 4 < n and 7 # gq,
we have

y;n = ypi/ypq (4.22)

and
Yii = Yji — YiqUpi/Upg for 1< j<m and j#p (4.23)
By eqality (4.19), the sth column in the tableau gives exactly the coefficients
of the linear combination for the column a; in terms of the new basic columns
ai, ..., dp—1, g, Ap41, ---, Am,-
Finally, let us consider the last column in the tableau. We have

r_ _
Ly = Tp/Ypg = €0

and

:c; =T; — YjqTp/Upg = Tj — €0Yjq for 1 <j<m and j#p

Thus, the last column of the tableau gives exactly the values for the new
basic solution x'.

Therefore, the row transformations performed on the tableau for the
basic solution x result in the tableau for the new basic solution x'.

We should point out that in the above discussion, the basic columns for a
basic solution are not ordered by their indices. Instead, they are ordered by
the positions of the element 1 in the corresponding columns in the tableau.
For example, the column a, becomes the pth basic column because in the
gth column of the new tableau, the pth element is 1 and all other elements
are (0. Hence, the pth row in the new tableau corresponds to the coefficients
for the column ay, i.e., y;n- is the coefficient of a; in the linear combination
for a; in terms of ay, ..., a, 1, 8, ap41, ..., &y, and zj, is the value of the
gth element in the basic solution x’.

In general case, suppose that we have a basic solution x in which the
11th, igth, ..., i, th elements z;,, z;,, ..., z;,, are positive, and the tableau
T for x such that (1) for each j, 1 < j < m, the ijth column of 7 has
the jth element equal to 1 and all other elements equal to 0; (2) for each j,

120 LINEAR PROGRAMMING

1 < j < m, the jth element in the last column of 7 is z;;; and (3) for each
i, 1 <4 < n, the ith column of T is (y1i,y2i,---,Yms)" if the ith column a;
of the matrix A is represented by the linear combination of the columns a;, ,
Qj,, ..., Q;,, as

a; = Y1385 + Y248, + - + YmiQi,,

In order to replace the column a;, in the basic solution x by a new column a,
to obtain a new basic solution x’, we first require that the element y,, in the
gth column of the tableau 7 be positive, and that z,/yp, be the minimum
over all z;/y;, with y;, > 0. With these conditions satisfied, perform the
following row transformation on the tableau 7: (1) divide the pth row by
Ypg; and (2) for each j, 1 < j < m and j # p, subtract y;, times the pth
row from the jth row. The resulting tableau by these row transformations
is exactly the tableau for the new basic solution x’ obtained by adding the
gth column and deleting the 7,th column from the basic solution x.

Example 4.2.1 Consider the following instance a = (b, ¢, A) of the
LINEAR PROGRAMMING problem

minimize Te
subject to 3z + dxo +x3 =24
4x1 + 229 + T4 = 16
T1+ 29 — x5+ 26 = 3 (4.24)

L1,T2,L3,T4,L5,L6 2 0

Let the six column vectors of the matrix A be a;, as, a3, a4, a5, ag. The
vector x= (0,0,24,16,0,3) is obviously a basic solution to the instance «
with the basic columns a3, a4, and ag. The other columns of A can be
represented by linear combinations of the columns a3, as, and ag as follows.

a; = 3az +4a, + ag
ap = bagz + 2a4 + ag

as — —3ag

Thus, the tableau for the basic solution x is

a; QA2 as au as a
3 5 1 0 0 0 | 24
4 2 0 1 0 016
11 0 0 -1 1

[=>)

SIMPLEX METHOD 121

It should not be surprising that the tableau for the basic solution x
consists of the columns of the matrix A plus the vecter b. This is because
that the three columns a3, a4, and ag are three linearly independent unit
vectors in the 3-dimensional Euclidean space £3.

Now suppose that we want to construct a new basic solution by replacing
a column for the basic solution x by the second column as of the matrix
A. All elements in the second column of the tableau are positive. Thus, we
only need to check the ratios. We have

xl/y12:24/5:4.8 $2/y22:16/2:8 :1:3/y32:3/1:3

Thus, we will replace the column ag by the column a; (note that the 3rd
row of the tableau corresponds to the 3rd basic column for x, which is ag).
Dividing the third row of the tableau by w33 does not change the tableau
since y3o = 1. Then we subtract from the second row by 2 times the third
row, and subtract from the first row by 5 times the third row. We obtain
the final tableau

a; a2 a3 a4 a3 ag
-2 0 1 0 5 -5 9
2 0 0 1 2 -2 110
1 1 0 0 -1 1 3

The new basic solution x’ corresponds to the columns as, as, and as
(again note that though a, has the smallest index, it is the 3rd basic col-
umn for x’). The value of x' can be read directly from the last column of
the tableau, which is x’ = (0,3,9,10,0,0). The coefficients of the linear
combinations of the columns aj, a5, and ag in terms of the columns as, ag,
and a4 can also read directly from the tableau:

a; = —2a3 + 2a4 + ap = as — 2a3 + 2ay
ag = 533 +2a4 —ag = —ag +5a3 +2a4
ag = —bag — 2a4 + as = as — bag — 2ay

All these can be verified easily in the original instance « = (b, ¢, A).

How to move to a better neighbor basic solution

We have described how the basic solution x = (z1,...,2Z,0,...,0) for
the instance @ = (b, ¢, A) of the LINEAR PROGRAMMING problem can be

122 LINEAR PROGRAMMING

converted to a neighbor basic solution

!

X = (T1—€Yigr--->Tp—1 — €0Yp—1,¢-0,Tp11 — €Ypr1,g-- -5
oy T —EOqu,O,...,0,60,0,...,0)

by replacing the column a,, by the column a,, where y,, > 0 and €y = z,/ypq
is the minimum over all z;/y;q with y;, > 0. Since we want to minimize the
value of the objective function ¢’x, we would like to have x’ to give a smaller
objective function value. Consider the objective function values on these two
basic solutions:

c'x =ciz1 +caza + - + cmam

and

c'x = ci(z1 —€yiq) + -+ cp1(Tp—1 — €0Yp—1,4) +

+Cp+1('77p+1 - 6pr-l-l,q) +- 4+ Cm(mm - 6Oqu) + cq€0

= ZCJ% — ¢pTp + €oc anyyq + €0CpYpq
j=1 j=1

Since €y = xp/ypq, We have €ycpypq = cpxp. Thus, the last equality gives
cI'x' =cl'x+ eolc Z c]y]q

Thus, the basic solution x' gives a better (i.e., smaller) objective function
value ¢”x' than ¢’x if and only if e(c; — Y7L, ¢jy;9) < 0. This thus
gives us a guldehne for choosing a column to construct a better neighbor
basic solution. The constant ¢, — Z;'Ll ¢j¥Yjq Plays such a central role in the
development of the simplex method, it is convenient to introduce somewhat
abbreviated notation for it. Denote by ry the constant c¢; — 327" ¢jy;q for
1 < ¢ < n, and call them the reduced cost coefficients. The above discussion
gives us the following lemma.

Lemma 4.2.1 Let x and x' be the basic solutions as given above. The basic
solution x' gives a better (i.e., smaller) objective function value ¢’ x' than
cI'x if and only if the reduced cost coefficient

Tq=Cq— Z CiYjq

1s less than 0.

SIMPLEX METHOD 123

al e ap e am am+1 e aq e an

1 0 0 yl’m+1 . qu Yin 1
O 1 O yp,m+1 . ypq ypn :L-p
0 0 1 ym7m+1 I qu UYmn Tm
0 0 O lr-m_l_]_ P qu Tn 20

Figure 4.1: The general tableau format for the basic solution x

The nice thing is that the reduced cost coefficients r; as well as the
objective function value ¢I'x can also be made a row in the tableau for the
basic solution x and calculated by formal row transformations of the tableau.
For this, we create a new row, the (m + 1)st row, in the tableau so that the
element corresponding to the vector a; in this row is r; (note that by the
formula if 1 < i < m then r; = 0), and the element in the last column of this
row is the value zp = —c’'x. The new tableau format is given in Figure 4.1.

Now suppose that we replace the basic column a,, for the basic solution
x by the column a, to construct the basic solution x’. Then in addition to
the row transformations described before to obtain the coefficients yj; and
x', we also (after dividing the pth two by yp,) subtract r, times the pth row
from the (m+ 1)st row. We verify that this row transformation converts the
(m 4+ 1)st row to give exactly the reduced cost coefficients and the objective
function value for the new basic solution x'.

By the above described procedure, the new value r; of the ith element
in the (m 4+ 1)st row in the tableau is

ri o= Ti— TqYpi/ Ypq
m m
= (e —Y_ciyii) — (g — D ¢iYig)Ypi/ Ypq
j=1 j=1

m m
= G~ Z ¢jYji — CqYpi/Ypq + Z CjYjqYpi/Ypq
Jj=1 7=1

m
= G- Z ¢j(Yji — YjqYpi/Ypa) — Cq¥pi/Ypq
=1

124 LINEAR PROGRAMMING
By equalities (4.22) and (4.23), and note y,; = Ypi — Ypq¥pi/Ypq = 0, we get

m
ro_) ol !
r, = G— Z CiY5i — Cq¥pi
j=1

= ¢ — (Y1 + -+ po1Yp_1; T Cpi1Ypi1 T CmYmi T CqYpi)

Therefore, the value 7} is exactly the reduced cost coefficient for the column
a; in the new basic solution x’.

Consider the new value z{ in the last column of the (m + 1)st row. By
the procedure, the new value is equal to

!
Zy = 20— qup/ypq
m
= —c'x— (cq — Z CjYiq)Tp/ Ypq
j=1

m m
= - Z ¢jTj+ Z ¢i%iqTp/Ypq — Ca%p/Ypq
j=1 j=1
Let €9 = ,/ypq and note that z, — eoyp, = 0, we get

m

m
A s Ui —
zg = —E c]mj—i-z Cj€0Yjq — Cq€0
j=1 J=1

m
= —(D_ ¢j(m; — eoyjq) + cq€0)
=1

= —(ca(z1 —€oyig) +-- + p1(Tp-1 — €Yp-1,4) +
+ep+1(Tp+1 — €0Yp+1,g) +*** + Cm(Tm — €0Ymq) + cq€0)
According to equality (4.16), 2} gives exactly the value —c’x’
Therefore, after the row transformations of the tableau, the (m+1)st row
of the tableau gives exactly the reduced cost coefficients and the objective
function value for the new basic solution x'.

Example 4.2.2. Let us reconsider the instance « = (b, ¢, A) of the
LINEAR PROGRAMMING problem given in Example 4.2.1.
minimize Tg
subject to 3z1 + bxo + 3 =24
41 + 229 + 14 = 16
T1+ T2 — x5+ 26 =3

T1,%2,T3,T4,T5,T6 Z 0

SIMPLEX METHOD 125

Algorithm. TableauMove(T,p,q)
Input: an (m+ 1) x (n+1) tableau 7T,
1<p<m,1<q<n,Tlpqa #0

L. ypg = Tlp, ql;
fori=1ton+1do TIp,i =TI[p,/Ypq;
2. for(1<j<m+1)and (j#p)do
Yia = Tl 4l;
fori=1lton+1do Tl =Tl - Tloil * s

Figure 4.2: Tableau transformation

The extended tableau for the basic solution x= (0,0, 24, 16,0, 3), which has
an objective function value 3, is as follows.

ai ag az a4 as ag
3 5 1 0 0 0] 24
0O 1 0 016
1 1 0O 0 -1 1 3
-1 -1 0 O 1 0] -3

If we replace the column ag by the column as (note 7o < 0), then after
the row transformations, we obtain the tableau

a; a2 a3 a4 a3 ag

-2 0 1 0 5 -5 9
2 0 0 1 2 -2 110
1 1 0 0 -1 1 3
0 0 0 0 0 1 0

Thus, we obtained an improved basic solution x' = (0, 3,9,10,0,0) that
has an objective function value 0.

We summarize the above discussion on tableau transformations into the
algorithm given in Figure 4.2. Thus, suppose that 7 is the tableau for the
basic solution x with 7[m + 1,q] < 0 and let p be the index such that
T [p,q] > 0 and the ratio T[p,n + 1]/7T [p, q| is the minimum over all ratios
Tlj,n + 1)/T[j,q] with T[j,q] > 0, then according to Lemma 4.2.1, the
algorithm TableauMove(T,p,q) will result in the tableau for a neighbor

126 LINEAR PROGRAMMING

basic solution x’, by replacing the pth basic column for x by the gth column,
such that ¢’'x’' < c’'x.

When an optimal solution is achieved

Suppose that we have the basic solution x = (z1,...,Zn,0,...,0) and the
tableau 7 in Figure 4.1 for x. By Lemma 4.2.1, if there is a column ¢ in T
such that 4, < 0 and there is a positive element 1,4 in the gth column, then
we can perform the row transformations to obtain a better basic solution
x' with ¢”'x/, thus achieving an improvement. What if no such a column ¢
exists in the tableau?

If no such a column exists in the tableau, then either we have r4, > 0
for all ¢, 1 < g < n, or we have r; < 0 for some g but y,, < 0 for all p,
1 < p < m. We consider these two cases separately below.

CASE 1. all values ry > 0.

We prove that in this case, the basic solution x is an optimal solution.

Let x' = (2, 5,...,2]) be any solution to the instance o = (b, ¢, A).
Thus, we have 2} > 0, 1 <7 < n, and

x'lal + x'2a2 + -+ xﬁlan =b (425)
Since x = (z1,...,Zm,0,...,0) is a basic solution, each column a; of A
can be represented by a linear combination of aj, as, ..., a;:

m
a; =Y yia, m+1<i<n (4.26)

Replace each a; in (4.25), m + 1 < i < n, by the equality (4.26), we
obtain

m
/ / ’
Tiay + -+ Tpa, o+ Tm+1 § :yj,m—|—1aj+
j=1

m m
! !
+ Tp0 D Yimi2dj+ -+ T Y yina; = b
i=1 i=1

Regrouping the terms gives

.’El + Z th a; + .’E2 + Z ZyQZ as+
i=m-+1 i= m—|—1

+ - (z), + Z TiYmi)am = b (4.27)
i=m+1

SIMPLEX METHOD 127

Since x = (z1,...,%m,0,...,0) is a basic solution, we also have
zia; +Toa2 + - +Tpa, =b (4.28)
Compare equalities (4.27) and (4.28). Since the columns ay,...,a,, are
linearly independent, the vector b has a unique representation in terms of
the linear combination of ay,...,a,,. Thus, we must have

n
/! !
Ty = T+ E ;Y14
i=m-+1

n
! !
T2 = ZTo+ Z ;Y2

i=m+1
/ !
Ty = Ty, + Z L;Ymi
1=m-+1
Bringing these values for z1, s, ..., Z,, to the inner product ¢’'x, we get

n
T _
cC X = ZCJ.Z‘] ZC]I]

1

<.
Il

[
Ms

cjac + Z ,y]z

j=1 i=m-+1
m

= D e +Z Z ¢jTiY;i
j=1 j=li=m+1

Cﬂ + Z %(Zijjz')

i=m+1 j=1

m
¢zl — Z cizh + Z i ciyii)

Il
M: I MS

7j=1 =m+1 1=m-+1 7j=1
n
= c'x'—) IIZ';(CZ'—ZijjZ')
i=m+1 j=1
n
= f'x' - Z avén-
1=m+1

Since x' is a solution to the instance & = (b, ¢, A), z; > 0 form+1 < i < n,
and by our assumption, ry > 0 for m +1 < g < n, we get
n
cI'x =elx — z x;ri < ch',
1=m-+1

128 LINEAR PROGRAMMING

Since x’ is an arbitrary solution to the instance @ = (b, ¢, A), we con-
clude that x is an optimal solution to @ = (b, ¢, A). This conclusion is
summarized in the following lemma.

Lemma 4.2.2 Let x be a basic solution to the instance o = (b, ¢, A) with
the tableau given in Figure 4.1. If all reduced cost coefficients rq > 0, 1 <
q <mn, then x is an optimal solution.

Example 4.2.3. Recall that in Example 4.2.2, we obtained the basic
solution x' = (0, 3,9, 10,0,0), which has the objective function value 0, such
that all reduced cost coefficients are larger than or equal to 0 (see the last
tableau in Example 4.2.2). By Lemma 4.2.2, the solution x’ is an optimal
solution to the given instance.

CASE 2. There is a g such that r; < 0 but no element in the gth
column of the tableau is positive.

In this case, consider the equalities

Y1421 + Y2482 + - + Ymg@m —ag =0

and
ria; + 080+ -+ Tpan =Db

Subtract from the second equality by e times the first equality, where € is
any positive number, we get

(x1 — eyig)ar + (2 — eyzq)as + - -+ + (T — €Ymg)am +€ag =b

Since z; > 0 for 1 <4 < m, and yjq < 0 for all 1 < j < m, we have
zj — €yjq > 0 for all 1 < 5 <m. Thus,

Xe = (Z1 — €Y1gs - - - T — €Ymg, 0,...,0,€,0,...,0)

where the element ¢ is in the gth position, is a solution to @ = (b, ¢, A) for
all positive value e.

Consider the objective function value c¢T'x, on the solution x,, we have
m
T
c'xe = Y cji(wj — eyjg) + cqe
i=1
m m
= > _czjteleg— Y ciyjq)

= c¢'x + erg

SIMPLEX METHOD 129

By our assumption, 4 < 0 and € can be any positive number, the value c’'x,

can be arbitrarily small, i.e., the instance « = (b, ¢, A) has no optimal
solution. We summarize this in the following lemma.

Lemma 4.2.3 Let x be a basic solution to the instance a = (b, ¢, A) with
the tableau given in Figure 4.1. If there is a reduced cost coefficients ry < 0,
and all elements in the qth column of the tableau are less than or equal to 0,
then the objective function can have arbitrarily small value and the instance
«a has no optimal solution.

Degeneracy

It is possible that in the course of the simplex method described above,
a degenerate basic solution occurs. Often they can be handled as a non-
degenerate basic solution. However, it is possible that after a new column
a, is selected to replace a current basic column a,, the ratio x,/y,q is 0,
implying that the basic column a, is the one to go out. This means that
the new variable z, will come into the new basic solution at value 0, the
objective function value will not decrease, and the new basic solution will
also be degenerate. Conceivably, this process could continue for a series
of steps and even worse, some degenerate basic solution may repeat in the
series, leading to an endless process without being able to achieve an optimal
solution. This situation is called cycling.

Degeneracy often occurs in large-scale real-world problems. However,
cycling in such instances is very rare. Methods have been developed to avoid
cyclings. In practice, however, such procedures are found to be unnecessary.
When degenerate solutions are encountered, the simplex method generally
does not enter cycling. However, anticycling procedures are simple, and
many codes incorporate such a procedure for the sake of safety.

How to obtain the first basic solution

Lemmas 4.2.1, 4.2.2, and 4.2.3 completely describe how we can move from a
basic solution to a better basic solution and when an optimal basic solution
is achieved. To describe the simplex method completely, the only thing
remaining is how the first basic solution can be obtained.

A basic solution is sometimes immediately available from an instance
of the LINEAR PROGRAMMING problem. For example, suppose that the
instance of the LINEAR PROGRAMMING problem is given in the form

minimize c1x1 + coTo + - cpxy

130 LINEAR PROGRAMMING

subject to
a11%1 + @122 + - + a1p%n < by
a21T1 + a22%2 + - - + aop Ty < by

Am1Z1 + amaTe + -+ G Ty < by,

-’13120, IQZOa (ERE 1"77.20
with b; > 0 for all ¢. Then in the elimination of the < signs we introduce m
slack variables y1, ..., ¥, and convert it into the standard form
minimize 1T + o + - Cry
subject to

1121 + a12%2 + - -+ + @1p Ty + y1 = by
a21T1 + a22%2 + - - - + Qop Ty + Y2 = by

Am1T1 + am2Z2 + -+ + AmpTn + Ym = bm,

iElZOa -’E220a L) xTLZO
Y120, 4220, ..., ym 20
Obviously, the (n + m)-dimensional vector (0,...,0,b1,be,...,by,) is a

basic solution to this new instance, from which the simplex method can be
initiated. In fact, this method can be applied to general instances for the
LINEAR PROGRAMMING problem, as described below.

Given an instance @ = (b, ¢, A) of the LINEAR PROGRAMMING prob-
lem, by multiplying an equality by —1 when necessary, we can always assume
that b> 0. In order to find a solution to «, consider the auxiliary instance
o/ for the LINEAR PROGRAMMING problem

minimize y; +y2+ -+ Ym

subject to Ax+y=D (4.29)
x,y=>0
where y = (y1, 92, ---,Ym) is an m-dimensional vector of artificial variables.

Note that the (n + m)-dimensional vector w = (0,0,...,0,b1,bo,...,by) is
clearly a basic solution to the instance o in (4.29). If there is a solution
(1,...,%y) to the instance a, then it is clear that the instance o' in (4.29)
has an optimal solution (z1,...,z,,0,...,0) with optimal objective function
value 0. On the other hand, if the instance o has no solution, then the

SIMPLEX METHOD 131

optimal objective function value for the instance o' is larger than 0 (note
that the solution set Sg(a/) for the instance o/ is always nonempty).

Now starting with the basic solution w = (0,0,...,0,b1,bs,...,b,) for
the instance o, we can apply the simplex method to find an optimal solution
for o/. Note that the tableau for the basic solution w is also immediate —
the first m rows of the tableau have the form [A, I, b], where I is the m-
dimensional identity matrix, the reduced cost coefficient r; for 1 < j < n is
equal to —v;, where v; is the sum of the elements in the jth column in the
tableau, and the last element in the (m+ 1)st row is equal to —b; —- -+ — by,

Suppose that the simplex method finds an optimal basic solution wy =
(w1, wa, ..., Wnim) for the instance o' in (4.29). If wy does not have ob-
jective function value 0, then the original instance « has no solution. If
wo has objective function value 0, then we must have w; = 0 for all
n+1 < j < n+m. In the second case, we let x = (wy,ws,...,wy).
We claim that the vector x is a basic solution for the instance a. First of
all, it is clear that x> 0 and Ax = b. Moreover, suppose that w;,, wi,, ...,
w;,, are the positive elements in x, then they are also positive elements in wy.
Thus, the columns a;,, a;,, ..., a; of the matrix A are basic columns for
wy thus are linearly independant. Thus, if we extend the k¥ columns a;, , a;,,
..., a;, of the matrix A (arbitrarily) into m linearly independent columns of
A, then the solution x is a basic solution with these m linearly independent
columns as its basic columns. In case k = m, x is a non-degenerate basic
solution, and in case k < m, x is a degenerate basic solution.

To summarize, we use artificial variables to attack a general instance of
the LINEAR PROGRAMMING problem. Our approach is a two-phase method.
This method consists of the first phase in which artificial variables are intro-
duced to construct an auxiliary instance o’ with an obvious starting basic
solution, and an optimal solution wq for o is constructed using the simplex
method; and the second phase in which, a basic solution x for the original
instance « is constructed from the vector wy obtained in the first phase,
and an optimal solution for « is constructed using the simplex method.

Putting all these together

We summarize the procedures described so far and formulate them into
the complete simplex method. See Figure 4.3. For a given column ¢ in a
tableau 7 of m + 1 rows and n + 1 columns, an element 7 [p, g] of T is said
to have the minimum ratio in the gth column if 7 [p,q] > 0 and the ratio
Tp,n + 1]/T|p,q] is the minimum over all ratios 7 [j,n + 1]/7T[j,q] with
1<j<mnandT[jq] >0.

132 LINEAR PROGRAMMING

Note that in Phase I, step 3, we do not have to check whether the gth
column of the tableau 77 has an element with minimum ratio — it must
have one. This is because if it does not have one, then by Lemma 4.2.3, the
objective function of the instance o would have had arbitrary small value.
On the other hand, 0 is obviously a lower bound for the objective function
values for the instance o'.

The correctness of the algorithm Simplex Method is guaranteed by
Lemmas 4.2.1, 4.2.2, and 4.2.3. In particular, under the Nondegeneracy
Assumption, each procedure call TableauMove(7,p,q) results in a basic
solution with a smaller objective function value. Since the number of basic
solutions is finite, and since no basic solution repeats because of the strictly
decreasing objective function values, the algorithm Simplex Method will
eventually stop, either with an optimal solution to the instance «, or with
a claim that there is no optimal solution to the instance «. In the case of
degeneracy, incorporated with an anticycling procedure, we can also guar-
antee that the algorithm Simplex Method terminates in a finite number
of steps with a correct conclusion.

Moving from one basic solution to a neighbor basic solution, using the
tableau format, can be easily done in time O(nm). Thus, the time complex-
ity of the algorithm Simplex Method depends on how many basic solution
moves are needed to achieve an optimal basic solution. Extensive experience
with the simplex method applied to problems from various fields, and hav-
ing various of the number n of variables and the number m of constraints,
has indicated that the method can be expected to converge to an optimal
solution in O(m) basic solution moves. Therefore, practically, the algorithm
Simplex Method is pretty fast. However and unfortunately, there are in-
stances for the LINEAR PROGRAMMING problem for which the algorithm
Simplex Method requires a large number of basic solution moves. These
instances show that the algorithm Simplex Method is not a polynomial
time algorithm.

4.3 Duality

Associated with every instance (b, ¢, A) of the LINEAR PROGRAMMING
problem is a corresponding dual instance. Both instances are constructed
from the vectors b and ¢ and the matrix A but in such a way that if one
of these instances is one of a maximization problem then the other is a
minimization problem, and that the optimal objective function values of
the instances, if finite, are equal. The variables of the dual instance are

4.3. DUALITY

133

Algorithm. Simplex Method
Input: an instance a = (b, ¢, A) with b >0

Phase 1.
1. construct a new instance o’: Ax +y =b; x,y >0
2. comstruct the basic solution w for the instance o’ and the tableau
Ti[l.m+1,1..m + n + 1] for w;
3. while Ti[m +1,9] < 0 for some 1 < g <n+m do
let 71[p, q] have the minimum ratio in column g;
call TableauMove(T1,p,q);
4. if ifm+1,m+n+1]#0
then stop: the instance « has no solution;
Phase II.
5. let T3[1..m +1,1..n + 1] be 71 with the (n+ 1)st ..., (n 4+ m)th
columns deleted;
{ 72 is the tableau for a basic solution x for a. }
Tam+1,n+1] = —c"x;
6. while 72[m +1,9] < 0 for some 1 < ¢ <n do
if no element in the gth column of 73 is positive
then stop: the instance o has no optimal solution
else let 72[p, g] have the minimum ratio in column g;
call TableauMove(72,p,q);

7. stop: the tableau 7> gives an optimal solution x to a.

Figure 4.3: The Simplex Method algorithm

134 LINEAR PROGRAMMING

also intimately related to the calculation of the reduced cost coefficients in
the simplex method. Thus, a study of duality sharpens our understanding
of the simplex method and motivates certain alternative solution methods.
Indeed, the simultaneous consideration of a problem form both the primal
and dual viewpoints often provides significant computational advantage.

Dual instance

We first depart from our usual strategy of considering instance in the stan-
dard form, since the duality relationship is most symmetric for instances
expressed solely in terms of inequalities.

Given an instance « of the LINEAR PROGRAMMING problem

Primal Instance «

minimize c’'x (4.30)
subject to Ax>b, x>0

where A is an m X n maftrix, ¢ is an n-dimensional vector, b is an m-
dimensional vector, and x is an n-dimensional vector of variables, the cor-
responding dual instance o is of the form

Dual Instance o

maximize y'b (4.31)
subject to y’A <c, y>0

where y is an m-dimensional vector of variables.

The pair (a,a’) of instances is called the synmmetric form of duality.
We explain below how the symmetric form of duality can be used to define
the dual of any instance of the LINEAR PROGRAMMING problem. We first
note that the role of primal and dual can be reversed. In fact, if the dual
instance o is transformed, by multiplying the objective function and the
constraints by —1 so that it has the format of the primal instance in (4.30)
(but is still expressed in terms of y), then its corresponding dual will be
equivalent to the original instance « in the format given in (4.30).

Consider an instance of the LINEAR PROGRAMMING in the standard
form

Primal Instance «

minimize c’'x (4.32)
subject to Ax=b,x>0

4.3. DUALITY 135

Write it in the equivalent form
. . . T
minimize c'x

subject to Ax>b, —Ax>-b, x>0

which is now in the format of the primal instance in (4.30), with coefficient

matrix
A
-A

Now we will let z be the (2m)-dimensional vector of variables for the
dual instance, and write z as z/ = (u, v)? where both u and v are m-
dimensional vectors of variables, the corresponding dual instance has the

format

maximize u’b - v'b
subject to u’A —-vIA<c” u,v>0

Letting y = u — v we simplify the representation of the dual problem into
the following format

Dual Instance o

maximize y'b (4.33)
subject to yIA <cT

The pair (a, ') in (4.32) and (4.33) gives the asymmetric form of the duality
relation. In this form the dual vector y is not restricted to be nonegative.

Similar transformation can be worked out for any instance of the LINEAR
PROGRAMMING problem by first converting the primal instance into the
format in (4.30), calculating the dual, and then simplifying the dual to
account for a special structure.

The Duality Theorem

So far the relation between a primal instance o and its dual instance o for
the LINEAR PROGRAMMING problem has been simply a formal definition. In
the following, we reveal a deeper connection between a primal instance and
its dual. This connection will enable us to solve the LINEAR PROGRAMMING
problem more efficiently than by simply applying the simplex method.

Lemma 4.3.1 Let x be a solution to the primal instance « in (4.32) and
let'y be a solution to the dual instance in (4.33). Then cT'x>yTb.

136 LINEAR PROGRAMMING

PROOF. Since x is a solution to the instance o, we have y'b = y? Ax.
Now since y is a solution to the dual instance o/, y’ A < ¢T. Note that x
> 0, thus, y' Ax < ¢x. This gives ¢’x > y'b. [

Note that the instance « in (4.32) looks for a minimum value ¢’ x while
the instance o/ in (4.33) looks for a maximum value y’b. Thus, Lemma
4.3.1 shows that a solution to one problem yields a finite bound on the
objective function value for the other problem. In particular, this lemma
can be used to test whether the primal instance or the dual instance has
solution. We say that the primal instance « has an unbounded solution if
for any negative value —M there is a solution x to a such that ¢Ix < —M,
and that the dual instance o' has an unbounded solution if for any positive
value M there is a solution y to o' such that y’b > M.

Theorem 4.3.2 If the primal instance o in (4.32) has an unbounded solu-
tion then the dual instance o in (4.33) has no solution, if the dual instance
o has an unbounded solution then the primal instance has no solution.

PROOF. Suppose that o has an unbounded solution but o' has a solution
y. Fix y. Given any negative number —M, by defintion, there is a solution
x to «a such that ¢’x < —M. By Lemma 4.3.1, ¢’x > y”b. Thus, y'b
< —M. But this is impossible since —M can be any negative number.

The second statement can be proved similarly. []

If c’x = y'b for a solution x to « and a solution y to o', then by
Lemma 4.3.1, x must be an optimal solution for the instance « and y must
be an optimal solution for the instance o/. The following theorem indicates
that, in fact, this is a necessary and sufficient condition for x to be an
optimal solution for « and for y to be an optimal solution for o’.

Theorem 4.3.3 Let x be a solution to the primal instance a in (4.32).
Then x is an optimal solution to o if and only if c'x = y'b for some
solution y to the dual instance o in (4.33).

PRrROOF. Suppose that ¢/x = y’b. By Lemma 4.3.1, for every solution
x' to the primal instance «, we have cIx’ > y’b = ¢’x. Thus, x is an
optimal solution to the primal instance a.

Conversely, suppose that x is an optimal solution to the primal instance
a. We show that there is a solution y to the dual instance o/ such that ¢’'x
= y'b.

4.3. DUALITY 137

Since all optimal solutions to the primal instance « give the same ob-
jective function value, we can assume, without loss of generality, that the
solution x is a basic solution to the instance . Furthermore, we assume
for convenience that x = (x1,%9,...,%m,0,...,0)7, and that the first m
columns ai,as,...,a,, of the matrix A are the basic columns for x. Then
the tableau for the basic solution x is of the following form.

a; az -+ ay Am41 Am42 e an,

1 0 -+ 0 9Yim+1 Yimi2 - Yin | T1
I - 0 Yom+1 Y2mt2 0 Yo | T2

0 o --- 1 Ymm+1 Ymm+2 ° Ymn | Tm

00 0 Tmpr Tmez - tn | 2

where for each j, m+ 1 < j < n, we have
m m
a; = Z Yijag and Ty =¢ — Z CiYij
i=1 i=1

Since x is an optimal solution, by Lemmas 4.2.1 and 4.2.2, we must have
r; > 0 for all m +1 < j < n. That is,

m
cj > Zciyij form+1<j<n (4.34)
=1
Let B = [aj,ag,...,a;] be the m X m nonsingular submatrix of the

matrix A and let B! be the inverse matrix of B. Note that for each i,
1 < i < m, B la; is the ith unit vector of dimension m (i.e., the m-
dimensional vector whose ith element is 1 while all other elements are 0):

B 'a; = (0,...,0,1,0,...,0)", i=1,...,m (4.35)

Therefore, for j =m +1,...,n, we have
m m
B la, =B ') yya; => ;B lai = (Y1, y2s-- - Ymy)" (4.36)
i=1 i=1

The last equality is because of the equality (4.35).
Now we let y©' = (c1,¢2,...,¢n)B7L. Then y is an m-dimensional vec-

tor. We show that y is a solution to the dual instance o’ and satisfies the

T

condition ¢'x = yTb.

138 LINEAR PROGRAMMING

First consider y” A. We have

yTA = yT[B Aty .- ,an)
(cla) _l[B amt1, - - 7an]

= (C1, Cm)[I B am+1, Bflan]
(

/
Cly--+yCm, C m—|—la acn)

where (note the equality (4.36))

C;- = (Cla- E acm)B_laj = (Cla--- JCWL)(ylja- E aymj)T = ZczyZ]

for j = m +1,...,n. By the inequality (4.34), we have ¢; < ¢; for j =
m + 1,...,n. This thus proves y’ A < ¢”. That is, y is a solution to the
dual instance o in (4.33).

Finally, we have
m
y'b= (c1y--. ,cm)B_lb =(c1y--sCm)(T1,--- ,xm)T = ZCZ']IZ' =c'x

Therefore, y is a solution to the dual instance o/ that satisfies ¢’x = y’b.
This completes the proof of the theorem. [

The dual simplex method

Suppose that we have an instance o = (b, ¢, A) (in the standard form) of
the LINEAR PROGRAMMING problem. Often available is a vector x such that
x satisfies Ax = b but not x > 0. Moveover, x “optimizes” the objective
function value ¢’'x in the sense that no reduced cost efficient is negative (cf.
Lemma 4.2.2). Such a situation may arise, for example, if a solution to a
certain instance S = (b’, ¢, A) of the LINEAR PROGRAMMING problem is
calculated and then the instance « is constructed such that « differs from 3
only by the vector b. In such situations a basic solution to the dual instance
o of the instance « is available and hence, based on Theorem 4.3.3, it may
be desirable to approach the optimal solution for the instance « in such a
way as to optimize the dual instance o'.

Rather than constructing a tableau for the dual instance o, it is more
efficient to work on the dual instance from the tableau for the primal instance
a. The complete technique based on this idea is the dual simplex method.
In terms of the primal instance «, it operates by maintaining the optimality

4.3. DUALITY 139

condition of the reduced cost coefficients while working toward a solution
x to « that satisfies x > 0. In terms of the dual instance o, however, it
maintains a solution to o’ while working toward optimality.

Formally, let the primal instance « be of the form

Primal Instance «

minimize c'x

subject to Ax=Db, x>0

The dual instance o’ of the instance « is of the form

Dual Instance o

maximize yI'b
subject to ylTA <cT

Suppose that m linearly independent columns of the matrix A have
been identified such that with these m columns as “basic columns”, no
reduced cost coefficient is negative. Again for convenience of our discussion,
suppose these m columns are the first m columns of A and let B be the
m X m nonsingular submatrix consisting of these m columns. Therefore,
the corresponding tableau should have the form (following our convention,

ai,...,a, denote the columns of the matrix A).
aj; az - Qp Apm4l aAm42 s ap
1 0 -+ 0 Yimi1 Yimi2 - Yin | T1
1 0 Yom+1 Yomi2 0 Yo | T2
0 0 --- 1 Ymm+1 Ymm+2 *° Ymn | Tm
0 0 -+ 0 7my1 Tmi2 T | 20

where for each j, m 4+ 1 < j < n, we have
m m
a; = Zyi]-ai and Ty =¢Cj — Zciyij Z 0 (437)
i=1 i=1
and
20 = —(c121 + coxo + -+ + cmzy) and (z1,...,2,)] =B7'b (4.38)

We show how we find an optimal solution for the primal instance «,
starting from this tableau.

140 LINEAR PROGRAMMING

If z; >0 for all 1 < i < m, then x = (£1,...,Zm,0,...,0) is an optimal
basic solution to the instance o« so we are done.

Thus we suppose that there is an x, < 0 for some 1 < p < m. Fix this
index p.

Let yI = (c1,...,¢m)B7 L ThenyT A= (c1,...,cm, i1y - - -5 Ch), Where
i = Y%y ciyij < ¢j, for j =m+1,...,n (see the proof for Theorem 4.3.3).
Thus, yT'A < T and y” is a solution to the dual instance o, with the

objective function value

yib = (c1,...,¢m)B b = (c1,...,cm)(@1,...,m)T = —2
Thus, it is proper to call the vector x= (z1,...,%n,0,...,0) the dual basic
solution to the instance « (distinguish it from the a basic solution to the
dual instance '), and the columns ai, ... ,a,, the dual basic columns.

Our intention is to replace a dual basic column by a new column so
that the dual basic solution corresponds to an improved solution to the dual
instance o'.

Note that B~'a; = (0,...,0,1,0,...,0)T is the ith unit vector of
dimension m for i = 1,...,m (see equality (4.35)), and B 'a; =
(Y155 Y2js -+ -+ Ymg) L for 5 = m + 1,...,n (see equality (4.36)). Therefore,
if we let u, be the row vector given by the pth row of the matrix B!, we
will have

_fofitp
upaz—{ 1 ifi=p fori=1,....m (4.39)
and
wa; =y, forj=m+1,...,n (4.40)

Let yI =yT — eu,. We show that with properly selected € > 0, y. is an
improved solution to the dual instance o'.
First consider

yIA = (y' —ew)A =yTA —euy)A
= y' A —euylay,...,a,] (4.41)
= yTA —e[way,...,upan, a1, ..., uya,]
= (ClyeeesCmyCpg1r---rCn) —€(0,...,0,1,0,...,0,Ypm+t1,s---Ypn)
= (cl’ <9 Cp—1,Cp — €, Cpt 1y - ,Cmac;rﬂ»l — €Ypm+1,--- ,C;1, - Gypn)

The fifth equality is from the equalities (4.39) and (4.40).
If all y,; > 0 for 5 = m + 1,...,n, then y, is a solution to the dual
instance o for any € > 0 with the objective function value

yib = (y! - eu,)b = y'b— eu,b = y'b — €Tp

4.3. DUALITY 141

Algorithm. Dual Simplex Method

Input: an instance a with a tableau 7 for a dual basic solution x to a

1. while T[p,n+1] < 0 for some 1 < p <m do
ifno T[p,j]<O0forany 1 <j<mn
then stop: the instance a has no solution
else let T [p, q] have the minimum ratio in row p;
call TableauMove(T,p,q);

2. stop: the tableau 7 gives an optimal solution x to a.

Figure 4.4: The Dual Simplex Method algorithm

(note B™'b = (z1,...,2,)T thus u,b = z,). Since z, < 0, yI'b can be
arbitrarily large. That is, the solution to the dual instance o/ is unbounded.
By Theorem 4.3.2, the primal instance o has no solution. Thus, again, we
are done.

So we assume that y,, < 0 for some g, m + 1 < ¢ < n. Select the index
g such that cﬁl — €Ypq is the first that meets ¢, when € increases from 0.
Therefore, the index g should be chosen as follows.

r r

q : J

€g=——= min {——=|y,; <0}
Ypg ~ mHISi<ne Ypj #

(note yp, < 0 and 7, > 0 s0 €9 > 0). We verify that y§' =y? — ¢u, is a
solution to the dual instance o, i.e., y} A<cT.
Consider the equality (4.41). Since ¢y > 0, we have ¢, — ¢y < ¢,. More-

over, for each c;- — €oyp; With 5 = m +1,...,n, if y,; > 0, then of course
I —

¢; — €0Ypj < c;- < ¢j; while for y,; < 0, by our choice of ¢ we have
Te o TPy Tas TP
Ypq Ypj Ypqg Ypj

and we have (note y,; < 0)

/!
Cc. —

T g T g e — g
g eoyp]—c-—i—y—yp]_cj—kfym—cj—i-r]—cj

J
pq Y

This proves that yOTA < ¢! and yy is a solution to the dual instance /.
We evaluate the objective function value for yq:

y?;b = (yT —eoup)b = yTb — eoupb = yTb — €0Zp

142 LINEAR PROGRAMMING

Since z, < 0, we have yob > y'b. In particular, if ¢g > 0, then yj is an
improvement over the solution y for the dual instance o/. The case ¢y = 0,
i.e.,, vy = 0, is the degenerate situation for the dual simplex method. As we
have discussed for the regular simplex method, the dual simplex method in
general works fine with degenerate situations, and special techniques can be
adopted to handle degenerate situations.

Therefore, the above procedure illustrates how we obtain an improved
solution for the dual instance o by replacing a dual basic column a, by
a new column a,. Note that this replacement is not done based on the
tableau for the solution y to the dual instance o/. Instead, it is accom-
plished based on the tableau for the dual basic solution x for the primal
instance a. This replacement can be simply done by calling the algorithm
TableauMove(T,p, q) in Figure 4.2 when the indices p and ¢ are decided.
We summarize this method in Figure 4.4, where we say that an element
T[p,q] in the pth row in 7 has the minimum ratio if the ratio —rq/yp, is
the minimum over all —r;/y,; with y,; < 0.

Example 4.3.1. Consider the following instance « for the LINEAR PRrO-
GRAMMING problem.

minimize 3x1 + 4xo + bxg
subject to —x1 —2x9 — 3z3 + x4 = —5
—2x1 — 229 —x3 + x5 = —6

Z1,%2,T3,T4,T5 Z 0
The dual basic solution x = (0,0,0, =5, —6) to « has the tableau

a; as az ag as
-1 -2 -3 1 0]-5

(2] -2 -1 0 1|-6

3 4 5 0 00

Pick z5 = —6. To find a proper element in the second row, we compute
the ratios —r,/y2, and select the one with the minimum ratio. This makes
us to pick y23 = —2 (as indicated by the box). Applying the algorithm

TableauMove(T,2,1) gives us

a; az as a4 as
0 |-1] =5/2 1 -1/2| -2
1 1 /2 0 -1/2| 3
0 1 72 0 3/2 | -9

4.4. POLYNOMIAL TIME ALGORITHMS 143

Now pick 4 = —2 and choose the element 412 = —1 (as indicated in the
box). The algorithm Tableau(7,1,2) results in

a; a2 az a4 ajp
0 1 5/2 -1 1/2
1 0 -2 1 -1 1
0 O 1 1 1 |-11

The last tableau yields a dual basic solution xo = (1,2,0,0,0)T with
xg > 0. Thus it must be an optimal solution to the instance a. The
objective fucntion value on xq is 11.

4.4 Polynomial time algorithms

It was an outstanding open problem whether the LINEAR PROGRAMMING
problem could be solved in polynomial time, until the spring of 1979, the
Russian mathematician L. G. Khachian published a proof that an algorithm,
called the Ellipsoid Algorithm, solves the LINEAR PROGRAMMING problem
in polynomial time [81]. Despite the great theoretical value of the Ellipsoid
Algorithm, it is not clear at all that this algorithm can be practically useful.
The most obvious among many obstacles is the large precision apparently
required.

Another polynomial time algorithm for the LINEAR PROGRAMMING
problem, called the Projective Algorithm, or more generally, the Interior
Point Algorithm, was published by N. Karmarkar in 1984 [76]. The Projec-
tive Algorithm, and its derivatives, have great impact in the study of the
LINEAR PROGRAMMING problem.

144 LINEAR PROGRAMMING

Chapter 5

Which Problems Are Not
Tractable?

We have seen a number of optimization problems. Some of them are rel-
atively simple, such as the MINIMUM SPANNING TREE problem and the
MATRIX-CHAIN MULTIPLICATION problem. Solving each of these optimiza-
tion problems in general requires a single (maybe smart) idea which can be
implemented by an efficient algorithm of a couple of dozens of lines. Some
other optimization problems, on the other hand, are much more non-trivial.
Examples of this kind of optimization problems we have seen include the
MaxmMuMm FrLow problem, the Graph Matching problem, and the LINEAR
PROGRAMMING problem. Solving each of these harder problems efficiently
requires deep understanding and thorough analysis on structures and prop-
erties of the problem. A polynomial time algorithm for the problem is de-
rived based on such a highly nontrivial structural investigation plus maybe
a number of subtle algorithmic techniques. Moreover, it seems each of these
problems requires a different set of techniques and there is no powerful uni-
versal techniques that can be applied to all of these problems.

This makes the task of solving an optimization problem very unpre-
dictable. Suppose that you have an optimization problem and want to de-
velop an efficient algorithm for it. If you are lucky and the problem is rela-
tively easy, then you solve the problem in a couple of days, or in a couple of
weeks. If the problem is as hard as, for example, the LINEAR PROGRAMMING
problem, but you work very hard and are also lucky enough to find a correct
approach, you may be able to develop an efficient algorithm for the problem
in several months or even in several years. Now what if all above are not the
case: you work hard, you are smart, but the problem still remains unsolved

145

146 NONTRACTABLE PROBLEMS

after your enormous effort? You may start suspecting whether there even
exists an efficient algorithm at all for you problem. Therefore, you may start
trying a proof to show that your problem is intrinsically difficult.

However, you may quickly realize that proving the problem’s intrinsic dif-
ficulty is just as hard as, or even harder than, finding an efficient algorithm
for the problem — there are simply very few known techniques available
for proving the intrinsic difficulties for optimization problems. For example,
suppose that your problem is the TRAVELING SALESMAN problem, for which
no body has been able to develop an efficient algorithm. Experts would tell
you that also nobody in the world has been able to prove that the TRAVEL-
ING SALESMAN problem is even harder than the MINIMUM SPANNING TREE
problem.

Fortunately, an extremely useful system, the NP-hardness theory, has
been developed. Although this system does not provide your with a for-
mal proof that your problem is hard, it provides a strong evidence that
your problem is hard. Essentially, the NP-hardness theory has collected
several hundred problems that people believe to be hard, and provides sys-
tematic techniques to let you show that your own problem also belongs to
this category so it is not easier than any of these hundreds of hard prob-
lems. Therefore, not just you cannot develop an efficient algorithm for the
problem, nobody in the world so far can develop such an algorithm, either.

In this chapter, we formally introduce the concept of NP-hardness for
optimization problems. We provide enough evidence to show that if an
optimization problem is NP-hard, then it should be very hard. General
techniques for proving NP-hardness for optimization problems are intro-
duced with concrete examples. A special NP-hard optimization problem,
the INTEGER LINEAR PROGRAMMING problem, will be studied in detail.

Proving the NP-hardness of an optimization problem is just the begin-
ning of work on the problem. It provides useful information that shows
solving the problem precisely is a very ambitious, maybe too ambitious, at-
tempt. However, this does not obviate our need for solving the problem
if the problem is of practical importance. Therefore, approximation algo-
rithms for NP-hard optimization problems have been naturally introduced.
In the last section of this chapter, we will formally introduce the concept
of approximation algorithms and the measures for evaluation of approxima-
tion algorithms. The rest of this book will be concentrating on the study of
approximation algorithms for NP-hard optimization problems.

5.1. NP-HARD OPTIMIZATION PROBLEMS 147

5.1 NP-hard optimization problems

Recall that a decision problem () is NP-hard if every problem in the class
NP is polynomial-time many-one reducible to @). Therefore, if an NP-hard
decision problem () can be solved in polynomial time, then all problems in
NP are solvable in polynomial time, thus P = NP. According to our working
conjecture that P # NP, which is commonly believed, the NP-hardness of
a problem () is a strong evidence that the problem) cannot be solved in
polynomial time.

The polynomial-time reductions and the NP-hardness can be extended
to optimization problems, as given by the following discussions.

Definition 5.1.1 An decision problem D is polynomial time reducible to
an optimization problem Q = (Ig, S, fq, optg) if there are two polynomial
time computable functions h and g such that (1) given an input instance z
for the decision problem D, h(z) is an input instance for the optimization
problem @, and (2) for any solution y € Sg(h(z)), g(z,h(z),y) = 1 if and
only if y is an optimal solution to h(z) and z is a yes-instance for D.

As an example, we show that the decision problem PARTITION is poly-
nomial time reducible to the optimization problem c-MAKESPAN with ¢ > 2,
which is a restricted version of the MAKESPAN problem.

Recall that the PARTITION problem is defined as follows.

PARTITION

Given a set of integers S = {aj,as,...,a,}, can the set S be
partitioned into two disjoint sets S1 and Sy of equal size, that is,
§=51US, S51NSs = Q)a and ZmESl a; = EajESZ aj ?

and given a positive integer ¢, the c-MAKESPAN problem is defined by

c-MAKESPAN = (Ig, Sq, fq,optQ)

Ig: the set of tuples T = {t1,...,t,}, where t; is the processing
time for the ith job

Sg: Sq(T) is the set of partitions P = (T1,...,T¢) of the

numbers {t1,...,t,} into ¢ parts
for fQ(T,P) = maxi{3¥ 1, 15}
optg: min

that is, the c-M AKESPAN problem is the MAKESPAN problem in which the
number of processors is a fixed constant c.

148 NONTRACTABLE PROBLEMS

Lemma 5.1.1 The PARTITION problem is polynomial time reducible to the
c-MAKESPAN problem, for any integer ¢ > 2.

PRrROOF. The polynomial time computable functions ~ and g are described
as follows.

Let @ = (z1,...,z,) be an input instance for the PARTITION problem.
We define h(a) to be (t1,...,tn, tnt1s. - tnte—2), where t; = z; for 1 <
i <m,and th41 =+ = tpte—2 = [(Xjo12i)/2]. Clearly, h(a) is an input

instance for the c-MAKESPAN problem and can be constructed from « in
polynomial time.

Now for any solution P = (T1,...,T.) to the instance h(a) for the c-
MAKESPAN problem, the function g(«, h(a), P) =1 if and only if

max{ 3 1)} = (Y)/2

t; €T;

It is easy to see that if « is a yes-instance for the PARTITION problem,

then every optimal scheduling P on h(«) splits the numbers z1, ..., z, into
two sets Sp and Sy of equal size (>~ x;)/2, assigns each of the sets to a
processor, and assigns each of the jobs of time ¢;, j =n+1,...,n+c— 2,

to a distinct processor. The scheduling P has parallel completion time
(X1 zi)/2 = [7)/2]. On the other hand, if « is a no-instance
for the PARTITION problem or P is not an optimal scheduling for h(«), then
the scheduling P on h(«) always has parallel completion time larger than
(3o zi)/2. In particular, if 37 ; z; is an odd number, then any scheduling
on h(a) has parallel completion time at least [(} -, z;)/2] > (X7) /2.
Therefore, the function value g(o, h(a),P) = 1 if and only if P is an
optimal solution to () and « is a yes-instance for the PARTITION problem.
Moreover, the function g is clearly computable in polynomial time. []

A polynomial time reduction from a decision problem D to an optimiza-
tion problem () implies that the problem D cannot be much harder than
the problem @, in the following sense.

Lemma 5.1.2 Suppose that a decision problem D is polynomial time re-
ducible to an optimization problem Q. If Q is solvable in polynomial time,
then so is D.

PrOOF. Let h and g be the two polynomial time computable functions
for the reduction from D to Q. Let A be a polynomial time algorithm that

NP-HARDNESS 149

solves the optimization problem). Now a polynomial time algorithm for
the decision problem D can be easily derived as follows: given an instance
x for D, we first construct the instance h(z) for @; then apply the algo-
rithm A to find an optimal solution y for h(z); now z is a yes-instance for
D if and only if g(z,h(z),y) = 1. By our assumption, all h(z), y, and
g(z,h(x),y) are polynomial time computable (in particular note that since
h(z) is computable in polynomial time , the length |h(z)| of h(z) is bounded
by a polynomial of |z|, and that since .4 runs in polynomial time, the length
|y| of y is bounded by a polynomial of |h(z)| thus by a polynomial of |z|).
Thus, this algorithm runs in polynomial time and correctly decides if x is a
yes-instance for the decision problem D. []

The polynomial time reduction from decision problems to optimization
problems extends the concept of NP-hardness to optimization problems.

Definition 5.1.2 An optimization problem () is NP-hard if there is an NP-
hard decision problem D that is polynomial time reducible to Q.

Let @ be an NP-hard optimization problem such that an NP-hard de-
cision problem D is polynomial time reducible to Q. If @ is solvable in
polynomial time, then by Lemma 5.1.2, the NP-hard decision problem () is
solvable in polynomial time, which implies consequently, by Definition 1.4.5
and Lemma 1.4.1, that P = NP, violating our Working Conjecture in NP-
completeness Theory (see Section 1.4). Therefor, the NP-hardness of an
optimization problem () provides a very strong evidence that the problem
Q is intractable, i.e., not solvable in polynomial time.

Since the PARTITION problem is known to be NP-hard, Lemma 5.1.1
gives immediately

Theorem 5.1.3 The c-MAKESPAN problem is an NP-hard optimization
problem for any integer ¢ > 2.

Many NP-hard decision problems originate from optimization problems.
Therefore, the polynomial time reductions from these decision problems
to the corresponding optimization problems are straightforward. Conse-
quently, the NP-hardness of these optimization problems follow directly
from the NP-hardness of the corresponding decision problems. For example,
the NP-hardness for the decision versions of the the problems TRAVELING
SALESMAN, GRAPH COLORING, PLANAR GRAPH INDEP-SET, and PLANAR
GRAPH VERTEX-COVER (see Section 1.4) implies directly the NP-hardness

150 NONTRACTABLE PROBLEMS

for the optimization versions of the same problems (see Appendix D for
precise definitions), respectively.

We give another example for NP-hard optimization problems, whose NP-
hardness is from a not so obvious polynomial time reduction. Suppose that
in the LINEAR PROGRAMMING problem, we require that we work only on
the domain of integer numbers, then we get the INTEGER LINEAR PRO-
GRAMMING problem, or for short the INTEGER LP problem. More formally,
each instance of the INTEGER LP problem is a triple « = (b, ¢, A), where
for some integers n and m, b is an m-dimensional vector of integer numbers,
¢ is an n-dimensional vector of integer numbers, and A is an m X n matrix
of integer numbers. A solution x to the instance « is an n-dimensional vec-
tor of integer numbers such that Ax = b and x > 0, and a solution x is
optimal if it minimizes the inner product ¢’x. This gives the standard form
for the INTEGER LP problem. We can similarly define the general form for
the INTEGER LP problem, which involves more general inequalities such as
the form given in (4.1). Moreover, it is not hard to verify that the transla-
tion rules described in Section 4.1 can be used to convert an instance in the
general form for the INTEGER LP problem into an instance in the standard
form for the INTEGER LP problem.

It might seem that the INTEGER LP problem is easier than the general
LINEAR PROGRAMMING problem since we are working on simpler numbers.
This intuition is, however, not true. In fact, the INTEGER LP problem
is computationally much harder than the general LINEAR PROGRAMMING
problem. This may be seen from the following fact: the set of solutions
to an instance a = (b, ¢, A) of the INTEGER LP problem, defined by the
constraints Ax = b and x > 0, is no longer a convex set in the n-dimensional
Euclidean space £™. It instead consists of discrete points in £". Therefore,
greedy algorithms based on local search, such as the simplex method, do not
seem to work any more.

The hardness of the INTEGER LP problem is formally given by the fol-
lowing theorem.

Theorem 5.1.4 The INTEGER LP problem is an NP-hard optimization
problem.

PROOF. We show that the well known NP-complete problem, the SATISFI-
ABILITY problem, is polynomial time reducible to the INTEGER LP problem.

Formally, an instance a of the SATISFIABILITY problem is given by a
Boolean expression in conjunctive normal form (CNF):

a=Ci NCoyN..NCp, (5.1)

NP-HARDNESS 151

where each C; (called a clause) is an OR of Boolean literals. The question is
whether there is a Boolean assignment to the Boolean variables z1, z2, ...,
Zp in a that makes the expression TRUE.

We show how a polynomial time computable function h converts the
instance « in (5.1) of the SATISFIABILITY problem into an input instance
h(a) for the INTEGER LP problem.

Suppose that the clause C; in « is

C; = (:Cil V.-V, VTj V---VTjt)
We then construct a linear constraint
zi, ot (1 —z) -+ (1 —x5) > 2 (5.2)

where 7 is a new variable. Moreover, for each Boolean variable z; in «, we
have the constraints
z; >0 and z;<1 (5.3)

Thus, the integer variables z; can take only the values 0 and 1. We let
x; = 1 simulate the assignment z; = TRUE and let z; = 0 simulate the
assignment z; = FALSE. Therefore, the clause C; is TRUE under a TRUE-
FALSE assignment to the Boolean variables z1, ..., z, if and only if

$i1+...+$is+(1_$j1)+...+(1_wjt) 21

under the corresponding 1-0 assignment to the integer variables x1, - - -, xy,.

Finally, our objective function is to maximize the variable value z.

So our instance for the INTEGER LP problem consists of the constraints
(5.2) corresponding to all clauses C; in « and all constraints in (5.3). Let this
instance be f,.! Now we define a function h such that given an instance
a in (5.1) for the SATISFIABILITY problem, h(a) = B4, where S, is the
instance constructed as above for the INTEGER LP problem. It is clear that
the function A is computable in polynomial time.

Now note that if an optimal solution x to 8,, which is a 1-0 assignment
to the variables z1, ..., =, makes the objective function have value z > 0,
then we have (note that z is an integer)

Bi £ (Lmag) e+ (L) 2221

!To follow the definitions strictly, we should also convert 8, into the standard form.
However, since the discussion based on (3, is more convenient and the translation of 8,
to the standard form is straightforward, we assume that our instance for the INTEGER LP
problem is just Bq.

152 NONTRACTABLE PROBLEMS

for all linear constraints corresponding to the clauses of the instance a.
In consequence, the corresponding TRUE-FALSE assignment to the Boolean
variables z1, ..., £, makes all clauses in @ TRUE. That is, the instance «
is a yes-instance for the SATISFIABILITY problem. On the other hand, if
the optimal solution to 3, has objective function value z < 0, then no 1-0
assignment to z1, ..., T, can make all linear constraints satisfy

$i1+"'+$’is+(1_$j1)+"'+(1_wjt) 21

That is, no TRUE-FALSE assignment to z1, ..., T, can satisfy all clauses
in a. In other words, « is a no-instance to the SATISFIABILITY problem.
Therefore, with the instances a and B, and an optimal solution to f,, it
can be trivially decided whether « is a yes-instance for the SATISFIABILITY
problem.

This proves that the NP-complete problem SATISFIABILITY is polynomial
time reducible to the INTEGER LP problem. Consequently, the INTEGER
LP problem is NP-hard. [

As we have seen in Section 4.4 , the general LINEAR PROGRAMMING
problem can be solved in polynomial time. Theorem 5.1.4 shows that the
INTEGER LP problem is much harder than the general LINEAR PROGRAM-
MING problem. Our later study will show that the INTEGER LP problem is
actually one of the hardest NP-optimization problems.

The NP-hardness of an optimization problem can also be derived from
the NP-hardness of another optimization problem. For this, we first need to
introduce a new reduction.

Definition 5.1.3 An optimization problem Q) is polynomial time reducible
(or p-reducible for short) to an optimization problem @ if there are two
polynomial time computable functions x (the instance function) and 1 (the
solution function) such that
(1) for any instance z1 of @1, x(x1) is an instance of Q9; and
(2) for any solution yo to the instance x(z1), ¥(z1, x(z1),y2) is a
solution to z; such that ys is an optimal solution to x(z) if
and only if ¥ (z1, x(z1), y2) is an optimal solution to z;.

The following theorem follows directly from the definition.

Lemma 5.1.5 Suppose that an optimization problem @1 is p-reducible to
an optimization problem Qo. If Q9 is solvable in polynomial time, then so

18 Ql-

NP-HARDNESS 153

PROOF. Suppose that ()1 is p-reducible to ()2 via the instance function y
and the solution function 1/, both computable in polynomial time. Then an
optimal solution to an instance z of Q1 can be obtained from ¥ (z, x(z),y2),
where ys is an optimal solution to x(z) and is supposed to be constructible
in polynomial time from the instance x(z). [

Lemma 5.1.6 Suppose that an optimization problem @1 is p-reducible to
an optimization problem Qo. If Q1 is NP-hard, then so is Q2.

PROOF. Suppose that)1 is p-reducible to ()9 via the instance function
x and the solution function 1, both computable in polynomial time. Since
(1 is NP-hard, there is an NP-hard decision problem D that is polynomial
time reducible to Q1. Suppose that the decision problem D is polynomial
time reducible to ()1 via two polynomial time computable functions h and
g (see Definition 5.1.1). Define two new functions h; and g; as follows: for
any instance z of D, hi(z) = x(h(z)); and for any solution y to hi(z),
g1(z, hi(z),y) = g(z, h(z),¥(h(x), h1(x),y)). It is not hard to verify by the
definitions that for any instance x of D, hi(z) is an instance of @2, and
g1(z,hi(z),y) = 1 if and only if y is an optimal solution to @2 and z is a
yes-instance of D. Moreover, the functions h; and g; are clearly polynomial
time computable.

This proves that the NP-hard decision problem D is polynomial time
reducible to the optimization problem (3. Consequently, the optimization
problem Q5 is NP-hard. []

As another example, we show that the KNAPSACK problem is NP-hard.
The KNAPSACK problem is formally defined as follows.

KNAPSACK = (Ig, S, fg,optg)

Io={(s1,...,8p;v1,...,vn; B) | s;,vj, B : integers}

SQ(<315-"’37L;IU17--- avn;B» = {S - {15777'} | Eiessi < B}

fQ((Sla <3 8n3 UL, - .- ,Un;B>,S) = ZiESUi

optg = max

An “application” of KNAPSACK problem can be described as follows. A

thief robbing a store finds n items. The ith item is worth v; dollars and
weighs s; pounds. The thief wants to take as valuable a load as possible,
but he can carry at most B pounds in his knapsack. Now the thief wants to

decide what items he should take. Fortunately, the problem is NP-hard, as
we prove in the following theorem.

154 NONTRACTABLE PROBLEMS

Theorem 5.1.7 The KNAPSACK problem is NP-hard.

PrROOF. By Theorem 5.1.3, the 2-MAKESPAN problem is NP-hard. Thus,
by Lemma 5.1.6, it suffices to show that the 2-MAKESPAN problem is p-
reducible to the KNAPSACK problem. The instance function y and the
solution function 1 are described as follows.

Given an instance a = (t1,...,t,) for the 2-MAKESPAN problem, x(«)
is the instance x(a) = (t1,...,tn;t1,...,t,; B) for the KNAPSACK problem,
where B = [Y_1*; t;/2]. Given any solution S to x(«), which is a subset of
{t1,...,tn} satisfying Etjes t; < B, the value of 9(«, x(a), S) is the parti-
tion (S, {t1,...,t,}—S) of the set {t1,...,t,}, which assigns all the jobs in §
to Processor-1, and all other jobs to Processor-2. Since an optimal solution
S to x(c) is a subset of {t1,...,¢,} that maximizes the value }, ¢ ; sub-
ject to the comstraint 3, cgt; < [32iL;%i/2], the solution S must give the
“most even” splitting (S, {t1,...,t,}—95) for the set {¢1,...,¢,}. Therefore,
S is an optimal solution to the instance x(«) of the KNAPSACK problem if
and only if (S, {¢1,...,t,}—9S) is an optimal solution to the instance « of the
2-MAKESPAN problem. Moreover, the instance function x and the solution
function 1 are clearly computable in polynomial time. This completes the
proof. []

Some optimization problems have subproblems that are of independent
interest. Moreover, sometimes the complexity of a subproblem may help the
study of the complexity of the original problem.

Definition 5.1.4 Let Q = (Ig,Sq, fg,optg) be an optimization problem.
An optimization problem Q' is a subproblem of @ if Q' = (I, Sq, fq,0ptq),
where Ib CIg.

Note that for an optimization problem Q' to be a subproblem of another
optimization problem (), we not only require that the instance set Ié? of
Q' be a subset of the instance set I of @, but also that the solution set
function Sg, the objective function fg, and the optimization type optg be
all identical for both problems. These requirements are important when
we study the computational complexity of a problem and its subproblems.
For example, every instance of the INTEGER LP problem is an instance of
the LINEAR PROGRAMMING problem. However, the INTEGER LP problem
is mot a subproblem of the LINEAR PROGRAMMING problem since for each
instance « of the INTEGER LP problem, the solution set for « as an instance
for the INTEGER LP problem is not identical to the solution set for o as an
instance for the LINEAR PROGRAMMING problem.

INTEGER LP 155

Theorem 5.1.8 Let Q be an optimization problem and Q' be a subproblem
of Q. If the subproblem Q' is NP-hard, then so is the problem Q.

PROOF. Since the subproblem ' is NP-hard, there is an NP-hard decision
problem D that is polynomial time reducible to the optimization problem Q’
via polynomial time computable functions h and g. It is straightforward to
verify that the functions h and g also serve for a polynomial time reduction
from the NP-hard decision problem D to the optimization problem (). Thus,
the optimization problem @ is also NP-hard. [

For example, consider the PLANAR GRAPH INDEP-SET problem (given
a planar graph G, find the largest subset S of vertices in G such that no
two vertices in S are adjacent) and the INDEPENDENT SET problem (given a
graph G, find the largest subset S of vertices in G such that no two vertices
in S are adjacent). Clearly the PLANAR GRAPH INDEP-SET problem is
a subproblem of the INDEPENDENT SET problem. Since we have known
that the PLANAR GRAPH INDEP-SET problem is NP-hard (see the remark
following Theorem 5.1.3), we conclude that the INDEPENDENT SET problem
is also NP-hard. Similarly, from the NP-hardness of the PLANAR GRAPH
VERTEX-COVER problem (given a planar graph G, find a minimum set S
of vertices such that every edge in G has at least one end in S), we derive
the NP-hardness for the VERTEX COVER problem (given a graph G, find a
minimum set S of vertices such that every edge in G has at least one end in
S).

Corollary 5.1.9 The INDEPENDENT SET problem and the VERTEX COVER
problem are NP-hard.

5.2 Integer linear programming is NPO

Recall that an optimization problem @ = (Ig, S, fq, optg) is an NP opti-
mization problem (or shortly NPO) if there is a polynomial p(n) such that
for any instance z € Ig, there is an optimal solution y € Sg(z) whose length
|y| is bounded by p(|z|).

Traditionally, the word “NP” is used to indicate “the ability of guess-
ing polynomially many bits in polynomial time”. This fact is also correctly
reflected in the definition of an NPO problem Q: if you can always guess
polynomially many bits correctly (that constitutes a shortest optimal solu-
tion), then you can solve the problem @ in polynomial time.

156 NONTRACTABLE PROBLEMS

Note that the NP-hardness, as we studied in the last section, does
not necessarily imply the NPO membership. Roughly speaking, the NP-
hardness of an optimization problem @ gives a lower bound on the compu-
tational difficulty for the problem (i.e., how hard the problem @ is): solving
Q is at least as hard as solving the NP-complete problem SATISFIABILITY;
while the NPO membership for an optimization problem () gives an upper
bound on the computational difficulty for the problem (i.e., how easy the
problem @ is): you can solve the problem @ in polynomial time if you can
guess correctly.

The NPO membership for most NP optimization problems is obvious
and straightforward. In particular, if an optimization problem () is a “subset
problem” given in the form “given a set S of elements with certain relations,
find the ‘best’ subset of S that satisfies certain properties,” then the problem
Q@ is an NPO problem. A large number of optimization problems, such as
MINIMUM SPANNING TREE, GRAPH MATCHING, TRAVELING SALESMAN,
KNAPSACK, INDEPENDENT SET problems, belong to this category.

However, there are also NP-hard optimization problems, for which the
NPO-membership is not so straightforward. The problem INTEGER LP is
a well-known optimization problem belonging to this category. By Theo-
rem 5.1.4, the INTEGER LP problem is NP-hard.

Given an instance « = (b, ¢, A) for the INTEGER LP problem, a solu-
tion x to « is an integer vector satisfying Ax = b and x > 0. To show that
the INTEGER LP problem is NPO, we must show that there is a polynomial
p(n) such that for any instance «, there is an optimal solution x for a such
that the length of x is bounded by p(|«|).

It is reasonable to suppose that the length || of the instance « is of
order ©(nmAmax) but at least nm + Apax, where we assume that A is an
m X n matrix and Ap,x 1S the largest number of digits needed to represent an
element appearing in the matrix A and in the vectors b and c. Therefore,
to prove that the INTEGER LP problem is NPO, we must show that for any
instance a to the INTEGER LP problem, there is a “small” optimal solution
x for a such that the number of digits of each element in x is bounded by a
polynomial of n, m, and Amax. This, indeed, is the case, as we will discuss
in the rest of this section.

Throughout this section, we will assume that A= [a;;] is an m x n integer
matrix with the column vectors aj, ..., a,, b= (b;) is an m-dimensional
integer vector, and c¢= (c;) is an n-dimensional integer vector. For a real
number 7, we denote by |r| the abslute value of r. For a matrix A, we denote
by ||A]l the largest |a;;| over all elements a;; in A. Similarly we define ||b||
and ||c||. To make our discussion interesting, we can assume that ||A| > 1

INTEGER LP 157

and ||c|| > 1.

We first regard Ax = b as a linear system in the domain of real numbers,
and discuss the properties of solutions to Ax = b in the domain of real
numbers. The following lemma indicates that if the linear system Ax = b
is solvable, then it must have a relatively “simple” rational solution.

Lemma 5.2.1 If the linear system Ax = b has a solution, then it has a
solution x = (x1,...,2n)7 in which each element z; can be expressed as
a quotient r;/T of two integers r; and v (r is common to all x;) such that
0 < |ri| <m™||A[™ Yb]l, and 0 < |r| < (m[|A[)™.

Proor. Without loss of generality, assume that the first £ columns a,
..., a; of the matrix A are linearly independent and any k& + 1 columns of
A are linearly dependent. Then the equation

ria] + 2089+ ... +xa =b

has a unique solution (z?,...,z?). By Cramer’s Rule (see Appendix C), this
unique solution can be obtained from a k X k nonsingular submatrix B of
A and a k-dimensional subvector b’ of b such that for i =1,... k,

19 = det(B;)/det(B)

where B; is the matrix B with the ith column replaced by the vector b/,
and det(B;) and det(B) denote the determinants of the matrices B; and B,
respectively. By the definition of a determinant (see Appendix C), we have

|det(Bi)] < KY[Bi|[* b/ < m™|A[™ [l

and
|det(B)| < K!|B[* < m![|A|™ < (m|A|)™

where we have used facts k¥ < m and m! < m™. Now if we let r = det(B),
r; = det(B;) for i = 1,...,k, and r; = 0 for j = k+ 1,...,n, then the
n-dimensional vector xg = (r1/r,r2/r,...,rs/7) is a solution to the linear
system Ax = b. [

Corollary 5.2.2 Let « = (b, ¢, A) be an instance of the LINEAR PRoO-
GRAMMING problem. Then for any basic solution xo = (z9,...,2%)7 to «,
we can express each mg as a quotient r;/r of two integers r; and r such that
0 <7y <m™|A|" b, and 0 <7 < (m||A[)™.

PROOF. Suppose without loss of generality that a;, ..., a; are the

158 NONTRACTABLE PROBLEMS

basic columns for the basic solution xg. Then the linear system A'x' =
b, where A’ = [aj, ..., a;] is an m X k matrix and x' = (z1,...,7;)7
is a k-dimensional vector of unknown variables, has a unique solution
(z9,...,29)7. By Lemma 5.2.1, each z?, i = 1,...,k, can be expressed as
a quotient 7;/r of two integers r; and r such that |r;| < m™||A’||™ ||b|| <
m™||A||™ b, and 0 < |r| < (m||A'])™ < (m]||A|)™. Since z; > 0, we
can assume both r; and r are non-negative. Now the corollary follows since
for j =k +1,...,n, we can simply let r; = 0. []

Now we move to study integer solutions for linear systems.

Lemma 5.2.3 If the linear system Ax = b, x > 0 has a (real or integer)

solution x' = (z},zh,...,20)T with =} > 1, then there is an integer r,
1 <r < ((m+1)|A|)™, such that the linear system Ax = rb, x >
0 has an integer solution xo = (29,23,...,20)T with 9 > 1 and ||x¢| <

(m + 1)+ A|™|[b]ls, where [|b]|, = max{|[b]|,1} .

ProOF. Consider the linear system

Az = b/, z>0 (5.4)
where
a1 a2 -+ a0 z1 by
agr ag -+ ag 0 29 be
Al = , Z= , b=
Aml Am2 -+ Gmp O Zn, b,
1 0 ... 0 -1 Zni1 1
The linear system in (5.4) has a solution z= (z,...,z},2} — 1). Thus,
by Theorem 4.1.1, it has a basic solution zg = (2?,...,2%,,). By Corol-

lary 5.2.2, each z) can be expressed as a quotient r;/r of two integers
r; and 7 such that (note that A’ is an (m + 1) X (n + 1) matrix and
bl = [[bll) 0 < ri < (m+ ™A™ = (m +)™ A[™|bll,
and 0 < r < (m+ DA™ = ((m -+ 1) | A)™+

Now multiplying both sides of the equality A'zg = b’ by r, we get
A'(rzo) = rb’. That is, the integer vector rzo = (rz},...,rz5,,)" is a
solution to the linear system A’z = rb’, z > 0, which implies immediately

that the n-dimensional integer vector xo = (r2?,...,72%)? is a solution to
the linear system Ax = rb, x > 0. Moreover, from A'zy = rb’, zg > 0,
and r > 0, we have rz) — 7"224-1 =1, thus r2¥ > 1, and for each i = 1,...,n

0 <rz) =r(ry/r) =r; < (m+1)"|A|™|b].

INTEGER LP 159

Thus, ||lxof| < (m + 1)™*![|A[™]b]l.. O

Corollary 5.2.4 If y'A > (1,...,1) has a (real or integer) solution, then
it has an integer solution yo with |y,|l < 2(n + 1)"1||A ™.

PROOF. Write y’ A > (1,...,1) in column form ATy > (1,...,1)T then
convert it into the standard form

ATu — ATv —z=(1,...., 1)1, u,v,z>0 (5.5)
where z = (z1,...,2m)" is the vector of surplus variables, u = (uy, ..., un)7,
v = (v1,...,95)7, and y = u — v. Since the linear system y” A > [1,...,1]
has a solution y' = (y},...,.,), the linear system in (5.5) has a solution
w= (u),...,ul,,v},...,v 2, ..., 2/)T. Moreover, we can assume u} > 1

in w since the only constraints for v} are yj = v} — v} and u} > 0.
By Lemma, 5.2.3, there is an integer r > 0 such that the linear system

ATu — AT™v —z =(r,...,7)T, u, v, z > 0 has an integer solution

wo = (ud,...,ul, 0% . 00 20 T
with [[wo] < (n + 1)"*|A||® (note that AT is an n x m matrix).
Let yo = (uf —o9,...,u0, — v3)T. Then yq is an integer vector and

ATye — (29,...20)T = (r,...,n)T > (1,...,1)T. Thus, ATy, > (1,...,1)T
or equivalently yA A > (1,...,1). Moreover, |y,l < max;{|u) — 9|} <
2woll < 2(n + 1) A" O

Now we discuss the properties of integer solutions for the integer linear
system Ax = b. We say that a solution x to a linear system is nontrivial if
x has at least one nonzero element.

Lemma 5.2.5 If the integer linear system Ax = 0, x > 0 has no nontrivial
integer solution xo with ||xo|| < (m + 1)™* || A||™, then the system yT A
> (1,...,1) has an integer solution yo with ||y,| < 2(n + 1)"T1|A".

PROOF. Suppose the opposite that the system y? A > (1,...,1) has no
integer solution yq with ||yl < 2(n + 1)"*1||A||*, then by Corollary 5.2.4,
the linear system yZ A > (1,...,1) has no (real or integer) solution at all.
Consider the following instance o’ for the LINEAR PROGRAMMING problem

The Instance o

maximize yT'0
subject to yTA > (1,...,1)

160 NONTRACTABLE PROBLEMS

The instance o is the dual instance of the following instance « for the
LINEAR PROGRAMMING problem:

The Instance «

minimize — YT
subject to Ax=0,x >0

The instance o has an obvious solution x = 0. Since the dual instance o/
has no solution, by Theorem 4.3.2, the instance o has unbounded solutions.
Thus, we can assume without loss of generality that the instance « has a
solution x' = (z,...,2)T with { > 1. By Lemma 5.2.3 (note b = 0
for the instance «), the instance « has a nontrivial integer solution xy =
(29,...,20) with 9 > 1 and |xo|| < (m+1)™*1||A||™. But this contradicts
our assumption on the linear system Ax = 0, x > 0.
This contradiction proves the lemma. [

With the above preparations, now we are ready to derive an upper bound
on integer solutions to an integer linear system.

Theorem 5.2.6 If the integer linear system Ax = b, x > 0 has an
integer solution, then it has an integer solution x¢ with ||xo| < 3(¢ +
1)%+4|| A|[*¢*!||b]|, where ¢ = max{m,n}, and |[b||, = max{|[b]|, 1}.

PRrROOF. Let xg = (29,...,2%) be an integer solution to the system Ax =
b, x > 0 with the value """ ; z¥ minimized.

If all 2f < (m+1)"+|A[™, then [xo| < 3(q+1)***||A|**!||b]., and
we are done.

Otherwise, suppose without loss of gemerality z¥,...,20 > (m +
™A™ and 2f,,...,35 < (m+)™HA|™. Let B = [ai, ...,
ay] be the submatrix consisting of the first & columns of A.

If Bu = 0, u > 0 has a nontrivial integer solution ug = (u,...,u})
with [Jug|| < (m + 1)™ | B|™, then the vector x' = (zf,...,z!), where
o=z —u fori=1,... .,k and 2y = z} for j = k +1,...,n, satisfies

AXI = AX(]— Bu() = AXQ =b

and x' > 0 since z{ > (m+1)" | A||™ and v < (m+1)"B||™ < (m+
1)™HL|A||™ for all i = 1,...,k. Thus, the integer vector x' is also a solution
to the integer linear system Ax = b, x > 0. However, this contradicts

INTEGER LP 161

our assumption that 3% ; z¥ is minimized over all integer solutions to the

system Ax = b, x > 0 since (note the vector ug is nontrivial)

n n k n
Zx; = Zm? — Zu? < Zm?
i=1 i=1 i=1 i=1
Therefore, the integer linear system Bu = 0, u > 0 must have no non-
trivial integer solutions ug with ||ug|| < (m+1)™*!||B||™. By Lemma 5.2.5,
the system y'B > (1,...,1) has an integer solution yo = (39,...,9%) with
lyoll < 2(k +D)*BJ* < 2(n + 1) A"
Multiplying both sides of the equality Axy = b from left by the vector
Y4, we obtain

n

Zﬂﬁgygaz’:y(];b

i=1
Since yiB > (1,...,1), yta; > 1 for i = 1,...,k. We get for each 1,
i=1,...,k,

n

k k
0 0 0,Ts — T 0T
0<az? <Y 2} <Y zlyfai=yib- Y zjyja;
i=1 i=1 j=k+1

Since
lyg bl < mllyoll - [bll < 2m(n + 1)"HA["[b]] < 2(g + 1)T[|A]|||b]
and since for j =k +1,...,n we have a:? < (m+1)™H|A™
|z5yda;] < zfmllyoll - 1Al < 2(q + 1) || A+

Thus, fori =1,...,k,
n
2 <|y§bl+ D |zfyga;] < 3(g+1)%| A2 |bll,
j=k+1

This gives ||xol| < 3(¢ +1)***[|A|**!|b]|,. O

So far we have concentrated on integer solutions for integer linear systems
and have ignored the objective function ¢’x in the instance o = (b, c,
A) of the INTEGER LP. In fact, if we know the objective function value
o of optimal solutions to the instance «, then a bound on optimal integer
solutions to a can be derived directly from Theorem 5.2.6: an optimal integer
solution to the instance o must be an integer solution to the linear system

162 NONTRACTABLE PROBLEMS

Ax = b, c"x = ¢, and x > 0. According to Theorem 5.2.6, this should give
an upper bound on optimal integer solutions to « in terms of A, b, ¢, and
0. Thus, to derive such a bound, we first need to derive an upper bound for
the objective function value o of optimal solutions to .

Lemma 5.2.7 Suppose that the instance @ = (b, ¢, A) for the INTEGER
LP problem has a finite optimal solution xy. Then « as an instance for the
LINEAR PROGRAMMING problem also has a finite optimal solution.

PROOF. Assume the opposite that « as an instance for the LINEAR
PROGRAMMING problem has unbounded solutions. Then by Theorem 4.3.1,
the linear system y? A < ¢’ has no solution. Thus, the instance o for the
LINEAR PROGRAMMING problem

The Instance o

maximize yT0
subject to yl'A <c”

also has no solution. Since o] is the dual instance of the instance oy =
(0, ¢, A) and a1 has an obvious solution x = 0, by Theorem 4.3.2, the
instance «; has unbounded solutions. Therefore, there is a solution x; to
o such that ¢’'x; < 0.

Such a solution x; can actually be found by the simplex method. Ap-
plying the simplex method using a tableau 7, starting from the instance
ai;. We must get into a stage in which a negative reduced cost coefficient
rq < 0 is found and all elements in the gth column of the tableau 7 are
less than or equal to 0 (see Lemma 4.2.3). In this case, a solution x; to
the instance oy satisfying ¢/’ x < 0 can be constructed using the elements in
the tableau T, the elements in the vector ¢, and a sufficiently large positive
integer € (see Section 4.3, the discussion before Lemma 4.2.3). Because the
tableau 7T starts with the elements in A, b, and ¢, which are all integers,
and because the tableau transformations perform only additions, subtrac-
tions, multiplications, and divisions on tableau elements, we conclude that
all tableau elements are rational numbers. In consequence, all elements in
the solution x; are rational numbers. Now let xo = rx; for a proper large
positive integer r, then the vector xs is an integer solution to the instance
ar = (0, ¢, A) satisfying (note ¢!'x; < 0) c’'x2 < c’'x; < 0.

Finally, let x3 = xp+ X2, then x3 is an integer vector and

Ax3 = Axg+ Axg= Axg=Db x3>0

INTEGER LP 163

Thus, x3 is an integer solution to the instance . Moreover,
c’'x3 = exo+ e¢’'xo < cT'xg

But this contradicts our assumption that x(is the optimal integer solution
to the instance a = (b, ¢, A).

In conclusion, « as an instance for the LINEAR PROGRAMMING problem
must have a finite optimal solution. [

Now we are ready to derive an upper bound on the objective function
value of optimal solutions for an instance for the INTEGER LP problem.

Theorem 5.2.8 Suppose that the instance « = (b, ¢, A) for the INTEGER
LP has a finite optimal solution xy. Then

|"x0| < 3(q + 1?72 A2]| - [|b]l«
where ¢ = max{m,n} and ||b|/. = max{||b]||,1}.

Proor. If ¢Txy > 0, then by Theorem 5.2.6, there is an integer solution
x; to a such that ||x1|| < 3(¢g + 1)2¢7*||A||??*!||b||s. The theorem follows
because

|¢"xo| = ¢"xp < ¢"x1 < nfle] - [Ixi]]

On the other hand, suppose that ¢Ixy < 0. Since a as an instance for
the INTEGER LP problem has a finite optimal solution, by Lemma 5.2.7,
« as an instance for the LINEAR PROGRAMMING problem also has a finite
optimal solution. By Theorem 4.1.1, ¢, as an instance for the LINEAR PRO-
GRAMMING problem, has an optimal basic solution x3. By Corollary 5.2.2,
each element in x5 can be expressed as a quotient r;/r of two non-negative
integers 7; and r such that r; < m™||A||™ !||b||. In particular, no element
in xy is larger than the integer m™||A|™~!|/b|. Let z!,,. be the largest
element in xo (note xz > 0), then T, < m™||A||™ Y |b]| < ¢4||A||77Y|b]-
Now the theorem follows because

!

[e”xo| < [e"xa| < nllef|zina

O

Now we are ready for our main theorem.

Theorem 5.2.9 Suppose that the instance « = (b, ¢, A) for the INTEGER
LP problem has a finite optimal solution, then o has an optimal solution

164 NONTRACTABLE PROBLEMS

xg such that ||xo|| < 9(q + 2)1 1 q24+5 where ¢ = max{m,n}, and amax =
max{||bl], [le[], [| A[l}.

PRrROOF. Let o be the value of ¢Zx for any optimal solution x to o.. Then
an integer vector x is an optimal solution to the instance « if and only if
x is a solution to the linear system ATx = b*, x > 0, where AT is an
(m + 1) x n matrix and b* is an (m + 1)-dimensional vector such that

e(5) ey

By Theorem 5.2.6, the integer linear system ATx = b*, x > 0, has an
integer solution xg such that

2q+6 2q+3
lIxoll < 3(q +2)* ard [Io7T ||«

Now the theorem follows since ||b*|, = max{|/b||,|s|,1} and by Theo-
rem 5.2.8,
o] < 3(q + 1)* P AP le]| - [[bll« < 3(q + 2)*TFazl’

max

O
Corollary 5.2.10 The INTEGER LP problem is NPO.

Proor. Let @ = (b, ¢, A) be any instance of the INTEGER LP problem.
Let ¢ = max{m,n} and amax = max{||b||,||c||,||A||}. Then the length ||
of the instance « is larger than ¢ + log(amax), i-e., we need at least one bit
for each element in b, ¢, and A, and need at least log(amax) bits for some
element in b, ¢, and A.

By Theorem 5.2.9, there is an optimal solution xy to a such that ||xg]| <
9(q + 2)4+ 1 glet6 Therefore, each element in xo can be represented by at

most log(||xpl||) bits, and the optimal solution x; can be represented by at
most n log(||xg||) bits. Now

log([1x0|) < log9 + (4g + 11)log(g + 2) + (4g + 6) log(amax) = O(|af)

That is, the optimal solution x of the instance « can be represented by

O(n|al?) = O(|af?) bits. O

There is an intuitive geometric interpretation for Corollary 5.2.2 and
Theorem 5.2.9. Recall that the constraints Ax = b and x > 0 define a
polytope P in the n-dimensional Euclidean space £" and that basic solutions

APPROXIMATION 165

correspond to extreme points on the polytope P. Corollary 5.2.2 says that
the extreme points on P cannot be “too far” from the original unless very
large integers are involved in defining the polytope P that create very small
angles. Theorem 5.2.9 basically says that it is very difficult for the solution
set for the instance a to avoid all small integer vectors unless very small
angles caused by very large coefficients are involved.

5.3 Polynomial time approximation

We have established a powerful system, the NP-hardness theory, by which we
can show that a large number of optimization problems are computationally
intractable, based on our believing that P # NP. However, this does not
obviate the need for solving these hard problems — they are of obvious
practical importance. Knowing the computational difficulty of the problems,
one possible approach is that we could relax the requirement that we always
find the optimal solution. In practice, a near-optimal solution will work fine
in many cases. Of course, we expect that the algorithms for finding the
near-optimal solutions are efficient.

Definition 5.3.1 An algorithm A is an approzimation algorithm for an
optimization problem @ = (Ig, S, fg, optg), if on any input instance z €
I, the algorithm A produces a solution y € Sp(z).

Note that here we have put no requirement on the approximation quality
for an approximation algorithm. Thus, an algorithm that always produces
a “trivial” solution for a given instance is an approximation algorithm. For
example, an algorithm that always returns the empty set is an approxima-
tion algorithm for the KNAPSACK problem. To measure the quality of an
approximation algorithm, we introduce the following concept.

Definition 5.3.2 An approximation algorithm A for an optimization prob-
lem Q = (Ig, Sq, fg,optg) has an approzimation ratio r(n), if on any input
instance = € Ig, the solution y produced by the algorithm A satisfies

Opt(x) . m
To@y) <r(|lz]) if optg ax
fo(z,y) . .
W‘ S T'(|.’L'|) if Oth = min

where Opt(z) is defined to be max{f(z,y) | y € So(z)} if opty = max and
to be min{f(z,y) | y € Sg(z)} if optg = min.

166 NONTRACTABLE PROBLEMS

Algorithm. Graham-Schedule

Input: I = (t1,...,tn;m), all integers
Output: a scheduling of the n jobs of processing time t1, t2,...,tn
on m identical processors

for ¢ =1 to n do assign ¢; to the processor with the lightest load,;

Figure 5.1: Graham-Schedule

Remark 5.3.3 By the definition, an approximation ratio is at least as large
as 1. It is easy to see that the closer the approximation ratio to 1, the better
the approximation quality of the approximation algorithm.

Definition 5.3.4 An optimization problem can be polynomial time approx-
imated to a ratio r(n) if it has a polynomial time approximation algorithm
whose approximation ratio is r(n).

As an example, let we consider the general MAKESPAN problem:
MAKESPAN

Ig: the set of tuples T = {t1,...,tp;m}, where ¢; is the pro-
cessing time for the ith job and m is the number of identical
Processors

Sq: Sq(T) is the set of partitions P = (T1,...,Ty,) of the num-
bers t1,...,t, into m parts

fo: fo(T, P) is equal to the processing time of the largest subset
in the partition P, that is, fo(T,P) = maxi{ztj er; i}

optg: min

A simple approximation algorithm is based on the greedy method: to
minimize the parallel completion time, we always assign the next job to the
processor that has the lightest load. This algorithm is due to R. Graham [56],
and is given in Figure 5.1.

Using a data structure such as a 2-3 tree to organize the m processors
using their loads as the keys, we can always find the lightest loaded processor,
update its load, and re-insert it back to the data structure in time O(logm).
With this implementation, the algorithm Graham-Schedule runs in time
O(nlogm).

APPROXIMATION 167

Now we study the approximation ratio of the algorithm Graham-
Schedule.

Theorem 5.3.1 The algorithm Graham-Schedule for the MAKESPAN
problem has approzimation ratio bounded by 2 — (1/m).

PROOF. Let a = (t1,...,t,;m) be an input instance for the MAKESPAN
problem. Suppose that the algorithm Graham-Schedule constructs a
scheduling S for o with parallel finish time T'. Let P; be a processor that
has the execution time T assigned by the scheduling S, i.e., P; finishes its
work the latest under the scheduling S.

If the processor P; is assigned only one job, then the job has processing
time T, and any scheduling on « has parallel completion time at least 7T'.
In this case, the scheduling S is an optimal scheduling with approximation
ratio 1.

So suppose that the processor P; is assigned at least two jobs. Let the
last job Jy assigned to the processor P, have processing time ty. We have
T — tg > 0. By our strategy, at the time the job Jj is about to be assigned
to the processor P, all processors have load at least T' — ty. This gives:

n
> ti>m(T —to) +to =mT — (m — 1)ty
=1

Thus

imiti+ (m—1to 35t _|_m—1
m m m

T<

to

Now let the parallel completion time of an optimal scheduling on the instance
a be Opt(a). It is easily to see that Opt(«) is at least as large as (3°i- ¢;) /m,
and at least as large as t3. We conclude

-1
T < Opt(a) + mTOpt(a)

This gives

T <p L
Opt(a) — m

and completes the proof. []

168 NONTRACTABLE PROBLEMS

Let @@ be an optimization problem. Suppose that we have developed a
polynomial time approximation algorithm A for () and have derived that
the approximation ratio of the algorithm A is bounded by r¢. Three natural
questions regarding the approximation algorithm A are as follows.

1. Is the approximation ratio r¢ tight for the algorithm A? That is,
is there another 7’ < 7y such that the approximation ratio of the
algorithm A is bounded by 7'?

2. Is the approximation ratio ry tight for the problem @7 That is, is
there another polynomial time approximation algorithm A’ of approx-
imation ratio r’ for the problem @ such that 7’ < r¢?

3. Can a faster approximation algorithm A’ be constructed for the prob-
lem @ with approximation ratio as good as r(?

To answer the first question, either we need to develop a smarter analysis
technique that derives a smaller approximation ratio bound r’ < rq for the
algorithm A, or we construct input instances for the problem) and show
that on these input instances, the approximation ratio of the algorithm A
can be arbitrarily close to ¢ (thus 7¢ is a tight approximation ratio for the
algorithm A).

To answer the second question, either we need to develop a new (and
smarter) approximation algorithm for () with a smaller approximation ratio,
or we need to develop a formal proof that no polynomial time approximation
algorithm for the problem () can have approximation ratio smaller than ry.
Both directions could be very difficult. Developing a new approximation
algorithm with a better approximation ratio may require a deeper under-
standing of the problem) and new analysis techniques. On the other hand,
only for very few optimization problems, a tight approximation ratio of poly-
nomial time approximation algorithms has been derived. In general, it has
been very little understood how to prove that to achieve certain approxima-
tion ratio would require more than polynomial time.

The third question is more practically oriented. Most approximation
algorithms are simple thus their running time is bounded by a low degree
polynomial such as O(n?) and O(n3). However, there are certain optimiza-
tion problems for which the running time of the approximation algorithms
is a very high degree polynomial such as n?°. These algorithms may pro-
vide a very good approximation ratio for the problems thus are of great
theoretical interests. On the other hand, however, these algorithms seem
impractical. Therefore, to keep the same approximation ratio but improve

APPROXIMATION 169

the running time of these algorithms is highly demanded in the computer
implementations.

In the following, we will use the approximation algorithm Graham-
Schedule for the MAKESPAN problem as an example to illustrate these three
aspects regarding approximation algorithms for optimization problems.

Lemma 5.3.2 The approzimation ratio 2 — (1/m) for the approzimation
algorithm Graham-Schedule is tight.

Proor. To prove the lemma, we consider the following input instance «

for the MAKESPAN problem: a = (t1,t9,...,t,;m), where n = m(m—1)+1,
ty =ty =+ =1t,-1 =1, and ¢, = m. The Graham-Schedule assigns
the first n — 1 = m(m — 1) jobs t1,...,t,—1 into the m processors, each

then has a load m — 1. Then the algorithm assigns the job ¢, to the first
processor, which then has a load 2m—1. Therefore, the algorithm Graham-
Schedule results in a scheduling of the n jobs on m processors with a parallel
completion time 2m — 1.

On the other hand, the optimal scheduling for the instance « is to assign
the job ¢, to the first processor and then assign the rest n — 1 = m(m — 1)
jobs to the rest m — 1 processors. By this scheduling, each processor has
load exactly m.

Thus, on this particular instance «, the approximation ratio of the al-
gorithm Graham-Schedule is (2m — 1)/m = 2 — (1/m). This proves that
2 — (1/m) is a tight bound for the approximation ratio of the algorithm
Graham-Schedule. []

Now we consider the second question: can we have a polynomial time
approximation algorithm for the MAKESPAN problem that has an approxi-
mation ratio better than 2—(1/m). By looking at the instance « constructed
on the proof of Lemma 5.3.2, we should realize that the bad performance
for the algorithm Graham-Schedule occurs in the situation that we first
assign small jobs, which somehow gives a balanced assignment among the
processors, while a latter large job may simply break the balance by increas-
ing the load of one processor significantly while unchanging the load of the
other processors. This then results in a very unbalanced assignment among
the processors thus worsens the parallel completion time. To avoid this sit-
uation, we presort the jobs, in a non-increasing order of their processing
time, before we apply the algorithm Graham-Schedule. We call this the
Modified Graham-Schedule.

170 NONTRACTABLE PROBLEMS

Theorem 5.3.3 The Modified Graham-Schedule algorithm for the
MAKESPAN problem has an approzimation ratio bounded by 4/3.

PROOF. According to the algorithm, we assume t; > --- > ¢, in the input
a = (t1,...,tp;m) to the algorithm Graham-Schedule, and analyze the
approximation ratio of the algorithm.

Let Tp be the parallel completion time of an optimal scheduling on the
instance « to the MAKESPAN problem. Suppose k is the first index such that
when the algorithm assigns the job t; to a processor, the parallel completion
time exceeds Tp. We first prove that ¢, < Tp/3.

Suppose that t; > Tp/3. Thus, we have t; > Ty/3 for all i < k. Consider
the moment when the algorithm Modified Graham-Schedule has made
assignment on the jobs %1,...,t;_1. By our assumption, the parallel com-
pletion time of this assignment on the jobs %i,...,%x_1 is not larger than
Tpy. Since each job t; with ¢ < k is larger than Tj/3, this assignment has at
most two of these k£ — 1 jobs in each processor. Without loss of generality,
we can assume that each P; of the first h processors is assigned a single job
t;, 1 <14 < h, while each of the rest m — h processors is assigned exactly two
jobs from tp41,...,t, 1. Thus,

k—h—1=2(m—h) (5.6)

and by the assumption on the index k, for each i < h, we have t; + t; > Tp.
Now consider any optimal scheduling Sy on the instance «. The parallel
completion time of Sy is Ty. If a processor is assigned a job t; by Sg with
1 < h, then the processor cannot be assigned any other jobs in #1,...,%
by Sp since t is the smallest among t¢1,...,t; and t; + t; > Tp. Moreover,
no processor is assigned more than two jobs in tp41,...,t since each of
these jobs has processing time larger than Tp/3. Therefore, we need at least
h+[(k—h)/2] =h+ (m—h+1) =m+ 1 processors for the jobs t1,...,1%
in order to keep the parallel completion time larger than T (note here we
have used the equality (5.6)). This contradicts the fact that Sy is an optimal
scheduling of parallel completion time Ty on the instance (t1,...,t,;m).

Thus, if tx is the first job such that when the algorithm Modified
Graham-Schedule assigns ?; to a processor the parallel completion time
exceeds Tp, then we must have t; < Ty/3.

Now let S be the scheduling constructed by the algorithm Modified
Graham-Schedule with parallel completion time T for the instance «. If
T = Tp, then the approximation ratio is 1 so less than 4/3. If T > Ty, let
processor P; have load T" and let ¢; be the last job assigned to processor P;.

APPROXIMATION 171

Since when the algorithm assigns ?; to P; the parallel completion time of
t1,...,t exceeds Ty, by the above discussion, we must have ¢, < Tp/3 (tx
may not be the first such a job but recall that the jobs are sorted in non-
increasing order). Let T' = ¢+ tx. Then at the time the job t; was assigned,
all processors had load at least ¢. Therefore, mt < Ef:_f t; < >, ti, which
implies t < 3 t;/m < Tp. This gives immediately

T=t+1t, <Tj -I-T()/?) :4T0/3
That is, T'/Tp < 4/3. The theorem is proved. [J

Note 2—(1/m) > 4/3 for all m > 1. Therefore, though 2—(1/m) is a tight
bound for the approximation ratio of the algorithm Graham-Schedule, it
is not a tight bound on the approximation ratios for approximation algo-
rithms for the MAKESPAN problem.

We should point out that the bound 4/3 is not quite tight for the algo-
rithm Modified Graham-Schedule. A tight bound on the approximation
ratio for the algorithm Modified-Graham-Schedule has been derived,
which is % — ﬁ As an exercise, we leave the formal derivation of this
bound for the algorithm to interested readers.

It is natural to ask whether the bound % — % is tight on approxima-
tion ratios for approximation algorithms for the MAKESPAN problem. It is,
in fact, not. For example, Hochbaum and Shmoys [63] have developed a
polynomial time approximation algorithm of approximation ratio 1 + € for
any fixed constant € > 0. Such an algorithm is called a polynomial time ap-
prozimation scheme for the problem. Therefore, there are polynomial time
approximation algorithms for the MAKESPAN problem whose approximation
ratio can be arbitrarily close to 1. These kind of approximation algorithms
will be discussed in more detail in the next few chapters.

Unfortunately, the algorithm presented in [63] runs in time O((n/¢)/€"),
which is totally impractical even for moderate values of n and e. Thus, we
come to the third question: can we keep the approximation ratio 1+ € while
improving the running time for approximation algorithms for the MAKESPAN
problem? Progress has been made towards this direction. For example, re-
cently, Hochbaum and Shmoys [65] have developed an approximation algo-
rithm for the MAKESPAN problem whose approximation ratio remains 1+ ¢
with running time improved to O(n) + f(1/e€), where f(1/€) is a function
independent of n.

172 NONTRACTABLE PROBLEMS

Part 11

(14 ¢)-Approximable
Problems

173

Chapter 6

Fully Polynomial Time
Approximation Schemes

Recall that the approximation ratio for an approximation algorithm is a
measure to evaluate the approximation performance of the algorithm. The
closer the ratio to 1 the better the approximation performance of the algo-
rithm. It is notable that there is a class of NP-hard optimization problems,
most originating from scheduling problems, for which there are polynomial
time approximation algorithms whose approximation ratio 1 + ¢ can be as
close to 1 as desired. Of course, the running time of such an algorithm in-
creases with the reciprocal of the error bound €, but in a very reasonable
way: it is bounded by a polynomial of 1/e. Such an approximation algorithm
is called a fully polynomial time approzimation scheme (or shortly FPTAS)
for the NP-hard optimization problem. A fully polynomial time approxi-
mation scheme seems the best possible we can expect for approximating an
NP-hard optimization problem.

In this chapter, we introduce the main techniques for constructing fully
polynomial time approximation schemes for NP-hard optimization problems.
These techniques include pseudo-polynomial time algorithms and approxi-
mation by scaling. Two NP-hard optimization problems, the KNAPSACK
problem and the c-MAKESPAN problem, are used as examples to illustrate
the techniques. In the last section of this chapter, we also give a detailed
discussion on what NP-hard optimization problems may not have a fully
polynomial time approximation scheme. An important concept, the strong
NP-hardness, is introduced, and we prove that in most cases, a strongly
NP-hard optimization problem has no fully polynomial time approximation
scheme unless our working conjecture P # NP fails.

175

176 FPTAS

6.1 Pseudo-polynomial time algorithms

We first consider algorithms that solve certain NP-hard optimization prob-
lems precisely. Of course, we cannot expect that these algorithms run in
polynomial time. However, these algorithms run in pseudo-polynomial time
in the sense that the running time of these algorithms is bounded by a two-
variable polynomial whose variables are the length of the input instance
and the largest number appearing in the input instance. These pseudo-
polynomial time algorithms will play a crucial role in our later development
of approximation algorithms for the NP-hard optimization problems.
We start with the KNAPSACK problem, which is defined as follows.

KNAPSACK = (Ig, Sq, fg,optq)
Io={(s1,...,8p;v1,...,vn; B) | s;,vj, B : positive integers}
So({81,---,8n301,...,vp; B)) ={S C{1,...,n} | Ycqsi < B}
fo({(s1,---,8n;V1,---,0n; B),S) =Y ic5vi

optg = max

That is, the KNAPSACK problem is to take the maximum value with a knap-
sack of size B, given n items of size s; and value v;, 1 = 1,...,n. To simplify
our description, for a subset S of {1,...,n}, we will call }",c¢ s; the size of
S and ;.5 v; the value of S. Let Vj be a value not smaller than the value of
optimal solutions to the instance (si,...,8,;v1,...,v,;B). For each index
1, 1 <14 < n and for each value v < Vj, we consider the following question

Question K (i,v)

Is there a subset S of {1,...,:} such that the size of S is not
larger than B and the value of S is equal to v?

The answer to Question K(i,v) is “yes” if and only if at least one of the
following two cases is true: (1) there is a subset S’ of {1,...,i — 1} such
that the size of S’ is not larger than B and the value of S’ is equal to v (in
this case, simply let S be S'), and (2) there is a subset S” of {1,...,7 — 1}
such that the size of S” is not larger than B — s; and the value of S” is
equal to v — v; (in this case, let S = S” U {i}). Therefore, the solution to
Question K (i,v) seems to be implied by solutions to the questions of the
form K (i —1,%).

For small values of 7 and v, the solution to Question K(i,v) can be
decided directly. In particular, the answer to K(0,v) is always “no” for
v > 0; and the answer to K(0,0) is “yes”.

PSEUDO-POLYNOMIAL TIME 177

The above discussion motivates the following dynamic programming al-
gorithm for solving the KNAPSACK problem. We first compute K (0,v) for
all v, 0 < v < Vj. Then, inductively we compute each K(i,v) based on
the solutions to K (i — 1,v") for all 0 < o' < V;. For each item K (i,v), we
associate it with a subset S in {1,...,7} such that the size of S is not larger
than B and the value of S is equal to v, if such a subset exists at all.

Now a potential problem arises. How do we handle two different wit-
nesses for a “yes” answer to the Question K (i,v)? More specifically, suppose
that we find two subsets S; and Sy of {1,...,i} such that both of S; and
S9 have size bounded by B and value equal to v, should we keep both of
them with K(i,v), or ignore one of them? Keeping both can make K (i,v)
exponentially grow as ¢ increases, which will significantly slow down our al-
gorithm. Thus, we intend to ignore one of S; and S;. Which one do we want
to ignore? Intuitively, the one with larger size should be ignored (recall that
S1 and S5 have the same value). However, we must make sure that ignoring
the set of larger size will not cause a loss of the track of optimal solutions
to the original instance of the KNAPSACK problem. This is ensured by the
following lemma.

Lemma 6.1.1 Let S; and Sy be two subsets of {1,...,i} such that S1 and
So have the same value, and the size of S1 is at least as large as the size
of So. If S1 leads to an optimal solution S = S1 U S3 for the KNAPSACK
problem, where S3 C {i +1,...,n}, then §' = Sy U S5 is also an optimal
solution for the KNAPSACK problem.

PROOF. Let size(S) and value(S) denote the size and value of a subset S
of {1,...,n}, respectively. We have

size(S') = size(Ss) + size(S3)

and
size(S) = size(S1) + size(Ss)

By the assumption that size(S1) > size(S2), we have size(S) > size(S').
Since S is an optimal solution, we have size(S) < B, which implies
size(S') < B. Thus S’ is also a solution to the KNAPSACK problem. More-
over, since value(S1) = value(S2), we have

value(S') = wvalue(Ss) + value(Ss)
= walue(S1) + value(S3)
= wvalue(S)

178 FPTAS

Algorithm. Knapsack-Dyn(n, Vo)
Input: (s1,...,8n;01,...,vp; B), all positive integers
Output: a subset S C {1,...,n} of size < B and value maximized

Subroutine. Put(So, K[i, v])
if K[i,v] = * then K[i,v] = So
else if size(So) < size(K[i,v]) then K[i,v] = So.
1. forall0<i<nand0<wv<Vydo KJiv]==x
KJ[0,0] = ¢; {¢ is the empty set}
forall0<i<n—-1land 0 <v <Vpdo
if K[i,v] # * then
Put(KT[i,v], K[i + 1,v]);
if size(K[i,v]) + si+1 < B then
Put(K[5,v]U{i + 1}, K[t + 1, v + vi41]);

4. return the item K[n,v] # * with v maximized.

Figure 6.1: Dynamic programming for KNAPSACK

Thus, S’ is also an optimal solution. [

By Lemma 6.1.1, for two subsets S1 and Sy of {1,...,4} that both witness
the “yes” answer to Question K (i,v), if the one of larger size leads to an
optimal solution, then the one with smaller size also leads to an optimal
solution. Therefore, ignoring the set of larger size will not lead to a loss of
the track of optimal solutions. That is, if we can derive an optimal solution
based on the set of larger size, then we can also derive an optimal solution
based on the set of smaller size using exactly the same procedure.

Now a dynamic programming algorithm based on the above discussion
can be described as in Figure 6.1. Here the order of computation is slightly
different from the one described above: instead of computing K (i, v) based
on K(i—1,v) and K(i — 1,v — v;), we start from each K(i — 1,7') and try
to “extend” it to K (i,v') and K (i,v" + v;).

The subroutine Put(Sy, K[i,v]) is used to solve the multiple witness
problem, where Sy is a subset of {1,...,i} such that Sy has value v.

Step 4 of the algorithm Knapsack-Dyn(n,V}) finds the largest value
v <V such that K[n,v] # *. Obviously, if Vj is not smaller than the value
of optimal solutions to the input instance, then step 4 of the algorithm will
find the subset S of {1,2,...,n} with the largest value under the constraint
that S has size bounded by B.

PSEUDO-POLYNOMIAL TIME 179

According to our discussion, it should be clear that the algorithm
Knapsack-Dyn(n, V) solves the KNAPSACK problem for any value Vj not
smaller than the value of optimal solutions to the input instance.

Lemma 6.1.2 The algorithm Knapsack-Dyn(n, Vy) runs in time O(nVj).

PROOF. We show data structures on which the if statement in Step 3
can be executed in constant time. The theorem follows directly from this
discussion.

For each item K[i,v], which is for a subset S;, of {1,...,i}, we attach
three parameters: (1) the size of S;,, (2) a marker m;, indicating whether
i is contained in Sy, and (3) a pointer p;, to an item K[i — 1,v'] in the
previous row such that the set Sj, is derived from the set K[i — 1,']. Note
that the actual set Sj, is not stored in K[i,v].

With these parameters, the size of the set S;, can be directly read from
K|i,v] in constant time. Moreover, it is also easy to verify that the subrou-
tine calls Put(Ki, v], K[i +1,v]) and Put(K[i,v]U{i+ 1}, K[i + 1,v +v;}1])
can be performed in constant time by updating the parameters in K[i+ 1,v]
and K[i + 1,v + vj41]-

This shows that steps 1-3 of the algorithm Knapsack-Dyn(n, Vj) take
time O(nVp).

We must show how the actual optimal solution K|[n,v] is returned in
step 4. After we have decided the item K|[n,v] in step 4, which corresponds
to an optimal solution Sy, that is a subset of {1,...,n}, we first check the
marker my, to see if S, contains n, then follow the point p,, to an item
K[n — 1,v'], where we can check whether the set Sy, contains n — 1 and a
pointer to an item in the (n — 2)nd row, and so on. In time O(n), we will
be able to “backtrack and collect” all elements in S,,, and return the actual

set Spy. [

A straightforward implementation of the algorithm Knapsack-
Dyn(n, V) uses a 2-dimensional array K|[0..n,0..V;], which takes O(nV})
amount of computer memory. A more careful implementation can reduce
the amount of computer memory from O(nVy) to O(Vp), as follows. Ob-
serve that at any moment, only two rows K[i,] and K[+ 1,-] of the array
K[0..n,0..V5] need to be kept: when the values of the ith row become avail-
able, all values for rows before the ith row will not be used further so they
do not need to be kept. Therefore, in the algorithm Knapsack-Dyn(n, Vp),
we can use two arrays of size V to keep the current two rows, which take
only O(V,) amount of computer memory.

180 FPTAS

In general, we can conveniently let the bound Vy = 7" | v;, which is an
obvious upper bound for the optimal solution value. With this bound V,
the algorithm Knapsack-Dyn(n, Vj) runs in time polynomial in both n and
Vb, and solves the KNAPSACK problem precisely. Unfortunately, since the
value V can be larger than any polynomial of n, the algorithm Knapsack-
Dyn(n, Vy) is not a polynomial time algorithm in terms of the input length
n. On the other hand, the algorithm Knapsack-Dyn(n,V;) does provide
very important information about the KNAPSACK problem, in particular
from the following two viewpoints:

1. If values of all items in the input instance are bounded by a polynomial
of n, then the value Vj is also bounded by a polynomial of n. In this
case, the algorithm Knapsack-Dyn(n,V)) runs in time polynomial
in n and constructs an optimal solution for each given input instance;
and

2. The algorithm has laid an important foundation for approximation
algorithms for the KNAPSACK problem. This will be discussed in detail
in the next section.

The algorithm Knapsack-Dyn(n,V}) is a typical method for solving
a class of optimization problems, in particular many scheduling problems.
To study this method in a more general sense, we first introduce a few
terminologies.

Definition 6.1.1 Suppose Q = (Ig, S, fg,optg) is an optimization prob-
lem. For each input instance z € Ig we define:

e length(z) = the length of a binary representation of z; and

e max(z) = the largest number that appears in the input z.

In particular, if no number appears in the input instance z, we define
max(z) = 1.

The definitions of length(z) and max(z) can vary by some degree with-
out loss of the generality of our discussion. For example, length(z) can also
denote the length of the representation of the input = based on any fixed
alphabet, and max(z) can be defined to be the sum of all numbers appearing
in the input . Our discussion below will be valid for any of these variations.
The point is that for two different definition systems (length(z), max(z))
and (length’(z), max'(z)), we require that length(z) and length’(z) are poly-
nomially related and that max(z) and max'(z) are polynomially related for
all input instances z.

PSEUDO-POLYNOMIAL TIME 181

Definition 6.1.2 Let () be an optimization problem. A algorithm A solv-
ing Q runs in pseudo-polynomial time if there is a two-variable polynomial
p such that on any input instance z of), the running time of the algorithm
A is bounded by p(length(z), max(z)). In this case, we also say that the
problem () is solvable in pseudo-polynomial time.

Consider the KNAPSACK problem. It is clear that for any input instance
= (81y---,8p;V1,...,0n;B), if we let V) = >, v; < n-max(a), then the
algorithm Knapsack-Dyn(n, V) constructs an optimal solution for a given
instance « in time O(nV}), which is bounded by a polynomial of length(«)
and max(«). Thus,

Theorem 6.1.3 The KNAPSACK problem is solvable in pseudo-polynomial
time.

The KNAPSACK problem is a maximization problem. As another exam-
ple, we present a pseudo-polynomial time algorithm for the minimization
problem c-MAKESPAN, where ¢ is a fixed positive integer.

Recall that the c-MAKESPAN problem is defined as follows.

c-MAKESPAN = (IQ, SQ, fQ, Oth)

Ig: the set of tuples T' = (t1,...,t,), where each ¢; is an
integer denoting the processing time for the ith job

Sq: Sq(T) is the set of partitions P = (S5,...,S,) of the
numbers (t1,...,%,) into ¢ parts (P is called a
scheduling of (t1,...,t,))

for fo(T,P) = maxi<g<e{34jes, tit
optg: min

By Theorem 5.1.3, the c- MAKESPAN problem is NP-hard. Thus, there is no
polynomial time algorithm for the c-MAKESPAN problem unless P = NP.

Let Ty be a value not smaller than the value of optimal solutions to the
instance (t1,...,ty). Note that every scheduling (Si,...,S.) of the n jobs
(t1,...,tn), where Sy is the subset of {1,...,n} that corresponds to the jobs
assigned to the dth processor, can be written as a c-tuple (11,...,T,) with
0<Ty<Tpforalll <d<c where Ty = Ehesd tp, is the total execution
time assigned to the dth processor. The c-tuple (T1,...,T.) will be called
the time configuration for the scheduling (S, ..., S¢).

Now as for the KNAPSACK problem, for each ¢, 0 < ¢ < n, and for each
time configuration (71,...,7T.), 1 < Ty < Ty, 1 < d < ¢, we ask the question

182 FPTAS

Algorithm. c¢-Makespan-Dyn(n,Tp)
Input: n jobs with processing time t1,...,t,
Output: an optimal scheduling of the jobs on ¢ processors
1. fori=0tondo
for each time configuration (74,...,7:), 0 < Ty < Ty do
H[i,T,..., T = *;
H[0,0,...,0] = 0;
fori=0ton—1do
for each time configuration (T1,...,T.), 0 < Ty <Tp do
if H[i,T1,...,Tc] # * then
for d =1 to c do
H[i+1,Ty,...,Ta_1,Ta+tiy1, Tass,...,T.] = d;
{ record that job t;+1 is assigned to processor d. }
4. return the H[n,Th,...,Tc] # * with maxq{Tq} minimized,;

Figure 6.2: Dynamic programming for c-MAKESPAN

Is there a scheduling of the first i jobs {t1,...,t;} that gives the
time configuration (71, ...,7¢)?

This question is equivalent to the following question

Is there an index d such that the first 4 — 1 jobs {t1,...,t;—1}
can be scheduled with the time configuration (71,...,Ty—1,Tg—
tiaTd-I-la cee 7TC)?

This observation suggests the dynamic programming algorithm given in Fig-
ure 6.2. A ¢+ 1 dimensional array H[0..n,0..Tp,...,0..Ty] is used such that
the item H[i,T1,...,T.] records the existence of a scheduling on the first ¢
jobs with the time configuration (71,...,7;). Again, instead of recording
the whole scheduling corresponding to H[i, T4, ..., T.], we can simply record
the processor index to which the ith job is assigned. A pointer is used in
H[i,Ty,...,T] that points to an item of form H[i — 1,-,...,-] so that the
machine assignment of each of the first 1 — 1 jobs can be found following the
pointers.

An obvious upper bound Tj on the value of optimal solutions is > ;. ; ;.
The following theorem follows directly from the algorithm c-Makespan-
Dyn(n,Ty), with Ty = >0 t;.

APPROXIMATION BY SCALING 183

Theorem 6.1.4 The algorithm c-Makespan-Dyn(n,Ty) solves the prob-
lem c-MAKESPAN in time O(nT§). In consequence, the c-MAKESPAN prob-
lem s solvable in pseudo-polynomial time.

In many practical applications, developing a pseudo-polynomial time al-
gorithm for an NP-hard optimization problem may have significant impact.
First, in most practical applications, numbers appearing in an input in-
stance are in general not extremely large. For example, numbers appearing
in scheduling problems in general represent processing resource (e.g., com-
putational time and storage) requirements for tasks, which are unlikely to
be very large because we will actually process the tasks after the scheduling
and we could not afford to do so if any task requires an inordinately large
amount of resource. For this kind of applications, a pseudo-polynomial time
algorithm will become a polynomial time algorithm and solve the problem,
even if the original problem is NP-hard in its general form.

Furthermore, a pseudo-polynomial time algorithm can be useful even
when there is no natural bound on the numbers appearing in input in-
stances. In general, input instances that are of practical interests and contain
very large numbers might be very rare. If this is the case, then a pseudo-
polynomial time algorithm will work efficiently for most input instances, and
only “slow down” in very rare situations.

6.2 Approximation by scaling

In the last section, we presented an algorithm Knapsack-Dyn(n,V})
that, on an input instance a = (s1,...,8p;v1,-.-,0n; B) of the KNAP-
SACK problem, constructs an optimal solution for « in time O(nV}), where
Vo = Yiwq vi- If V) is not bounded by any polynomial function of n, then
the running time of the algorithm is not polynomial. Is there a way to lower
the value of V7 Well, an obvious way is to divide each value v; by a suffi-
ciently large number K so that V; is replaced by a smaller value Vj = Vj/K.
In order to let the algorithm Knapsack-Dyn(n,V{) to run in polynomial
time, we must have VJ < cn? for some constants ¢ and d, or equivalently,
K > Vy/(cn®). Another problem is that the value »; /K may no longer be an
integer while by our definition, all input values in an instance of the KNAP-
SACK problem are integers. Thus, we will take v} = |v;/K|. This gives a
new instance o' for the KNAPSACK problem

r_ <! I
& = (S1y---,8n;V]y---,Vp; B)

184 FPTAS

where v} = |v;/K |, fori =1,...,n, and Vj = [Vp /K] is obviously an upper
bound on the value of optimal solutions to the instance /. For K > V;/(cn?)
for some constants ¢ and d, the algorithm Knapsack-Dyn(n,V;) finds an
optimal solution for ¢/ in polynomial time. Note that a solution to o' is
also a solution to a and we intend to “approximate” the optimal solution to
a by an optimal solution to «/. Since the application of the floor function
|-], we lose precision thus an optimal solution for @' may not be an optimal
solution for . How much precision have we lost? Intuitively, the larger the
value K, the more precision we would lose. Thus, we want K to be as small
as possible. On the other hand, we want K to be as large as possible so that
the running time of the algorithm Knapsack-Dyn(n,V}) can be bounded
by a polynomial. Now a natural question is whether there is a value K that
makes the algorithm Knapsack-Dyn(n,V;) run in polynomial time and
cause not much precision loss so that the optimal solution to the instance
o' is “close” to the optimal solution to the instance a. For this, we need the
following formal analysis.

Let S C {1,...,n} be an optimal solution to the instance «, and let
S’ C {1,...,n} be the optimal solution to the instance o/ produced by
the algorithm Knapsack-Dyn(n,V]). Note that S is also a solution to
the instance o and that S’ is also a solution to the instance a. Let
Opt(a) = ¥ ,csvi and Apz(a) = ¥ ,cq v; be the objective function val-
ues of the solutions S and S’, respectively. Therefore, Opt(a)/Apz(a) is the
approximation ratio for the algorithm we proposed. In order to bound the
approximation ratio by a given constant e, we consider

Opt(a) = > v
i€S

v;

- Ky =2

2%

€S

Ky (I +1)

1€S

IN

V;

7

IN

Kn+K) |
1€S

= Kn+KZv§

1€S

The last inequality is because the cardinality of the set S is bounded by n.

Now since S’ is an optimal solution to o = (s1,...,8n;0],...,v5; B),

APPROXIMATION BY SCALING 185

while S is also a solution to o/, we must have

dovi< Y v

1€S 1€S’
Thus,

Opt(a) < Kn+ K Z v}

1€S’

Uy

- K il
n+ K Z LKJ
1€S!

(%
< K —
< n+ K Z Ia

1€S’
= Kn+ Apz(a) (6.1)
This gives us the approximation ratio.
Opt(«) < Kn

Apz(a) =+ Apa(a)

Without loss of generality, we can assume that s; < B foralli =1,...,n
(otherwise, the index i can be simply deleted from the input instance since
it can never make contribution to a feasible solution to «). Thus, Opt(«)
is at least as large as maxi<;<,{vi} > Vo/n, where Vy = > ; v;. From
inequality (6.1), we have

Apz(a) > Opt(a) — Kn > L Kn
n

It follows that

Opt(a) < 14 Kn
Apzr(a) — % _ Kn
— 1+K7n2
Vo — Kn?

Thus, in order to bound the approximation ratio by 1 + €, one should have
K 2
_An <e€
Vo — Kn?2 —

This leads to K < (eVp)/(n?(1 +¢)).
Recall that to make the algorithm Knapsack-Dyn(n, V) run in poly-
nomial time on the input instance o/, we must have K > V;/(cn?) for some

186 FPTAS

Algorithm. Knapsack-Apx

Input: (s1,...,8n;01,...,0p;B), and € > 0

Output: a subset S C {1,...,n}, such that),
_ n . — Vi .

1. V{)_Ei:lm, K_(ITI/OW’

2. fori=1tondo v;=|v/K]|;

3. apply algorithm Knapsack-Dyn(n, [Vo/K]) on

eSISiSB

(8154380301, .+, Up; B)
4. return the subset §' C {1,...,n} obtained in step 3.

Figure 6.3: FPTAS for the KNAPSACK problem

constants ¢ and d. Combining these two relations, we get ¢ = 1+ 1/¢, and
d = 2, and the value

Vo

K =Vy/(en?) = A+1jom?

makes the algorithm Knapsack-Dyn(n,Vy) run in time O(n3(1 + 1/¢)) =
O(n3/€) and produces a solution S’ to the instance o with approximation
ratio bounded by e.

We summarize the above discussion in the algorithm given in Figure 6.3.

Theorem 6.2.1 For any input instance a of the KNAPSACK problem and
for any real number € > 0, the algorithm Knapsack-Apx runs in time
O(n3/€) and produces a solution to a with approzimation ratio bounded by
1+e.

According to Theorem 6.2.1, the running time of the approximation
algorithm Knapsack-Apx increases when the input size n increases and the
error bound e decreases. This seems reasonable and necessary. Moreover,
the running time of the algorithm increases “slowly” with n and 1/e — it is
bounded by a polynomial of n and 1/e. This seems the best we can expect
for an approximation algorithm for an NP-hard optimization problem. This
motivates the following definition.

Definition 6.2.1 An optimization problem @ has a fully polynomial time
approzimation scheme (FPTAS) if it has an approximation algorithm A
such that given (z,€), where z is an input instance of @ and € is a positive

APPROXIMATION BY SCALING 187

Algorithm. c¢-Makespan-Apx

Input: (t1,...,tn;€), all ¢;’s are integers

Output: a scheduling of the n jobs on ¢ processors

L To=37" t; K=elo/(cn);

2. fori=1tondo t;=/[t;/K];

3. Apply algorithm c-Makespan-Dyn(n,T}) on input {ti,...,t,),
where Ty = [To/K] + n;

4. return the scheduling obtained in step 3.

Figure 6.4: FPTAS for the c-MAKESPAN problem

constant, A finds a solution for z with approximation ratio bounded by 1+¢
in time polynomial in both n and 1/e.

By the definition, the KNAPSACK problem has a fully polynomial time
approximation scheme. In the following, we present a fully polynomial time
approximation scheme for the c-MAKESPAN problem.

The approach for developing a fully polynomial time approximation
scheme for the ¢-MAKESPAN problem is similar to that for the KNAP-
SACK problem. For an input instance o = (ty,...,%,) of the - MAKESPAN
problem, we have the dynamic programming algorithm c-Makespan-
Dyn(n,Ty), which constructs an optimal solution to the instance « in time
O(nTf), where Tp = Y1, t;. We reduce the running time of the algorithm
by scaling the value Ty by dividing all ¢; in the input instance a by a large
number K. By properly choosing the scaling factor K, we can make the al-
gorithm c-Makespan-Dyn to run on the new instance in polynomial time
and keep the approximation ratio bounded by 1 + e. Because of the simi-
larity, some details in the algorithms and in the analysis are omitted. The
reader is advised to refer to corresponding discussion on the KNAPSACK
problem and complete the omitted parts for a better understanding.

The approximation algorithm for the c-MAKESPAN problem is presented
in Figure 6.4.

Theorem 6.2.2 The algorithm c-Makespan-Apx on input (t1,...,t,;€)
produces a scheduling (ST, ..., SL.) with approzimation ratio bounded by 1+ ¢
and runs in time O(nct1/ec).

PROOF. It is easy to see that the time complexity of the algorithm c-
Makespan-Apx is dominated by step 3.

188 FPTAS

Since Tj = [Ty/K1+n = en/e+n = O(n/e), by Theorem 6.1.4, the algo-
rithm c-Makespan-Dyn(n,7}) in step 3, thus the algorithm c-Makespan-
Apx, runs in time O(n(T})¢) = O(ncT1/e).

Now let (Si,...,S.) be an optimal solution to the input instance a =
(t1,--.,tn) of the c-MAKESPAN problem, and let (S7,...,S.) be the optimal
solution to the input instance o = (¢],...,%,) obtained by the algorithm
c-Makespan-Dyn. Note that (S1,...,S.) is also a solution to the instance

o = (t,...,t) and (S7,...,S.) is also a solution to the instance a =

<t17"'7t’n>'
Foralld, 1 <d<c,let

Ty= > tn Va=)t

hESy heSq
[! __ !
Td - Z th Vd - Z th
hes) hes)

Without loss of generality, suppose

T, = T =

1= max {Ta} Vo = max {Va}
T = T V! = V.
3 = max {12} i = max {Va)

Therefore, on instance (t1,...,%,), the scheduling (Si,...,S.) has parallel
completion time T3 and the scheduling (S7,...,S.) has parallel completion
time T3%; and on instance (¢],...,t), the scheduhng (S1,-..,85¢) has parallel
completion time V5 and the scheduling (S7,...,S.) has parallel completion
time VJ. The approximation ratio given by the algorithm c-Processor-Apx
is Té/Tl

We have

Ty=) th=K) (t/K)<KY t,=KV;<KVj
hes, hes, hesy

The last inequality is by the assumption V] = maxi<4<.{V,}
Now since (S],...,S.) is an optimal scheduling on instance (t},...,t),
we have V] < V5. Thus,

T3<KVp,=K)> t, =K > [ty/K]
heS2 heS2

<KZ S+ 1)< +Kn<Ti +Kn
h€S2

APPROXIMATION BY SCALING 189

The last inequality is by the assumption T = max;<g<.{T4}
This gives us immediately

3Ty <1+ Kn/Ty

It is easy to see that T > Y7 | t;/c = Tp/c, and recall that K = €Ty /(cn),
we obtain Kn/T; < e. That is, the scheduling (S7, ..., S.) produced by the
algorithm c-Makespan-Apx has approximation ratio bounded by 1+e¢. [

Corollary 6.2.3 For a fized constant c, the c-MAKESPAN problem has a
fully polynomial time approzimation scheme.

Theorem 6.2.1 and Theorem 6.2.2 present fully polynomial time approx-
imation schemes for the KNAPSACK problem and the c- MAKESPAN problem,
respectively, using the pseudo-polynomial time algorithms for the problems
by properly scaling and rounding input instances. Most known fully poly-
nomial time approximation schemes for optimization problems are derived
using this method. In fact, 777 showed the evidence that this is essentially
the only way to derive fully polynomial time approximation schemes for
optimization problems. Therefore, pseudo-polynomial time algorithms are
closely related to fully polynomial time approximation schemes for optimiza-
tion problems. Actually, we can show that under a very general condition,
having a pseudo-polynomial time algorithm is a necessary condition for the
existence of a fully polynomial time approximation scheme for an optimiza-
tion problem.

Theorem 6.2.4 Let Q = (I, S, f,opt) be an optimization problem such that
for all input instance ¢ € I we have Opt(x) < p(length(x), max(x)), where p
s a two variable polynomial. If Q has a fully polynomial time approzimation
scheme, then Q) can be solved in pseudo-polynomial time.

PROOF. Suppose that @} is a minimization problem, i.e., opt = min.
Since) has a fully polynomial time approximation scheme, there is an
approximation algorithm A for @) such that for any input instance z € I,
the algorithm A produces a solution y € S(z) in time p;(|z|, 1/€) satisfying

f(z,y)
Opt(z)

<1l+e

where p; is a two variable polynomial.

190 FPTAS

In particular, let € = 1/(p(length(z), max(z)) + 1), then the solution y
satisfies
Opt(x)
p(length(z), max(z)) + 1

f(z,y) < Opt(z) + < Opi(z) +1

Now since both f(z,y) and Opt(x) are integers and f(z,y) > Opt(z), we
get immediately f(z,y) = Opt(z). That is, the solution produced by the
algorithm A is actually an optimal solution. Moreover, the running time of
the algorithm A for producing the solution ¥ is bounded by

p1(|2], p(length(z), max(z)) + 1)

which is a polynomial of length(z) and max(z). We conclude that the opti-
mization problem () can be solved in pseudo-polynomial time. []

6.3 Improving time complexity

We have shown that the KNAPSACK problem and the c-MAKESPAN problem
can be approximated within a ratio 1 4 € in polynomial time for any given
€ > 0. On the other hand, one should observe that the running time of
the approximation algorithms is very significant. For the KNAPSACK prob-
lem, the running time of the approximation algorithm Knapsack-Apx is
O(n3/e); and for the c-MAKESPAN problem, the running time of the approx-
imation algorithm c-Makespan-Apx is O(n°T!/e®). When the input size
n is reasonably large and the required error bound € is very small, these
algorithms may become impractical.

In this section, we discuss several techniques that have been used exten-
sively in developing efficient approximation algorithms for scheduling prob-
lems. We should point out that these techniques are not only useful for
improving the algorithm running time, but also often important for achiev-
ing better approximation ratios.

Reducing the number of parameters

Consider the approximation algorithm ¢-Makespan-Apx for the problem
c-MAKESPAN (Figure 6.4). The running time of the algorithm is domi-
nated by step 3, which is a call to the dynamic programming algorithm
c-Makespan-Dyn(n,Tj;). Therefore, if we can improve the time complex-
ity of the dynamic programming algorithm c-Makespan-Dyn(n,Tj), we

IMPROVING RUNNING TIME COMPLEXITY 191

4. fori=0ton—1do
for each (Th,...,T¢.—1),0< Ty <Tp do
if H[i,T1,...,T;—1] # = then

H[i+ 1L,Th,..., Tocr] = H[i,Th, ..., Toc1] + tig;

{ assign job t;+1 to processor ¢ }

ford=1toc—1do
H[i+1,T1,..., Ta—1,Ta + tirs, Tusa, ..., To1]

= H[i,T1,...,To_1];

{ assign job ¢; to processor d. }

Figure 6.5: Modified algorithm c-Makespan-Dyn

improve the running time of the approximation algorithm c-Makespan-
Apx.

The algorithm c-Makespan-Dyn(n,T]) (see Figure 6.2) works on a
(¢ + 1)-dimensional array H[0..n,0..Tj,...,0..T}], where T, = O(n/e) (see
the proof of Theorem 6.2.2). The item H|[i,T1,...,T.] = d records the fact
that there is a scheduling for the first 7 jobs, which assigns the job % to
the processor d with a time configuration (71,...,T;). The running time of
the algorithm c-Makespan-Dyn(n,T}) is necessarily at least O(n(1})°) =
O(nc—l—l / EC).

To reduce the running time, we reduce the dimension of the array
H[-,---,] from ¢ + 1 to ¢, as follows. We let the value of the item
H[i,Ty,...,T._1] to record the processing time of the cth processor. More
precisely, H[i,T1,...,T.—1] = T, if there is a scheduling for the first %
jobs whose time configuration is (T%,...,7¢.—1,T;). The modification of
the algorithm c-Makespan-Dyn(n,T}) based on this change is straightfor-
ward, for which we present the part for step 3 in Figure 6.5. Of course,
we still need to keep another two pieces of information related to each
item H[i,T1,...,T.—1]: a processor index d indicating that the job i is as-
signed to processor d, and a pointer to an item H[i — 1,77,...,T._4] for
constructing the actual scheduling corresponding to the time configuration
(Th,...T. 1, H[i,T1,..., T, 1]).

The running time of the algorithm c-Makespan-Dyn(n,Ty) now is ob-
viously bounded by O(nT§ '). Therefore, if step 3 in the algorithm c-
Makespan-Apx (Figure 6.4) calls the modified algorithm c-Makespan-

192 FPTAS

Dyn(n,T;), where T, = O(n/e), the running time of the algorithm c-
Makespan-Apx is reduced from O(n(T})¢) = O(n°T!/€%) to O(n(T§)*) =
O(n¢/e1). We summarize the discussion in the following theorem.

Theorem 6.3.1 The algorithm c-Makespan-Apx on input (t1,...,tn;€)
produces a scheduling (ST, ..., SL) with approzimation ratio bounded by 1+ ¢
and runs in time O(n¢/e“™).

Reducing the search space

Consider the dynamic programming algorithm Knapsack-Dyn(n, V;) (Fig-
ure 6.1). For an input instance a = (si,...,Sp;v1,...,0,; B), in order to
let the algorithm Knapsack-Dyn(n, ;) construct an optimal solution, Vj
must be not smaller than the value of optimal solutions to the input in-
stance. In particular, we can let V) = >°7' ; v;. We used a 2-dimensional
array K[0..n,0..V5]. The item K[i,v] records the fact that there is a subset
of {1,...,4} of value v and size bounded by B. Note that the value of an
optimal solution to a can be as small as Vj/n. Therefore, if we can derive a
closer upper bound V* on the value of optimal solutions to a, we may speed
up our dynamic programming algorithm by calling Knapsack-Dyn(n, V*)
instead of Knapsack-Dyn(n, V).

To derive a better bound on the optimal solution value, we can perform
a “pre-approximation algorithm” that provides a bound V* not much larger
than the optimal solution value. Then this value V* can be used as an
upper bound for the optimal solution value in our dynamic programming
algorithm.

Let S be a set of items whose size and value are s; and v;, respectively, for
i=1,...,n. Let B be an integer. A B-partition of S is a triple (S’,S",r),
where r € S”, such that

(1) $'US" =S and §'NS" = 0;
(2) vj/sj > vr/sy > vg/sg for all j € §' and all k € S"; and
(3) 2jes $§ < Bbut }icq sj+ s > B.

Now consider the algorithm Pre-Apx given in Figure 6.6. We first
analyze the complexity of the algorithm.

Lemma 6.3.2 The algorithm Pre-Apx runs in linear time.

PrOOF. Tt is sufficient to show that the B-partition (S’,S5”,7) of the set
{1,2,...,n} can be constructed in linear time.

IMPROVING RUNNING TIME COMPLEXITY 193

Algorithm. Pre-Apx

Input: (s1,...,8n;v1,...,0p; B), all positive integers
Output: a subset S of {1,...,n} of size bounded by B

1. construct a B-partition (S’,S”,r) for the set {1,2,...,n};
2. let vy = max;{v; };

3. if vy >) 5 v; then return {k} else return S’

Figure 6.6: Finding an upper bound on optimal solution value

If we sort the items by the ratios v;/s;, then the B-partition can be triv-
ially constructed. However, sorting the items takes time Q(nlogn). There-
fore, we should avoid sorting.

We use the linear time algorithm that, given a set S of n numbers, returns
the median of S (i.e., the (|n/2])th largest number in S) (the readers are
referred to [14] for more detailed discussion of this algorithm).

We perform a binary search procedure as follows. First we find, in linear
time, an item A in S such that the ratio vy /sy is the median over all ratios
v1/81, - -+, Un/Sp. The item h partitions the set S into two subsets S; and
Sy of equal size, where for each item j in Si, vj/s; > vy /sy, and for each
item k in Sy, vk /s < vp/sp. Assume h € Sy. The subsets S and S; can be
constructed in linear time. Let size(S1) = > jes,; Sj- There are two possible
cases: (1) size(S1) < B. In this case we recursively construct a B’-partition
(S84, SY,r) of the set Sy, where B’ = B — size(S1). Now (S1 USS, S5, r) is a
B-partition of the set S; and (2) size(S1) > B. In this case we construct
a B-partition (S7,SY,r) of the set S;. Then (S}, Sy USs,r) is a B-partition
of the set S. Note that each of the subsets S; and S, has at most n/2 items.
Thus, if we let t(n) be the running time of this recursive procedure, we have

t(n) = O(n) + t(n/2)

It is easy to verify that ¢(n) = O(n). That is, the B-partition (S’,S",r) can
be constructed in linear time. This completes the proof of the lemma. []

Note that the algorithm Pre-Apx is an approximation algorithm for the
KNAPSACK problem, whose approximation ratio is given by the following
lemma.

Lemma 6.3.3 The approzimation algorithm Pre-Apx for the KNAPSACK
problem has an approzimation ratio bounded by 2.

194 FPTAS

PROOF. First note the following fact, where v;, vi, s;, and s; are all
positive integers,
Vi _ U .) vj _ Vit v
2>k implies L>AF >
8 Sk 8 Sj + Sk Sk

Vv

(6.2)

Let (S’,S",r) be the B-partition of {1,2,...,n} constructed by the al-
gorithm Pre-Apx. The algorithm Pre-Apx constructs a solution S, C
{1,2,...,n} whose value is

max{z Vj,V1,V2,...,Up}
jJeS’

Let S = S"U{r} and let Sy be an optimal solution.
Let Sy = SN Sopt- Thus, S = So UT, and Sopt = Sp U T5, where
Ty NTy = (. Note that for any j € 77 and any k € T5, we have

Yy Uy Uk

Sj Sp Sk
Thus, by repeatedly using the relation (6.2), we have

EjeTl Uj
EjET1 8j

Ur > Zk€T2 Uk

>
St 2keTy Sk

(6.3)

Now sine the size of S is larger than B while the size of Sopt is bounded by
B, we must have 3" cp, 8 > > per, Sk- Combining this with the inequality

in (6.3), we get
Z vj > z Vg,

JE€T1 JET,

This shows that the value of the set S is not smaller than the value of the
optimal solution S,,. Since S = S’ U {r}, according to the algorithm Pre-
Apx, the value of S is bounded by twice of the value of the solution Syp,
constructed by the algorithm Pre-Apx. This proves that the approximation
ratio of the algorithm Pre-Apx is bounded by 2. []

Therefore, given an input instance a of the KNAPSACK problem, we can
first apply the algorithm Pre-Apx to construct a solution. Suppose that
this solution has value V*, then we have V* < Opt(a) < 2V*, where Opt(«)
is the value of an optimal solution to a. Thus, the value 2V* can be used
as an upper bound for the optimal solution value for a.

IMPROVING RUNNING TIME COMPLEXITY 195

Algorithm. Knapsack-Apx (Revision I)

Input: (s1,...,8n;01,...,0p;B), and € > 0

Output: a subset S' C {1,...,n}, such that)", <B

es! Si

1. call algorithm Pre-Apx to obtain a solution of value V*;
— v* .

2. K= sy

3. fori=1tondo v=|v/K]|;

4. apply algorithm Knapsack-Dyn(n, V) on (s1,..., 8y;v],...,v,; B),
where Vg = [2V* /K |;

5. return the subset §' C {1,...,n} obtained in step 4.

Figure 6.7: Revision I for the FPTAS for the KNAPSACK problem

We show how this refinement improves the running time of our fully poly-
nomial time approximation scheme for the KNAPSACK problem. For this, we
modify our scaling factor K in the algorithm Knapsack-Apx (Figure 6.3).
The modified algorithm is given in Figure 6.7.

The following theorem shows that the modified algorithm Knapsack-
Apx (Revision I) for the KNAPSACK problem has the same approximation
ratio but the running time improved by a fact n.

Theorem 6.3.4 The algorithm Knapsack-Apx (Revision I) for the
KNAPSACK problem has approximation ratio 1+¢€ and running time bounded

by O(n?/e).

PROOF. Again the time complexity of the algorithm is dominated by step
4, which calls the dynamic programming algorithm Knapsack-Dyn(n, V).
By Lemma 6.1.2, step 4 of the algorithm takes time O(nV{). Since Vj =
|2V*/K| =2n(14+1/e) = O(n/€), we conclude that the running time of the
algorithm Knapsack-Apx (Revision I) is bounded by O(n?/).

We must ensure that the value V{ is a large enough upper bound
for the value Opt(c') of optimal solutions to the input instance o =
(S15---y8n;01,...,vh; B). For this, let S be an optimal solution to the in-
stance /. Then

Opt(c/) = D vi =) |vi/K] < (D_vi)/K

1€S 1€S 1€S

Observing that S is also a solution to the original instance a =

196 FPTAS

(81y--+58n;V1,---,Vn; B) and by Lemma 6.3.3 Opt(a) < 2V*, we have

Opt(d') < (Z v;)/K < Opt(a)/K <2V*/K
1€S
Since Opt(c') is an integer, we get Opt(a’) < [2V*/K| = V{. Therefore,
the value Vj is a valid upper bound for the value Opt(c/).
Now we analyze the approximation ratio for the algorithm Knapsack-
Apx (Revision I). Using exactly the same derivation as we did in Section
6.2, we get (see the relation in (6.1) in Section 6.2)

Opt(a) < Kn + Apz(a)

where Apz(a) is the value of the solution constructed by the algorithm
Knapsack-Apx (Revision I). Dividing both sides by Apz(«), we get
Opt(«) 1 Kn

Apz(a) — Apz(a)

Moreover, since Apz(a) > Opt(a) — Kn > V* — Kn (note here we have used
a better estimation Opt(a) > V* than the one in Section 6.2, in which the
estimation Opt(a) > Y"1 v;/n was used), we get

Opt(a) < Kn

14" 1
Apz(a) — +V*—Kn te

This completes the proof of the theorem. []

Separating large items and small items

Another popular technique for improving the running time (and sometimes
also the approximation ratio) is to treat large items and small items in an
input instance differently. The basic idea of this technique can be described
as follows: we first set a threshold value T'. The items whose value is larger
than or equal to T are large items and the items whose value is smaller
than T are small items. We use common methods, such as the dynamic
programming method and the scaling method, to construct a solution for
the large items. Then we add the small items by greedy method. This
approach is based on the following observations: (1) the number of large
items is relatively small so that the running time of the dynamic program-
ming can be reduced; (2) applying the floor or ceiling function on the scaled
values (such as |v;/K| for the KNAPSACK problem and [¢;/K| for the c-
MAKESPAN problem) only for large items in general loses less precision; and

IMPROVING RUNNING TIME COMPLEXITY 197

(3) greedy method for adding small items in general introduces only small
approximation errors.
We illustrate this technique by re-considering the c-MAKESPAN problem.
Let a = (t1,t2,...,t,) be an input instance of the c- M AKESPAN problem.
Let To = >~ 1 ti- A job t; is a large job if t; > €Ty /c, and a job t; is a small
job if t; < €Tp/c. Let a; be the set of all large jobs and let a; be the set of
all small jobs. Note that the number n; of large jobs is bounded by

T() C
< =- 6.4
= eTo/c € (6.4)
Without loss of generality, we suppose that the first n; jobs t1, t2, ..., tp,

are large jobs and the rest of the jobs are small jobs.
Apply the algorithm c-Makespan-Apx (see Figure 6.4) to the n; large
jobs (t1,t2,...,ty,) with the following modifications:

1. let T) = E;-”Zl tj, and set K = 62T6/C2; and

2. use T = [T§/K] + m; in the call to the dynamic programming
algorithm c-Makespan-Dyn(n;,T{/) on the scaled instance o =
(t1,t), .- tp,), where t; = [t; /K], j =1,...,n.

The value Tj' is a valid upper bound on the parallel completion time

for the scaled instance o/ = (#1,15,...,1;,,) because we have (we use the
inequality (6.4) here)

n; n] Z’}L ts T!

Dot =DMt/ K] < T e = 22 4 m < T

7j=1 7j=1

By the analysis in Theorem 6.3.1, the running time of the algorithm
c-Makespan-Apx on the large jobs o/ = (t1,...,ts,) is bounded by
O(ny(T)¢™1). Replacing T§ by [T4/K] + ny, ng by ¢/e, and K by €2T}/c?,
we conclude that the running time of the algorithm ¢-Makespan-Apx on
the large jobs oy = (t1,...,tp,) is bounded by O(1/€**1).

To analyze the approximation ratio for the algorithm ¢-Makespan-Apx
on the large jobs oy = (t1,...,ty,), we follow exactly the same analysis given
in the proof of Theorem 6.2.2 except that we replace n, the total number of
jobs in the input, by n;, the total number of large jobs. This analysis gives

Apz(ay) < Kny

Opt(ay) ~ Opt(ay)

where Apz(cy) is the parallel completion time of the scheduling constructed
by the algorithm c-Makespan-Apx for the large jobs ¢y, while Opt(«;) is

198 FPTAS

the parallel completion time of an optimal scheduling for the large jobs «;.
By the inequalities n; < c¢/e and Opt(ay) > T}/c, we obtain

Note that the optimal parallel completion time for the large job set
cannot be larger than the optimal parallel completion time for the original
set @« = (t1,...,t,) of jobs. Therefore, if we let Opt(a) be the optimal
parallel completion time for the original job set «, then we have

Apz(ay) < Opt(ay)(1 +€) < Opt(a)(1 + €) = Opt(a) + € - Opt(a)

Now we are ready to describe an approximation algorithm for the c-
MAKESPAN problem: given an input instance o = (t1,...,t,) for the c-
MAKESPAN problem, (1) construct, in time O(1/e2¢7!), a scheduling S; of
parallel completion time bounded by Opt(«a) + € - Opt(a) for the set «; of
large jobs; (2) assign the small jobs by the greedy method, i.e., we assign
each small job to the most lightly loaded processor as described in algorithm
Graham-Schedule (see Figure 5.1). The assignment of the small jobs can
be easily done in time O(n) (note that the number ¢ of processors is a fixed
constant and that the number of small jobs is bounded by n). Thus, the
running time of this approximation algorithm is bounded by O(n+1/€2¢71).
We claim that this algorithm has an approximation ratio bounded by 1 + e.
Let Apz(a) be the parallel completion time for the scheduling constructed
by this algorithm.

Suppose that processor d has the longest running time Ty = Apz(a).
Consider the last job t; assigned to processor d. If ¢; is a large job, then the
processor d is assigned no small jobs. Thus, T, is the parallel completion
time of the scheduling S; for the large jobs ;. By the above analysis,

Apz(a) = Ty = Apz(ay) < Opt(a)(1 + €)

On the other hand, if ¢; is a small job, then ¢; < €Ty /c and by the greedy
method, all ¢ processors have running time at least T; — ¢;. Therefore,
Yt > c(Tqg —t;) and Opt(a) > T — t;. This gives (note Ty/c < Opt(a))

Apz(a) = Ty < Opt(a) + t; < Opt(a) + €Ty /c < Opt(a)(1 + €)

Therefore, in any case, the ratio Apz(a)/Opt(a) is bounded by 1 + €.
We summarize the above discussion into the following theorem.

NON-FPTAS 199

Theorem 6.3.5 There is a fully polynomial time approzimation scheme
for the c-MAKESPAN problem that, given an input instance « and an € > 0,
constructs a scheduling for a of approzimation ratio bounded by 1+¢€ in time
bounded by O(n + 1/e271).

Note that the fully polynomial time approximation scheme for the c-
MAKESPAN problem in Theorem 6.3.5 runs in linear time when the error
bound ¢ is fixed.

The technique can also be applied to the KNAPSACK problem. With
a more complex analysis, it can be shown that there is a fully polynomial
time approximation scheme for the KNAPSACK problem that, given an input
instance a for the KNAPSACK problem and an € > 0, constructs a subset of
a of size bounded by B and value at least Opt(a)/(1 + €) in time O(n/€?).

Further improvements on the KNAPSACK problem are possible. For ex-
ample, with a more careful treatment of the large and small items, one can
develop a fully polynomial time approximation scheme for the KNAPSACK
problem of running time O(n/log(1/€) + 1/¢*). Interested readers are re-
ferred to [88] for detailed discussions.

6.4 Which problems have no FPTAS?

Fully polynomial time approximation schemes seem the best we can expect
for NP-hard optimization problems. An NP-hard optimization problem with
a fully polynomial time approximation scheme can be approximated to a
ratio 1 + € for any € > 0 within a reasonable computational time, which is
bounded by a polynomial of the input length and 1/e. We have seen that
several NP-hard optimization problems, such as the KNAPSACK problem
and the ¢c-MAKESPAN problem, have fully polynomial time approximation
schemes.

A natural question is whether every NP-hard optimization problem has
a fully polynomial time approximation scheme. If not, how do we determine
whether a given NP-hard optimization problem has a fully polynomial time
approximation scheme. We discuss this problem in this section.

Definition 6.4.1 Let Q = (I, Sg, fo,optg) be an optimization problem.
For each input instance z € I, define Optg(z) = opto{ fo(z,y)|ly € Sq(z)}.
That is, Optg(z) is the value of the objective function fg on input instance
z and an optimal solution to z.

200 FPTAS

The following theorem provides a very convenient sufficient condition for
an NP-hard optimization problem to have no fully polynomial time approx-
imation schemes.

Theorem 6.4.1 Let Q = (Ig,Sq, fg,optg) be an optimization problem.
If there is a fized polynomial p such that for all input instances r € Ig,
Optg(x) is bounded by p(|z|), then Q does not have a fully polynomial time
approzimation scheme unless QQ can be precisely solved in polynomial-time.

PrOOF. Let A be an approximation algorithm that is a fully polynomial
time approximation scheme for the optimization problem (). We show that
(Q can be precisely solved in polynomial time.

By the definition, we can suppose that the running time of A is bounded
by O(n¢/e?), where ¢ and d are fixed constants. Moreover, by the condition
given in the theorem, we can assume that Optg(z) < n", where h is also a
fixed constant.

First assume that optg = min. For an input instance z € Iy, let A(z)
be the objective function value on the input z and the solution to = con-
structed by the algorithm A. Thus, we know that for any ¢ > 0, the al-
gorithm A constructs in time O(n¢/e?) a solution with approximation ratio
A(z)/Opt(z) <1+ e. Also note that A(z)/Opt(z) > 1.

Now, let ¢ = 1/n"*! then the algorithm A constructs a solution with
approximation ratio bounded by

which gives
Opt(zr) < A(z) < Opt(z) + Opt(:z:)/n’H'1

Since both Opt(z) and A(z) are integers, and Opt(z) < n” implies that
Opt(z)/n"*! is a number strictly less than 1, we conclude that

Opt(z) = A(x)

That is, the algorithm A actually constructs an optimal solution to the
input instance z. Moreover, the running time of A is bounded by
O(n¢/(1/n"*1)4) = O(nethd+d) which is a polynomial of n.

The case that optg = max can be proved similarly. Note that in this
case, we should also have A(z) < n". Thus, in time O(n¢/(1/n"*1)?) =

NON-FPTAS 201

O(ncthd+d) the algorithm A constructs a solution to z with the value A(z)
such that
Opt(z) 1

1< <1
= Alz) +nh+1

which gives
A(z) < Opt(z) < A(z) + A(ac)/nh+1

Now since A(z)/n"*! < 1, we conclude Opt(z) = A(z). O

In particular, Theorem 6.4.1 says that if Optg(x) is bounded by a poly-
nomial of the input length |z| and @ is known to be NP-hard, then @ does
not have a fully polynomial time approximation scheme unless P = NP.

Theorem 6.4.1 is actually very powerful. Most NP-hard optimization
problems satisfy the condition stated in the theorem, thus we can derive
directly that these problems have no fully polynomial time approximation
scheme. We will give a few examples below to illustrate the power of Theo-
rem 6.4.1.

Consider the following problem:

INDEPENDENT SET
Ig: the set of undirected graphs G = (V, E)

Sg: S@(G) is the set of subsets S of V' such that no two
vertices in S are adjacent

fo: fo(G,S) is equal to the number of vertices in S

optg: max

It is easy to apply Theorem 6.4.1 to show that the INDEPENDENT SET
problem has no fully polynomial time approximation scheme. In fact, the
value of the objective function is bounded by the number of vertices in the
input graph G, which is certainly bounded by a polynomial of the input
length |G|.

There are many other graph problems (actually, most graph problems)
like the INDEPENDENT SET problem that ask to optimize the size of a subset
of vertices or edges of the input graph satisfying certain given properties.
For all these problems, we can conclude directly from Theorem 6.4.1 that
they do not have a fully polynomial time approximation scheme unless they
can be solved precisely in polynomial time.

Let us consider another example of a problem for which no fully polyno-
mial time approximation scheme exists.

202 FPTAS

BIN PACKING
INPUT: (t1,t2,...,tn; B), all integers and ¢; < B for all ¢

OUTPUT: a packing of the n objects of size 1, ..., t, into the
minimum number of bins of size B

It is pretty easy to prove that the NP-complete problem PARTITION is poly-
nomial time reducible to the BIN PACKING problem (see Chapter 7 for more
detailed discussions). Thus, the BIN PACKING problem is NP-hard. The
BIN PACKING problem can be interpreted as a scheduling problem in which
n jobs of processing time t1, ..., t, are given, the parallel completion time
B is fixed, and we are looking for a scheduling of the jobs so that the num-
ber of processors used in the scheduling is minimized. Since t; < B for all
1, we know that at most n bins are needed to pack the n objects. Thus,
Opt(xz) < n for all input instances = of n objects. By Theorem 6.4.1, we
conclude directly that the BIN PACKING problem has no fully polynomial
time approximation scheme unless P = NP.

What if the condition of Theorem 6.4.1 does not hold? Can we still
derive a conclusion of nonexistence of a fully polynomial time approximation
scheme for an optimization problem? We study this problem starting with
the famous TRAVELING SALESMAN problem, and will derive general rules
for this kind of optimization problems.

TRAVELING SALESMAN
INPUT: a weighted complete graph G

OUTPUT: a simple cycle containing all vertices of G (such a
simple cycle is called a traveling salesman tour)
and the weight of the cycle is minimized

The TRAVELING SALESMAN problem obviously does not satisfy the con-
dition stated in Theorem 6.4.1. For example, if all edges of the input graph
G of n vertices have weight of order ©(2"), then the weight of the min-
imum traveling salesman tour is £2(n2™) while a binary representation of
the input graph G has length bounded by O(n?) (note that the length of
the binary representation of a number of order ©(2") is O(n) and G has
O(n?) edges). Therefore, Theorem 6.4.1 does not apply to the TRAVELING
SALESMAN problem.

To show the non-approximability of the TRAVELING SALESMAN problem,
we first consider a simpler version of the TRAVELING SALESMAN problem,
which is defined as follows.

NON-FPTAS 203

TRAVELING SALESMAN 1-2

INPUT: a weighted complete graph G such that the weight of
each
edge of G is either 1 or 2

OUTPUT: a traveling salesman tour of minimum weight

Lemma 6.4.2 The TRAVELING SALESMAN 1-2 problem is NP-hard.

ProoF. We show that the well-known NP-complete problem HAMILTO-
NIAN CIRCUIT can be polynomial time reducible to the TRAVELING SALES-
MAN 1-2 problem.

By the definition, for each undirected unweighted graph G of n vertices,
the HAMILTONIAN CIRCUIT problem asks if G contains a Hamiltonian cir-
cuit, i.e., a simple cycle of length n (for more discussion of the problem, the
reader is referred to [50]).

Given an input instance G = (V, E) for the HAMILTONIAN CIRCUIT
problem, we add edges to G to make a weighted complete graph G' =
(V,E U E'") such that for each edge e € F of G’ that is in the original graph
G, we assign a weight 1 and for each edge ¢/ € F' of G' that is not in
the original graph G, we assign a weight 2. The graph G’ is certainly an
input instance of the TRAVELING SALESMAN 1-2 problem. Now, let T" be a
minimum weighted traveling salesman tour in G'. It is easy to verify that
the weight of T' is equal to n if and only if the original graph G contains a
Hamiltonian circuit.

This completes the proof. []

Theorem 6.4.1 can apply to the TRAVELING SALESMAN 1-2 problem
directly.

Lemma 6.4.3 The TRAVELING SALESMAN 1-2 problem has no fully poly-
nomial time approzimation scheme unless P = NP.

PROOF. Since the weight of a traveling salesman tour for an input instance
G of the TRAVELING SALESMAN 1-2 problem is at most 2n, assuming that
G has n vertices, the condition stated in Theorem 6.4.1 is satisfied by the
TRAVELING SALESMAN 1-2 problem. Now the theorem follows from Theo-
rem 6.4.1 and Lemma 6.4.2. []

Now we are ready for a conclusion on the approximability of the TRAV-
ELING SALESMAN problem in its general form.

204 FPTAS

Theorem 6.4.4 The TRAVELING SALESMAN problem has no fully polyno-
mial time approximation scheme unless P = NP.

ProoF. Since each input instance for the TRAVELING SALESMAN 1-2
problem is also an input instance for the TRAVELING SALESMAN problem, a
fully polynomial time approximation scheme for the TRAVELING SALESMAN
problem should also be a fully polynomial time approximation scheme for
the TRAVELING SALESMAN 1-2 problem. Now the theorem follows from
Lemma, 6.4.3. []

Theorem 6.4.4 illustrates a general technique for proving the nonexis-
tence of fully polynomial time approximation schemes for an NP-hard opti-
mization problem when Theorem 6.4.1 is not applicable. We formulate it as
follows.

Let Q = (Ig,Sq, fg,optg) be an optimization problem. Recall that for
each input instance z of @, length(z) is the length of a binary representation
of z and max(z) is the largest number that appears in z.

Definition 6.4.2 Let Q = (Ig, Sq, fg,optg) be an optimization problem
and let ¢ be any function. A subproblem @' of Q is a Qg-subproblem if
Q' = (I, 8q, f@,optq) such that I, C Ig and for all z € Ij, max(z) <
g(length(x)).

The following definition was first introduced and studied by Garey and
Johnson [50].

Definition 6.4.3 An optimization problem Q = (Ig, Sq, fg,optg) is NP-
hard in the strong sense if a QQ4-subproblem of @) is NP-hard for some poly-
nomial gq.

The concept of the strong NP-hardness can be naturally extended to
decision problems.

The TRAVELING SALESMAN problem is an example of optimization prob-
lems that are NP-hard in the strong sense, as shown by the following theo-
rem.

Theorem 6.4.5 The TRAVELING SALESMAN problem is NP-hard in the
strong sense.

PROOF. If we denote by) the TRAVELING SALESMAN problem, then
the TRAVELING SALESMAN 1-2 problem is a (Js-subproblem of (). By

NON-FPTAS 205

Lemma 6.4.2, the TRAVELING SALESMAN 1-2 problem is NP-hard. Now
by the above definition, the TRAVELING SALESMAN problem is NP-hard in
the strong sense. []

If the condition max(z) < p(lengh(z)) for some fixed polynomial p is
satisfied for all input instances z of an NP-hard optimization problem (@,
then @ is NP-hard in the strong sense. Note that for many NP-hard op-
timization problems, in particular for many NP-hard optimization prob-
lems for which the condition of Theorem 6.4.1 is satisfied, the condition
max(z) < p(lengh(z)) is satisfied trivially. Thus, these NP-hard optimiza-
tion problems are also NP-hard in the strong sense. On the other hand,
there are many other NP-hard optimization problems that are not NP-hard
in the strong sense. In particular, we have the following theorem.

Theorem 6.4.6 If an NP-hard optimization problem @ is solvable in
pseudo-polynomial time, then Q) is not NP-hard in the strong sense unless
P = NP.

PROOF. Suppose that @ is solvable in pseudo-polynomial time. Let A
be an algorithm such that for an input instance x of @, the algorithm A
constructs an optimal solution to z in time O((length(x))¢(max(z))?) for
some constants ¢ and d.

If @ is NP-hard in the strong sense, then there is a Qp-subproblem @’ of
Q for some fixed polynomial p such that Q' is also NP-hard. However, for
all input instances z of @', max(z) < p((length)(z)). Thus, the algorithm
A constructs an optimal solution for each input instance z of Q' in time

O((length(z))(max(z))?) = O((length(z))* (p(length(z))))

which is bounded by a polynomial of length(z). Thus, the NP-hard opti-
mization problem)’ can be solved by the polynomial time algorithm A,
which implies P = NP. [

In particular, Theorem 6.4.6 combined with Theorem 6.1.3 and Theo-
rem 6.1.4 gives

Corollary 6.4.7 The KNAPSACK problem and the c-MAKESPAN problem
are not NP-hard in the strong sense unless P = NP.

The following theorem serves as a fundamental theorem for proving the
nonexistence of fully polynomial time approximation schemes for an NP-
hard optimization problem, in particular when Theorem 6.4.1 is not appli-
cable. We say that a two-parameter function f(z,y) is a polynomial of z

206 FPTAS

and y if f(z,y) can be written as a finite sum of the terms of form z°y¢,
where ¢ and d are non-negative integers.

Theorem 6.4.8 Let Q = (Ig,Sq, fo,optq) be an optimization problem that
is NP-hard in the strong sense. Suppose that for all input instances x of @,
Optg(z) is bounded by a polynomial of length(z) and max(z). Then Q has
no fully polynomial time approxzimation scheme unless P = NP.

PROOF. The proof of this theorem is very similar to the discussion we
have given for the TRAVELING SALESMAN problem.

Since @ is NP-hard in the strong sense, a Q4-subproblem @’ is NP-hard
for a polynomial ¢. Let Q' = (I, Sq, fq,0ptq). Then for each input in-
stance = € Iy, we have max(z) < g(length(z)). Combining this condition
with the condition stated in the theorem that Optg(z) is bounded by a
polynomial of length(z) and max(z), we derive that Optg(x) is bounded
by a polynomial of length(z) for all input instances = € I. Now by The-
orem 6.4.1, the problem @' has no fully polynomial time approximation
scheme unless P = NP. Since each input instance of Q' is also an input
instance of @), a fully polynomial time approximation scheme for @) is also
a fully polynomial time approximation scheme for @’. Now the theorem
follows. [

Remark. How common is the situation that Optg(z) is bounded by a
polynomial of length(z), and max(z)? In fact, this situation is fairly com-
mon because for most optimization problems, the objective function value
is defined through additions or constant number of multiplications on the
numbers appearing in the input instance z, which is certainly bounded by
a polynomial of length(z) and max(z). Of course, the condition is not uni-
versely true for general optimization problems. For example, an objective
function can be simply defined to be the exponentiation of the sum of a sub-
set of input values, which cannot be bounded by any polynomial of length(z)
and max(z).

In general, it is easy to verify the condition that Optg(z) is bounded by
a polynomial of length(z) and max(z). Therefore, in order to apply Theo-
rem 6.4.8, we need to prove the strong NP-hardness for a given optimization
problem (). There are two general techniques serving for this purpose. The
first one is to pick an NP-complete problem L and show that L is polyno-
mial time reducible to a @4-subproblem of () for some polynomial g. Our
polynomial time reduction from the HAMILTONIAN CIRCUIT problem to the
TRAVELING SALESMAN 1-2 problem, which leads to the strong NP-hardness

NON-FPTAS 207

of the general TRAVELING SALESMAN problem (Theorem 6.4.5), well illus-
trates this technique.

The second technique is to develop a polynomial time reduction from
a known strongly NP-hard optimization problem R to the given optimiza-
tion problem (). For this, we also require that for each polynomial p, the
reduction transforms a R,-subproblem of R into a ()4-subproblem of () for
some polynomial g. We explain this technique by showing that the following
familiar optimization problem is NP-hard in the strong sense.

MAKESPAN

Ig: the set of tuples T' = {t1,...,t,;m}, where ¢; is the
processing time for the sth job and m is the number
of identical processors

Sg: S(T) is the set of partitions P = (T1,...,Ty,) of the
numbers {t1,...,t,} into m parts

fo: fo(T, P) is equal to the processing time of the largest
subset in the partition P, that is,

fQ(T, P) = maxi{} cr, t;}

optg: min

To show that the MAKESPAN problem is NP-hard in the strong sense, we
reduce the following strongly NP-hard (decision) problem to the MAKESPAN
problem.

THREE-PARTITION

INPUT: {t1,t9,...,t3m; B}, all integers, where B/4 < t; < B/2
for all 4, and 2™ t; = mB

QUESTION: Can {t1,...,t3n} be partitioned into m sets, each
of size B?

The THREE-PARTITION problem has played a fundamental role in prov-
ing strong NP-hardness for many scheduling problems. For a proof that the
THREE-PARTITION problem is NP-hard in the strong sense, the reader is
referred to Garey and Johnson’s authoritative book [50], Section 4.2.2.

The reduction R from the THREE-PARTITION problem to the MAKESPAN
problem is straightforward: given an input instance « = {t1,19,...,t3,; B}
of the THREE-PARTITION problem, we construct an input instance 8 =
{t1,t2,...,t3m;m} for the MAKESPAN problem. It is clear that the optimal
parallel completion time for the instance 8 for the MAKESPAN problem is

208 FPTAS

B if and only if « is a yes-instance for the THREE-PARTITION problem.
Note that the input length length(f) is at least 1/2 times the input length
length(a) (in fact, length(a) and length(8) are roughly equal), and that
max(f3) is bounded by max(a) + length(c).

Since the THREE-PARTITION problem is NP-hard in the strong sense,
there is a polynomial ¢ such that a (THREE-PARTITION),-subproblem R’
of the THREE-PARTITION problem is NP-hard. Let @’ be a subproblem
of the MAKESPAN problem such that @' consists of input instances of the
form {t1,t,...,t3m;m}, where 33" t; = mB and {t1,to,...,t3,; B} is an
instance of R'. Therefore, the polynomial time reduction R reduces the
problem R’ to the problem @Q'. Therefore, the problem ' is NP-hard.
Moreover, for each instance « of R', we have max(a) < g(length()). Now
for each instance 3 of Q' that is the image of an instance a of R’ under the
reduction R, we have

max(f3) max(a) + length(a) < g(length(a)) + length(a)

q(2length(B)) + 2length(53)

Therefore, the NP-hard problem Q' is a (MAKESPAN),-subproblem of the
MAKESPAN problem, where p is a polynomial. This proves that the
MAKESPAN problem is NP-hard in the strong sense.

It is trivial to verify that the other conditions of Theorem 6.4.8 are
satisfied by the MAKESPAN problem. Thus,

<
<

Theorem 6.4.9 The MAKESPAN problem is NP-hard in the strong sense.
Moreover, the MAKESPAN problem has no fully polynomial time approzima-
tion scheme unless P = NP.

We should point out that the c-MAKESPAN problem, i.e., the MAKESPAN
problem with the number of processors is fixed by a constant ¢, has a fully
polynomial time approximation scheme (Corollary 6.2.3). However, if the
number m of processors is given as a variable in the input, then the problem
becomes NP-hard in the strong sense and has no fully polynomial time
approximation scheme.

Chapter 7

Asymptotic Approximation
Schemes

Using Theorem 6.4.1, it is fairly easy to show that certain NP-hard opti-
mization problems have no fully polynomial time approximation scheme. In
fact, for some NP-hard optimization problems, such as the BIN PACKING
problem and the GRAPH EDGE COLORING problem we are studying in this
chapter, it is also possible to prove that there is a constant ¢ > 1 such that
these problems have no polynomial time approximation algorithm of approx-
imation ratio smaller than ¢. The proofs for the nonapproximability of these
problems are based on the observation that even when the value of optimal
solutions is very small, the problems still remain NP-hard. In consequence,
no polynomial time approximation algorithm is expected that can return
an optimal solution when a given input instance has small optimal solution
value, while in this case a small approximation error may significantly effect
the approximation ratio. Therefore in terms of the regular approximation
ratio, which is defined as the worst case ratio of optimal solution value and
the approximation solution value over all kinds of input instances, these op-
timization problems cannot have polynomial time approximation algorithm
of ratio arbitrarily close to 1.

On the other hand, we find out that for some of these optimization
problems, it is possible to develop polynomial time approximation algo-
rithms whose approximation ratio becomes arbitrarily close to 1 when the
optimal solution value is large enough. Therefore, here we are interested in
the asymptotic behavior of the approximation ratio in terms of the optimal
solution values.

In this chapter, we discuss the asymptotic approximability for optimiza-

209

210 ASYMPTOTIC APPROXIMATION

tion problems. Two optimization problems are considered: the BIN PACK-
ING problem and the GRAPH EDGE COLORING problem. Since both these
two problems are minimization problems, our definitions and discussions are
based on minimization problems only. However, it should be straightforward
to extend these definitions and discussions to maximization problems.

As before, for any input instance x of an optimization problem, we denote
by Opt(z) the value of optimal solutions to x.

Definition 7.0.4 Let Q = (Ig,Sg, fg,optg) be a minimization problem
and let A be an approximation algorithm for). The asymptotic approzi-
mation ratio of A is bounded by rq if for any r > rg, there is an integer N
such that for any input instance z of @ with Opt(x) > N, the algorithm A
constructs a solution y to z satisfying fg(z,y)/Opt(z) <.

Analogous to fully polynomial time approximation scheme defined in
terms of approximation ratio of an approximation algorithm, asymptotic
fully polynomial time approximation scheme of an optimization problem can
be defined in terms of the asymptotic approximation ratio of approximation
algorithms.

Definition 7.0.5 An optimization problem @) has an asymptotic fully poly-
nomial time approzimation scheme (AFPTAS) if it has a family of approx-
imation algorithms {4, | € > 0} such that for any € > 0, A, is an approxi-
mation algorithm for @) of asymptotic approximation ratio bounded by 1+ ¢
and of running time bounded by a polynomial of the input length and 1/e.

7.1 The Bin Packing problem

The BIN PACKING problem is to pack items of various sizes into bins of a
fixed size so that the number of bins used is minimized. The BIN PACK-
ING problem has many potential practical applications, from loading trucks
subject to weight limitations to packing television commercials into station
breaks. Moreover, the BIN PACKING problem has been of fundamental the-
oretical significance, serving as an early proving ground for many of the
classical approaches to analyzing the performance of approximation algo-
rithms for optimization problems.

In this section, we study a number of well-known approximation algo-
rithms for the BIN PACKING problem. We start with the famous “First Fit”
algorithm and show that if the items are sorted in a nonincreasing order of

BIN PACKING 211

their sizes, then the algorithm achieves the optimal approximation ratio 1.5.
Then we study the asymptotic approximation ratio for the BIN PACKING
problem. We show in detail that for any € > 0, there is a polynomial time
approximation algorithm A, for the BIN PACKING problem such that the
asymptotic approximation ratio of A, is bounded by 1 + e¢. We then explain
how this algorithm can be converted into an asymptotic fully polynomial
time approximation scheme for the BIN PACKING problem.

7.1.1 Preliminaries and simple algorithms
We start with the formal definition of the BIN PACKING problem.

BIN PACKING = (I, Sq, fo,optqQ)

Ig: the set of tuples a = (s1,...,sp;T), where s; and T are
positive integers;

So(a): the set of partitions Y = (By,...,B;) of {s1,...,s,}
such that ZSiij s; < T for all j;

fo(a,Y): the number of subsets in the partition ¥ of o;

optg = min

In other words, the BIN PACKING problem is to pack n given items of size
81, - --y Sp into the minimum number of bins of size T'.

If any item has size s; larger than T, then obviously there is no way to
pack the items into bins of size T'. Therefore, we will always assume that
all items have size less than or equal to the bin size.

Lemma 7.1.1 The BIN PACKING problem is NP-hard.

ProoOF. We show that the NP-complete decision problem PARTITION is
polynomial time reducible to the BIN PACKING problem.
Recall that the PARTITION problem is defined as follows: given a set

S ={ay,...,a,} of n integers, can S be partitioned into two disjoint subsets
S1 an.d Sy Su(?h that Zaiesl a; = Eajesz aj?
Given an instance S = {ay,...,a,} of the PARTITION problem, let 7' =

>ieq a;. If T'is an odd number, we construct an instance o = (T, T, T; T for
the BIN PACKING problem (in this case, S is a no-instance for the PARTITION
problem and an optimal solution to the instance « of the BIN PACKING
problem uses three bins). If 7" is an even number, we construct an instance
a = (a1,...,a,;T/2) for the BIN PACKING problem. Now it is very easy
to see that S is a yes-instance for the PARTITION problem if and only if an

212 ASYMPTOTIC APPROXIMATION

optimal solution to the instance a of the BIN PACKING problem uses two
bins. [

It is easy to verify that the BIN PACKING problem satisfies the condi-
tions in Theorem 6.4.1. Therefore, the BIN PACKING problem has no fully
polynomial time approximation scheme unless P = NP.

In fact, a stronger lower bound on the approximation ratios of approxi-
mation algorithms for the BIN PACKING problem can be derived. Observe
that in the proof of Lemma 7.1.1, we actually proved that deciding if the
value of optimal solutions to an instance « of the BIN PACKING problem is
2 is NP-hard. Therefore, any polynomial time approximation algorithm for
the BIN PACKING problem can only guarantee a packing of at least three
bins for the instances whose optimal solution value is 2. This leads to the
following theorem.

Theorem 7.1.2 There is no polynomial time approzimation algorithm for
the BIN PACKING problem with approzimation ratio less than 1.5 unless P
= NP.

PROOF. Suppose that we have a polynomial time approximation algorithm
A with approximation ratio less than 1.5 for the BIN PACKING problem.
We show how we can use this algorithm to solve the NP-complete problem
PARTITION in polynomial time.

Given an input instance S = {a1,---,a,} for the PARTITION problem,
if > 4 a; is an odd number, then we know S is a no-instance. Otherwise,
let T = (31— ai)/2, and let @ = (a1,a9,-+-,a,;T) be an instance for the
BIN PACKING problem. Now apply the approximation algorithm A for the
BIN PACKING problem on the instance a. Suppose that the approximation
algorithm A uses m bins for this input instance a. There are two different
cases.

If m > 3, then since we have

m/Opt(a) < 1.5

we get Opt(a) > 2. That is, the items aq, ..., a, cannot be packed into two
bins of size T' = (} i~ a;)/2. Consequently, the instance S = {a1, - -,a,}
is a no-instance for the PARTITION problem.

On the other hand, if m < 2, then we must have m = 2. Thus, the items
ai, ..., ap can be evenly split into two sets of equal size T' = (3°1; a;)/2.
That is, the instance S = {a1,---,a,} is a yes-instance for the PARTITION
problem.

BIN PACKING 213

Algorithm. First-Fit

Input: a = (s1,82,...,8,;7T)
Output: a packing of the items s1, ..., s, into bins of size T'

1. suppose that all bins By, By, ..., are empty;
2. for i =1 to n do put the item s; in the first bin it fits.

Figure 7.1: The First-Fit algorithm

Therefore, the instance S is a yes-instance for the PARTITION problem
if and only if the approximation algorithm A uses two bins to pack the
instance a. Since by our assumption, the approximation algorithm A runs
in polynomial time, we conclude that the PARTITION problem can be solved
in polynomial time.

Since the PARTITION problem is NP-complete, this implies P = NP. The
theorem is proved. [

The technique used in Theorem 7.1.2 can be used to derive lower bounds
on approximation ratios for other optimization problems. In general, sup-
pose that @ is an NP-hard minimization problem for which deciding whether
an instance z of () has optimal value ¢ is NP-hard. Then we can derive di-
rectly that no polynomial time approximation algorithm for () can have
approximation ratio smaller than (¢ + 1)/c.

Now we consider approximation algorithms for the BIN PACKING prob-
lem. The simple algorithm First-Fit given in Figure 7.1, which is based on
the greedy method, has been well-known.

The for loop in step 2 of the algorithm First-Fit is executed n times,
and in each execution of the loop, we go through the bins By, Bs, ..., to find
a bin that fits the current item. Since the number of bins used cannot be
larger than the number of items in the input, we conclude that the algorithm
First-Fit runs in time O(n?).

Now we analyze the approximation ratio for the algorithm First-Fit.

Theorem 7.1.3 The algorithm First-Fit has approzimation ratio 2.

PrOOF. We observe that there is at most one used bin whose content is
not larger than 7°/2. In fact, suppose that there are two used bins B; and B;
whose contents are bounded by 7'/2. Without loss of generality, let i < j.
Then the algorithm First-Fit would have put the items in the bin Bj into

214 ASYMPTOTIC APPROXIMATION

the bin B; since the bin B; has enough room for these items and the bin B;
is considered before the bin B; by the algorithm First-Fit.

Now the theorem can be proved in two cases.

Suppose that the contents of all used bins are not less than 7'/2. Let m
be the number of bins used by the algorithm First-Fit. We have

Z si > m(T/2)
i=1

Since the bin size is T', we need at least

n

[(Q_sa)/TT > [(mT)/(2T)] > m/2

i=1

bins to pack the n items, i.e., Opt(«) > m/2. Therefore, the approximation
ratio is bounded in this case by

Now suppose that there is a used bin whose content z is less than 7/2.
Again let m be the number of bins used by the algorithm First-Fit. There-
fore, there are m — 1 bins with contents at least 7'/2. This gives

" - T - 1T
i=1 2 2

Thus, [(3i 8:)/T] > (m —1)/2
If m —1 is an even number, then since both [(}°1; s;)/T"] and (m—1)/2
are integers, we get

n

[(Q_s:)/T1 2 (m = 1)/2+ 1> m/2

i=1
If m — 1 is an odd number, then

n

[(Q_s:)/T1 2 [(m —1)/2] = (m —1)/2 +1/2 = m/2

=1

Note that any packing should use at least [(3°}; s;)/7| bins. In partic-

ular,
n

Opt(a) > [(D_ 5:)/T1

=1

BIN PACKING 215

Algorithm. First-Fit-Decreasing

Input: « = (s1,82,...,8;7T)

Output: a packing of the items s, ..., S, into bins of size T
1. suppose that all bins By, By, ..., are empty;
2. sort the items si, ..., s, in non-increasing order,

let the sorted list be L = {s},..., s, };
3. for i =1 to n do put the item s in the first bin it fits.

Figure 7.2: The First-Fit-Decreasing algorithm

The above analysis shows that the approximation ratio is bounded by
m m m

Opt(e) = (S0, s0/T] = m)2

This proves the theorem. []

=2

The bound 2 in Theorem 7.1.3 is not tight. With a more involved proof
[48], one can show that for any instance « of the BIN PACKING problem,
the algorithm First-Fit packs « using no more than [(17/10)Opt(c)]| bins.
Moreover, instances 8 of the BIN PACKING problem have been constructed
for which the algorithm First-Fit uses more than (17/10)Opt(8) — 2 bins
[73]. Thus, roughly speaking, the approximation ratio of the algorithm
First-Fit is 1.7.

A better approximation algorithm is obtained by observing that the
worst performance for the algorithm First-Fit seems to occur when small
items are put before large items. For example, suppose that we have four
items of size T'/3, T/3, 2T'/3, and 2T'/3, respectively. If we put the two
smaller items of size T'/3 first into a bin, then no larger items of size 27'/3
can fit into that bin. Thus each larger item will need a new bin, resulting in
a packing of three bins. On the other hand, if we put the two larger items
of size 2T'/3 into two bins first, then the two smaller items of size T'/3 can
also fit into these two bins, resulting in a packing of two bins. Based on this
observation, we first sort the items by their sizes in non-increasing order
before we apply the algorithm First-Fit on them. The modified algorithm,
called First-Fit-Decreasing algorithm, is given in Figure 7.2, which is also
a well-known approximation algorithm for the BIN PACKING problem.

Since the sorting can be done in time O(n logn), the running time of the
algorithm First-Fit-Decreasing is also bounded by O(n?).

216 ASYMPTOTIC APPROXIMATION

To analyze the approximation ratio for the algorithm First-Fit-
Decreasing, we start with the following lemma.

Lemma 7.1.4 Let a = (s1,...,8,;T) be an instance of the BIN PACKING
problem. Suppose that the algorithm First-Fit-Decreasing uses r bins B,
Bo, ..., By to pack s1, ..., sp. Then for any bin B; with j > Opt(a), every
item in the bin B; has size at most T/3.

PrOOF. To simplify expressions, we let m = Opt(a) be the number of
bins used by an optimal solution to the instance a. If m = r, then there is
nothing to prove. Thus, we assume that m < r.

The algorithm First-Fit-Decreasing first sorts sy, s9, ..., 8, into a
non-increasing list L = {s,s),...,s,}. To prove the lemma, it suffices to
show that the first item s} put in the bin By, 1 has size at most T'/3 since
according to the algorithm, only items s} with ¢ > k can be put in the bin
Bj; with j > m, and for these items we have s} < s..

Assume for contradiction that s}, > T'/3. Thus, s; > T/3 for all : < k.
Consider the moment the algorithm First-Fit-Decreasing puts the item
s} in the bin By,;;. We must have the following situation at this moment:

1. all bins By, ..., By, By41 are nonempty and all other bins are empty;

2. only the items s, ..., s} have been put in bins;

3. each of the bins By, ..., Bpy41 contains at most two items — this is
because each of the items s/, ..., s} has size larger than T'/3;

4. for any two bins B; and B;, where 1 < 4,5 < m, if bin B; contains
one item while bin B; contains two items, then ¢ < j (proof: suppose
i > j. Let the first item in B; be s and the second item in Bj be s} ,
and let the item in B; be s;,. According to the algorithm, we must
have 391 > s; and 3;-2 > 5. Thus, s} +s) < 391 —1—3;-2 < T. Therefore,
the algorithm would have put the item sj, in the bin B;.)

Therefore, there must be an index h, such that each bin B; with j < A
contains a single item s;., while each bin B; with h < j < m contains
exactly two of the items s |, s}, .5, ..., 8,_;- Thus, kK —h — 1 is an even
number and

k—h—1=2(m—h)

Moreover, for any j and ¢ such that j < h and j < ¢ < k, we must have

8 + sy > T — otherwise, the item s would have been put in the bin B;.

BIN PACKING 217

Let P = (B{,B),...,B],) be an optimal packing of the items s, ...,
sp- If a bin B} contains the item s}, for j < h, then the bin B} cannot
contain any other items s'q, for 1 < ¢ < k and g # j, since by the above
analysis, s + s > T. Thus, the h items s, ..., s, must be contained
in h different bins in P and these h bins do not contain any of the items
Sph41s -+ Sk Moreover, each of the bins in P can contain at most two
items from s}, RIS s}, since each of these items has size larger than 7/3.
Therefore, the k—h = 2(m—h)+1 items S;H_l, ..., 8}, require at least another
[(k —h)/2] = m — h+ 1 bins in P. But this implies that the packing P
uses at least h+ (m —h+ 1) = m+ 1 = Opt(a) + 1 bins, contradicting our
assumption that P is an optimal packing of a. This contradiction proves
the lemma. []

Now we are ready to derive the approximation ratio for the algorithm
First-Fit-Decreasing.

Theorem 7.1.5 The approzimation ratio of the algorithm First-Fit-
Decreasing is 1.5.

PRrROOF. Let a = (s1,...,58,;T) be any input instance of the BIN PACKING
problem. Suppose that Opt(a) = m and that the algorithm First-Fit-
Decreasing packs the items sq, ..., s, using r bins By, By, ..., B,.

If r = m, then the approximation ratio r/m = 1 < 1.5 so the theorem
holds. Thus, we assume r > m.

Let sy be an item in the bin B,. By Lemma 7.1.4, we have s < T/3.
Therefore, the content of each of the bins By, ..., B,_; is larger than 27'/3
— otherwise the item s; would have been put in one of the bins By, ...,
B, _1. The same reason also shows that the content of the bin B,_1 plus s
is larger than 7. If we let |B;| be the content of the bin Bj, then we have

n r—1 r—2
S > S| 456 = S UB| + (Beoal +51) > @T/3)(r —2) + T
i=1 j=1 j=1
Since the content of a bin in any packing cannot be larger than T, any
packing of the n items si, ..., s, uses at least (3} j—; s;)/T bins. Therefore,

n

Opt(a) > (D si)/T >2(r—2)/3+1=(2r—1)/3

i=1
Observing that both Opt(a) and r are integers, we easily verify that
Opt(a) > (2r — 1)/3 implies Opt(c) > 2r/3, which gives the approxima-
tion ratio

r/Opt(a) < 3/2=1.5

218 ASYMPTOTIC APPROXIMATION

This completes the proof of the theorem. [

Theorem 7.1.5 together with Theorem 7.1.2 shows that in terms of the
approximation ratio, the algorithm First-Fit-Decreasing is the best possi-
ble polynomial time approximation algorithm for the BIN PACKING problem.

The algorithm First-Fit-Decreasing is also a good example to illus-
trate the difference between the regular approximation ratio and the asymp-
totic approximation ratio of an approximation algorithm. Theorem 7.1.5
claims that the regular approximation ratio of the algorithm First-Fit-
Decreasing is 1.5 (and by Theorem 7.1.2, this bound is tight). On the
other hand, it can be proved that for any instance a of the BIN PACKING
problem, the number 7 of bins used by the algorithm First-Fit-Decreasing
for « satisfies the following condition (see [50] and its reference)

T 11 4

Opt(a) = 9 + Opt(«)

Therefore, the asymptotic approximation ratio of the algorithm First-Fit-
Decreasing is bounded by 11/9 = 1.22-- ..

7.1.2 The (4, 7)-Bin Packing problem

In order to develop an asymptotic polynomial time approximation scheme
for the BIN PACKING problem, we first study a restricted version of the BIN
PACKING problem, which will be called the (4, 7)-BIN PACKING problem.
The (6, 7)-BIN PACKING problem is the general BIN PACKING problem with
the following two restrictions. First, we assume that the input items have
at most a constant number 7 of different sizes. Second, we assume that the
size of each input item is at least as large as a 0 factor of the bin size. The
following is a formal definition.

(6, 7)-BIN PACKING

INPUT: (t1 : m1,t2 : No,...,t; : Ng; B), where 6B < t; < B for
all 4, interpreted as: for the n = Y7, n; input items, n; of them
are of size t;, for1 =1,..., @

OUTPUT: a packing of the n items into the minimum number of
bins of size B

We first study the properties of the (J, 7)-BIN PACKING problem. Let
a = (t1 : ny,...,tr : ng; B) be an input instance for the (4, 7)-BIN PACKING
problem. Suppose that an optimal packing packs the items in « into m bins

BIN PACKING 219

Bi, Bo, ..., By,. Consider the first bin By. Suppose that the bin B; contains
by items of size t1, by items of size t2, ..., and b, items of size ¢t,. We then
call

(b1,b2,...,bz)

the configuration of the bin By. Since each item has size at least 6B and
the bin size is B, the bin B; contains at most 1/4 items. In particular, we
have 0 < b; < 1/6 for all 5. Therefore, the total number of different bin
configurations is bounded by (1/§)".

Now consider the set o of items that is obtained from the set o with all
items packed in the bin By removed. The set o/ can be written as

o = <t1 : (n1 — b1),t2 : (’)’LQ — bz),...,t,,r : (nw — b,,r);B>

Note that o/ is also an input instance for the (4, 7)-BIN PACKING problem
and the packing (Bs, Bs, ..., By,) is an optimal packing for o/ (¢ cannot be
packed into fewer than m — 1 bins otherwise the set a can be packed into
fewer than m bins). Therefore, if we can pack the set o/ into a minimum
number of bins then an optimal packing for the set a can be obtained by
packing the rest of the items into a single bin B;.

Now the problem is that we do not know the configuration for the bin
Bji. Therefore, we will try all possible configurations for a single bin, and
recursively find an optimal packing for the rest of the items. As pointed
out above, the number of bin configurations is bounded by (1/6)", which
is a constant when both § and 7 are fixed. In the following, we present a
dynamic programming algorithm that constructs an optimal packing for an
input instance for the (6, 7)-BIN PACKING problem.

Fix an input instance a = (t; : ni,...,t; @ ng; B) of the (6, 7)-BIN
PACKING problem. Each subset of items in « can be written as a m-tuple
[h1,-..,hg] with 0 < h; < n; to specify that the subset contains h; items of
size t; for all 4. In particular, the input instance « itself can be written as
[’)’Ll, cee ,’I’I,W].

Let #H[hy,...,h;] denote the minimum number of bins needed to
pack the subset [h1,...,h;] of the input instance « for the (4, 7)-BIN
PACKING problem. Suppose that #H|h1,...,hs] > 1. According to
the discussion above, we know that #H]h1,...,hs]| is equal to 1 plus
#H[hy — b1,..., hy — b;] for some bin configuration (b1, ba,...,bs). On the
other hand, since #H [h1,...,h;] corresponds to an optimal packing of the
subset [h1,...,hr], #H[h1,...,hy] is actually equal to 1 plus the minimum
of #H[h1 —by, ..., hy —b;] over all consistent bin configurations (b1, ..., by).
This suggests an algorithm that uses the dynamic programming technique

220 ASYMPTOTIC APPROXIMATION

to compute the value of #H|[hy,...,h;]. In particular, # H[n1,...,n,| gives
the optimal value for the input instance « for the (J, 7)-BIN PACKING prob-
lem.

Definition 7.1.1 Fix an input instance a = (t1 : n1,...,t; : ny; B) for the
(6,)-BIN PACKING problem. Let o/ = [hy,...,h;] be a subset of the input
items in «, where h; < n; for all . A m-tuple (by,...,b;) is an addable bin

configuration to o' if
1. hj+b; <n;foralli=1,...,7; and

Intuitively, an addable bin configuration specifies a bin configuration
that can be obtained using the items in « that are not in the subset .

Now we are ready for presenting the following dynamic programming
algorithm. We use a w-dimensional array H[l..n1,...,1l..n;] (note that 7 is
a fixed constant) such that H[iy,...,%,| records an optimal packing for the
subset [i1,...,i7] of a. We use the notation #H[iy,...,i;] to denote the
number of bins used in the packing H[ii,...,i,|. For a packing H[i1,...,]
and a bin configuration (b1, ...,b;), we will use

H[’il,...,‘iw]@(bl,...,bw)

to represent the packing for the subset [i1 + b1, ...,ir + b,] that is obtained
from H[i1,...,iz] by adding a new bin with configuration (b1,...,b;). The
dynamic programming algorithm (d, 7)-Precise, which solves the (4, 7)-BIN
PACKING problem precisely, is presented in Figure 7.3.

The if statement in the inner loop body can obviously be done in time
O(n) (note that m is a constant). Since b; < 1/6 for all 4 = 1,...m, there
are at most (1/6)™ addable bin configurations for each subset [i1,... iz
Moreover, n; < nforalli =1,...,nw. Therefore, the if statement in the inner
loop body can be executed at most n™(1/6)™ times. We conclude that the
running time of the algorithm (4, 7)-Precise is bounded by O(n™1(1/8)™),
which is a polynomial of n when ¢ and 7 are fixed constants.

The algorithm (§, 7)-Precise is not very satisfying. In particular, even
for a moderate constant m of different sizes, the factor n™*! in the time
complexity makes the algorithm not practically useful. On the other hand,
we will see that our approximation algorithm for the general BIN PACKING
problem is based on solving the (§,7)-BIN PACKING problem with a very
large constant 7 and a very small constant §. Therefore, we need, if possible
at all, to improve the above time complexity. In particular, we would like
to see if there is an algorithm that solves the (¢, 7)-BIN PACKING problem

BIN PACKING 221

Algorithm. (4, 7)-Precise

Input: a = (t1:n1,...,tr : ng; B), where t; > 6B for all 4
Output: a bin packing of & using minimum number of bins.
1. #H[i1,...,ix]=4oco forall 0 <i; <n;, 1 <5< m;

2. HI0,...,0]=¢; #HI0,...,0]=0;

3. for iy =0 to n1 do

for i, =0 to n, do
for each bin configuration (b1,...,bx)
addable to the subset [i1,...,ir] do
if #H[i1+b1,...,0x +bs] > 1+ #H[i1,...,ix]
then
H[ir + b1, in +be] = Hir, .., ix] ® (b1, ..., bs);
#Hi1 +b1,...,0x +bs] = #H[i1,...,iz] +1

Figure 7.3: The (6,)-Precise algorithm

such that in the time complexity of the algorithm, the exponent of n is
independent of the values of 7 and §.

Fix an input instance a = (t1 : ny,...,tz : ng; B) for the (4, 7)-BIN
PACKING problem. We say that a w-tuple (by,...,b;) is a feasible bin con-
figuration if b; < n; for all 4 and t1b1 + -+ - t;b; < B. Since t; > B for all
i, we have b; < 1/¢ for all . Therefore, there are totally at most (1/)"
feasible bin configurations. Let all feasible bin configurations be

Ti = (bi1,bi2,---,bix)
Ty = (ba1,b22,---,bar) (7.1)

Tq = (bqlaban"' 7bq7l')

where ¢ < (1/6)™. Note that the above list of feasible bin configurations can
be constructed in time independent of the number n = } 7| n; of items in
the input instance a. Now each bin packing Y of the input instance « can
be written as a g-tuple (z1,z2,...,%,), where z; is the number of bins of
bin configuration T; used in the packing Y. Moreover, there is essentially
only one bin packing that corresponds to the g-tuple (z1,z2,...,2z,), if we
ignore the ordering of the bins used. An optimal packing corresponds to a

222 ASYMPTOTIC APPROXIMATION

g-tuple (z1,z9,...,24) with z; + - - - £, minimized.

Conversely, in order to let a g-tuple (z1,z2,...,z4) to describe a real
pin packing for o, we need to make sure that the g-tuple uses exactly the
input items given in . For each feasible bin configuration T}, there are b;;
items of size t,. Therefore, if z; bins are of bin configuration T}, then for
the bin configuration 7}, the g-tuple assumes x;b;;, items of size ¢,. Now
adding these over all bin configurations, we conclude that the total number
of items of size ¢}, assumed by the g-tuple (z1,2,...,z4) is

T1b1p, + Tobop, +--- + Iqbqh

This should match the number nj of items of size ¢; in the input instance
a. This formulates the conditions into the following linear programming
problem.

min = 1+ 2z + -+ x4

z1bi1 + xabo1 + -+ zgby = M
T1big + zoboy + -+ xbpe = no (7.2)
ZT1bix + xobor + -+ xgbgr = ng

z; >0, for i=1,...,¢q

Since all z;s must be integers, this is an instance of the INTEGER LINEAR
PROGRAMMING problem. It is easy to see that if a g-tuple (z1,...,z)
corresponds to a valid bin packing of the input instance «, then the vector
(x1,...,24) satisfies the constraints in the system (7.2). Conversely, any
vector (z1,...,z,) satisfying the constraints in the system (7.2) describes a
valid bin packing for the input instance a. Moreover, it is easy to see that if
a vector (z1,...,zq) satisfying the constraints in the system (7.2) is given,
the corresponding bin packing can be constructed in linear time.
Therefore, to construct an optimal solution for the input instance « for
the (4, 7)-BIN PACKING problem, we only need to construct an optimal solu-
tion for the instance (7.2) for the INTEGER LINEAR PROGRAMMING problem.
According to Theorem 5.1.4, the INTEGER LINEAR PROGRAMMING problem
in general is NP-hard. But here the nice thing is that both the number ¢
of variables and the number ¢ + 7 of constraints in the system (7.2) are
independent of n = Y7 ; n;. However, this does not immediately imply
that the system can be solved in time independent of n — the numbers n;
appearing on the right side of the system may be as large as n. Thus, the

BIN PACKING 223

Algorithm. (4, 7)-Precise2

Input: a = (t1:n1,...,tr : ng; B), where t; > 6B for all 4

Output: a bin packing of o using the minimum number of bins

1. construct the list (7.1) of all feasible configurations Th, T», ..., Ty;
2. solve the system (7.2) using Lenstra’s algorithm;

3. return the solution (z1,...,2z4) of step 2.

Figure 7.4: The algorithm (4, 7)-Precise2

vector (z1,...,%,) that is an optimal solution to the instance (7.2) can have
elements as large as a polynomial of n (see Theorem 5.2.9). In consequence,
constructing an optimal solution to the instance (7.2) by enumerating all
possible solutions may still take time dependent of n.

Anyway, the above system has at least suggested a polynomial time
algorithm for solving the problem: we know that an optimal solution must
satisfy 1 + --- + x4 < m. Thus, 0 < z; < n foralls =1,...,¢ in an
optimal solution. Therefore, we could enumerate all vectors (zi,...,z,)
satisfying 0 < z; < n and solve the system (7.2). Note that there are totally
(n 4 1)? such vectors and ¢ is independent of n. However, since q is of order
(1/6)™, this enumerating algorithm gives a polynomial time algorithm whose
complexity is even worse than that of the algorithm (4, 7)-Precise.

Fortunately, Lenstra [89] has developed an algorithm that solves the
system (7.2) in time h(g,), where h(q,) is a function depending only on
g and 7. Since the algorithm involves complicated analysis on the INTEGER
LINEAR PROGRAMMING problem, we omit the description of the algorithm.

The above discussion results in a second polynomial time algorithm,
(6, m)-Precise2, for the (4, 7)-BIN PACKING problem, which is presented in
Figure 7.4.

The algorithm (4, 7)-Precise2, as discussed above, runs in time
hi(q,®) = ho(m,d), where hy is a function depending only on § and 7.
This may seem a bit surprising since the algorithm packs n =)7, n; items
in time independent of n. This is really a matter of coding. Note that the
input @« = (t1 : ni1,...,tx : ng; B) of the algorithm (6, 7)-Precise2 actu-
ally consists of 2 + 1 integers, and the solution (z1,...,z,) given by the
algorithm consists of ¢ < (1/4)"™ integers. To convert the vector (z1,...,zq)
into an actual packing of the n = >~ ; n; input items, an extra step of time
O(n) should be added.

224 ASYMPTOTIC APPROXIMATION

Theorem 7.1.6 The (6, 7)-BIN PACKING problem can be solved in time
O(n) + h(d,), where h(d,m) is a function independent of n.

7.1.3 Asymptotic approximation schemes

In the last subsection, we have shown that the (§, 7)-BIN PACKING problem
can be solved in time O(n) + h(d,), where h(d,7) is a function indepen-
dent of the number n of items in the input instance (Theorem 7.1.6). In
this subsection, we use the solution for the (§, 7)-BIN PACKING problem to
develop an approximation algorithm for the general BIN PACKING problem.
We first roughly describe the basic idea of the approximation algorithm.

An input instance of the general BIN PACKING problem may contain
items of small size and items of many different sizes. To convert an input
instance @ = (t1,...,tn; B) of the general BIN PACKING problem to an input
instance of the (4, 7)-BIN PACKING problem, we perform two preprocessing
steps:

1. ignore the items of small size, i.e., the items of size less than §B; and

2. sort the rest of the items by their sizes in decreasing order, then evenly
partition the sorted list according to item size into 7 groups G4, ...,
Gr. For each group Gj, replace every item by the one with the largest
size t; in G;.

After the preprocessing steps, we obtain an instance o/ = (t| : m,...,t, :
m; B) of the (4, 7)-BIN PACKING problem, where m < [n/w|. Now we
use the algorithm we have developed to construct a solution Y, which is a
packing, for the instance o/. To obtain a solution Y to the original input
instance o of the BIN PACKING problem, we first replace each item in Y’ by
the corresponding item in «, then add the items in o that have size smaller
than §B using the greedy method as described in the algorithm First-Fit
in Figure 7.1.

An optimal solution to the instance o/ is an over-estimation of the opti-
mal solution to the instance « since each item in « is replaced by a larger
item in o', the number of bins used by an optimal packing of o’ is at least as
large as the number of bins used by an optimal packing of a. To see that an
optimal solution to the instance ' is a good approximation to optimal so-
lutions to the instance «, consider the instance o” = (th : m,...,t, : m; B),
which is an instance to the (6, 7—1)-BIN PACKING problem. The instance o
can be obtained from « by replacing each item in the group G; by a smaller
item of size t; ;| for 1 <i < 7w — 1 and deleting the items in the last group

BIN PACKING 225

Algorithm. ApxBinPack

Input: a = (t1,...,tn;B) and e > 0

Output: a packing of the items t1, 2, ..., tp

1. sort t1,...,tn; without loss of generality, let t; > t2 > --- > t,;
let h be the largest index such that ¢, > eB/2; ao = (t1,t2,-..,tn; B);
let 7 = [2/€?], partition the items in o into 7 groups Gi, ..., G,
such that the group G; consists of the items t(;_1ym+1, tii—1)m+25 + - -
tim; where m = [h/7] (the last group G- contains m’ < m items);

4. construct an optimal solution Y’ to the instance

o = (t1:mtmgr t Mytomgr 1My i 1ymy1 M B)
for the (¢/2, 7)-BIN PACKING problem;

5. replace each item in Y’ of size tjm+1 by a proper item in the group
Gj41 of ag, for j =0,..., 7 — 1, to construct a packing Yo for the
instance ao;

6. add the items t441,...,tn in a to the packing Yy by greedy method
(i-e., no new bin will be used until no used bin has enough space
for the current item). This results in a packing for the instance a.

Figure 7.5: The ApxBinPack algorithm

Gr. Thus, an optimal solution to the instance ' is an under-estimation of
the optimal solution to «. Since the instance o can also be obtained from
o' by deleting the m largest items, an optimal packing of o/ uses at most
m more bins than an optimal packing of o’ (the m bins are used to pack
the m largest items in o). Therefore, an optimal packing of o' uses at most
m more bins than an optimal packing of «, with the items of size less than
0B ignored. When the value 7 is sufficiently large, the value m < [n/7] is
small so that an optimal solution to o will be a good approximation to the
optimal solution to o with items of size less than §B ignored.

Finally, after a good approximation of the optimal solution to the in-
stance o minus the small items is obtained, we add the small items to this
solution using greedy method. Since the small items have small size, the
greedy method will not leave much room in each bin. Thus, the resulting
packing will be a good approximation for the input instance « of the general
BIN PACKING problem.

We present the formal algorithm in Figure 7.5 and give formal analysis
as follows.

226 ASYMPTOTIC APPROXIMATION

According to Theorem 7.1.6 and note that m = [2/€2], the (¢/2,7)-BIN
PACKING problem can be solved in time O(n) + h(e/2,7) = O(n) + ho(e),
where hy(€) is a function depending only on €, we conclude that the algorithm
ApxBinPack runs in time O(nlogn) + hg(e), if an O(nlogn) time sorting
algorithm is used for step 1.

We discuss the approximation ratio for the algorithm ApxBinPack. As
before, we denote by Opt(a) the optimal value, i.e., the number of bins used
by an optimal packing, of the input instance a of the BIN PACKING problem.

Lemma 7.1.7 Let ag be the input instance constructed by step 2 of the
algorithm ApxBinPack. Then Opt(ag) < Opt(a).

PrOOF. This is because the items in the instance o form a subset of the
items in the instance « so « takes at least as many bins as ag. [l

Lemma 7.1.8 Let oy and o be the input instances constructed by step 2
and step 4 of the algorithm ApxBinPack, respectively. Then

Opt(a’) < Opt(ap)(1 +¢€) + 1

ProOF. Note that the instance o is obtained from the instance aq by
replacing each item in a group G; by the largest item ¢(; 1y, 1 in the group.
Therefore, an optimal packing for the instance o' uses at least as many bins
as that used by an optimal packing for the instance ag. This gives

Opt(ao) < Opt(c)
Now let
o = <tm+1 tmylomt1 My, . at(ﬂ'—l)m—|—1 : ml; B)

o" can be regarded as an instance obtained from g by (i) replacing each
item in the group G; by a smaller item #;,,11 (recall that ;,,11 is the largest
item in group G;y1), for alli = 1,..., 7 —2; (ii) replacing m' items in group
Gr-1 by a smaller item #(;_1),,,;1; and (iii) eliminating rest of the items in
group Gr_1 and all items in group G . Therefore, an optimal packing for
ap uses at least as many bins as an optimal packing for o. This gives

Opt(a") < Opt(ap)

Finally, the difference between the instances o/ and o are m items of size
t1. Since every item can fit into a single bin, we must have

Opt(d) < Opt(a”) +m

BIN PACKING 227

Combining all these we obtain
Opt(ag) < Opt(a') < Opt(ag) +m
This gives us

Opt(a) < Opt(ag) +m = Opt(cg) + [h/7]
< Opt(ap) + h/m +1 < Opt(ag) + he® /2 + 1 (7.3)

Now since each item of aq has size at least eB/2, each bin can hold at most
|2/¢€] items. Thus, the number of bins Opt(ap) used by an optimal packing
for the instance ap is at least as large as h/|2/e] > eh/2:

eh/2 < Opt(ayp)
Use this in Equation (7.3), we get
Opi(!) < Opt{an) + ¢ - Opi(av) +1 = Opt(ao)(1 +¢) + 1
The lemma, is proved. []

From the packing Y' to the instance o/, we get a packing Y, for the in-
stance oy in step 5 of the algorithm A pxBinPack, as shown by the following
lemma.

Lemma 7.1.9 The solution Yy constructed by step &5 of the algorithm
ApxBinPack is a packing for the instance ag. Moreover, the number of
bins used by Yy is at most Opt(ag)(1 +€) + 1.

PrRoOOF. First note that the instances o and o' have the same number
of items. The solution Yy to aq is obtained from the optimal solution Y to
the instance o by replacing each of the m items of size ti—1)ymt1 10 o by
an item in group G; of ap. Since no item in group G; has size larger than
t(i—1)m+1, we actually replace items in the bins in Y’ by items of the same
or smaller size. Therefore, no bin would get content more than B in the
packing Yj. This shows that Yj is a packing for the instance ay.

Finally, since Yy uses exactly the same number of bins as Y’ and Y is
an optimal packing for o/. By Lemma, 7.1.8, the number of bins used by Yj,
which is Opt(a'), is at most Opt(ag)(1+€) + 1. O

Now we are ready for deriving our main theorem.

228 ASYMPTOTIC APPROXIMATION

Theorem 7.1.10 For any input instance a = (t1,...,ty; B) of the BIN
PACKING problem and for any 0 < ¢ < 1, the algorithm ApxBinPack
constructs a bin packing of o that uses at most Opt(a)(1l + €) + 1 bins.

PROOF. According to Lemma 7.1.9, the solution Y; constructed by step
5 of the algorithm ApxBinPack is a packing for the instance ay. Now
step 6 of the algorithm simply adds the items in o — ag to Yy using greedy
method. Therefore, the algorithm ApxBinPack constructs a packing for
the input instance . Let Y be the packing constructed by the algorithm
ApxBinPack for « and let r be the number of bins used by Y. There are
two cases.

If in step 6 of the algorithm ApxBinPack, no new bin is introduced.
Then r equals the number of bins used by Yj. According to Lemma 7.1.9
and Lemma 7.1.7, we get

r < Opt(a)(1+¢€)+1<Opt(a)(1+¢€)+1

and the theorem is proved.

Thus, we assume that in step 6 of the algorithm ApxBinPack, new bins
are introduced. According to our greedy strategy, no new bin is introduced
unless no used bin has enough room for the current item. Since all items
added by step 6 have size less than €B/2, we conclude that all of the r bins
in Y, except maybe one, have content larger than B(1 — ¢/2). This gives us

t4 ety > B(1—e/2)(r — 1)

Thus, an optimal packing of the instance « uses more than (1 —¢/2)(r — 1)
bins. From
Opt(a) > (1 —€¢/2)(r — 1)

we derive
r < Opt(a)/(1 —€/2) +1 < Opt(a)(1+¢€) +1

The last inequality is because € < 1.

Therefore, in any case, the packing Y constructed by the algorithm
ApxBinPack for the input instance « of the BIN PACKING problem uses
at most Opt(a)(1 + €) + 1 bins. The theorem is proved. [J

Note that the condition that ¢ must be less than or equal to 1 loses no
generality. In particular, if we are interested in an approximation algorithm
for the BIN PACKING problem with approximation ratio 1 + € with € > 1,
we simply use the algorithm First-Fit (see Figure 7.1).

BIN PACKING 229

Let Apz(a) be the number of bins used by the algorithm ApxBinPack
for the instance « for the BIN PACKING problem. Then from Theorem 7.1.10,
we get Ap(a)

pr(o 1
Opt(«) Sltet Opt(a)
Therefore, the asymptotic approximation ratio of the algorithm A pxBin-
Pack is bounded by 1 + ¢, for any given constant € > 0.

The algorithm ApxBinPack is not yet quite an asymptotic fully poly-
nomial time approximation scheme for the BIN PACKING problem — the
running time of the algorithm is bounded by O(nlogn)+ ho(€), where hg(e)
does not seem to be bounded by a polynomial of 1/e. In fact, the value hy(e)
can be huge when ¢ is small. Therefore, a possible further improvement to
the algorithm ApxBinPack is an asymptotic fully polynomial time approx-
imation scheme for the BIN PACKING problem. Such an improvement has
been achieved by Karmakar and Karp [77], who use a similar approach that
reduces the BIN PACKING problem to the LINEAR PROGRAMMING problem.
The algorithm is based on some deep observations on the LINEAR PRoO-
GRAMMING problem. We omit the detailed description here. Instead, we
state the result directly.

Theorem 7.1.11 (Karmakar and Karp) There is an approximation algo-
rithm A for the BIN PACKING problem such that for any € > 0, the algorithm
A produces in time polynomial in n and 1/e a packing in which the number
of bins used is bounded by

Opt(z)(1+¢)+1/€*+3

Corollary 7.1.12 The BIN PACKING problem has an asymptotic fully poly-
nomial time approximation scheme.

PROOF. For any € > 0, let N, = (8 + 6¢2)/¢3. For each input instance «
of the BIN PACKING problem, let the Karmakar-Karp algorithm construct
a packing that uses at most

r < Opt(a)(1 4 €/2) + (2/€)2 + 3
bins. Now for input instances a with
Opt(a) > N, = (8 + 6¢2)/é

we have

230 ASYMPTOTIC APPROXIMATION

Moreover, the algorithm runs in time polynomial in n and 2/e, which is also
in polynomial in n and 1/e. [

7.1.4 Further work and extensions

—— Don: would you write this, please. ——

7.2 Graph edge coloring problem

The BIN PACKING problem is a typical optimization problem that has an
asymptotic fully polynomial time approximation scheme. In fact, the con-
cept of asymptotic fully polynomial time approximation scheme was intro-
duced based on the study of approximation algorithms for the BIN PACKING
problem.

There is another class of optimization problems that have asymptotic
fully polynomial time approximation schemes. The asymptotic fully poly-
nomial time approximation schemes for this class of optimization problems
are derived from polynomial time approximation algorithms for the prob-
lems that deliver solutions such that the difference of the value of these
solutions and the optimal solution value is very small.

Definition 7.2.1 Let Q = (Ig, Sq, fg,optg) be an optimization problem
and let d(n) be a function. We say that) can be approximated with an
additive difference d(n) in polynomial time if there is a polynomial time
approximation algorithm A for () such that for any input instance z of @,
the algorithm A produces a solution y to z such that

|Opt(z) — fo(z,y)| < d(|=)

We are most interested in the case that the additive difference d(n) is
bounded by a constant.
We start the discussion with the famous planar graph coloring problem.

PLANAR GRAPH COLORING
INPUT: a planar graph G

OuTPUT: a coloring of the vertices of G such that no two
adjacent vertices are colored with the same color and the number
of colors used is minimized.

EDGE-COLORING 231

Theorem 7.2.1 The PLANAR GRAPH COLORING problem can be approzi-
mated in polynomial time with an additive difference 1.

ProOF. Consider the following approximation algorithm for the PLANAR
GRAPH COLORING problem: let G be an input planar graph. First note
that G can be colored with a single color if and only if G has no edges. If G
contains edges, then we check whether G is 2-colorable — this is equivalent
to checking whether G is a bipartite graph and can be done in linear time
using the depth first search process. If the graph G is 2-colorable, then we
color G with two colors and obtain an optimal solution. Otherwise, the
graph G needs at least three colors. According to the famous Four-Color
Theorem, every planar graph can be colored by four colors. Moreover, there
is an algorithm that colors any given planar graph with four colors in time
O(n?) [3, 4, 108]. Therefore, for any planar graph that needs at least three
colors, we can color it with four colors in polynomial time. []

Therefore, the PLANAR GRAPH COLORING problem can be approxi-
mated very well in terms of the additive difference. On the other hand,
however, the PLANAR GRAPH COLORING problem cannot be approximated
in polynomial time with an approximation ratio arbitrarily close to 1, as
shown in the following theorem.

Theorem 7.2.2 No polynomial time approzimation algorithm for the PLA-
NAR GRAPH COLORING problem has an optimization ratio less than 4/3
unless P = NP.

PROOF. The decision problem PLANAR GRAPH 3-COLORABILITY: “given
a planar graph G, can G be colored with at most 3 colors?” is NP-complete
[61]. An approximation algorithm for the PLANAR GRAPH COLORING prob-
lem with approximation ratio less than 4/3 would always color a 3-colorable
planar graph with 3 colors. Thus, if such an approximation algorithm runs
in polynomial time, then the NP-complete problem PLANAR GRAPH 3-
COLORABILITY would be solvable in polynomial time, which would imply P
= NP. U

The PLANAR GRAPH COLORING problem is not an example that admits
an asymptotic fully polynomial time approximation scheme because of a
good approximation algorithm with a small additive difference. In fact,
by the Four-Color Theorem, the optimal solution value for any instance
of the PLANAR GRAPH COLORING problem is bounded by 4. Therefore,

232 ASYMPTOTIC APPROXIMATION

it makes no sense to talk about the asymptotic approximation ratio of an
algorithm in terms of the optimal solution values. However, the PLANAR
GRAPH COLORING problem does give a good example that is an NP-hard
optimization problem but can be approximated in polynomial time with a
very small additive difference.

Now we consider another example for which optimal solution values are
not bounded while the problem still has very good approximation algorithm
in terms of the additive difference. Let G be a graph. G is a simple graph if
it contains neither self-loops nor multiple edges. We say that two edges of
G are adjacent if they share a common endpoint.

GrAPH EDGE COLORING
INPUT: a simple graph G

OUTPUT: a coloring of the edges of G such that no two adjacent
edges are colored with the same color and the number of colors
used is minimized.

As for the PLANAR, GRAPH COLORING problem, the GRAPH EDGE COL-
ORING problem has no polynomial time approximation algorithm with ap-
proximation ratio arbitrarily close to 1, as shown below.

Theorem 7.2.3 No polynomial time approrimation algorithm for the
GRAPH EDGE COLORING problem has an approzimation ratio less than 4/3
unless P = NP.

ProoOF. The decision problem GRAPH EDGE 3-COLORABILITY: “given
a simple graph G, can the edges of G be colored with at most 3 colors?”
is NP-complete [66]. A polynomial time approximation algorithm for the
GRrAPH EDGE COLORING problem with approximation ratio less that 4/3
would imply that the GRAPH EDGE 3-COLORABILITY problem can be solved
in polynomial time, which would imply P = NP. []

Given a graph G, let v be a vertex of G. Define deg(v) to be the degree
of the vertex and define deg(G) to be the maximum deg(v) over all vertices
v of G.

The following lemma follows directly from the definition.

Lemma 7.2.4 Every edge coloring of a graph G uses at least deg(G) colors.

EDGE-COLORING 233

Algorithm. Edge-Coloring

Input: a simple graph G

Output: an edge coloring of G

1. let Go = G with all edges deleted, and suppose that the edges of G
are e, --.,Cm;

2. fori=1tomdo
Gi=G;_1 U {ei};
color the edges of G; using at most d + 1 colors;

Figure 7.6: Edge coloring a graph G with deg(G) + 1 colors

Since deg(G) can be arbitrarily large, the optimal solution value for
an instance of the GRAPH EDGE COLORING problem is not bounded by
any constant. This is the difference to the case of the PLANAR GRAPH
COLORING problem.

Theorem 7.2.5 There is a polynomial time algorithm that colors the edges
of any given graph G with at most deg(G) + 1 colors.

PROOF. Let G be the input graph. To simplify expressions, let d = deg(QG).
We present an algorithm that colors the edges of G using at most d+1 colors.

The algorithm is given in Figure 7.6.

We need to explain how the graph G;, for each ¢, can be colored with
at most d + 1 colors. The graph G, which has no edges, can certainly be
colored with d + 1 colors. Inductively, suppose that we have colored the
edges of G;_1 using at most d + 1 colors. Now G; = G;_1 U {e;}, where
we suppose e; = [v1,w]. Thus, we have all edges of G; except e; colored
properly using at most d + 1 colors.

We say that a vertex u in G; misses a color ¢ if no edge incident on u is
colored with ¢. Since we have d + 1 colors and each vertex of G; has degree
at most d, every vertex of GG; misses at least one color.

If both vertices v; and w miss a common color ¢, then we simply color
the edge e; = [v1, w] with the color ¢ and we obtain a valid edge coloring for
the graph G; by d + 1 colors.

So we suppose that there is no color that is missed by both v; and w.
Let ¢; be the color missed by v; and ¢y be the color missed by w,c; # ¢g.

Since ¢; is not missed by w, there is an edge [ve, w] colored with ¢1. Now
if v9 and w have a common missed color, we stop. If v and w have no

234 ASYMPTOTIC APPROXIMATION

(miss c4)
(miss c3) V4
U3 ’ (%5
C3
(miss ¢2) vo 2 c
C1 4
V1 e
(miss c1) w
h=5

Figure 7.7: A fan structure

common missed color, then let ¢y be a color missed by v9 — ¢ is not missed
by w. Now let [vs,w] be the edge colored with c¢;.

Inductively, suppose that we have constructed a “fan” that consists of h
neighbors vy, ...,v, of w and h — 1 different colors ¢y, ...,c, 1, such that
(see Figure 7.7)

e for all j = 1,...,h — 1, the vertex v; misses color c¢; and the edge
[vj4+1,w] is colored with the color ¢;;

e none of the vertices v1,...,v,_1 have a common missed color with w;
e forall j =1,...,h — 1, the vertex v; does not miss any of the colors
Cly-+-yCj—1-

Now we consider the vertex v,. There are three possible cases.

Case 1. the vertex vy, does not miss any of the colors c¢1,...,c,_1 and
v, has no common missed color with w.

Then let ¢, be a color missed by vy. Since cp, is not missed by w, there is
an edge [vp41,w] colored with ¢. Thus, we have expanded the fan structure
by one more edge.

Since the degree of the vertex w is bounded by d, Case 1 must fail at
some stage and one of the following two cases should happen.

Case 2. the vertex v, has a common missed color ¢y with w.

Then we change the coloring of the fan by coloring the edge [vp,w]
with ¢g, and coloring the edge [v;,w] with ¢;, for i = 1,...,h — 1 (see
Figure 7.8). It is easy to verify that this gives a valid edge coloring for the
graph G; = G;_1 U {e,}

Case 3. the vertex vy, misses a color ¢;, 1 < s < h—1.

EDGE-COLORING 235

V4
v3 * Vs
C4
V2 & ¢
()] 0
V] @ e o
h=5

Figure 7.8: In case v, and w miss a common color ¢y

Let ¢g be a color missed by w. We start from the vertex v;. Since vs has
no common missed color with w, there is an edge [vs,u1] colored with c¢y.
Now if u; does not miss c;, there is an edge [u1,ug] colored with c¢s, now we
look at vertex uo and see if there is an edge colored with ¢y, and so on. By
this, we obtained a path P; whose edges are alternatively colored by ¢y and
¢s. The path has the following properties: (1) the path P; must be a simple
path since each vertex of the graph G;_1 has at most two edges colored with
¢p and c,. Thus, the path P; must be a finite path; (2) the path P; cannot
be a cycle since the vertex vy misses the color ¢s; and (3) the vertex w is
not an interior vertex of P, since w misses the color c¢g.

Let Py = {vs,u1,...,ut}, where v, misses the color ¢, u; misses one of
colors ¢s and cp, and uj, 7 = 1,...,¢ — 1, misses neither c; nor cy.

If uy # w, then interchange the colors ¢y and ¢; on the path P, to make
the vertex vy miss ¢p. Then color [vs,w] with ¢y and color [v;,w] with ¢;,
for j =1,...,5 — 1 (see Figure 7.9). It is easy to verify that this gives a
valid edge coloring for the graph G; = G;—1 U {e;}.

If uy = w, we must have uy;_1 = vs41. Then we grow a cy-cs alternating
path P, starting form the vertex vy, which also misses the color c¢;. Again
P, is a finite simple path. Moreover, the path P, cannot end at the vertex
w since no vertex in G;_; is incident on more than two edges colored with
co and ¢; and the vertex w misses the color ¢y. Therefore, similar to what
we did for vertex v,;, we interchange the colors ¢y and ¢; on the path P
to make vy, miss ¢g. Then color [v,, w] with ¢g and color [vj, w] with ¢; for
j=1,...,h—1 (see Figure 7.10). It is easy to verify that this gives a valid
edge coloring for the graph G; = G;—1 U {e; }.

Therefore, starting with an edge coloring of the graph G;_; using at
most d + 1 colors, we can always derive a valid edge coloring for the graph

236 ASYMPTOTIC APPROXIMATION

(miss c3)
“C—. “T.
c 0 (miss ¢4) c
3| (miss c3) vy (miss c3) 0 vy
v3 ° vs v3 ° vs
Co ‘ C3
() C2 €3 by V9 o €3 la
(miss ¢p) < g Q
(K U1 & C
(miss ¢1) w ! w
h=5and s =3

Figure 7.9: Extending a cyp-cs alternating path P; from vg not ending at w

(miss ¢p)
3 0
c3 C3
co O\ yu, 0 co N “
(miss ¢4)
VU3 U3
(miss c3) U5 U5
v Co c3 (miss c3) v c3 ca
c
(miss ¢p) < “ = Q ’
1
(A V1 e
(miss ¢1) w w
h=>5and s =3

Figure 7.10: Extending a cyp-c,; alternating path P, from v, not ending at w

ADDITIVE DIFFERENCE 237

G; = Gi—1 U {e;} using at most d + 1 colors.

To show that the algorithm Edge-Coloring runs in polynomial time, we
only need to show that the edge coloring of the graph G; can be constructed
from the edge coloring of the graph G;_; in polynomial time. Suppose
that the d + 1 colors we use to color the graph G are cp,...,cq+1- Note
that d + 1 < n, where n is the number of vertices in G. For each vertex
v, we maintain an array of d + 1 elements such that the ith element is
a vertex w if the edge [v,w] is colored with the color ¢;. Moreover, in
the linked list structure of the graph G, we also record the color for each
edge. Therefore, the fan structure for a vertex w can be constructed in time
O(deg(w)) = O(n). Tt is also easy to see that the alternating paths in Case
3 can also be constructed in time O(n). Hence, the edge coloring of the
graph G; based on an edge coloring of the graph G;_; can be constructed
in time O(n). Since G, = G, where m is the number of edges in the graph
G, we conclude that an edge coloring of the graph G with d 4+ 1 colors can
be constructed in time O(nm). U

Corollary 7.2.6 The GRAPH EDGE COLORING problem can be approxi-
mated within an additive difference 1 in polynomial-time.

PrOOF. The proof follows directly from Lemmas 7.2.4 and 7.2.5. []

Corollary 7.2.7 The GRAPH EDGE COLORING problem has an asymptotic
fully polynomial time approximation scheme.

ProoF. For any graph G, let A(G) be the number of colors used by the
algorithm Edge-Coloring to color the edges of G, and let Opt(G) be the
minimum number of colors that can be used to color the edges of G. By
Corollary 7.2.6, we have

A(G) < Opt(G) + 1

Thus, the approximation ratio of the algorithm Edge-Coloring is bounded
by
A(GQ)/Opt(G) < 14 1/0pt(G)

Therefore, for any given € > 0, if we let N = 1/¢, then when Opt(G) > N,
the approximation ratio of the algorithm Edge-Coloring is bounded by
1+ €. Moreover, the running time of algorithm Edge-Coloring is bounded
by a polynomial of the input length |G| (and independent of €). [

238 ASYMPTOTIC APPROXIMATION

7.3 On approximation for additive difference

Corollary 7.2.6 shows that the GRAPH EDGE COLORING problem, which is
NP-hard, can be approximated in polynomial time to an additive difference
1. Another optimization problem of this kind is the MINIMUM-DEGREE
SPANNING TREE problem, which asks the construction of a spanning tree
for a given graph such that the maximum vertex degree in the tree is mini-
mized. It has been shown [44] that the MINIMUM-DEGREE SPANNING TREE
problem can be approximated in polynomial time to an additive difference
1. In consequence, the MINIMUM DEGREE SPANNING TREE problem has
an asymptotic fully polynomial time approximation scheme.

Not many optimization problems are known that can be approximated
in polynomial time to a small additive difference. It is also not clear how
we can recognize when an optimization problem can be approximated in
polynomial time to a small additive difference. Nevertheless, there are a few
known techniques that can be used to show the impossibility of polynomial
time approximation within a small additive difference. In this section, we
will introduce these techniques.

We say that the optimal solution values of an optimization problem @)
is unbounded if for any constant N, there is an instance xz of () such that
Opt(z) > N.

Theorem 7.3.1 Let Q be an optimization problem with unbounded optimal
solution values. If Q has no asymptotic fully polynomial time approzimation
scheme, then Q) cannot be approrimated in polynomial time to a constant
additive difference.

PROOF. Without loss of generality, suppose that () is a minimization
problem. Assume the contrary that A is a polynomial time algorithm that
approximates () to a constant additive difference ¢. Then for any € > 0, let
N = c/e. For any instance = of @ such that Opt(z) > N, let fo(z,y) be
the value of the solution y to z constructed by the algorithm A. Then we
have

fale,y) < Opi(z) + ¢

which gives the approximation ratio
fol@,y)/Opt(z) <1+c/Opt(z) <1+e

Moreover, the running time of the algorithm A is bounded by a polynomial
of |z| and is independent of e. That is, the optimization problem) has an
asymptotic fully polynomial time approximation scheme. []

ADDITIVE DIFFERENCE 239

Therefore, having an asymptotic fully polynomial time approximation
scheme is a necessary condition for an optimization problem to have a poly-
nomial time approximation algorithm with a constant additive difference.

In the following, we describe another technique that shows that for a
class of optimization problems, it is even impossible to have a polynomial
time approximation algorithm with a relatively large additive difference.

Recall the KNAPSACK problem.

KNapsack = (Ig, Sq, fg, optg)

Ig: the set of tuples a = (s1,...,85;01,...,0,; B),
where all s;, v;, B are integers

Sg: Sg(a) is the collection of subsets T of {1,...,n}
such that) ;.rs; < B

for fola,T) = Yicrvi

optg: max

Theorem 7.3.2 There is no polynomial time approrimation algorithm for
the KNAPSACK problem that guarantees an additive difference 2™ unless P
= NP.

PROOF. Suppose that A is a polynomial time approximation algorithm for
the KNAPSACK problem KNAPSACK = (I, Sq, fg,optq) such that for any
input instance a € Ig, the algorithm A produces a solution T, € Sg(«a) such
that |Opt(a) — fo(a, Ty)| < 2". We show how we can use this algorithm to
solve the KNAPSACK problem precisely in polynomial time.

Given an input instance a = (s1,...,8p;01,-..,0,; B) for the KNAP-
SACK problem, we construct another input instance for the problem: 8 =
(815---5 800127 L. 0,271 B) (i.e. we scale the values v; in « to be a

multiple of 21! so that the difference of any two different values is larger
than 27). Then we apply the algorithm A to 8 to get a solution 7. Ac-
cording to our assumption, |Opt(8) — fo(B,Ts)| < 2™. Since both Opt(5)
and fo(B,Ts) are multiples of 2", we conclude that Opt(B) = fo(B,Ts),
that is, the solution T} is an optimal solution to the instance §. More-
over, it is easy to see that T is also a solution to the instance o and
Opt(B) = 2""10pt(a) and fo(B,15) = 2" fo(a,Tp). Therefore, Tp is
also an optimal solution for the instance .

By our assumption, the algorithm A runs in polynomial time. More-
over, since the number 2"! has O(n) = O(|a|) bits, the instance 8 can be
constructed from the instance « in polynomial time. Therefore, the above

240 ASYMPTOTIC APPROXIMATION
o & E=
S S S2

Figure 7.11: Surfaces of genus 0, 1, and 2

process constructs an optimal solution for the given instance « in polynomial
time. Consequently, the KNAPSACK problem can be solved in polynomial
time. Since the KNAPSACK problem is NP-hard, it follows that P = NP. []

The proof for Theorem 7.3.2 can be easily extended to other optimization
problems in which instances may contain very large numbers and optimal
solution values are calculated based on these numbers. Examples of this
kind of problems include the c-MAKESPAN problem and the TRAVELING
SALESMAN problem. Note that some of these problems, such as the KNAP-
SACK problem and the c-MAKESPAN problem, have very good approximation
algorithms (fully polynomial time approximation schemes) in terms of the
approximation ratio.

The main reason that Theorem 7.3.2 holds for many optimization prob-
lems is that we can scale the numbers in the input instances so that a small
additive difference would make no difference for the scaled instances. How-
ever, what about the optimization problems in which no large numbers are
allowed in its input instances? In particular, is there a similar theorem
for optimization problems whose instances contain no number at all? We
demonstrate a technique for this via the study of an optimization problem
related to graph embeddings.

A surface Sy of genus k is obtained from the sphere by adding k “han-
dles”. Therefore, Sy is the sphere, S is the torus, Sy is the double torus,
and so on (see Figure 7.11).

An embedding of a graph G on a surface Si is a one-to-one continuous
mapping from vertices and edges of G to points and curves of the surface
Sk, respectively. By the definition, no “edge crossing” is allowed in a graph
embedding. Figure 7.12 illustrates an embedding of the complete graph Kj
on the surface S;.

The genus of a graph G, denoted ymin(G), is the minimum integer k£ > 0
such that the graph G can be embedded in the surface Si. In particular, the
class of graphs of genus 0 is exactly the class of planar graphs, and the class

ADDITIVE DIFFERENCE 241

<>
AN
N~

Figure 7.12: An embedding of K5 on S

of graphs of genus 1 is the class of non-planar graphs that can be embedded
on the torus. For example, by the well-known Kuratowski Theorem [58],
the complete graph Kj is non-planar. Thus, the embedding of K5 given in
Figure 7.12 shows that the graph K5 has genus 1.

Now we are ready to formulate the following problem.

GRAPH GENUS
INpUT: a graph G

OUTPUT: an embedding p(G) of G on the surface Sk,
where k = vin(G)

The GRAPH GENUS problem has applications in many areas such as
VLSI layouts and graph isomorphism testing. Unfortunately, it has been
recently shown that the GRAPH GENUS problem is NP-hard [113]. In the rest
of this section, we discuss polynomial time approximability of the GRAPH
GENUS problem in terms of the additive difference.

Graph embeddings can be studied using graph rotation systems. A rota-
tion at a vertex v is a cyclic permutation of the edge-ends incident on v. A
list of rotations, one for each vertex of the graph, is called a rotation system.

An embedding of a graph G on a surface induces a rotation system, as
follows: the rotation at vertex v is the cyclic permutation corresponding to
the order in which the edge-ends are traversed in an orientation-preserving
tour around v. Conversely, it can be shown [58] that every rotation system
induces a unique embedding of G on a surface. Therefore, a rotation system
of a graph is a combinatorial representation of an embedding of the graph.
In the following, we will interchangeably use the phrases “an embedding of
a graph” and “a rotation system of a graph”.

Suppose that p(G) is a rotation system of the graph G = (V, E) on the
surface Si. Then k is called the genus of the rotation system p(G), denoted

242 ASYMPTOTIC APPROXIMATION

v(p(G)). By the Euler polyhedral equation [58]
VI =Bl +|F| = 2 = 2v(p(G))

where |F| is the number of faces in the embedding p(G). There is a linear
time algorithm that, given a rotation system p(G) for a graph G, traces the
boundary walks of all faces in the rotation system [58]. Therefore, given a
rotation system p(G), the genus v(p(G)) of p(G) can be computed in linear
time.

Let G and G’ be two graphs. The bar-amalgamation of G and G, denoted
G x G, is the result of running a new edge (called the “bar”) from a vertex
of G to a vertex of G'. The definition of bar-amalgamation on two graphs
can be extended to more than two graphs. Inductively, a bar-amalgamation
of r graphs Gy, ...,G,, written G1 * G2 * - -+ x G, is the bar-amalgamation
of the graph G; and the graph Gs * --- * G,.

Let G be a graph and let H be a subgraph of G. Let p(G) be a rotation
system of G. A rotation system p'(H) of H can be obtained from p(G) by
deleting all edges that are not in H. The rotation system p'(H) of H will
be called an induced rotation system of H from the rotation system p(G).

The proofs for the following theorem and corollary are omitted.

Theorem 7.3.3 Let G1,...,G, be graphs and let p(G1 x --- x Gy) be a ro-
tation system of a bar-amalgamation Gy * --- * G, of G1,...,G,. Then

r

Y(p(Grx---xGyp)) =D 7(pi(Gi))

i=1

where p;(G;) is the induced rotation system of G; from p(Gy * --- x G,.),
1< <r.

Corollary 7.3.4 Let G4,...,G, be graphs and let G' be an arbitrary bar-
amalgamation of G1,...,Gy. Then

'anin(G,) = Z 7min(Gi)
=1

Now we are ready for the main theorem.

Theorem 7.3.5 For any fized constant €, 0 < € < 1, the GRAPH GENUS

problem cannot be approrimated in polynomial time to an additive difference
n unless P = NP.

ADDITIVE DIFFERENCE 243

PROOF. Suppose that A is a polynomial time approximation algorithm
that, given a graph G of n vertices, constructs an embedding of G of genus
at most Ymin(G) + ne.

Let k be a fixed integer such that € < kiﬂ Then for sufficiently large n,

we have n¢ < R . Thus nek+1) <nk-1.

Let n¥G be a graph that is an arbitrary bar amalgamation of n* copies
of G. Then the number of vertices of n*G is N = nF*!. The graph n*G
can be obviously constructed from G in polynomial time. Moreover, by
Corollary 7.3.4

'Ymin(nkG) = nk : 'ymin(G)

Now running the algorithm A on the graph n*G gives us an embedding
p(n*fG) of n*G, which has genus at most Ymin(n*G) + N€. Therefore,

Y(p(n*G)) < Ymin(n*G) + N€
_ nk’Ymin(G) +ne(k:+1)
< nk'ymin(G) +nF -1 (7.4)

On the other hand, if we let p1(G),..., p,+(G) be the n* induced rotation
systems of G from p(n*@), then by Theorem 7.3.3

nk

1(p(n*G)) =D 7(pi(G)) (7.5)

=1

Combining Equations (7.4) and (7.5) and noticing that the genus of p;(G) is
at least as large as Ymin(G) for all 1 < i < n*, we conclude that at least one
induced rotation system p;(G) of G achieves the minimum genus Ypin(G).
This rotation system of G can be found by calculating the genus for each
induced rotation system p;(G) from p(n*G) and selecting the one with the
smallest genus. This can be accomplished in polynomial time.

Therefore, using the algorithm A, we would be able to construct in poly-
nomial time a minimum genus embedding for the graph G. Consequently,
the GRAPH GENUS problem can be solved in polynomial time. Since the
GRAPH GENUS problem is NP-hard, we would derive P = NP. []

The technique of Theorem 7.3.5 can be summarized as follows. Let
Q = (Ig,Sq, fg,optg) be an optimization problem such that there is an
operator & implementable in polynomial time that can “compose” input
instances, i.e., for any two input instances = and y of @, £ @ y is also an

244 ASYMPTOTIC APPROXIMATION

input instance of @ such that [z®y| = |z|+|y| (in the case of Theorem 7.3.5,
@ is the bar-amalgamation). Moreover, suppose that from a solution sz,
to the instance = @ y, we can construct in polynomial time solutions s, and
sy for the instances x and y, respectively such that

fQ(x Dy, SJ:EB?/) = fQ(an.’L‘) + fQ(y7 Sy)

(this corresponds to Theorem 7.3.3) and
Opt(z ® y) = Opt(z) + Opt(y)

(this corresponds to Corollary 7.3.4), then using the technique of Theo-
rem 7.3.5, we can prove that the problem () cannot be approximated in
polynomial time with an additive difference n¢ for any constant € < 1 unless
@ can be solved precisely in polynomial time. In particular, if Q is NP-
hard, then) cannot be approximated in polynomial time with an additive
difference n¢ for any constant ¢ < 1 unless P = NP.

Chapter 8

Polynomial Time
Approximation Schemes

A fully polynomial time approximation scheme for an NP-hard optimization
problem () seems the best we can hope in approximation of optimal solu-
tions to the problem @Q: we can approximate an optimal solution to) with
an approximation ratio 1+ e arbitrarily close to 1 in time polynomial in the
input length and in the reciprocal of the error bound €. Unfortunately, The-
orem 6.4.1 immediately excludes the possibility of having fully polynomial
time approximation schemes for many NP-hard optimization problems. In
particular, a large class of NP-hard optimization problems is of the type of
“subset problem”, which ask to select a largest or smallest subset satisfying
certain properties from a given set of objects. Most optimization problems
related to graphs, such as the INDEPENDENT SET problem and the VERTEX
COVER problem, belong to this class. Note that any such an NP-hard subset
problem automatically satisfies the conditions in Theorem 6.4.1, thus has no
fully polynomial time approximation scheme unless P = NP.

With the understanding that a given optimization problem @ is unlikely
to have a fully polynomial time approximation scheme, we are still interested
in whether we can approximate in polynomial time optimal solutions to @)
with approximation ratio arbitrarily close to 1. More precisely, for each fized
constant €, we are interested in knowing whether there is an approximation
algorithm for) with approximation ratio bounded by 1 + ¢ whose running
time is bounded by a polynomial (of the input length but not necessarily of
1/€). Note that neither Theorem 6.4.1 nor Theorem 6.4.8 excludes the pos-
sibility of having this kind of approximation algorithms for an optimization
problem @ if even (@) satisfies the conditions in the corresponding theorem.

245

246 PTAS

Definition 8.0.1 An optimization problem @ has a polynomial time ap-
prozimation scheme (PTAS), if for any fixed constant ¢ > 0, there is a
polynomial time approximation algorithm for @) with approximation ratio
bounded by 1 + e.

In particular, an optimization problem with a fully polynomial time ap-
proximation scheme has polynomial time approximation schemes.

In this chapter, we present polynomial time approximation schemes for
a number of well-known optimization problems, including the MAKESPAN
problem, the PLANAR GRAPH INDEP-SET problem, and the EUCLIDEAN
TRAVELING SALESMAN problem. These problems, according to Theo-
rem 6.4.1 and Theorem 6.4.8, have no fully polynomial time approximation
schemes unless P = NP. Therefore, polynomial time approximation schemes
seem the best approximation we can expect for these problems.

Two techniques are introduced in developing polynomial time approxi-
mation schemes for these optimization problems. In Section 8.1, we intro-
duce the technique of dual approzimation that leads to a polynomial time
approximation scheme for the MAKESPAN problem. In the next two sec-
tions, we take the advantage of balanced separability of planar graphs and
use a “separate-approximate” technique to develop polynomial time approx-
imation schemes for the PLANAR GRAPH INDEP-SET problem and for the
EUCLIDEAN TRAVELING SALESMAN problem.

We should point out that though most (non-fully) polynomial time ap-
proximation schemes for optimization problems are of great theoretical im-
portance, they are not very practical for small error bound e. Typically, the
running time of this kind of algorithms is proportional to at least 2/¢ or
even to n'/¢, which is an enormous number when e is small.

8.1 The Makespan problem

Recall that the MAKESPAN problem is defined as follows.
MAKESPAN

Ig: the set of tuples T' = {t1,...,t,;m}, where ¢; is the
processing time for the ¢th job and m is the number
of identical processors

Sq: Sq(T) is the set of partitions P = (T1,...,Ty,) of the
numbers {t1,...,t,} into m parts

fo: fo(T,P) is equal to the processing time of the largest
subset in the partition P, that is,

THE MAKESPAN PROBLEM 247

fQ(T7 P) = maXi{EtjeTi t]}
optg: min

We review a few properties for the MAKESPAN problem:
e The problem is NP-hard;

e Even if we fix the number m of processors to be any constant larger
than 1, the problem remains NP-hard (Theorem 5.1.3);

e If the number m of processors is a fixed constant, then the problem
has a fully polynomial time approximation scheme (Corollary 6.2.3).

e The general MAKESPAN problem in which the number of processors m
is given as a variable in the input instances is NP-hard in the strong
sense and has no fully polynomial time approximation scheme unless
P = NP (Theorem 6.4.9).

In the following, we first study a variation of the BIN PACKING problem,
which is “dual” to the MAKESPAN problem. Based on an efficient algorithm
for this problem, we will develop a polynomial time approximation scheme
for the MAKESPAN problem.

8.1.1 The (1 + ¢)-BIN PACKING problem

Recall that the BIN PACKING problem is to pack n given objects of sizes s1,
S9, - .., Sp, respectively, into the minimum number of bins of a given size B.

The MAKESPAN problem can be regarded as a variant version of the
BIN PACKING problem in which we are given n objects of sizes %1, ...,
t,, respectively, and the number m of bins, and we are asked to pack the
objects into the m bins such that the bin size is minimized. Therefore,
there are two parameters: the number of bins and the bin size. Each of the
MAKESPAN problem and the BIN PACKING problem fixes one parameter
and optimizes the other parameter. In this sense, the MAKESPAN problem
is “dual” to the BIN PACKING problem. Therefore, it is not very surprising
that the techniques developed for approximation algorithms for the BIN
PACKING problem can be useful in deriving approximation algorithms for
the MAKESPAN problem.

Counsider the following variation of the BIN PACKING problem, which we
call the (1 + €)-BIN PACKING problem. Each instance a of this problem is
also an instance of the BIN PACKING problem, where we use Optg(a) to
denote the optimal value of « as an instance for the BIN PACKING problem.

248 PTAS

(1+ €)-BIN PACKING
INPUT: « = (t1,t,...,tn; B), all integers

OutpuUT: a packing of the n objects of sizes t1, ta, ..., tn,
respectively, into at most Optp(a) bins such that the content of
each bin is bounded by (1 +¢)B

Therefore, instead of asking to minimize the number of bins used in the
packing, the (1 + €)-BIN PACKING problem fixes the number of bins to
Optp(a) (note that the number Optg(a) is not given in the input instance
«) and allows the size of the bins to “exceed” by an e factor. Note that any
optimal solution Yp to a as an instance for the BIN PACKING problem is
also a solution to « as an instance for the (1 + €)-BIN PACKING since Yp
uses exactly Optp(a) bins and no bin has content exceeding B.

We first show that the (1 + €)-BIN PACKING problem can be solved
in polynomial time for a fixed constant ¢ > 0. Then we show how this
solution can be used to derive a polynomial time approximation scheme for
the MAKESPAN problem.

The idea for solving the (1 + ¢)-BIN PACKING problem is very similar to
the one for the approximation algorithm ApxBinPack for the general BIN
PACKING problem (see subsection 7.1.3, Figure 7.5). We first perform two
preprocessing steps:

1. ignore the objects of size less than eB; and

2. partition the rest of the objects into 7 groups G4y, ..., G, so that the
objects in each group have a very small difference in size. For each
group G;, replace every object by the one with the smallest size in G;.

The preprocessing steps give us an instance o' of the (e, 7)-BIN PACKING
problem (see subsection 7.1.2), for which an optimal solution can be con-
structed in polynomial time for fixed constants ¢ and 7 (see Theorem 7.1.6).
Note that the optimal solution for o/ is an “under-estimation” of the opti-
mal solution for o and thus it uses no more than Optp(«) bins. Then we
restore the object sizes and add the small objects by greedy method to get
a packing for the instance «. Since the difference in sizes of the objects in
each group Gj is very small, the restoring of object sizes will not increase
the content for each bin very much. Moreover, adding small objects using
greedy method will not induce much unbalancing in the packing.

The formal algorithm is given in Figure 8.1.

According to Theorem 7.1.6 and note that = = [1/€?], the (e, 7)-BIN
PACKING problem can be solved in time O(n) + ho(€), where hg(€) is a func-
tion depending only on e. We conclude that the algorithm VaryBinPack

THE MAKESPAN PROBLEM

249

Algorithm. VaryBinPack
Input: a={(t1,...,tn;B) and € >0
Output: a packing of 1, t2, ..., t, into Optp(a) bins of size (1 + ¢)B

sort t1,...,tn; without loss of generality, let t1 > to > --- > t,;
let h be the largest index such that t, > eB; ap = (t1,t2,...,tn; B);
7 = [1/€?], divide (eB, B] into 7 subsegments of equal length (I1, h1],

(lz,h2], ey (lﬂ-,hﬂ-], where h; = l7;+1 and h; —[; = (B — GB)/TI'
for all 4, and l; = eB and h, = B;
4. partition the objects in ag into w groups Gi, ..., Gr, such that an

object is in group G; if and only if its size is in the range (I;, hs];
let m; be the number of objects in Gj;

5. construct an optimal solution Y’ to the instance
o' ={l1 :mi,...,lx : mx; B) for the (e, 7)-BIN PACKING problem;

6. fori=1tondo

replace the m; objects of size I; in the packing Y’ by the m;
objects in group G; in the instance o (in an arbitrary order);
This gives a packing Y, for the instance ao;

7. add the objects tpt1,.-.,t, in a to the packing Yy by greedy method
(i.e., no new bin will be used until adding the current object to any
used bins would exceed the size (1 + €)B). This results in a packing
Y for o as an instance for the (1 + €)-BIN PACKING problem.

Figure 8.1: The VaryBinPack algorithm

250 PTAS

runs in time O(nlogn) + ho(e), if an O(nlogn) time sorting algorithm is
used for step 1.

Recall that we denote by Optp(«) the optimal value, i.e., the number of
bins used by an optimal packing, of the input instance « for the general Bin
PACKING problem. We first show that the algorithm VaryBinPack results
in a packing for the objects in a such that the packing uses no more than
Optp(a) bins.

Lemma 8.1.1 The packing Y' for the instance o constructed by step 5 of
the algorithm VaryBinPack uses no more than Optg(a) bins.

PROOF. The instance «q is a subset of the instance a. Thus, Optg(agp) <
Optp(c). The instance o' can be regarded as obtained from the instance
ag by replacing each object in group G; by an object of smaller size [;, for
alli = 1,...,m. Thus, Optp(d/) < Optp(ap) < Optp(a). Since Y’ is an
optimal packing for the instance o', Y’ uses Optp(a’) < Optp(a) bins. [J

Lemma 8.1.2 In the packing Yy for the instance ag constructed by step 6
of the algorithm VaryBinPack, no bin has content larger than (1 + €)B,
and Yy uses no more than Optp(a) bins.

PROOF. According to step 6 of the algorithm VaryBinPack, the number
of bins used by the packing Y, for the instance ¢ is the same as that used
by Y’ for the instance o/. By Lemma 8.1.1, the packing Y uses no more
than Optp(a) bins.

Each object of size [; in the instance o' corresponds to an object of size
between [; and h; in group G; in the instance . The packing Yy for «q is
obtained from the packing Y’ for o' by replacing each object of o' by the
corresponding object in «. Since no object in group G; has size larger than
hz' and

hi—1l; = (B —¢€B)/n

the size increase for each object from Y’ to Yp is bounded by (B — eB) /.
Moreover, since all objects in o/ have size larger than B, and the packing

Y’ has bin size B, each bin in the packing Y’ holds at most |1/¢| objects.

Therefore, the size increase for each bin from Y’ to Yj is bounded by

((B—eB)/m) - [1/€]

(B —eB)/1/€*]) - [1/e]
(B/(1/€*)) - (1/e)

eB

B
B

THE MAKESPAN PROBLEM 251

Since the content of each bin of the packing Y’ is at most B, we conclude
that the content of each bin of the packing Yp is at most (1 +€)B. [

Now we can show that the algorithm VaryBinPack constructs a solu-
tion to the (1 + ¢€)-BIN PACKING problem.

Lemma 8.1.3 The packing Y for the instance a constructed by step 7 of
the algorithm VaryBinPack uses no more than Optpg(«) bins, and each bin
of Y has content at most (1 + €)B.

PrOOF. By Lemma 8.1.2, each bin of the packing Y has content at most
(1 + ¢)B. The packing Y is obtained from Y; by adding the objects of size
bounded by eB using greedy method. That is, suppose we want to add an
object of size not larger than B and there is a used bin whose content will
not exceed (1 + €)B after adding the object to the bin, then we add the
object to the bin. A new bin is introduced only if no used bin can have the
object added without exceeding the content (1 + €)B. The greedy method
ensures that the content of each bin in Y is bounded by (1 + €)B. Note
that since all added objects have size bounded by e¢B, when a new bin is
introduced, all used bins have content larger than B.

If no new bin was introduced in the process of adding small objects in
step 7, then the number of bins used by the packing Y is the same as the
number of bins used by the packing Yy. By Lemma 8.1.2, in this case the
packing Y uses no more than Optp(«) bins.

Now suppose that new bins were introduced in the process of adding
small objects in step 7. Let r be the number of bins used by the packing
Y. By the above remark, at least » — 1 bins in the packing Y have content
larger than B. Therefore, we have

ti+---+t,>B(r—1)

This shows that we need more than r—1 bins of size B to pack the objects in
« in any packing. Consequently, the value Optg(«) is at least (r—1)4+1 =r.
That is, the packing Y uses no more than Optp(a) bins. []

We conclude this subsection with the following theorem.

Theorem 8.1.4 Given an instance o = (t1,...,t,; B) for the BIN PACK-
ING problem and a constant € > 0, The algorithm VaryBinPack constructs
in time O(nlogn) + ho(e) a packing for « that uses no more than Optp(«)
bins and the content of each bin is bounded by (1 + €)B, where hy(€) is a

252 PTAS

function depending only on € and Optp(c) is the optimal value for a as an
instance for the BIN PACKING problem.

Corollary 8.1.5 The (1 + €)-BIN PACKING problem can be solved in poly-
nomial time for a fixed constant e.

8.1.2 A PTAS for MAKESPAN

We use the algorithm VaryBinPack to develop a polynomial time ap-
proximation scheme for the MAKESPAN problem. We first re-formulate the
MAKESPAN problem in the language of bin packing.

MAKESPAN (Bin Packing version)

INPUT: (t1,%2,...,tn;m), all integers, where ¢; is the size of the
ith object, for i =1,2,...,n

OUTPUT: a packing of the n objects into m bins of size B with
B minimized

We use the idea of binary search to find the minimum bin size B. In
general, suppose that we try bin size B, and find out that the input instance
(t1,...,tn; B) for the BIN PACKING problem needs more than m bins of size
B in its optimal packing, then the tried bin size B is too small. So we will
try a larger bin size. On the other hand, if the instance (t1,...,t,; B) needs
no more than m bins of size B, then we may want to try a smaller bin size
because we are minimizing the bin size. Note that the algorithm Vary-
BinPack can be used to estimate the number of bins used by an optimal

packing for the instance (t1,...,t,; B) for the BIN PACKING problem.
We first discuss the initial bounds for the bin size in the binary search.
Fix an input instance (t1,...,t,;m) for the MAKESPAN problem. Let

n
Bavg = maX{Zti/m,tl,tg, cen ,tn}
=1

Lemma 8.1.6 The minimum bin size of the input instance (t1,...,tn;m)
for the MAKESPAN problem is at least Byyg.

PROOF. Since Y ;' t;/m is the average content of the m bins for packing
the n objects of size t1, ..., t,, any packing of the n objects into the m bins
has at least one bin with content at least Y ;- ¢;/m. That is, the bin size
of the packing is at least > i, t;/m.

THE MAKESPAN PROBLEM 253

Moreover, the bin size of the packing should also be at least as large as
any t; since every object has to be packed into a bin in the packing.

This shows that for any packing of the n objects of size t1, ..., t, into
the m bins, the bin size is at least By,g. The lemma is proved. [J

This gives a lower bound on the bin size for the input instance

(t1,...,tn;m) of the MAKESPAN problem. We also have the following upper
bound.
Lemma 8.1.7 The minimum bin size of the input instance (t1,...,tn;m)

for the MAKESPAN problem is bounded by 2Bq.

PROOF. Suppose that the lemma is false. Let B be the minimum bin size
for packing the objects t1, ..., t; into m bins, and B > 2Bg.

Let Y be a packing of the objects t1, ..., t, into m bins such that the bin
size of Y is B. Furthermore, we suppose that Y is the packing in which the
fewest number of bins have content B. Let 81, B, ..., B, be the bins used
by Y, where the bin 3 has content B > 2B,,,. Then at least one of the
bins B2, ..., Bm has content less than B,,y — otherwise, the sum of total
contents of the bins 51, Ba, ..., B would be larger than mBgyg > > i1 ti.
Without loss of generality, suppose that the bin 2 has content less than
B,vg- Now remove any object ; from the bin 3; and add ¢; to the bin f,.
We have

1. the content of the bin 31 in the new packing is less than B;
2. the content of the bin £ in the new packing is less than

Bavg + ti S 2Bavg < B

3. the contents of the other bins are unchanged.

Thus, in the new packing, the number of bins that have content B is one less
than the number of bins of content B in the packing Y. This contradicts
our assumption that Y has the fewest number of bins of content B.

This contradiction proves the lemma. []

Therefore, the minimum bin size for packing the objects t1, ..., t, into
m bins is in the range [Bgyg, 2Bgvg]. We apply binary search on this range to
find an approximation for the optimal solution to the instance (¢1, ..., t,;m)

for the MAKESPAN problem. Consider the algorithm given in Figure 8.2.

254 PTAS

Algorithm. ApxMakespan

Input: @ = (t1,...,tn;m), all integers, and € > 0
Output: a scheduling of the n jobs of processing time ¢1, t2, ..., tn
on m identical processors

Bavg =max{d__ ti/m,t1,ta,...,tn};
Br = Bavg; Bu = 2Baug;
while By — B > €Bgayg/4 do
B = (B + Ba)/2);
call the algorithm VaryBinPack on input o = (t1,...,t,; B)
and €/4; suppose the algorithm uses r bins on the input;
if r >m then B; = B else By = B;
let B* = (1+¢/4)Bm;
call the algorithm VaryBinPack on input a = (t1,...,t,; B*)
and €/4 to construct a scheduling for the instance a for the
MAKESPAN problem.

Figure 8.2: The algorithm ApxMakespan

We first study the complexity of the algorithm ApxMakespan. The
running time of the algorithm is dominated by step 3. We start with

By — B = 2Ba1}g - Bavg = Bavg

Since we are using binary search, each execution of the body of the while
loop in step 3 will half the difference (By —Bp). Therefore, after O(log(1/¢))
executions of the body of the while loop in step 3, we must have

BH - BL < 6B(wg/4

That is, the body of the while loop in step 3 is executed at most O(log(1/¢))
times.

In each execution of the body of the while loop in step 3, we call the
algorithm VaryBinPack on input (¢1,...,t,; B) and €/4, which takes time
O(nlogn)+hy(e/4) = O(nlogn)+hi(e), where hq(€) is a function depending
only on e. Therefore, the running time of the algorithm ApxMakespan is
bounded by

O(log(1/€))(O(nlogn) + hi(e)) = O(nlognlog(1/€)) + ha(e)

THE MAKESPAN PROBLEM 255

where ho(€) is a function depending only on e. This concludes the following
lemma.

Lemma 8.1.8 The running time of the algorithm ApxMakespan on input
instance a = (t1,...,tn;m) and € > 0 is bounded by O(nlognlog(1/e)) +
ha(€), where hao(€) is a function depending only on €. In particular, for a
fized constant € > 0, the algorithm ApxMakespan runs in polynomial time.

Now we discuss the approximation ratio of the algorithm Apx-
Makespan.

Fix an input instance a = (t1,...,t,;m) for the MAKESPAN problem.
Let Opt(«a) be the optimal solution, i.e., the parallel finish time of an optimal
scheduling, of the instance « for the M AKESPAN problem.

Lemma 8.1.9 For any input instance «, the following relations hold in the
entire execution of the algorithm ApxMakespan

Br, < Opt(a) < (14 €/4)Bn

ProoF. Initially, B, = By, and By = 2Bg,y. By Lemmas 8.1.6 and
8.1.7, we have By, < Opt(a) < By < (1+¢/4)Bp.

Now for each execution of the while loop in step 3, we start with a bin
size B and call the algorithm VaryBinPack on the input (¢1,...,t,; B) and
€/4, which uses r bins.

If r > m, by the algorithm VaryBinPack, the minimum number of bins
used by a packing to pack the objects 1, ..., £, into bins of size B is at least
as large as r. Therefore, if the bin size is B, then we need more than m bins
to pack the objects t1, ..., t,. Thus, for packing the objects ¢, ..., ¢, into
m bins, the bin size B is too small. That is, Opt(«) > B. Since in this case
we set B, = B and unchange By, the relations By < Opt(a) < (14+¢/4)By
still hold.

If r < m, then the objects t1, ..., t, can be packed in r bins of size
(1 + ¢/4)B. Certainly, the objects can also be packed in m bins of size
(1 +€¢/4)B. This gives Opt(a) < (1 + ¢/4)B. Thus, setting By = B and
unchanging By, still keep the relations By, < Opt(a) < (1 +¢/4)Bg.

This proves the lemma. []

Now we are ready to show that the algorithm ApxMakespan is a poly-
nomial time approximation scheme for the MAKESPAN problem.

256 PTAS

Theorem 8.1.10 On any input instance o = (t1,...,tp;m) for the
MAKESPAN problem and for any €, 0 < € < 1, the algorithm ApxMakespan
constructs in time O(nlognlog(1/e)) + ha(€) a solution to o with approzi-
mation ratio 1 + €, where ho(€) is a function depending only on €.

PROOF. The time complexity of the algorithm ApxMakespan is given
in Lemma 8.1.8.
By Lemma 8.1.9, the relations

Br < Opt(a) < (1+€¢/4)Bg
always hold. In particular, at step 4 of the algorithm, we have
Opt(a) < (1+¢/4)By = B*

Therefore, the bin size B* is at least as large as the bin size Opt(«). Since the
objects t1, ..., t, can be packed into m bins of size Opt(«), we conclude that
the objects 1, ..., t, can also be packed into m bins of size B*. By the prop-
erty of the algorithm VaryBinPack, on input instance a = (t1, ..., t,; B*)

and €/4, the algorithm VaryBinPack packs the objects t1, ..., ¢, into at
most m bins, with each bin of content at most (1 + €¢/4)B*. Therefore,
the packing is a valid scheduling of the n jobs t1, ..., t, on m identical
Processors.

Now let us consider the content bound (1 + €/4)B* for the bins in the
packing constructed by the algorithm VaryBinPack. At step 4, we have

By — Br, < €Bgyg/4
Since By, = By, initially, and By, is never decreased, we have
By < Bp +€Byy/4 < By +€eBr/4=(1+¢/4)BL
By Lemma 8.1.9, we always have
B, < Opt(a) < (1+¢€/4)Bn

Thus

Bp < (1+¢/4)Br, < Opt(a)(1+¢/4)
Therefore, the content bound (1 + €/4)B* is bounded by (note that B* =
(14 ¢/4)Bg)

(1+¢€/4)B* = (1 +¢/4)*By < Opt(a)(1 + €/4)®

PLANAR GRAPHS 257

Now Opt(a)(1+€/4)® < Opt(a)(1+e¢) for € < 1. Recall that in the schedul-
ing, the number m of bins corresponds to the number of processors, and the
maximum bin content (1 + €/4)B* is at least as large as the parallel finish
time for the scheduling. In conclusion, the scheduling of the n jobs on the m
processors constructed by the algorithm ApxMakespan has parallel finish
time bounded by Opt(a)(1 + €). Since Opt(«) is the parallel finish time of
an optimal scheduling for the instance «, the algorithm ApxMakespan has
approximation ratio bounded by 1 +e€. [

We point out that the condition € < 1 in Theorem 8.1.10 is not crucial.
For any input instance a = (t1,...,%,;m) and a given constant € > 1, we
can apply the algorithm Graham-Schedule (see Section 5.3), which runs
in time O(nlogm) = O(nlogn) and has approximation ratio 2 — L < 1+e
for e > 1.

Therefore, for any input instance o for the MAKESPAN problem and any
constant € > 0, we can first check if ¢ > 1. If so, we apply the algorithm
Graham-Schedule to construct in time O(nlogn) a solution to a of ap-
proximation ratio bounded by 1 + e. Otherwise, we apply the algorithm
ApxMakespan to construct in time O(nlognlog(1/e)) + ha(e) a solution
to a of approximation ratio bounded by 1 + €, where ho(e) is a function
depending only on e. The following theorem summarizes this discussion.

Theorem 8.1.11 The MAKESPAN problem has a polynomial time approzi-
mation scheme.

We would like to give two final remarks before we close this sec-
tion. The algorithm ApxMakespan, whose running time is bounded by
O(nlognlog(1/e)) + ha(e€), is not a fully polynomial time approximation
scheme because the function h2(e€) is not bounded by any polynomial of 1/e.
In fact, according to Theorem 6.4.9, it is very unlikely that the MAKESPAN
problem has a fully polynomial time approximation scheme.

On the other hand, it is still possible to further improve the running time
of the algorithm ApxMakespan. For example, based on the same idea of
dual approximation, Hochbaum and Shmoys have developed an approxima-
tion algorithm for the MAKESPAN problem with approximation ratio 1 + €
and running time bounded by O(n) + h3(€), where the constant in the “big-
Oh” is independent of the approximation error bounde e and the function
hs(e) depends only on e. Interested readers are referred to [65].

258 PTAS

8.2 Optimization on planar graphs

A graph is planar if it can be embedded into the plane without edge crossing.
There is a well-known linear time algorithm by Hopcroft and Tarjan [68]
that, given a graph, either constructs a planar embedding of the graph or
reports that the graph is not planar. Planar graphs are of great practical
interest (e.g, in designing integrated circuits or printed-circuit boards).

In this section, we consider optimization problems on planar graphs.
Some NP-hard optimization problems on general graphs become tractable
when they are restricted to planar graphs. For example, the CLIQUE problem
(given a graph G, find a largest clique, i.e., a largest subset S of vertices
in G such that every pair of vertices in S are adjacent), which in general
is NP-hard, can be solved in polynomial time on planar graphs, as follows.
According to Kuratowski’s theorem [58], a planar graph contains no clique
of size larger than 4. Therefore, we can simply check every set of at most
four vertices in a planar graph and find the largest clique. Since for a planar
graph of n vertices, there are

1))+ () () =0

different sets of at most 4 vertices, the largest clique in the planar graph can
be found in time O(n?).

On the other hand, some NP-hard optimization problems on general
graphs remain NP-hard even when they are restricted on planar graphs.
Examples include the PLANAR GRAPH INDEP-SET problem and the PLA-
NAR GRAPH VERTEX-COVER problem. Therefore, finding optimal solutions
for these problems on planar graphs seems as hard as finding optimal so-
lutions for the problems on general graphs. However, graph planarity does
seem to make some of these problems easier in the sense that for a class
of optimization problems on planar graphs, we can derive polynomial time
approximation schemes, while the corresponding problem on general graphs
have no polynomial time approximation scheme unless P = NP. A gen-
eral technique has been developed to obtain polynomial time approximation
schemes for a class of NP-hard optimization problems on planar graphs. For
purposes of discussion, we will focus on the following problem to illustrate
the technique, where by an independent set D in a graph G, we mean a
subset of vertices in G in which no two vertices are adjacent:

PLANAR GRAPH INDEP-SET
Ig: the set of planar graphs G = (V, E)

PLANAR GRAPHS 259

Sg: Sg(G) is the collection of all independent sets in G

fo: fo(G,D) is equal to the number of vertices in the
independent set D in G

optg: max

The decision version PLANAR GRAPH INDEP-SET (D) of the PLANAR
GRAPH INDEP-SET problem is NP-complete (see Section 1.4). Thus, it is
straightforward to derive that the PLANAR GRAPH INDEP-SET problem is
NP-hard. Moreover, it is easy to check that the PLANAR GRAPH INDEP-SET
problem satisfies the conditions in Theorem 6.4.1. Therefore, the PLANAR
GRAPH INDEP-SET problem has no fully polynomial time approximation
scheme unless P = NP.

A (non-fully) polynomial time approximation scheme is obtained for
the PLANAR GRAPH INDEP-SET problem, and for many other optimization
problems on planar graphs, using the popular divide-and-conquer method
based on the following Planar Separator Theorem by Lipton and Tarjan [91].
Interested readers are referred to the original article [91] for a formal proof
for this theorem.

Theorem 8.2.1 (Planar Separator Theorem) For any planar graph G =
(V,E), |V| = n, one can partition the vertez set V' of G into three disjoint
sets, A, B, and S, such that

1. |AL,B| < 2n/3;
2. |S| </8n; and
3. S separates A and B, i.e. there is no edge between A and B.

Moreover, there is a linear time algorithm that, given a planar graph G,
constructs the triple (A, B, S) as above.

Let G = (V, E) be a planar graph and let (A4, B, S) be a triple satisfying
the conditions of Theorem 8.2.1. We will say that the graph G 1is split
into two smaller pieces A and B (using the separator S). Let G4 be the
subgraph of G induced by the vertex set A, that is, G 4 is the subgraph of
G that consists of all vertices in the set A and all edges whose both ends
are in A. Similarly, let Gp be the subgraph of G induced by the vertex
set B. Based on the fact that there is no edge in G that connects a vertex
in A and a vertex in B, a simple observation is that if D4 and Dp are
independent sets of the subgraphs G 4 and G g, respectively, then the union

260 PTAS

Algorithm. PlanarIndSet(K)

Input: a planar graph G = (V, E)

Output: an independent Set D in G

1. If (V| < K) then
find a maximum indepenent set D in G by exhaustive search;
Return(D);

{At this point |V| > K.}

2. split V into (A, B, S) as in Theorem 8.2.1;

3. recursively find an independent set D4 for the subgraph G4 and

an independent set Dp for the subgraph Gp;
4. Return(D4 U Dp).

Figure 8.3: The algorithm PlanarIndSet

D U Dpg of the sets Dy and Dp is an independent set of the graph G.
Moreover, since the size of a maximum independent set of the planar graph
G is of order Q(n) (this will be formally proved later) while the size of the
separator S is of order O(y/n), ignoring the vertices in the separator S does
not seem to lose too much precision. Based on this observation, our divide-
and-conquer method first recursively finds a large independent set D4 for
the subgraph G 4 and a large independent set Dp for the subgraph G (note
that the subgraphs G4 and G are also planar graphs), then uses the union
D4 U Dp as an approximation to the maximum independent set for the
graph G. This algorithm is given informally in Figure 8.3, where K is a
constant to be determined later.

By the discussion above, the algorithm PlanarIndSet correctly returns
an independent set for the graph G. Thus, it is an approximation algorithm
for the PLANAR GRAPH INDEP-SET problem. We first study the properties
of this algorithm.

The algorithm splits the graph G into small pieces. If the size of a piece
is larger than K, then the algorithm further splits, recursively, the piece into
two smaller pieces in linear time according to Theorem 8.2.1. Otherwise, the
algorithm finds a maximum independent set for the piece using brute force
method. Let us consider the number of pieces whose size is within a certain
region.

A piece is at level 0 if its size is not larger than K. For a general i > 0,
a piece is at level 7 if its size (i.e., the number of vertices in the piece) is in

PLANAR GRAPHS 261

the region ((3/2)""'K, (3/2)'K], i.e., if its size is larger than (3/2)'~' K but
not larger than (3/2)°K. Since the graph has n vertices, the largest level
number is bounded by log(n/K)/log(3/2) = O(log(n/K)).

Lemma 8.2.2 For any fized i, each vertex of the graph G belongs to at most
one piece at level 1.

ProOF. Fix a vertex v of the graph G and let P be a piece containing the
vertex v. Note that if P is not the whole graph G, then P must be obtained
from splitting a larger piece.

Assume the contrary that the vertex v is contained in two different pieces
P and Q at level . Then both P and Q have size larger than (3/2)~'K but
not larger than (3/2)! K. Now consider the “splitting chains” for P and Q:

P17P21"'7Pt7 QlaQQa"'aQs

where P, = P, Q1 = Q, P, = Qs = G, the piece P; is obtained from splitting
the piece Py for j = 1,...,%1 — 1, the piece @}, is obtained from splitting
the piece Qp41 for h =1,...,s — 1, and all pieces Py, ..., P, Q1, .., Qs
contain the vertex v. Note that the piece) is not in the sequence P;, Px,
..., P; since by Theorem 8.2.1, the piece @ is split into two smaller pieces of
size at most (2/3)(3/2)'K = (3/2)* 'K while all pieces in the sequence P,
P, ..., P, have size at least as large as |P|, which is larger than (3/2)' "' K.
Similarly, the piece P is not in the sequence Q1, Q2, ..., @s. Let j be the
smallest index such that P; = @ for some h (such an index j must exist
since P, = G = (). Then P; # P and P; # (@, and by the assumption
on the index j, we have Pj_i # Qp—1. Therefore, the piece P; is split into
two different pieces Pj_; and (),—1. Now the fact that both pieces P;_; and
Qn_1 contain the vertex v contradicts Theorem 8.2.1. [

Therefore, for each fixed %, all pieces at level ¢ are disjoint. Since each
piece at level i consists of more than (3/2)* 'K vertices, there are no more
than (2/3)"~!(n/K) pieces at level i, for all i. We summarize these discus-
sions into the following facts.

Fact 1. There are no more than n pieces at level 0, each is of
size at most K;

Fact 2. For each fixed ¢+ > 0, there are no more than
(2/3)1:_1(n/K) pieces at level i, each is of size bounded by
(3/2)'K; and

Fact 3. There are at most O(logn) levels.

262 PTAS
Now we are ready to analyze the algorithm.

Lemma 8.2.3 The running time of the algorithm PlanarIndSet is
bounded by O(nlogn + 2Kn).

PROOF. For each piece at level 1 > 0, we apply Theorem 8.2.1 to split it
into two smaller pieces in time linear to the size of the piece. Since the total
number of vertices belonging to pieces at level ¢ is bounded by n, we conclude
that the total time spent by the algorithm PlanarIndSet on pieces at level
i is bounded by O(n) for each i > 0. Since there are only O(logn) levels,
the algorithm PlanarIndSet takes time O(nlogn) on piece splitting.

For each piece P at level 0, which has size bounded by K, the algorithm
finds a maximum independent set by checking all subsets of vertices of the
piece P. There are at most 2X such subsets in P, and each such a subset can
be checked in time linear to the size of the piece. Therefore, finding a maxi-
mum independent set in the piece P takes time O(2X|P|). By Lemma 8.2.2,
all pieces at level 0 are disjoint. We conclude that the algorithm PlanarInd-
Set spends time O(2%n) on pieces at level 0. In summary, the running time
of the algorithm PlanarIndSet is bounded by O(nlogn + 2Xn). O

Let us consider the approximation ratio for the algorithm PlanarInd-
Set.

Fix an ¢ > 0. Suppose that we have [pieces Py, Ps, ..., P, of size ny, na,
..., ny, respectively, at level 7. By Lemma 8.2.2 all these pieces are disjoint.
Thus, n1 +ng + ---+n; = n' < n. For each piece P, of size ng, a separator
S, of size bounded by /8ng < 3,/Mq is constructed to split the piece P into
two smaller pieces. The vertices in the separator S, will be ignored in the
further consideration. Thus, the total number of vertices in the separators
for the pieces Py, Py, ..., P, at level 4, which will be ignored in the further
consideration, is bounded by

3y/n1+3y/ng + -+ 3y/ng

It is well-known that under the condition n1 + no + --- +n; = n' the above
summation will be maximized when all nq, ng, ..., n; are equal. That is,
ny =ng = ---n; = n'/l. Hence, the above summation is bounded by

3y /0! Jl+ 30!l 4 -+ 4 3y/n! /I = 31\/n' [l = 3v/'n!l < 3Vnl

| terms

PLANAR GRAPHS 263

Now, since the number [of pieces at level i is bounded by (2/3)"~!(n/K)
(see Fact 2), the total number of vertices belonging to separators for pieces
at level 7 is bounded by

3 o (Q)i_l n 3n \/5 o
n - = =— -
3 K K 3
Let F' denote the set of all vertices that belong to a separator at some

level. Let h be the largest level number. Then h = O(logn) (see Fact 3)
and we derive

s R0E) < GREW) %

where we have used the fact 35, (1/2/3)"~! = 1/(1 — \/2/3) < 6.
Therefore, when the number K is large enough, the total number of
vertices contained in the separators is small compared with the total number
n of vertices in the graph G.
Now we derive an upper bound and a lower bound for the size of an
optimal solution, i.e., a maximum independent set, to the planar graph G.

Lemma 8.2.4 Suppose that the planar graph G has n vertices. Let D be
the independent set constructed by the algorithm PlanarIndSet on input
G and let F be the set of all vertices that are contained in any separators
constructed by the algorithm PlanarIndSet. Then

n/4 < Opt(G) < |D| +|F|
where Opt(G) is the size of a mazimum independent set in the graph G.

PROOF. Since the graph G is planar, by the famous Four-Color Theorem
[3, 4], G can be colored with at most 4 colors such that no two adjacent
vertices in G are of the same color. It is easy to see that all vertices with the
same color form an independent set for G, and that there are at least n/4
vertices in G colored with the same color. In consequence, the size Opt(G)
of a maximum independent set in the graph G is at least n/4.

Now we consider the upper bound for Opt(G). Let Dpax be a maximum
independent set of the graph G and let P be a piece at level 0. It is easy
to see that Dp,x N P is an independent set in the piece P, which cannot
be larger than the maximum independent set DX . of P constructed by the

max

algorithm PlanarIndSet. Note that the independent set D constructed by

264 PTAS

the algorithm PlanarIndSet is the union of DL, over all pieces at level 0.
Let I'g be the collection of all level 0 pieces. Note that

(U P)UF
PEFO
is the set of all vertices in the graph G and the sets Upcr, P and F are
disjoint. Therefore,
Dmax = U (Dmax ﬂP) U (Dmax nF)
PeTly
This gives (note that all level 0 pieces in 'y are disjoint)

Opt(G) = |Dmax| < Y (|Dmax N P|) + [Dinax N F|
PeTy

<) Dpaxl +|F|
Pely
= |D|+|F|

The lemma, is proved. []

Now we are ready to derive the approximation ratio for the algorithm
PlanarIndSet. From Lemma 8.2.4, Opt(G) < |D| + |F|. Thus,
OpG) My I
|D| D] Opt(G) — |F|
Combining this with the inequalities Opt(G) > n/4 (see Lemma 8.2.4) and
|F| < 18n/vK (see Inequality (8.1)), we obtain

Opt(@) 7| 7
o = tope 1 St e - F
18n/VK 72

T vk T VR-—12
Now for any fixed constant e, if we let
K > (72(1 +1/€))? = 5184(1 + 1/¢)?
then the algorithm PlanarIndSet(K) produces an independent set D for
the planar graph G with approximation ratio

Opt(G)
D]

<1l+e

in time O(nlogn + n251840+1/9%) (see Lemma 8.2.3). For a fixed € > 0, this
is a polynomial time algorithm. We conclude with the following theorem.

PLANAR GRAPHS 265

Theorem 8.2.5 The PLANAR GRAPH INDEP-SET problem has a polyno-
mial time approximation scheme.

Note that the algorithm PlanarIndSet is not a fully polynomial time
approximation scheme for the PLANAR GRAPH INDEP-SET problem since
its time complexity is not bounded by a polynomial of n and 1/e.

Other optimization problems on planar graphs that have polyno-
mial time approximation schemes but have no fully polynomial time ap-
proximation schemes include the PLANAR GRAPH VERTEX-COVER prob-
lem, the PLANAR GRAPH H-MATCHING problem, the PLANAR GRAPH
DOMINATING-SET problem, and some others (see [49] for precise defini-
tions). Most of these polynomial time approximation scheme algorithms
use the similar technique as the one we described for the PLANAR GRAPH
INDEP-SET problem, i.e., using the divide-and-conquer method and the Pla-
nar Separator Theorem (Theorem 8.2.1) to separate a planar graph into
small pieces by separators of small size, using brute force method to solve
the problem for the small pieces, and combining the solutions to the small
pieces into an approximation solution to the original planar graph.

Note that the algorithm PlanarIndSet of running time O(nlogn +
n25184(1+1/ 6)2) is hardly practical, even for a moderate value €. Research on
improving the time complexity of polynomial time approximation schemes
for optimization problems on planar graphs has performed. For example, a
difference separating technique has been proposed by Baker [10]. We briefly
describe the idea below based on the PLANAR GRAPH INDEP-SET problem.
Let G be a planar graph. Embed G into the plane. Now the vertices on the
unbounded face of the embedding give the first layer of the graph G. By
peeling the first layer, i.e., deleting the vertices in the first layer, we obtain
(maybe more than one) several separated pieces, each of which is a planar
graph embedded in the plane. Now the first layers of these pieces form the
second layer for the graph G. By peeling the second layer of G, we obtain
the third layer, and so on. Define the depth of the planar graph G to be
the maximum number of layers of the graph. Baker observed that for a
graph of constant depth, a maximum independent set can be constructed
in polynomial time by dynamic programming techniques. Moreover, for
any planar graph G of arbitrary depth, if we remove one layer out of every
K consecutive layers, where K is a constant, we obtain a set of separated
planar graphs of constant depth. Now for each such graph of constant depth,
we construct a maximum independent set. The union of these maximum
independent sets forms an independent set for the original graph G. For
sufficiently large K, the number of vertices belonging to the removed layers is

266 PTAS

very small and thus gives only a small error in the approximation. Baker [10]
shows that this method produces a polynomial time approximation scheme
for the PLANAR GRAPH INDEP-SET problem with running time bounded
by O(8Y¢n/e).

8.3 Optimization for geometric problems

The techniques described in the previous section for approximation of opti-
mization problems on planar graphs are based on the well-known divide and
conquer method that has been extensively applied in computer algorithm
design. Based on this classical technique, systematic methods have been
recently developed in designing polynomial time approximation schemes for
a set of famous optimization problems on Euclidean space £%. Roughly
speaking, the new methods work in a dynamic programming manner, which
partition the Fuclidean space into smaller areas, construct and store good
approximations for all possible situations for each smaller area, and recur-
sively construct a good approximation for each situation for a larger area
based on the approximations for the smaller areas. The techniques are gen-
eral for any Fuclidean space of a fixed dimension d. We will discuss in
detail the construction of a polynomial time approximation scheme for the
TRAVELING SALESMAN problem on Euclidean plane £2. Explanation will
be briefly provided on how the techniques are extended to other geometric
problems and to general Euclidean space £¢ for any d.

Each point p in the Euclidean plane £2 is given by two real numbers that
are the z- and y-coordinates of the point. The Euclidean distance between
two points p; = (z1,y1) and pa = (x2,y2) is given by the formula

dist(p1,p2) = \/(961 —22)2 + (y1 — y2)?

Let S be a set of n points in £2, a traveling salesman tour on S (or simply
called a salesman tour) is a closed walk that visits all points in S. The
EUCLIDEAN TRAVELING SALESMAN problem (or shortly EUCLIDEAN TSP)
is to construct a salesman tour of minimum length for a given set of points
in £2.

It is known that EUCLIDEAN TSP is NP-hard in the strong sense [47,
100]. Therefore by Theorem 6.4.8, EUCLIDEAN TSP has no fully polynomial
time approximation scheme unless P = NP.

A salesman tour is polygonal if it consists of a finite number of line seg-
ments. Since the Euclidean distance satisfies the triangle inequality rule that
the length of the straight line segment connecting two points is not larger

GEOMETRIC PROBLEMS 267

than the length of any other path connecting the two points, it is clear that
any minimum salesman tour on a set S of n points can be given by a cycli-
cally ordered sequence of the n points that specifies the polygonal salesman
tour of n segments on the n points. We will concentrate on polygonal sales-
man tours. Sometimes in the discussion we may prefer to have the tours
“bent” at points that are not in the original set S in order to make the tours
satisfy certain special properties. These bends can be easily removed at the
end of our approximation: once such a bent polygonal salesman tour 7 is
constructed and suppose that it is a good approximation to the minimum
salesman tour, we can simply delete points in 7 that do not belong to S to
obtain a tour m. that contains only points in S. Note that deleting a point p
in the tour m = ---p1pp2 - - - is equivalent to replacing the path [pi,p, p2] of
two line segments by a straight line segment [p;, p2|, which, by the triangle
inequality rule, does not increase the length of the tour. Therefore, after
deleting the points not in S from the tour m, we get a polygonal salesman
tour 7., which only bends at points in the set S and has performance at
least as good as the original tour .

8.3.1 Well-disciplined instances

We first show that when we study approximation algorithms for EUCLIDEAN
TSP, we can perform a preprocessing to simplify the instance format and
concentrate on only very well-behaved instances of EUCLIDEAN TSP.

Definition 8.3.1 Let ¢ > 0 be a fixed constant. An instance S =
{p1,p2,...,pn} of EUCLIDEAN TSP is e-disciplined if for each point p; =
(z4,9;) in S, the coordinates z; and y; can be written as z; = a; + 0.5 and
y; = b; + 0.5, where a; and b; are integers, and 0 < z;,y; < n/e.

A direct consequence from the above definition is that the distance be-
tween any two different points in an e-disciplined instance of EUCLIDEAN
TSP is at least 1. More importantly, the following lemma shows that it will
suffice for us to concentrate on approximation schemes for e-disciplined in-
stances. For a salesman tour 7 of an instance S of EUCLIDEAN TSP, we let
|| be the length of the tour w, and let Opt(S) be the length of a minimum
salesman tour in S.

Lemma 8.3.1 Given any instance S of EUCLIDEAN TSP, and any constant
0 < € < 1, there is an e-disciplined instance S. constructible from S in linear
time, such that from any salesman tour m, for S satisfying |m.|/Opt(Se) <

268 PTAS

1+ €, we can construct in linear time a salesman tour © for S satisfying
|7|/Opt(S) <1+ Te.

Proor. Let Qg be the smallest axis-aligned square that contains all the n
points in S. Since a translation of the Euclidean plane £2 (i.e., fix a and b
and map each point (z,y) in £2 to the point (z+a,y+b)) and a proportional
expanding or shrinking of £2 (i.e., fix a ¢ and map each point (z,y) to the
point (cz, cy)) do not change the difficulty of approximation solutions to an
instance of EUCLIDEAN TSP, we can assume without loss of generality that
the lower-left corner of the square @ is at the origin point (0,0) and that
the side length of the square Qg is [n/€].

Place an |n/e| x [n/e] grid on the square (¢ so that each cell in the
grid is a 1 x 1 square whose four corners are of integral coordinates. We
construct a new instance S¢ as follows: for each point p; in S, we create a
new point p} that is at the center of the 1 x 1 cell containing p; (if p; is on the
boundary of more than one cell, then pick the center of any of these cells as
ph). Note that the z- and y-coordinates of each point p} = (z},y!) are of the
form z, = a; + 0.5 and y; = b; + 0.5, where a; and b; are integers. Moreover,
the distance between the point p, and the corresponding point p; in S is
bounded by v/2/2. Let Sc = {p},p},...,p,}. It is clear that the set S, is
an e-disciplined instance of EUCLIDEAN TSP. Note that the n points in the
set S, may not be all different: a point may have more than one copy in the
set S¢. Finally, we observe that the set S. can be constructed from the set
S in linear time. In fact, it is not necessary to construct the [n/e] x |n/e]
grid: the point p} in S, can be easily determined from the coordinates of the
corresponding point p; in S.

Since Q) is the smallest square containing S, either both horizontal sides
or both vertical sides of @y contain points in S. In particular, there are two
points in S whose distance is at least [n/e] > n/e — 1. Therefore, the
length of any salesman tour for S is larger than 2n/e — 2. Similarly, by the
construction of the instance S¢, there are two points in S, whose distance is
larger than n/e — 2, so the length of any salesman tour for S, is larger than
2n/e — 4.

Now let 7. be a salesman tour for the e-disciplined instance S.. We
construct a salesman tour w for the instance S as follows. We trace the
salesman tour m, and at each point p, we make a straight line round-trip
from p! to the corresponding point p; in S. Note that such a straight line
round-trip from p} to a corresponding point in S increases the tour length
by at most v/2. Therefore, this process results in a salesman tour 7 for §
whose length is bounded by |7| +n1/2 (of course, we can further apply the

GEOMETRIC PROBLEMS 269

triangle inequality rule on 7 that may result in a further shorter salesman
tour for S). In particular, we have shown

<l+e (8.2)

here we have used the fact |m| > 2n/e — 4, e < 1, and assumed n > 8.

The above method can also be used to estimate the value Opt(S,) in
terms of Opt(S): starting with an optimal salesman tour of S and adding a
straight line round-trip from each point p; in S to the corresponding point
p; in S, result in a salesman tour of S whose length is bounded by Opt(S)+
ny/2. Thus, the value Opt(S,) is bounded by Opt(S) + n+v/2. Combining
this with the the lower bound Opt(S) > 2n/e — 2 gives us

Opt(Se)

Opi(S) <l+e (8.3)

Now if the salesman tour 7, satisfies |7¢|/Opt(Se) < 1+ €, then we have

ml A=l Imd Opit(Se)

= <(+e€P<1+7e
Opi(S) ~ Jmd Opt(Sy " opi(s) =19

here we have used inequalities (8.2) and (8.3) and the assumption e < 1. [J

8.3.2 The approximation scheme for EuCLIDEAN TSP

The polynomial time approximation scheme for the EUCLIDEAN TSP is
based on an important Structure Theorem. In this subsection, we first state
the Structure Theorem, assume its correctness, and present our algorithm.
A proof for the Structure Theorem will be given in the next subsection.

According to Lemma, 8.3.1, we only need to concentrate on e-disciplined
instances for EUCLIDEAN TSP. Fix 0 < € < 1. Let S = {p1,...,ps} be an
e-disciplined instance for EUCLIDEAN TSP. Let @)y be the bounding square
of S, where the lower-left corner of Q) is at the origin (0,0), and each side
of Qo is of length 20, where ho = [log(n/€)] = O(logn).

The bounding square (g can be partitioned into four equal size smaller
squares by a horizontal segment and a vertical segment. Recursively, suppose
Q is a d x d square that contains more than one point in S, then we partition
@ into four (d/2) x (d/2) squares using a horizontal segment and a vertical
segment. The partition stops when a square contains no more than one
point in S. The resulting structure will be called a (regular) dissection of
the bounding square @y (see Figure 8.4(A) for illustration). The squares

270 PTAS

(A) (B) ®)

T

|o
ol
|.
|.
T+
L N B

.
G

Figure 8.4: (A) a regular dissection; (B) a (a, b)-shifted dissection

constructed in the dissection, including those that are further partitioned
into smaller squares, will all be called squares of the dissection. The sides of
the squares will be called square edges. Since the instance S is e-disciplined,
the edge length of each square in the dissection of @) is a positive integer.
Moreover, no point in S is on the boundary of any square.

The dissection of)y will be represented as a 4-ary tree Ty whose root
corresponds to the bounding square Q)g. In general, each node v in Tj
corresponds to a square (), and the four children of v correspond to the four
smaller squares resulted from the partition of @Q,. Figure 8.4(A’) shows the
4-ary tree for the dissection in Figure 8.4(A), where the children of a node
are ordered from left to right in terms of the clockwise ordering of the four
smaller squares, starting from the lower-left one.

The root of the 4-ary tree Ty will be called the level-0 node in Ty. In
general, a node in Ty is a level-i node if its parent is at level 1 — 1. A square
corresponding to a level-2 node in Tj is called a level-i square.

Note that the depth of the tree T is bounded by hy. Moreover, since
each node in Tj either contains points in S or has a brother containing points
in S, and two squares at the same level contain no common points in S, the
number of nodes at each level of Tj is bounded by O(n) (independent of
€). In consequence, the total number of nodes in the tree Tj is bounded by

Given a square () and the set Sg of points in S contained in @, it is
rather simple to go through the set Sgp and distribute the points into the
four smaller squares resulted from the partition of (). Therefore, each level
of the 4-ary tree Tj can be constructed in time O(n). In consequence, the
4-ary tree Tp can be constructed from S in time O(hon).

An important concept is the shifted dissection structure. Let a and b

GEOMETRIC PROBLEMS 271

be two integers, 0 < a,b < 2. We first identify the two vertical edges
of the bounding square @y then cut it along the vertical line z = a (see
Figure 8.5(A) and (B), which use the same point set S as in Figure 8.4(A)).
This is equivalent to cyclically rotating the square @)y to the left by a units.
Then similarly, we identify the two horizontal edges of the resulting square
then cut it along the horizontal line y = b (see Figure 8.5(C)). This is
equivalent to cyclically rotating the square downwards by b units. Now we
put a regular dissection structure on the resulting square (see Figure 8.5(D)).
This dissection is call the (a, b)-shifted dissection of the bounding square Q.
The (a,b)-shifted dissection again partitions the bounding square @y into
“squares”, with cuts along lines £ = a and y = b, and the two vertical edges
and the two horizontal edges of Q¢ identified.

The (a, b)-shifted dissection can also be constructed directly on the orig-
inal bounding square @y with the z-coordinate shifted cyclically to the right
by a units and the y-coordinate shifted cyclically upwards by b units. Regard
Qo as the “square” by identifying the opposite edges of Qy and cutting Qg
along the vertical line £ = a and the horizontal line y = b. Now the partition
of Qg into four smaller squares is by the vertical line z = (a+2"0~1) mod 2"°
and the horizontal line y = (b + 2"~1) mod 2". In general, if a square
Q is bounded by four lines = = =z, ¥y = o, = (zg + 2*) mod 20 and
y = (yo + 2°) mod 2"°, then the partition of the square Q into four smaller
squares is by the vertical line z = (zo + 2*~!) mod 2" and the horizontal
line y = (yo + 2°°1) mod 2", This is illustrated in Figure 8.4(B), where
the (a, b)-shifted dissection is given on the same bounding square Qg for the
same set S of points as in Figure 8.4(A). Note that the points in the set S are
not shifted with the dissection. Readers are advised to convince themselves
that the figures in Figure 8.4(B) and Figure 8.5(D) give the same dissection
structure.

As for regular dissections, the (a, b)-shifted dissection can also be repre-
sented by a 4-ary tree of depth O(hy) and O(hgn) nodes, with all related
terminologies transferred. Figure 8.4(B’) gives the 4-ary tree for the (a,b)-
shifted dissection in Figure 8.4(B) (again the children of each node are or-
dered from left to right in terms of the clockwise order of the four smaller
squares starting from the lower-left one).

Let D, be the (a,b)-shifted dissection of the bounding square (Qg. Let
e be a square edge in the dissection D, ;. The m + 1 points on e that divide
the edge e into m equal length segments will be called the (1/m)-portals of
the square edge e.

Definition 8.3.2 A salesman tour 7 is (r, m)-light with respect to the (a, b)-

272 PTAS

a
(A) (B) © (D)
Figure 8.5: A shifted dissection structures

shifted dissection D, if for every square edge e of D, p, 7 crosses e at most
r times, and each crossing of 7 on e is at a (1/m)-portal of e.

The polynomial time approximation algorithm for the EUCLIDEAN TSP
is heavily based on the following Structure Theorem. We will assume the
correctness of the theorem and use it directly in our development of the
algorithm. A proof for the Structure Theorem will be given in the next
subsection.

Theorem 8.3.2 (The Structure Theorem) Let S be an e-disciplined in-
stance for EUCLIDEAN TSP and let Qo be the 2" x 20 bounding square
of S, with lower-left corner at the origin (0,0) and hy = [log(n/€)]. Then
there is a constant cy such that for at least half of the pairs (a,b) of integers,
0 < a,b < 2", there exists a (co,cohg)-light salesman tour Tap With respect
to the (a,b)-shifted dissection of Qo satisfying |7.p| < (1 + €)Opt(S).

We remark that the constant ¢y in Theorem 8.3.2 is independent of the
number n of points in the set S, but dependent of the given constant e.

Based on Theorem 8.3.2, our algorithm proceeds as follows. For each pair
(a,b) of integers, 0 < a,b < 2", we apply a dynamic programming algorithm
to construct an optimal (o, cohg)-light salesman tour 7,5 with respect to
the (a, b)-shifted dissection of Q)y. According to Theorem 8.3.2, the shortest
salesman tour 7, among all the (cg, cohg)-light salesman tours we construct
over all (a,b)-shifted dissections of @y, 0 < a,b < 2" will satisfies the
condition |m,| < (14 €)Opt(S). Note that there are only 20 x 20 = O(n?)
such pairs (a,b).

For notational simplicity, we let mo = cohyp.

Consider an (a, b)-shifted dissection Dgp of Qo. Let m be a (co, mo)-light
salesman tour with respect to D, ;. For each square @) in D p, the salesman

GEOMETRIC PROBLEMS 273

Algorithm. ETSP(S, a,b)

Input: an e-disciplined instance S and integers a and b
Output: an optimal (co, mo)-light salesman tour 7,5 on
the (a,b)-shifted dissection

construct the 4-ary tree T, ; for the (a,b)-shifted dissection D, p;
2. for each node v in the tree T, ;
{starting from the leaves of T, ; in a bottom-up manner}
for each crossing sequence o of the square @), for the node v
if v is a leaf
then construct the shortest partial salesman tour in @
consistent with o
else { the children of v are 4 smaller squares }
construct the shortest partial salesman tour in Q
consistent with o, based on the partial salesman tours

constructed for the four smaller squares in Q.

Figure 8.6: Constructing the (cg, mo)-light salesman tour for Dy .

tour 7 passes through all points in S contained in), and the crossings of 7
over the boundaries of @@ form a sequence of (1/mg)-portals on the square
edges of @ (note that a (1/mg)-portal may appear more than once in the
sequence). We will call this sequence a crossing sequence of the square Q.
The line segments of the salesman tour 7 that are contained in the square @
(and pass through all points of S contained in the square @) will be called
the partial salesman tour (of 7) in the square Q. Note that each sequence of
even number of (1/my)-portals on the square edges of) can be interpreted
as a crossing sequence of () for some salesman tour. We say that a partial
salesman tour in a square @) is consistent with a crossing sequence o if the
partial salesman tour crosses the (1/mg)-portals of the square edges of @ in
exactly the same order given in the crossing sequence o. Note that there may
be more than one partial salesman tour consistent with the same crossing
sequence.

Our algorithm works as follows. For each square () in the dissection Dy,
we construct for each possible crossing sequence o of () the shortest partial
salesman tour in @ consistent with o. The algorithm runs in a dynamic
programming manner, starting from the leaves of the 4-ary tree Tj ; for the
dissection D, p. The algorithm is given in Figure 8.6.

274 PTAS

We give more detailed explanation for the algorithm ETSP(S, a,b). Sup-
pose the crossing sequence o of the square), corresponding to the node v
in the 4-ary tree T, is given:

g = [-[1701,12,027--- 7I7‘70r]

where I; and O; are the (1/my)-portals for the salesman tour to enter and
leave the square @, respectively, and r < 4¢y. In case v is a leaf in the 4-ary
tree Ty, the corresponding square @, contains at most one point in the set
S. Therefore, the shortest partial salesman tour in (), consistent with the
crossing sequence o can be constructed easily: if @), contains no point in
S, then the shortest partial salesman tour in (), consistent with o should
consist of the r line segments [I1,04], ..., [, O,]; while if @, contains a
single point p in S, then the shortest partial salesman tour in), should
consist of one “bent” line segment [I;, p, O;] plus r — 1 straight line segments
[1;,04], j # i. Since ¢y is a constant, the shortest salesman tour in @,
consistent with the crossing sequence o can be constructed in time O(1).

Now consider the case where the node v is not a leaf. Then the square
Qy is partitioned into four smaller squares @), @5, @, and Q. Note that
there are four edges of the smaller squares that are not on the edges of Q,
but are shared by the smaller squares. We will call these edges the “inner
edges” of the smaller squares.

Let 7 be a (cg, mg)-light salesman tour with the crossing sequence o on
the square @,. If we trace m on its crossings on the edges of the smaller
squares Q}, Q%, Q%, and @, we obtain a sequence 7y of (1/mg)-portals on
the edges of the smaller squares. It is easy to see that this sequence oy
can be obtained by merging the crossing sequence ¢ and a sequence 7 of
(1/myg)-portals on the inner edges of the smaller squares, with the restriction
that at most ¢y portal appearances from each inner edge may appear in the
sequence 7 (note that a portal on an inner edge may appear more than once
in the sequence 7). The four corresponding crossing sequences o}, o5, o5,
and o}, where o] is for the smaller square @}, 1 < ¢ < 4, can be uniquely
determined from the sequence 7y3. Moreover, if the partial salesman tour
of 7 in the square @, is the shortest over all partial salesman tours in Q,
consistent with the crossing sequence o, then the partial salesman tour of 7
in each @} of the smaller squares, 1 < i < 4, must be the shortest over all
partial salesman tours in)} consistent with the crossing sequence o.

Therefore, to construct the shortest partial salesman tour in (), consis-
tent with the crossing sequence o, we examine all sequences 7y that can be
obtained by merging the crossing sequence o and a sequence 7 of portals on

GEOMETRIC PROBLEMS 275

the inner edges of the smaller squares, with the restriction that at most ¢
portal appearances from each inner edge may appear in the sequence 7). We
consider the complexity of systematically enumerating all these sequences.

Each sequence 7y can be obtained as follows. Pick at most ¢y portal
appearances from each inner edge of the smaller squares. Let Py be the set of
all these portals selected from the inner edges. Now we properly insert each
of the portals in Py in the crossing sequence o. Of course, many sequences
constructed this way do not give valid crossing sequences on the smaller
squares. But this can be checked easily from the sequences themselves.

Since each inner edge e of the smaller squares has mg+1 (1/myg)-portals,
there are

(mo + 1) + (mo +1)°7 4+ + (mo + 1) + 1 < 2(mg + 1)

ways to pick at most ¢y portal appearances from e. Therefore, totally there
are at most 2%(mg + 1)*“ ways to construct a set Py of portal appearances,
in which each inner edge has at most ¢y portal appearances. Once the set
Py is decided, the number of ways to insert the portal appearances in Py
into the crossing sequence o is bounded by (note that both the set Py and
the crossing sequence o have at most 4¢y portal appearances):

(800)!
(4co)!
Therefore, the number of sequences 7y that may represent valid crossing

sequences for the four smaller squares consistent with the crossing sequence
o of @, is bounded by

(4co + 1)(4co +2) - -~ (deg + 4eg) =

(et = 0o m))

2% (mg + 1)* .

and these sequences can be enumerated systematically in time O((logn)°™)
(note that each sequence is of length O(cyp) = O(1) so operations on each
sequence can always be done in constant time).

By our algorithm, the shortest partial salesman tour consistent with each
crossing sequence for each smaller square has been constructed and stored.
Therefore, for each valid set {c},0%,0%,04} of crossing sequences for the
smaller squares @}, @5, @5, and @, consistent with the crossing sequence
o of @),, we can easily construct the corresponding partial salesman tour
consistent with ¢ in the square @,. Examining all valid sets of crossing
sequences for the smaller squares will result in the shortest partial salesman
tour consistent with the crossing sequence o in the square @), .

276 PTAS

Summarizing the above discussion, we conclude that for each node v in
the 4-ary tree Tj; and for each crossing sequence o of the square @), for v,
the shortest partial salesman tour in), consistent with o can be constructed
in time O((logn)?M).

Now we count the number of different crossing sequences for a given
square @,. For each edge e of Q),, a crossing sequence may cross the portals
of e at most ¢y times. There are at most 2(mgy + 1) ways to pick no more
than cy portal appearances on the edge e, and there are totally at most
24(mg + 1)*¢ ways to pick no more than ¢y portal appearances from each
of the four edges of @,. For each such selection of portal appearances, a
permutation of these selected portal appearances gives a crossing sequence
of Q,. Since each such selection contains at most 4¢y portal appearances,
the total number of possible crossing sequences of), is bounded by

2% (mo + 1) (4ep)! = O((log n)°M))
Therefore, the algorithm ETSP(S, a,b) spends at most time
O((logn)®M) - O((log n)°™) = O((log n)°™M)

on each node in the 4-ary tree Tjp. Since the number of nodes in the
4-ary tree T, is bounded by O(nlogn), we conclude that to construct

an optimal (cp,mg)-light salesman tour for the dissection D, takes time
O(n(logn)°W).

Remark. There are also some “obvious” restrictions we should keep in
mind when we are constructing crossing sequences for the squares in a dis-
section. For example, suppose that a square edge e is on the boundary of
the original bounding square (g, then no portals of e should be picked in
any crossing sequence of the square since an optimal (cg, mg)-light salesman
tour will definitely not cross the edge e. Moreover, in the crossing sequences
of the level-0 square @ for the (a, b)-shifted dissection, if a portal in an “out-
portal” on a edge of @), then the same position on the opposite edge of @
should be an “in-portal” since the opposite edges of Q) are actually the same
line in the original bounding square ()g. These obvious restrictions can be
all easily checked.

Theorem 8.3.3 For any fized € > 0, there is an O(n®(logn)®M) time
approzimation algorithm for the EUCLIDEAN TSP problem that for any in-
stance S constructs a salesman tour m satisfying |7|/Opt(S) <1 +e.

PrROOF. Let § = ¢/7. According to Lemma 8.3.1, we can construct a

GEOMETRIC PROBLEMS 277

d-disciplined instance Ss in linear time such that for any salesman tour 4
for Ss satisfying |ms|/Opt(Ss) < 1+ 6, we can construct in linear time a
salesman tour 7 for S satisfying |7|/Opt(S) <1+ 70 =1+e.

The theorem is concluded since according to the above analysis: for
each (a, b)-shifted dissection D, ;, we can construct in time O(n(logn)?M)
the optimal (cg,coho)-light salesman tour with respect to Dgp. Accord-
ing to Theorem 8.3.2, the salesman tour 75 that is the shortest over all
(co, cohg)-light salesman tours constructed for all shifted dissections must
satisfy |ms5|/Opt(Ss) < 1+ 6. Moreover, the total number of shifted dissec-
tions is bounded by n?. [

We remark that in the time complexity O(n3(logn)°™)) of the algorithm
in Theorem 8.3.3, both the constant coefficient and the constant exponent of
the logorithmic function depend on the given €. In particular, the algorithm
is not a fully polynomial time approximation scheme.

The time complexity of the algorithm in Theorem 8.3.3 can be improved
if we are allowed to use randomization in our computation. According to
Theorem 8.3.2, for at least half of the pairs (a,b), the optimal (e, cohg)-
light salesman tour m,; with respect to the (a,b)-shifted dissection D,
satisfies |7, 5| < (1 + €)Opt(S). Therefore, if we randomly pick, say, 10
pairs of (a,b) and construct the optimal (¢, cohg)-light salesman tour for
each of the corresponding shifted dissections, then the probability that the
shortest 7, ; of these ten (o, cohg)-light salesman tours satisfies the condition
|Tap| < (14 €)Opt(S) is as large as 1 — 1/219 > 0.999. Therefore, using
randomization, the time consuming enumeration of all the O(n?) pairs of
(a,b) can be avoided. This gives us the following theorem.

Theorem 8.3.4 For any fized ¢ > 0 and any fized 6 > 0, there is
an O(n(logn)°M) time randomized approzimation algorithm for the Eu-
CLIDEAN TSP problem that for any instance S constructs a salesman tour
m satisfying |7|/Opt(S) < 1+ € with probability at least 1 — 4.

8.3.3 Proof for the Structure Theorem

For completeness, we present a detailed proof for the Structure Theorem
(Theorem 8.3.2) in this subsection. Readers may skip this subsection on
their first reading. This will not affect continuous understanding of the rest
of the book.

Let S = {p1,.-.,pn} be an e-disciplined instance for EUCLIDEAN TSP.
Let Qo be the bounding square of S, where the lower-left corner of () is at

278 PTAS

the origin (0, 0), and each side of Qg is of length 27, where hy = [log(n/e)] =
O(logn). For each pair (a,b) of integers, 0 < a,b < 270, denote by Dgy the
(a, b)-shifted dissection of Q.

The Structure Theorem claims that for at least half of the pairs (a, b) of
integers, 0 < a,b < 20, there is a (cg, coho)-light salesman tour Tap With
respect to Dy satisfying 74| < (1 4 €)Opt(S), where ¢ is a constant.

To prove the Structure Theorem, we start with a shortest salesman tour
7, for the instance S and show how the salesman tour 7, can be modified into
a (co, cohg)-light salesman tour m,; without much increase in tour length.
For this, we need to show that how the shortest salesman tour 7, is modified
so that the number of crossings at each square edge of D,y is bounded by
the constant ¢y and that all crossings occur only at the (1/(cohg))-portals
of the square edge.

Intuitively, the total number of crossings of the shortest salesman tour 7,
over the square edges in D, should not be very large since a large number
of crossings over a line segment should be very costful. However, it is still
possible that the number of crossings of 7, over a particular square edge
exceeds the constant c¢y. Therefore, we first need to discuss how to reduce
the number of crossings of a salesman tour over a particular square edge.
The second requirement, that crossings only occur at portals of the square
edges, is relatively easier to achieve since moving a crossing to its nearest
portal is not very expensive. In the following, we formally implement these
ideas.

First we consider the number of crossings over a particular square edge.
Note by a “crossing” we mean the salesman tour hits the square edge from
one side of the edge then, maybe after some “zigzag” moves along the edge,
leaves the edge to the other side. In particular, it will not count as a cross-
ing if the tour hits the edge then leaves the edge back to the same side.
The reduction of the number of crossings on a square edge is based on the
following lemma, which we will call the “Patching Lemma”.

Lemma 8.3.5 (Patching Lemma) Let s be a line segment of length |s| and
7 be a salesman tour for an instance S of EUCLIDEAN TSP. Then there is
a salesman tour @ for S such that |7'| < |w|+ 3|s| and ' crosses s at most
twice.

Proor. Without loss of generality, assume that s is a vertical line.

Let p1, p2, ..., p: be the points on s at which 7 crosses, sorted by their
y-coordinates in nonincreasing order (see Figure 8.7(A)), with ¢ > 3. Here
we do not exclude the possibility that some of these points are identical.

GEOMETRIC PROBLEMS 279

Figure 8.7: Reducing the number of crossings by patching

Duplicate each point p; into two copies p} and p! and imagine that the points
pY, ..., p} are connected to the “right part” of the tour = while the points
pY, ..., p{ are connected to the “left part” of the tour = (see Figure 8.7(B)).
Now add edges

(pllap,2)’ (pIQapg)a R (p;—lap{‘,)a (plllapg)a (pgapg)a R (pg—lapg) (84)

The total length of the added edges in (8.4) is bounded by 2|s| (the length of
an edge is defined to be the Euclidean distance between its two endpoints).
In the resulting graph, the vertices pi, p{, p}, and p} have degree 2, and all
other vertices have degree 3. Based on the parity of ¢, we add another set
of multiple edges to the graph.

In case t is even, we add to the graph one of the following two sets of
multiple edges, with smaller total edge length

(péapé)a (pilapé)v Tt (p£—4apf‘,—3)7 (pgapg), (pZ,pg), Tt (pél—4apf‘,l—3)7
and (p}_s,P}_2), (Pt—1,Pt-1)
or (8.5)
(pg’pil)a (p:’)’p,G)v Tt (p273’p:‘,72)7 (pg,pZ)a (pgapg)v Tt (pélf3ap:‘,lf2)7
and (p, p3), (P—1,P{_1)

In case t is odd, we add to the graph one of the following two sets of multiple
edges, with smaller total edge length

(pIZapg)a (pilap,S)a Tty (p£—3ap£—2)a (pgapg)’ (p27pl5,)7 R (pg—?npg—Z)a
and (py_y,pi—1)
or (8.6)

280 PTAS

(pg’pil)a (pgapé)a R} (p£72ap£fl)7 (pgapZ)’ (pgaplé)a R} (pngapgfl)a
and (ph,p3)

(see Figure 8.7(C) for illustration, where the thinner edges are the added
edges). The idea here is that the total length of the added multiple edges
in (8.5) or (8.6) is bounded by |s| (note that the length of the edges (p}, p¥)
is 0). Moreover, the salesman tour 7 and all the added edges form a graph
G in which every vertex has an even degree. The sum of the edge lengths of
the graph G is bounded by || + 3|s|.

It is well-known in graph theory (see Appendix A, Theorem ?7?) that
in a graph in which all vertices have even degree, there is a Eulerian tour
(i.e., a tour that passes each edge in the graph exactly once). Therefore, the
Eulerian tour 7’ in the graph G forms a salesman tour for the instance S,
which crosses the line segment s at most twice and has length bounded by
|| +3|s|. O

Now we are ready to prove the Structure Theorem. Let ¢g = [64/€ + 3].

Put a 2"0 x 2P0 uniform grid structure on the bounding square Qg by 2"
equally spaced vertical lines and 270 equally spaced horizontal lines (note
we identify the opposite sides of the square (). These lines will be called
grid lines. Note that every square edge in the dissection D, is on a grid
line. Recall that a square is a level-i square if its corresponding node is
at level ¢ in the 4-ary tree T, for the dissection D,j. A level-i square is
a 2h0—% x 2ho—% gquare, and the maximum level number is hg. The square
edges of a level-i square will be called level-i square edges. We say that a
grid line £ is at level-i if 7 is the smallest integer such that a level-i square
edge is on £. Note that a level-i grid line may also contain square edges of
level number larger than .

Let 7, be a polygonal salesman tour for the instance S and |7,| = Opt(S).
Let £ be a level-i grid line (either vertical or horizontal). We discuss how to
reduce the number of crossings of 7, on the square edges of D, on £, using
the Patching Lemma. The simplest way is to apply the Patching Lemma
to each level-i square edge on ¢ so that the number of crossings on each of
these edges is bounded by 2. Note that this also automatically ensures that
the number of crossings on each square edge of level larger than ¢ on £ is
also bounded by 2, since each level-j square edge on £, where j > i, must be
entirely contained in a level-i square edge on £. Unfortunately, this simple
method may be expensive due to the following observation: suppose that
more than ¢y crossings occur on a level-j square edge e; on £, where j > i,
then, to replace these crossings by at most 2 crossings, applying the Patching

GEOMETRIC PROBLEMS 281

Algorithm. Modify(¢)
{ Assume that ¢ is a level-i grid line }.

for j = ho downto i do
for each level-j square edge e on ¢ do
if 7 crosses e more than cg times
then apply Patching Lemma to 7 and e.

Figure 8.8: Reducing the number of crossings on a grid line

Lemma directly to the level-i square edge e; containing e; would possibly
increase the tour length by 3|e;|, while applying the Patching Lemma to the
square edge e; has tour length increase bounded by 3|ej|. The edge length
le;| can be much larger than the edge length |e;|.

Based on this observation, we apply the Patching Lemma in a “bottom
up” manner starting from the shortest square edges, i.e., the square edges of
the highest level number, on the grid line £. The patching procedure, which
is called Modify(¥), is given in Figure 8.8.

To analyze the algorithm, we introduce two new notations. Let w(m,, £)
be the total number of crossings of the shortest salesman tour m, on the
grid line £, and let p(4, j) be the number of times the algorithm Modify(¥)
applies the Patching Lemma to a level-j square edge on the grid line £.

Here we have to be a little more careful about the square edges in the
shifted dissection Dg,p. Recall that a “square” in D,; may be formed by
several non-connected pieces in the original bounding square @y (see Fig-
ure 8.4(B)). If a square edge e crosses a boundary side of @, then the
square edge is actually formed by two non-connected segments ¢’ and e’ in
Qo- Therefore, in case there are more than ¢y crossings of m, over e, the
Patching lemma should be applied to the two segments e’ and e separately
since formally applying the Patching Lemma to the square edge e would
introduce a partial tour that crosses a boundary side of)y and continues
on the opposite side of (Qg. The two separated applications of the Patching
Lemma on ¢’ and e¢” may leave up to 4 crossings (instead of 2) on the square
edge e in D, ;. Therefore, we can ensure that each application of the Patch-
ing Lemma to a square edge in D, replaces a set of more than ¢y crossings
by a set of at most 4 crossings, thus reducing the number of crossings by
at least ¢y — 3. This observation gives the following relation for the values

282 PTAS

p(¢, j) and w(mo, £):

o o w(7o, £)
D ool 5) = plL,§) < —2 (8.7)
=i j=0 Co 3

The first equality in (8.7) is because this relation is independent of the level
number of the grid line #.

Since the length of a level-j square edge is 2707, each application of the
Patching Lemma to a level-j square edge increases the tour length by at
most 3 - 2P0, Therefore, the total increase in tour length by the algorithm
Modify(¢) is bounded by

ho) ho)
232" p(e,5) =33 2" p(e,) (8.8)
j=i Jj=t

The algorithm Modify(£) modifies the salesman tour and ensures that
the number of crossings over each square edge on £ is bounded by ¢y. How-
ever, here is a potential problem we need to take care of. Without loss of
generality, suppose that £ is a vertical grid line. Patching on £ may introduce
many “zigzag” moves along the line ¢/, which may cause new crossings over
horizontal grid lines. Let #' be such a horizontal grid line and let w’ be the
set of new crossings over ¢’ caused by patching the grid line £. Note that all
these new crossings over £’ are along the line £ so the segment s’ on £’ holding
these crossings has length 0. Therefore, applying the Patching Lemma to s’
and w’ will reduce the number of crossings to at most 2 without increasing
the tour length! In order to avoid introducing new crossings on the grid line
£ by the patching on s’ and w’, we can actually apply the Patching Lemma
twice, first to the segment s’ and the crossings in w’ that occur on the left
side of £, then to the segment s’ and the crossings in w' that occur on the
right side of £. This will reduce the number of crossings on the segment s’ to
at most 4, without increasing the tour length and the number of crossings
over the grid line /.

After the application of the algorithm Modify (), each square edge on
the grid line £ contains at most ¢y crossings. Now we move each crossing
point p to its nearest (1/(cohg))-portal on the level-i square edge e; on £ in
an obvious way: instead of crossing at p, we let the salesman tour first go
along the grid line £ (without crossing £) to the nearest (1/(cohg))-portal p’
of e;, then cross e; at the portal p’ and go along £ (now on the other side of
£) to come back to the old crossing point p and continue the tour. Note that
this will also move the crossing to a (1/(cohg))-portal on the square edge

GEOMETRIC PROBLEMS 283

containing p’ at any level on £ since a (1/(coho))-portal on a level-i square
edge e; is also a (1/(coho))-portal on any level-j square edge contained in
e;, where j > 4. Since the distance between two neighbor (1/(cohg))-portals
on a level-i square edge is 270 ~¢/(cyhg), the above modification on the tour
increases the tour length by at most 270 ~¢/(cohg). Since there are no more
than w(m,, £) crossings over the grid line 4, the total increase in tour length to
move the crossings to portals is bounded by 2% ~tw(m,, £)/(coho). Combining
this with (8.8), we conclude that we can modify the salesman tour 7, so that
the number of crossings on each square edge on the grid line £ is bounded
by ¢o and all crossings are only at (1/(coho))-portals of the square edges,
with the tour length increase 7(£,4) bounded by

2h0_iw(7ro, £)

coha (8.9)

ho
T(Ld) =3 2" Ip(L,) +
j=t

Now instead of computing directly the tour length increase due to the
above modification, we use a probabilistic argument. Look at a given (a, b)-
shifted dissection D, . With respect to the dissection Dy p, there is 1 vertical
grid line and 1 horizontal grid line of level 0, and for i > 0, there are 2¢~1
vertical grid lines and 2'~! horizontal grid lines of level i. Therefore, if the
integers a and b are picked randomly (with a uniform distribution) from
the set {0,1,---,2" — 1} then for a fixed grid line £ (either vertical or
horizontal), the probability that £ is a level-0 grid line is 1/2%0, and for
i > 0, the probability that £ is a level-i grid line is 2/~ /2"0_ Therefore, the
expected value of the tour length increase on the grid line £ is bounded by

ho
Z 7(£,1) - Prob[£ is a level-i grid line]
i=0
1 ho 2i—1 .
= 2707(6, O) + Z QTOT(E’ ’L)
i=1
ho 21
S Z 2TT(£a Z)
i=0
ho hO h 1
. 20 ho—j 20070y (14, £)
= Z oo (32_: 27 p(,) + =
=0 j=t
S w(mo,)

284 PTAS

ho (I w(m
= 32(%) olt,) + 2170
0

i=0 \i= co

ho
2 14

< 6> pt4) + 2(To, €)

=0 €
< 6w (7o, £) N 2w(7o, £)
- co— 3 Co
< 8w(mo, £)
- co— 3

Here we have used the inequality (8.7).

Thus, if the integers a and b are picked randomly, then the expected
value of the total tour length increase to modify the shortest salesman tour
T, into a (co, coho)-light salesman tour with respect to D, is bounded by

3 8w(7ro,e):CO8_3 3 W(%aﬁ)zé > wime,l) (8.10)

C()—3

grid line £ grid line £ grid line £

To complete the proof, we show

Z w(mo, £) < 4|mo| = 4 - Opt(S)

grid line £

Recall that 7, is a polygonal salesman tour consisting of n segments con-
necting the points in S. For each segment s in 7, with length |s| > 0, let
|zs| and |ys| be the length of the horizontal and vertical projections of s.
Then the segment s can cross at most |z5|+ 1 vertical grid lines and at most
lys| + 1 horizontal grid lines. We have

|$s| + |ys| +2< \/2(|$s|2 + |ys|2) +2= |3|\/§+ 2

where we have used the facts that the length |s| of the segment s satisfies
Is|? = |@s|? +|ys|? and |zs|2 + |ys|? > 2|zs|- |ys|- Therefore, the total number
of crossings of the salesman tour 7, over all grid lines can be bounded by

Yo owlme,) < D (lzsl sl +2) < Y (slvV2+2)

grid line ¢ segment s segment s

< S (sVat2s) <4 S Is| < dimg| = 4- Opt(S)

segment s segment s

Note here we have used the fact |s| > 1, which is true because the instance
S is e-disciplined. Combining this with (8.10), we conclude that for random

GEOMETRIC PROBLEMS 285

integers a and b, 0 < a,b < 2", the expected value of the total tour length
increase to modify the shortest salesman tour 7, into a (co, coho)-light sales-
man tour, with respect to D, 4, is bounded by € - Opt(S)/2. This implies
immediately that for at least half of the pairs (a,b), the total tour length
increase to modify the shortest salesman tour 7, into a (cg, cohg)-light sales-
man tour 7, p, with respect to the (a,b)-shifted dissection D, 3, is bounded
by €-Opt(S). That is, the (co, coho)-light salesman tour 7, with respect to
D, satisfies |mq | < (1 + €)Opt(S).
This completes the proof for the Structure Theorem.

Remark. The probabilistic argument used above is not necessary. In fact,
direct counting, using the idea adopted in the probabilistic argment, would
also derive the same result. For this, we first count the number of level-;
grid lines with respect to each dissection D, p, then compute the tour length
increase on this particular dissection D,p. Finally, we add the tour length
increases over all dissections D, 3, and will find out that the “average” tour
length increase on each dissection is bounded by €-Opt(S)/2. Now the same
conclusion should be derived.

8.3.4 Generalization to other geometric problems

A number of important techniques have been described in the discussion
of our polynomial time approximation scheme for the EucLIDEAN TSP.
The concepts of e-disciplined instances and (cp, my)-light salesman tours en-
able us to concentrate on very well-behaved instances and solutions. The
Patching Lemma introduces an effective method to convert a solution to
a well-behaved solution, and the Structure Theorem makes it possible to
apply dynamic programming to search for an optimal well-behaved solution
efficiently. This systematic echnique turns out to be very effective and pow-
erful in development of approximation algorithms for geometric problems.
In the following, we briefly describe the extensions of this technique to solve
other geometric problems.

The extension of Theorem 8.3.3 to EUCLIDEAN TSP in higher dimen-
sional Euclidean space £% is natural, when d is a fixed constant. As be-
fore, we first make an instance S e-disciplined by rescaling and perturba-
tion, as we did in Lemma 8.3.1. Now the Patching Lemma is applied to a
(d — 1)-dimensional hypercube (instead of to a line segment as we did in
Lemma 8.3.5) to reduce the number of crossings to the (d — 1)-dimensional
hypercube to at most 2. A similar Structure Theorem can be proved based
on these modifications for EUCLIDEAN TSP in £ which again makes the

286 PTAS

dynamic programming possible to search for a well-behaved salesman tour
for S efficiently. We omit all details and refer the readers to Arora’s original
paper [5]. Here we only state the final result for this extension.

Theorem 8.3.6 For any fixed ¢ > 0 and any fized integer d, there is a
polynomial time approximation algorithm for the EUCLIDEAN TSP problem
in the d-dimensional Euclidean space £ that for any instance S constructs
a salesman tour w satisfying |7|/Opt(S) <1+e.

The technique can also be applied to develop polynomial time approxi-
mation schemes for the geometric problems listed below, where d is a fixed
integer. For each of these problems, we need to modify our concepts of the e-
disciplined instances, the well-behaved solutions, the Patching Lemma, and
the Structure Theorem accordingly. We also refer our readers to the original
paper [5] for details.

EUCLIDEAN STEINER TREE: Given a set S of n points in the Euclidean
space £%, find a minimum cost tree connecting all points in S (the tree
does not have to use only the given points in S as its nodes).

PARTIAL TSP: Given a set S of n points in the Euclidean space £% and an
integer k£ > 1, find the shortest tour that visits at least k£ points in S.

PARTIAL MST: Given a set S of n points in the Euclidean space £¢ and
an integer k > 2, find k£ points in S such that the minimum spanning
tree on the k points is the shortest (over minimum spanning trees on
all subsets of k£ points in S).

Theorem 8.3.7 Each of the following geometric problems has a polynomial
time approximation scheme: EUCLIDEAN STEINER TREE, PARTIAL TSP,
and PARTIAL MST.

8.4 Which problems have no PTAS?

Polynomial time approximation schemes offer an efficient method to con-
struct solutions very close to the optimal solutions for optimization problems
whose optimal solutions otherwise would be hard to construct. Therefore,
it is desirable to know whether a given NP-hard optimization problem has
a polynomial time approximation scheme. In Section 6.4, we have devel-
oped effective and powerful methods (Theorem 6.4.1 and Theorem 6.4.8) to

NON-PTAS 287

identify NP-hard optimization problems that have no fully polynomial time
approximation scheme. One would expect that a similar approach could offer
equally effective and powerful methods for identifying NP-hard optimization
problems with no (non-fully) polynomial time approximation scheme. How-
ever, the solution to this task turns out to require deeper understanding of
the complexity of NP-hard optimization problems.

It is interesting and enlightening to have a brief historical review on the
development of polynomial time approximation schemes for certain NP-hard
optimization problems.

Consider the MAKESPAN problem (see Section 8.1 for a precise definition
for the problem). Graham initialized the study of approximation algorithms
for this important optimization problem in 1966 [56] and showed that there
is a polynomial time approximation algorithm for the problem with approx-
imation ratio 2 (see Algorithm Graham-Schedule and Theorem 5.3.1).
The algorithm is based on a very simple greedy method that assigns each
job to the earliest available processor. Three years later he further showed
that if a preprocessing is performed that sorts the jobs by their process-
ings times in non-increasing order before the algorithm Graham-Schedule
is applied, then the approximation ratio of the algorithm can be improved
to 4/3 (see Theorem 5.3.3). The approximation ratio for the MAKESPAN
problem then was continuously improved. In 1978, it was improved to 1.22,
then to 1.20 and then to 72/61 = 1.18 .- (see the introduction section in
[63] for more detailed review and references of this line of research). This
line of research was eventually closed by Hochbaum and Shmoys’ polyno-
mial time approximation scheme for the problem [63], which concludes that
for any € > 0, there is a polynomial time approximation algorithm for the
MAKESPAN problem with approximation ratio bounded by 1 + €. This ap-
proximation scheme has been described in detail in Section 8.1.

Another similar story has happened for EUCLIDEAN TSP (see Section
8.3 for a precise definition for the problem). A very neat approximation
algorithm based on minimum spanning trees for the problem has an approx-
imation ratio 2. Christofides’ remarkable work, based on the approach of
minimum spanning trees incorporated with observations in minimum weight
complete matchings and Euler tours, improved this ratio to 1.5. Christofides’
ratio for EUCLIDEAN TSP stood as the best result for two decades (see the
introduction section in [5] for more detailed review and references for this
line of research, also see Section 9.1 for detailed descriptions for these algo-
rithms). In fact, the difficulty for improving Christofides’ ratio had made
people attempt to believe that EUCLIDEAN TSP has no polynomial time
approximation scheme. A surprising breakthrough by Arora [5] was made

288 PTAS

twenty year after Christofides’s algorithm, which presented a polynomial
time approximation scheme for EUCLIDEAN TSP, as we described in Sec-
tion 8.3. It is also interesting to point out that Arora’s result was initiated
from his attempt at proving the nonexistence of polynomial time approxi-
mation schemes for EUCLIDEAN TSP.

The efforts are not always as successful as this for some other NP-hard
optimization problems. We give an example below. A Boolean variable x is
a variable that can take values TRUE or FALSE. A literal is either a Boolean
variable or a negation of a Boolean variable. A clause is a disjunction (i.e.,
OR) of literals. We say that an assignment makes a clause satisfied if the as-
signment makes at least one literal in the clause have value TRUE. Consider
the following problem:

MAX-2SAT

Given a set F' of clauses, each containing at most 2 literals, find
an assignment of the boolean variables in F' that maximizes the
number of satisfied clauses.

In 1974, Johnson presented an approximation algorithm of ratio 2 for the
MAX-2SAT problem. This ratio was then improved to 1.33-- - in 1991, then
t0 1.138 -+ in 1994 and to 1.074--- in 1995 (see [38] for detailed review and
references for this line of research, also see Section 9.3 for detailed discussions
on some of these algorithms). One might expect that this line of research
would eventually lead to a polynomial time approximation scheme for the
MAx-2SAT problem. This, actually, is not possible since recent research
has shown that unless P = NP, there is no polynomial time approximation
algorithm of ratio 1.0476 for the MAX-2SAT problem [61].

Characterization of optimization problems that have no polynomial time
approximation scheme has been a very active research area in the last three
decades. Recently, deep and exciting advances have been made in this di-
rection, which provide effective and powerful methods for identification of
optimization problems with no polynomial time approximation scheme. We
will describe these results systematically in the next part of the book (Chap-
ters 9-11). In the following, we mention some simple techniques, which can
be used to prove the nonexistence of polynomial time approximation schemes
for certain optimization problems.

If an optimization problem remains NP-hard even when the optimal
value for its objective function is very small, then we can derive imme-
diately that the problem has no polynomial time approximation scheme
(based on the assumption P # NP). For example, observing for the BIN

NON-PTAS 289

PACKING problem that deciding whether the minimum number of bins for
a given set of items is 2 is NP-hard, we derived immediately that there is
no polynomial time approximation algorithm of ratio less than 3/2 for the
BIN PACKING problem (Theorem 7.1.2). In Section 7.2, based on the fact
that deciding whether the edges of a graph can be colored with at most
3 colors is NP-hard, we derived that the GRAPH EDGE COLORING prob-
lem has no polynomial time approximation algorithm for ratio less than 4/3
(Theorem 7.2.3). These, of course, exclude immediately the possibility of
existence of polynomial time approximation schemes for the problems.

For certain optimization problems, it is possible to change the approx-
imation ratio dramatically by trivial modifications in input instances. For
this kind of problems, one may prove the nonexistence of polynomial time
approximation schemes. Consider the general TRAVELING SALESMAN prob-
lem:

TRAVELING SALESMAN

Given a weighted complete graph G, construct a traveling sales-
man tour in G with the minimum weight.

Theorem 8.4.1 If P # NP, then for any function f(n) = O(c"), where ¢
is a constant, the TRAVELING SALESMAN problem has no polynomial time
approzimation algorithm of ratio bounded by f(n).

ProoF. We first reduce the NP-hard problem HAMILTONIAN CIRCUIT to
the TRAVELING SALESMAN problem. Recall that the HAMILTONIAN CIR-
CUIT problem is, for each given graph G, decides if there is a simple cycle
in G containing all the vertices in G (such a cycle is called a Hamiltonian
circuit). For an instance G of n vertices for the HAMILTONIAN CIRCUIT
problem, we construct an instance G’ for the TRAVELING SALESMAN prob-
lem as follows. The graph G’ has the same set of vertices as G. For each
pair of vertices u and v, if (u,v) is an edge in G, then the edge (u,v) in G’
has weight 1, and if (u,v) is not an edge in G, then the edge (u,v) in G’ has
weight nf(n). It is easy to see that if the graph G has a Hamiltonian circuit
then the minimum traveling salesman tour in G’ has weight n, while if the
graph G has no Hamiltonian circuit then the minimum traveling salesman
tour in G’ has weight at least nf(n) + n — 1. Also note that the condition
f(n) = O(c™) ensures that the transformation from G to G’ can be done in
polynomial time.

If the TRAVELING SALESMAN problem had a polynomial time approx-
imation algorithm A of ratio bounded by f(n), then we would be able to

290 PTAS

use this algorithm A to solve the HAMILTONIAN CIRCUIT problem, as fol-
lows. Applying the approximation algorithm A to the instance G’. Since
the approximation ratio of A is bounded by f(n), in case the graph G has a
Hamiltonian circuit (i.e., the minimum salesman tour in G’ has weight n),
the algorithm A returns a salesman tour of weight at most nf(n), while in
case the graph G has no Hamiltonian circuit (so the minimum salesman tour
in G’ has weight at least nf(n) +n —1 > nf(n)), the algorithm A returns
a salesman tour of weight larger than nf(n) (we assume n > 1). There-
fore, based on the weight of the salesman tour returned by the algorithm
A, we can directly decide if the graph G has a Hamiltonian circuit. This
would solve the NP-hard problem HAMILTONIAN CIRCUIT in polynomial
time, which in consequence would imply that P = NP. []

Note that Theorem 8.4.1 is actually much stronger than saying the
the TRAVELING SALESMAN problem has no polynomial time approximation
scheme.

Part 111

Constant Ratio
Approximable Problems

291

293

This part of the book concentrates on the study of optimization problems
that have polynomial time approximation algorithms with approximation
ratio bounded by a constant. These problems will be called approximable
optimization problems.

For a given approximable optimization problem @, development of an
approximation algorithm in general involves four steps:

1. design a polynomial time approximation algorithm A for Q;

2. analyze the algorithm A and derive an upper bound c4 on the approx-
imation ratio for A;

3. study the optimility of the value cy4, i.e. is there another ¢, < ¢4 such
that /4 is also an upper bound for the approximation ratio for the
algorithm A?

4. study the optimality of the algorithm A, i.e., is there another approx-
imation algorithm A’ for the problem @ such that the approximation
ratio of A’ is smaller than that of A?

Step 1 may involve a wide range of techniques in general algorithm de-
sign. Many approximation algorithms are based intuition, experience, or
deeper insight on the given problems. Popular techniques include the greedy
method, branch and bound, and other combinatorical methods. Probabilis-
tic method has also turned out to be very powerful. Step 2 is special in
particular for the study of approximation algorithms. One challenging task
in this step is the estimation of the value of an optimal solution, which is
necessary in comparison with the value of the approximation solution given
by the algorithm A to derive the ratio c4. To prove that the value c4 is the
best possible for the algorithm A in Step 3, it suffices to construct a single
instance « and show that the algorithm A on the instance « gives a solu-
tion whose value is equal to Opt(«). In some cases, the algorithm designer
through his development of the algorithm may have got some ideas about
what are the “obstacles” for his algorithm. In this case, Step 3 may become
pretty easy. However, there are also other examples of approximation algo-
rithms, for which Step 3 have turned out to be extremely difficult. In most
cases, Step 4 is the most challenging task in the study of approximation
algorithms for optimization problems, which involves the study of “precise”
and “intrinsic” polynomial time approximability for optimization problems.

Also note that if an optimization problem has polynomial time approx-
imation scheme, then the answers to the questions in Step 3 and Step 4
become trivial. Therefore, powerful techniques for identifying optimization

294

problems that have no polynomial time approximation scheme is also central
in the study of approximable optimization problems.

The discussion in this part will be centered around the above issues. In
Chapter 9, we present constant ratio approximation algorithms for a num-
ber of well-known approximable optimization problems, based on the polular
greedy method. Chapter 10 introduces a more recently developed probabilis-
tic method that turns out to be very powerful in developing approximation
algorithms for optimization problems. In Chapter 11, we introduce the
theory of Apx-completeness, which provides a powerful and systematical
methodology for identifying approximable optimization problems with no
polynomial time approximation scheme.

Chapter 9

Combinatorical Methods

Popular combinatorical methods in approximation algorithms include the
greedy method, dynamic programming, branch and bound, local search,
and combinatorical transformations.

In this chapter, we present approximation algorithms, based on these
combinatorical methods, for a number of well-known NP-hard optimization
problems, including the metric traveling salesman problem, the maximum
satisfiability problem, the maximum 3-dimensional matching problem, and
the minimum vertex cover problem. Note that these four problems are,
respectively, the optimization versions of four of the six “basic” NP-complete
problems according to Garey and Johnson [49]: the Hamiltonian circuit
problem, the satisfiability problem, the 3-dimensional matching problem,
and the vertex cover problem,

For each of the problems, we start with a simple approximation algo-
rithm and analyze its approximation ratio. We then discuss how to derive
improved the approximation ratio using more sophisticated techniques or
more thorough analysis, or both.

9.1 Metric TSP

In Section 8.3, we have discussed in detail the traveling salesman problem
in Euclidean space, and shown that the problem has a polynomial time
approximation scheme. Euclidean spaces are special cases of a metric space,
in which a non-negative function w (the metric) is defined on pairs of points
such that for any points p1, ps, p3 in the space

(1) w(p1,p2) = 0 if and only if p; = po,

(2) w(p1,p2) = w(p2,p1), and

295

296 COMBINATORICAL METHODS

(3) w(p17p2) < w(plap?)) + w(p3ap2)'
The third condition w(p1,p2) < w(p1,p3) + w(ps,p2) is called the triangle
inequality. In an Fuclidean space, the metric between two points is the
distance between the two points. Many non-Euclidean spaces are also metric
spaces. An example is a traveling cost map in which points are cities while
the metric between two cities is the cost for traveling between the two cities.

In this section, we consider the traveling salesman problem on a general
metric space. Since the metric between two points p; and py in a metric
space can be represented by an edge of weight w(p1,p2) between the two
points, we can formulate the problem in terms of weighted graphs.

Definition 9.1.1 A graph G is a metric graph if G is a weighted, undirected,
and complete graph, in which edge weights are all positive and satisfy the
triangle inequality.

A salesman tour m in a metric graph G is a simple cycle in G that
contains all vertices of G. The weight wt(m) of the salesman tour 7 is the
sum of weights of the edges in the tour. The traveling salesman problem on
metric graphs is formally defined as follows.

MEeTrIC TSP

Ig: the set of all metric graphs

So: S@(G) is the set of all salesman tours in G

fo: fo(G,) is the weight of the salesman tour « in G
optg: min

Since EUCLIDEAN TSP is NP-hard in the strong sense [47, 100], and
EUCLIDEAN TSP is a subproblem of METRIC TSP, we derive that METRIC
TSP is also NP-hard in the strong sense and, by Theorem 6.4.8, M ETRIC
TSP has no fully polynomial time approximation scheme unless P = NP.

We will show in Chapter 11 that METRIC TSP is actually “harder” than
EUCLIDEAN TSP in the sense that METRIC TSP has no polynomial time
approximation scheme unless P = NP. In this section, we present approxi-
mation algorithms with approximation ratio bounded by a constant for the
problem METRIC TSP.

9.1.1 Approximation based on a minimum spanning tree

Our first approximation algorithm for METRIC TSP is based on minimum
spanning trees. See the algorithm presented in Figure 9.1, here the con-

METRIC TSP 297

Algorithm. MTSP-Apx-1

Input: a metric graph G
Output: a salesman tour « in G, given in an array V[1..n]

1. construct a minimum spanning tree T for G;
2. let r be the root of T'; 7 =0;

3. Seq(r)

Seq(v)

1. i=i+1;

2. V] =wv;

3. for each child w of v do
Seq(w);

Figure 9.1: Approximating METRIC TSP

structed salesman tour is given in the array V[1..n] as a (cyclic) sequence of
the vertices in G, in the order the vertices appear in the tour.

The minimum spanning tree T can be constructed in time O(nm) (see
Section 1.3.1 for detailed discussion). Therefore, step 1 of the algorithm
MTSP-Apx-I takes time O(nm). Step 3 calls a recursive subroutine
Seq(r), which is essentially a depth first search procedure on the minimum
spanning tree T" to order the vertices of T" in terms of their depth first search
numbers (see Appendix A). Since the depth first search process takes time
O(m + n) on a graph of n vertices and m edges, step 3 of the algorithm
MTSP-Apx-I takes time O(n). In conclusion, the time complexity of the
algorithm MTSP-Apx-I is O(nm).

The depth first search process Seq(r) on the tree T’ can be regarded as a
closed walk 7y in the tree (a closed walk is a cycle in T" in which each vertex
may appear more than once). Each edge [u,v], where u is the father of v
in T, is traversed exactly twice in the walk my: the first time when Seq(u)
calls Seq(v) we traverse the edge from u to v, and the second time when
Seq(v) is finished and returns back to Seq(u) we traverse the edge from
v to u. Therefore, the walk 7y has weight exactly twice the weight of the
tree T. It is also easy to see that the list V[1..n] produced by the algorithm
MTSP-Apx-I can be obtained from the walk 7y by deleting for each vertex
v all but the first occurrence of v in the list my. Since each vertex appears
exactly once in the list V[1..n], V[1..n] corresponds to a salesman tour 7 in
the metric graph G.

Example. Consider the tree T' in Figure 9.2, where r is the root of the

298 COMBINATORICAL METHODS

U1 Vo

v3 Vs
V4
Ve

Figure 9.2: The minimum spanning tree T

tree T. The depth first search process (i.e., the subroutine Seq) traverses
the tree T' in the order

T : ryv1,v3,01,7,V2,V4,0V2,V5, V6, V5,02, T

By deleting for each vertex v all but the first vertex occurrence for v, we
obtain the list of vertices of the tree T' sorted by their depth first search
numbers

T T,v1,v3,02,V4, Vs, Vs,

Deleting a vertex occurrence of v in the list {-- - uvw - - -} is equivalent to
replacing the path {u,v,w} of two edges by a single edge [u,w]. Since the
metric graph G satisfies the triangle inequality, deleting vertex occurrences
from the walk 7y does not increase the weight of the walk. Consequently, the
weight of the salesman tour m given in the array V[l..n] is not larger than
the weight of the closed walk 7, which is bounded by 2 times the weight of
the minimum spanning tree 7T'.

Since removing any edge (of positive weight) from any minimum sales-
man tour results in a spanning tree of the metric graph G, the weight of a
minimum salesman tour in G is at least as large as the weight of the mini-
mum spanning tree T'. In conclusion, the salesman tour 7 given in the array
V[1..n] by the algorithm MTSP-Apx-I has its weight bounded by 2 times
the weight of a minimum salesman tour. This gives the following theorem.

Theorem 9.1.1 The approzimation ratio of the algorithm MTSP-Apx-I
is bounded by 2.

Two natural questions follow from Theorem 9.1.1. First, we have shown
that the ratio of the weight wt(7) of the salesman tour 7 constructed by the
algorithm MTSP-Apx-I and the weight wt(m,) of a minimum salesman
tour m, is bounded by 2. Is it possible, by a more careful analysis, to show
that wt(w)/wt(m,) < ¢ for a smaller constant ¢ < 2?7 Second, is there a

METRIC TSP 299

I A
-
T xg# n X,
o Xn,
Co Ty,
@ (b) (© (d)

Figure 9.3: METRIC TSP instance for MTSP-Apx-I.

polynomial time approximation algorithm for METRIC TSP whose approx-
imation ratio is better than that of the approximation algorithm MTSP-
Apx-1?7

These two questions constitute two important and in general highly non-
trivial topics in the study of approximation algorithms. Essentially, the first
question asks whether our analysis is the best possible for the algorithm,
while the second question asks whether our algorithm is the best possible
for the problem.

The answer to the first question some times is easy if we can find an
instance for the given problem on which the solution constructed by our
algorithm reaches the specified approximation ratio. In some cases, such in-
stances can be realized during our analysis on the algorithm: these instances
are the obstacles preventing us from further lowering down the approxima-
tion ratio in our analysis. However, there are also situations in which finding
such instances is highly non-trivial.

The algorithm MTSP-Apx-I for the METRIC TSP problem belongs to
the first category. We give below simple instances for METRIC T'SP to show
that the ratio 2 is tight for the algorithm in the sense that there are instances
for METRIC TSP for which the algorithm MTSP-A px-I produces solutions
with approximation ratio arbitrarily close to 2.

Counsider the figures in Figure 9.3, where our metric space is the Eu-
clidean plane and the metric between two points is the Euclidean distance
between the two points. Suppose we are given 2n points on the Euclidean
plane with polar coordinates zx = (b,360k/n) and y, = (b + d,360k/n),
k =1,...,n, where d is much smaller than b. See Figure 9.3(a). It is not
hard (for example, by Kruskal’s algorithm for minimum spanning trees [28])
to see that the edges [z, zk41], K =1,...,n —1 and [z;,y;], s = 1,...,n
form a minimum spanning tree T' for the set of points. See Figure 9.3(b).
Now if we perform a depth first search on T starting from the vertex z; and

300 COMBINATORICAL METHODS

construct a salesman tour, we will get a salesman tour 7, that is shown in
Figure 9.3(c), while an optimal salesman tour 74 is shown in Figure 9.3(d).

The weight of the salesman tour 7. is about 2a(n — 1) 4+ 2d, where q is
the distance between two adjacent points zy and zx1 (note that when d is
sufficiently small compared with a, the distance between two adjacent points
yx and yg+1 is roughly equal to the distance between the two corresponding
points z; and x,1), while the optimal salesman tour 74 has weight roughly
nd + na. When d is sufficiently small compared with a and when n is
sufficiently large, the ratio of the weight of the tour 7. and the weight of the
tour w4 can be arbitrarily close to 2.

9.1.2 Christofides’ algorithm

Now we turn our attention to the section question. Is the approximation
algorithm MTSP-Apx-I the best possible for the problem METRIC TSP?
Let us look at the algorithm MTSP-Apx-Iin Figure 9.1 in detail. After
the minimum spanning tree 7" is constructed, we traverse the tree 7" by a
depth first search process (the subroutine Seq) in which each edge of T is
traversed exactly twice. This process can be re-interpreted as follows:

1. construct a minimum spanning tree;

2. double each edge of T into two edges, each of which has the same
weight as the original edge. Let the resulting graph be D;

3. make a closed walk W in the graph D such that each edge of D is
traversed exactly once in W;

4. use “shortcuts”, i.e., delete all but the first occurrence for each vertex
in the walk W to make a salesman tour .

There are three crucial facts that make the above algorithm correctly
produce a salesman tour with approximation ratio 2: (1) the graph D gives
a closed walk W in the graph G that contains all vertices of G; (2) the total
weight of the closed walk W is bounded by 2 times the weight of an optimal
salesman tour; and (3) the shortcuts do not increase the weight of the closed
walk W so that we can derive a salesman tour 7 from W without increasing
the weight of the walk.

If we can construct a graph D' that gives a closed walk W' with weight
smaller than that of W constructed by the algorithm MTSP-Apx-I such
that D' contains all vertices of G, then using the shortcuts on W' should
derive a better approximation to the optimal salesman tour.

METRIC TSP 301

Graphs whose edges constitute a single closed walk have been studied
based on the following concept.

Definition 9.1.2 An FEulerian tour in a graph G is a closed walk in G that
traverses each edge of G exactly once. An undirected connected graph G is
an Fulerian graph if it contains an FKulerian tour.

Eulerian graphs have been extensively studied in graph theory literature
(see for example, [59]). Recent research has shown that Eulerian graphs
play an important role in designing efficient parallel graph algorithms [79].
A proof of the following theorem can be found in Appendix A (see Theo-
rems A.1 and A.2).

Theorem 9.1.2 An undirected connected graph G is an Fulerian graph if
and only if every vertex of G has an even degree. Moreover, there is a linear

time algorithm that, given an Eulerian graph G, constructs an Eulerian tour
in G.

Thus, the graph D described above for the algorithm MTSP-Apx-I is
actually an Eulerian graph and the closed walk W is an Eulerian tour in D.
Now we consider how a better Eulerian graph D’ can be constructed based
on the minimum spanning tree 7', which leads to a better approximation to
the minimum salesman tour.

Let G be a metric graph, an input instance of the METRIC TSP problem
and let 7" be a minimum spanning tree in G. We have

Lemma 9.1.3 The number of vertices of the tree T that has an odd degree
in 1T is even.

PROOF. Let vy, ..., v, be the vertices of the tree T. Since each edge
e = [v;,v;] of T contributes one degree to v; and one degree to v;, and T
has exactly n — 1 edges, we must have

zn:degT(Uz') =2(n—1)

=1

where degr(v;) is the degree of the vertex v; in the tree T. We partition the
set of vertices of T' into odd degree vertices and even degree vertices. Then
we have

> degr(v)+ Y, degr(v)) =2(n—1)

v;: even degree v;: odd degree

302 COMBINATORICAL METHODS

Algorithm. Christofides

Input: a metric graph G
Output: a salesman tour «’ in G

1. construct a minimum spanning tree T for G;
2. let vy, ..., vap, be the odd degree vertices in T’;
construct a minimum weighted perfect matching M} in the complete
graph H induced by the vertices v1, ..., v2z;
3. construct an Eulerian tour W’ in the Eulerian graph D' =T + Mp;
use shortcuts to derive a salesman tour 7' from W';
5. return 7.

e

Figure 9.4: Christofides’ Algorithm for METRIC TSP

Since both 3=, even degree €97 (vi) and 2(n — 1) are even numbers, the value
2 u;: odd degree degr(v;) is also an even number. Consequently, the number
of vertices that have odd degree in T" must be even. []

By Lemma 9.1.3, we can suppose, without loss of generality, that vy,
v9, ..., Vg are the odd degree vertices in the tree 7. The vertices vy,
Vo, ..., Ugp induce a complete subgraph H in the original metric graph G
(recall that a metric graph is a complete graph). Now construct a minimum
weighted perfect matching M}, in H (a perfect matching in a complete graph
of 2h vertices is a matching of h edges. See Section 3.5 for more detailed
discussion). Since each of the vertices vy, vg, ..., von has degree 1 in the
graph Mj, adding the edges in M}, to the tree T results in a graph D' =
T + Mjp, in which all vertices have an even degree. By Theorem 9.1.2, the
graph D' is an Eulerian graph. Moreover, the graph D’ contains all vertices
of the original metric graph G. We are now able to derive a salesman tour
7' from D’ by using shortcuts.

We formally present this in the algorithm given in Figure 9.4. The
algorithm is due to Christofides [24].

According to Theorem 3.5.5, the minimum weighted perfect matching
My}, in the complete graph H induced by the vertices vy, ..., vo, can be con-
structed in time O(h3) = O(n?). By Theorem 9.1.2, step 3 of the algorithm
Christofides takes linear time. Thus, the algorithm Christofides runs in
time O(n3).

Now we study the approximation ratio for the algorithm Christofides.

Lemma 9.1.4 The weight of the minimum weighted perfect matching My,

METRIC TSP 303

in the complete graph H induced by the vertices v1, ..., Van, Decm, wit(e),
is at most 1/2 of the weight of a minimum salesman tour in the graph G.

Proor. Let m, be an optimal salesman tour in the metric graph G. By
using shortcuts, i.e., by removing the vertices that are not in {vy,ve, ..., v}
from the tour 7,, we obtain a simple cycle 7 that contains exactly the vertices
V1, --., Ugp. Since the metric graph G satisfies the triangle inequality, the
weight of 7 is not larger than the weight of =,.

The simple cycle m can be decomposed into two disjoint perfect match-
ings in the complete graph H induced by the vertices vy, ..., vgy: one
matching is obtained by taking every other edge in the cycle w, and the
other matching is formed by the rest of the edges. Of course, both of these
two perfect matchings in H have weight at least as large as the minimum
weighted perfect matching M}, in H. This gives

wt(m,) > wt(mw) > 2 - wi(Mp,)
This completes the proof. [
Now the analysis is clear. We have D' =T + Mj,. Thus
wt(D') = wt(T) + wt(Mp,)

As we discussed in the analysis for the algorithm MTSP-Apr-1, the weight
of the minimum spanning tree 7' of the metric graph G is not larger than
the weight of a minimum salesman tour for G. Combining this with
Lemma 9.1.4, we conclude that the weight of the Eulerian graph D’ is
bounded by 1.5 times the weight of a minimum salesman tour in G. Thus,
the Eulerian tour W' constructed in step 3 of the algorithm Christofides
has weight bounded by 1.5 times the weight of a minimum salesman tour in
G. Finally, the salesman tour 7’ constructed by the algorithm Christofides
is obtained by using shortcuts on the Eulerian tour W’ and the metric graph
G satisfies the triangle inequality. Thus, the weight of the salesman tour
7' constructed by the algorithm Christofides is bounded by 1.5 times the
weight of a minimum salesman tour in G. This is concluded in the following
theorem.

Theorem 9.1.5 The algorithm Christofides for the METRIC TSP prob-
lem runs in time O(n®) and has approzimation ratio 1.5.

As for the algorithm MTSP-Apx-I, one can show that the ratio 1.5
is tight for the algorithm Christofides, in the sense that there are input

304 COMBINATORICAL METHODS

instances for METRIC TSP for which the algorithm Christofides produces
salesman tours whose weights are arbitrarily close to 1.5 times the weights
of minimum salesman tours. The readers are encouraged to construct these
instances for a deeper understanding of the algorithm.

It has been a well-known open problem whether the ratio 1.5 can be fur-
ther improved for approximation algorithms for the METRIC TSP problem.
In Chapter 11, we will show that the METRIC TSP problem has no poly-
nomial time approximation scheme unless P = NP. This implies that there
is a constant ¢ > 1 such that no polynomial time approximation algorithm
for METRIC TSP can have approximation ratio smaller than ¢ (under the
assumption P # NP). However, little has been known for this constant c.

9.2 Maximum satisfiability

Let X = {z1,...,zn} be a set of boolean variables. A literal in X is either
a boolean variable x; or its negation Z;, for some 1 <i < mn. A clause on X
is a disjunction, i.e., an OR, of a set of literals in X. We say that a truth
assignment to {z1,...,z,} satisfies a clause if the assignment makes at least
one literal in the clause TRUE, and we say that a set of clauses is satisfiable
if there is an assignment that satisfies all clauses in the set.

SATISFIABILITY (SAT)
INpUT: aset F={C,Cy,...,Cp} of clauses on {z1,...,2,}

QUESTION: is F' satisfiable?

The SAT problem is the “first” NP-complete problem, according to the
famous Cook’s Theorem (see Theorem 1.4.2 in Chapter 1).

If we have further restrictions on the number of literals in each clause,
we obtain an interesting subproblem for SAT.

k-SATISFIABILITY (k-SAT)

INpUT: aset F = {Ci,Cs,...,Cp} of clauses on {z1,...,2,}
such that each clause has at most & literals

QUESTION: is F' satisfiable?
It is well-known that the k-SAT problem remains NP-complete for k > 3,

while the 2-SAT problem can be solved in polynomial time (in fact, in linear
time). Interested readers are referred to [28] for details.

MAX SATISFIABILITY 305

As the SAT problem plays a fundamental role in the study of NP-
completeness theory, an optimization version of the SAT problem, the MAX-
SAT problem, plays a similar role in the study of approximation algorithms.

MAXIMUM SATISFIABILITY (MAX-SAT)
INpUT: aset F={Cy,Cy,...,Cp} of clauses on {z1,...,z,}

OUTPUT: a truth assignment on {z1,...,z,} that satisfies
the maximum number of the clauses in F'

The optimization version for the k-SAT problem is defined similarly.

MAXIMUM k-SATISFIABILITY (MAX-KSAT)

INPUT: aset F' = {C1,Cy,...,Cp} of clauses on {z1,...,z,}
such that each clause has at most k literals

OUuTPUT: a truth assignment on {z1,...,z,} that satisfies
the maximum number of the clauses in F'

It is easy to see that the SAT problem can be reduced in polynomial time
to the MAX-SAT problem: a set {Ci,...,Cy,} of clauses is a yes-instance
for the SAT problem if and only if when it is regarded as an instance of
the MAX-SAT problem, its optimal value is m. Therefore, the MAX-SAT
problem is NP-hard. Similarly, the k-SAT problem for & > 3 can be reduced
in polynomial time to the MAX-KSAT problem so the MAX-kSAT problem
is NP-hard for k& > 3.

Since the 2-SAT problem can be solved in linear time, one may expect
that the corresponding optimization problem MAX-2SAT is also easy. How-
ever, the following theorem gives a bit surprising result.

Theorem 9.2.1 The MAX-2SAT problem is NP-hard.

PrOOF. We show that the NP-complete problem 3-SAT can be reduced
in polynomial time to the MAX-2SAT problem.

Let F = {C1,...,Cn} be an instance for the 3-SAT problem, where
each Cj is a clause of at most three literals in {z1,...,z,}. The set F' may
contain clauses with fewer than three literals. We first show how to convert
F into an instance for 3-SAT in which all clauses have exactly three literals.

If a clause C; in F has exactly two literals: C; = (I; VI3), then we replace
C; by two clauses of three literals (I; VI2Vy;) and (I3 VI2 V1), where y; is a
new boolean variable; if a clause C; in F' has exactly one literal: C; = (l3),
then we replace C; by four clauses of three literals (I3Vy2Vys), (I3Vy2V73),

306 COMBINATORICAL METHODS

(Is Ve Vys), and (I3 V73 V 73), where yo and y3 are new variables. The
resulting set F' of clauses is still an instance for 3-SAT in which each clause
has exactly three literals. It is straightforward to see that the instance F' is
satisfiable if and only if the instance F' is satisfiable.
Thus, we can assume, without loss of generality, that each clause in the
given instance F for the 3-SAT problem has exactly three literals.
Consider a clause C; = (a; V b; V ¢;) in F, where a;, b;, and ¢; are literals

in {z1,...,z,}. We construct a set of ten clauses:
F, = {(ai)a (bz)a (Ci)a (yz)a (a_z\/b_z)a (G_ZVC_Z),
(bi k4 c_l), (ai v m)a (bz v E)a (Ci v E)} (91)

where y; is a new variable. It is easy to verify the following facts.

e if all a;, b;, ¢; are set FALSE, then any assignment to y; can satisfy at
most 6 clauses in Fj;

o if at least one of a;, b;, ¢; is set TRUE, then there is an assignment to
y; that satisfies 7 clauses in F;, and no assignment to y; can satisfy
more than 7 clauses in Fj.

Let F" = F{ UF, U .--UF,, be the set of the 10m clauses constructed
from the m clauses in F using the formula given in (9.1). The set F" is an
instance for the MAX-2SAT problem. It is easy to see that the set F"' can
be constructed in polynomial time from the set F'.

Suppose that F' is a yes-instance for the 3-SAT problem. Then there is
an assignment Sy to {z1,...,z,} that satisfies at least one literal in each C;
of the clauses in F'. According to the analysis given above, this assignment
Sz plus a proper assignment S, to the new variable set {yi,...,ym} will
satisfy 7 clauses in the set F;, for each i = 1,...,m. Thus, the assignment
Sy + Sy to the boolean variables {z1,...,Zpn,Y1,-..,Ym} satisfies Tm clauses
in F”. Since no assignment can satisfy more than 7 clauses in each set
F;, we conclude that in this case the optimal value for the instance F” of
MAX-2SAT is 7m.

Now suppose that F' is a no-instance for the 3-SAT problem. Let S’
be any assignment to {Zi,...,Zn,Y1,---,Ym}- The assignment S’ can be
decomposed into an assignment S;, to {z1,...,%Z,} and an assignment Sy, to
{y1,---,Ym}- Since F is a no-instance for the 3-SAT problem, for at least one
clause C; in F, the assignment S. makes all literals false. According to our
previous analysis, any assignment to y; plus the assignment S, can satisfy at
most 6 clauses in the corresponding set F;. Moreover, since no assignment

MAX SATISFIABILITY 307

Algorithm. Johnson

Input: a set of clauses F = {C4,...,Cn} on {z1,...,z,}
Output: a truth assignment 7 to {z1,...,Zn}

1. for each clause C; do w(C;) =1/2/

2. L={C1,...,Cn};

3. fort=1tondo

find all clauses C¥, ..., C’qT in L that contain x4;

find all clauses C{',...,CF in L that contain Ty;

i Y, w(CF) > T, w(CF)

then 7(z;) = TRUE; delete Ci,...,C] from L;
for i =1 to s do w(C{) = 2w(CY)

else 7(x:) = FALSE; delete Cf,...,CF from L;

for i =1 to ¢ do w(C]) = 2w(CY)

Figure 9.5: Johnson’s Algorithm

to {z1,...,Zn,Y1,...,Ym} can satisfy more than 7 clauses in each set Fj,
for j = 1,...,m, we conclude that the assignment S’ can satisfy at most
7(m—1)+6 = 7m — 1 clauses in F”. Since S’ is arbitrary, we conclude that
in this case, no assignment to {z1,...,Zn, y1,--.,Ym} can satisfy more than
7m — 1 clauses in F". Thus, in this case the optimal value for the instance
F" for MAX-2SAT is at most 7m — 1.

Summarizing the discussion above, we conclude that the set F' of m
clauses of three literals is a yes-instance for the 3-SAT problem if and only
if the optimal value for the instance F” of MAX-2SAT is 7m. Consequently,
the 3-SAT problem is polynomial time reducible to the MAX-2SAT problem.
We conclude that the MAX-2SAT problem is NP-hard. [

9.2.1 Johnson’s algorithm

Now we present an approximation algorithm for the MAX-SAT problem, due
to David Johnson [71]. Consider the algorithm given in Figure 9.5, where
for a clause C;, we use |C;| to denote the number of literals in C;.

The algorithm Johnson obviously runs in polynomial time. We analyze
the approximation ratio for the algorithm.

Lemma 9.2.2 If each clause in the input instance F contains at least k
literals, then the algorithm Johnson constructs an assignment that satisfies
at least m(1 — 1/2%) clauses in F, where m is the number of clauses in F.

308 COMBINATORICAL METHODS

ProOOF. In the algorithm Johnson, once a literal in a clause is set to
TRUE, i.e., the clause is satisfied, the clause is removed from the set L.
Therefore, the number of clauses that are not satisfied by the constructed
assignment 7 is equal to the number of clauses left in the set L at the end
of the algorithm.

Each clause C; is associated with a weight value w(C;). Initially, we have
w(C;) = 1/2/%! for all C;. By our assumption, each clause C; contains at
least k literals. So initially we have

> w(C) = iw((}’i) = i 1/2/Gl < i 1/2F = m/2k
=1 =1 =1

C;€L

In step 3, we update the set L and the weight for the clauses in L. It can
be easily seen that we never increase the value > .o, w(C;): each time we
update the set L, we remove a heavier set of clauses from L and double the
weight for a lighter set of clauses remaining in L. Therefore, at end of the
algorithm we should still have

> w(Ci) < m/2F (9.2)

C;eL

At the end of the algorithm, all boolean variables {z1,...,z,} have been
assigned a value. A clause C; left in the set L has been considered by the
algorithm exactly |C;| times and each time the corresponding literal in C;
was assigned FALSE. Therefore, for each literal in C;, the weight of the clause
C; is doubled once. Since initially the clause C; has weight 1/2/%/ and its
weight is doubled exactly |C;| times in the algorithm, we conclude that at
the end of the algorithm, the clause C; left in L has weight 1. Combining
this with the inequality (9.2), we conclude that at the end of the algorithm,
the number of clauses in the set L is bounded by m/2F. In other words,
the number of clauses satisfied by the constructed assignment 7 is at least
m —m/2F = m(1 — 1/2F). The lemma is proved. [

The observation given in Lemma 9.2.2 derives the following bound on
the approximation ratio for the algorithm Johnson immediately.

Theorem 9.2.3 The algorithm Johnson for the MAX-SAT problem has its
approzimation ratio bounded by 2.

PROOF. According to Lemma 9.2.2, on an input F' of m clauses, each con-
taining at least k literals, the algorithm Johnson constructs an assignment

MAX SATISFIABILITY 309

that satisfies at least m(1 — 1/2%) clauses in F. Since a clause in the input
F' contains at least one literal, i.e., kK > 1, we derive that for any instance F’
for MAX-SAT, the assignment constructed by the algorithm Johnson sat-
isfies at least m(1 — 1/2) = m/2 clauses in F. Since the optimal value for
the instance F' is obviously bounded by m, the approximation ratio for the
algorithm must be bounded by mﬂ/Z =2.

The algorithm Johnson has played an important role in the study of
approximation algorithms for the MAX-SAT problem. In particular, the
algorithm is an excellent illustration for the probabilistic method, which has
been playing a more and more important role in the design and analysis of
approximation algorithms for NP-hard optimization problems. We will re-
consider the algorithm Johnson in the next chapter from a different point
of view.

9.2.2 Revised analysis on Johnson’s algorithm

Theorem 9.2.3 claims that the algorithm Johnson has approximation ratio
bounded by 2. Is the bound 2 tight for the algorithm? In this subsection,
we provide a more careful analysis on the algorithm and show that the
approximation ratio of the algorithm is actually 1.5. Readers may skip this
subsection in their first reading.

In order to analyze the algorithm Johnson, we may need to “flip” a
boolean variable z;, i.e., interchange z; and Tz, in an instance for MAX-
SAT. This may change the set of clauses satisfied by the assignment 7
constructed by the algorithm. In order to take care of this abnormality,
we will augment the algorithm Johnson by a boolean array b[1..n]. The
augmented boolean array b[1..n] will be part of the input to the algorithm.
We call such an algorithm the augmented Johnson’s algorithm. Our first
analysis will be performed on the augmented Johnson’s algorithm with an
arbitrarily augmented boolean array. The bound on the approximation ratio
for the augmented Johnson’s algorithm will imply the same bound for the
original algorithm Johnson.

The augmented Johnson’s algorithm is given in Figure 9.6.

The only difference between the original algorithm Johnson and the
augmented Johnson’s algorithm is that in case 7 w(CY) = 35, w(CY),
the original algorithm Johnson assigns 7(z;) = TRUE while the augmented
Johnson’s algorithm assigns 7(z;) = b[t].

In the following, we prove a lemma for the augmented Johnson’s algo-
rithm. To do this, we need to introduce some terminologies and notations.

310 COMBINATORICAL METHODS

Augmented Johnson’s Algorithm.

Input: a set F of clauses on {z1,...,Z,}, and a boolean array b[1..n]
Output: a truth assignment 7 to {z1,...,Zn}

1. for each clause C; in F do w(C;) =1/2/¢!

2. L=F;
3. fort=1tondo
find all clauses CT, ..., C’qT in L that contain x;
find all clauses CT,...,CF in L that contain Tz

case 1. (. w(Cl) > >y w(ClF)) or
(XL, w(cl) =Y, w(Cf) and b[t] = TRUE)
7(x¢) = TRUE; delete Cf, ... ,Cf from L;
for i =1 to s do w(C{) = 2w(CF)
case 2. (L wChH <Y, w(ClF)) or
(X w(cl) =Y, w(Cf) and b[t] = FALSE)
7(x;) = FALSE; delete Cf ,...,CF from L;
for i =1to ¢ do w(C{) = 2w(CYy)

Figure 9.6: the augmented Johnson’s algorithm

A literal is a positive literal if it is a boolean variable z; for some ¢, and
a negative literal if it is the negation Z; of a boolean variable.

Fix an instance F' = {C1,...,Cp} for MAX-SAT and let b[1..n] be any
fixed boolean array. Let r be the maximum number of literals in a clause in
F. Apply the augmented Johnson’s algorithm on F' and b[1..n]. Consider a
fixed moment in the execution of the augmented Johnson’s algorithm. We
say that a literal is still active if it has not been assigned a truth value yet. A
clause Cj in F is satisfied if at least one literal in C; has been assigned value
TRUE. A clause Cj is killed if all literals in C; are assigned value FALSE. A
clause C} is negative if it is neither satisfied nor killed, and all active literals
in C; are negative literals.

Definition 9.2.1 Fix a t, 0 < ¢t < n, and suppose that we are at the end
of the t** iteration of the for loop in step 3 of the augmented Johnson’s
algorithm. Let S*) be the set of satisfied clauses, K be the set of killed

clauses, and Ni(t) be the set of negative clauses with exactly ¢ active literals.

For a set S of clauses, denote by |S| the number of clauses in S, and let

w(8) = Xeyesw(Cy).

MAX SATISFIABILITY 311

Lemma 9.2.4 For allt, 0 <t < n, the sets S®, K® and Ni(t) satisfy the
following condition:

v
2i—1

5012 2k + Y- Dy,
1=1

where Ag = Y i1 |Ni(0)|/2i_1.

PROOF. The proof proceeds by induction on t. For ¢ = 0, since SO =
KO =0 and 37, \Ni(t)|/2i_1 = Ap, the lemma is true.

Suppose t > 0. We need to introduce two more notations. At the end
of the t* iteration for the for loop in step 3 of the augmented Johnson’s
algorithm, let P, ; be the set of clauses that contain the positive literal x; 1
such that each clause in P; ; contains exactly 7 active literals, of which exactly
J are positive, and let N; ; be the set of clauses that contain the negative
literal T;77 such that each clause in IV;; contains exactly ¢ active literals,
of which exactly j are positive. Note that according to the augmented
Johnson’s algorithm, if at this moment a clause C} has exactly ¢ active
literals, then the weight value w(C},) equals exactly 1/2¢.

Case 1. Suppose that the augmented Johnson’s algorithm assigns
T(z44+1) = TRUE. Then according to the algorithm, regardless of the value
b[t] we must have

T 7 r i—1
D> w(Piy) >0 w(Niy)
i=1j=1 i=14=0
This is equivalent to
T Zi'* |P | r i_:1 |N |
=11+ j=0 12,3
Z i 2 Z 91 (9'3)
i=1 i=1
Now we have
NFD = (NfY = Ny g) UNag
NV = (V)Y — Nap) UNsg
N,St_—i—ll) = (N£t21 - Nr—l,O) U Nr,O
NE = (N - Ny)

This gives us

t+1 1 41 1
INT D SINGT D e g NS

312 COMBINATORICAL METHODS

N (9.4)

t | —r’
N+ S IV e

Nr,0|

1 1
—|N1 ol + —|N2,0| + 2—2\N3,0| +- 4+ F‘

Nz 0|

IV | Niol
- Z 21 1 + Z 2z 1 2|N1’0|
On the other hand, we have

o1
SHD =g®OyJ|JP; and EKWY=KOUN, (95
i=1j=1

Combining relations (9.3)-(9.5), and using the inductive hypothesis, we get

o4
S = 18O+ 303 (Pl
i=1j=1
o k0 N i Bl
> KOS e
= 1=

T

. T|N@| =L [Nl

=1

N |Nig|
2(|K t)|+|N) Z 9i—1 Z szl —2|N1p| -

Vv

t+1
[N
22 1

2|K(t+1 | +Z AO

Therefore, the induction goes through in this case.

Case 2. Suppose that the augmented Johnson’s algorithm assigns
T(z441) = FALSE. The proof for this case is similar but slightly more com-
plicated. We will concentrate on describing the differences.

According to the augmented Johnson’s algorithm, we have

- 1|m|<§:

=1

|N idl (9.6)

Based on the relations
N1(t+1)
N2(t+1)

= (N1(t) — Nip)U Py,
= (N — Nao) U Py,

MAX SATISFIABILITY 313

NED = (N9 - N_i)U Py
NG = (N® — N,.)
we get
1 1
|N1(t+1)‘ + —|N2(t+1)‘ 4ot ﬁ|]\]’1§t‘|‘1)‘ (9.7
|N(t)| i,1| |Nz 0|
Z 2z 2 Z 2i—1

Moreover, we have

r i—1
st =5OuJ U Ny and KD =KOuPp;, (9-8)
i=1;=0

Combining relations (9.7) and (9.8) and using the inductive hypothesis,

2z 1

[\l |1 Pial |Niol
= 2|K |+2|P11|+Z 2z1 2212 2211
i=1

t)|_|_z |le| Z |Nz0|

r i—1 |]Dzl‘ r

t>|+ZZINJ|+Z

1=17=0 i=1

2|Kt+1|+2 AO

VAN

—;g il

Now according to equation (9.8),

r i—1

|S(t+1)| - |5(t)| +Zz |N;.]
i=1;=0
Moreover, since
r ‘N0| r oi—1 r oi—1
2y
D g T2 2 Nl = [Nl + [Niol + 3> [Nl
i=1 i=13=0 1=275=0
z 1 r %
,J| |N,J| Zj:l |Pi,j|
> 2|Nip +Z Z 21 2 = Z 2i—2
i=1 i=1
| Pi1|
Z Z 21 2

314 COMBINATORICAL METHODS

the third inequality above follows from relation (9.6), we conclude

T |N(t+1)|
2 K| 4 Z i — Ay < |SHHD)]
i=1

2i—1

Thus, the induction also goes through in this case.
The lemma now follows directly from the inductive proof. []

Now we are ready to prove our main theorem. Let us come back to the
original algorithm Johnson.

Theorem 9.2.5 The approzimation ratio for the algorithm Johnson given
in Figure 9.5 for the MAX-SAT problem is 1.5. This bound is tight.

PrOOF. Let F be an instance to the MAX-SAT problem. Let 7, be an
arbitrary optimal assignment to F. Now we construct another instance F’
for MAX-SAT, as follows. Starting with F', if for a boolean variable z,
we have 7,(z4) = FALSE, then we “flip” z; (i.e., interchange z; and ;) in
F. Thus, there is a one-to-one correspondence between the set of clauses
in F and the set of clauses in F'. It is easy to see that the sets F' and
F’, as instances for MAX-SAT, have the same optimal value. In particular,
the assignment 7, on F' such that 7/(z;) = TRUE for all ¢ is an optimal
assignment for the instance F”.

We let a boolean array b[1..n] be such that b[t] = 7,(z;) for all t.

We show that the assignment constructed by the original algorithm
Johnson on the instance F' and the assignment constructed by the aug-
mented Johnson’s algorithm on the instance F' augmented by the boolean
array b[l..n] satisfy exactly the same set of clauses.

Inductively, suppose that for the first (¢—1)st iterations of the for loop in
step 3, both algorithms satisfy exactly the same set of clauses. Now consider
the ' iteration of the algorithms.

If 24 in F is not flipped in F’, then b[t] = TRUE. Thus, the augmented

Johnson’s algorithm assigns 7(z;) = TRUE and makes the clauses C{ , .. ., Cg
satisfied during the #** iteration if and only if 37, w(CT) > 35, w(CY),
where C{, ..., CI are the clauses in L containing z; and Cf, ..., Cf

are the clauses in L containing Z;. On the other hand, if z; in F is
flipped in F’, then b[t] = FALSE, and the augmented Johnson’s algorithm
assigns 7(z;) = FALSE and makes the clauses C{', ..., CI" satisfied if and
only if Y7, w(Cl) < !, w(CF). Note that if z; is not flipped, then
{ct,..., C;‘F } is exactly the set of clauses containing z; in the #'* iteration

MAX SATISFIABILITY 315

of the original algorithm Johnson for the instance F', while if z; is flipped,
then {CF,...,CF} is exactly the set of clauses containing z; in the ¢ it-
eration of the original algorithm Johnson for the instance F. Therefore,
in the t** iteration, the set of the clauses satisfied by the augmented John-
son’s algorithm on F’ and b[1..n] corresponds exactly to the set of clauses
satisfied by the original algorithm Johnson on F. In conclusion, the as-
signment constructed by the original algorithm Johnson on the instance F'
and the assignment constructed by the augmented Johnson’s algorithm on
the instance F' and the boolean array b[1..n] satisfy exactly the same set of
clauses.

Therefore, we only need to analyze the approximation ratio of the aug-
mented Johnson’s algorithm on the instance F' and the boolean array b[1..n].

Let K (t), S(t), and Ni(t) be the sets defined before for the augmented
Johnson’s algorithm on the instance F’ and the boolean array b[1..n]. Ac-
cording to Lemma 9.2.4, we have

N

15| > 2| Kt \+Z |2Z :

. (9.9)

for all 0 <t < n, where Ag = >/ |Ni(0)|/2i_1.

At the end of the augmented Johnson’s algorithm, i.e., t = n, S g
exactly the set of clauses satisfied by the assignment constructed by the
algorithm, and K (™ is exactly the set of clauses not satisfied by the assign-
ment. Moreover, Ni(n) = () for all 7 > 1.

According to (9.9), we have

15| > 2|K™)]| — 4, (9.10)

Note that
(0) |

Ay = Z|211 Z\N(O (9.11)

Combining relations (9.10) and (9.11), we get

T
3™ > 2(5™] + k™) = 3 N (9.12)

i=1
Since S™ U K™ is the whole set {C1,...,Cp} of clauses in F', we
have |S(™| 4+ |[K(™| = m. Moreover, the assignment 7’(z;) = TRUE for
all 1 <t < n is an optimal assignment to the instance F”’, which satisfies
all clauses in F’ except those in Ni(o), for 1 < 4 < r. Thus, the optimal

316 COMBINATORICAL METHODS

value of the instance F’, i.e., the number of clauses satisfied by an optimal
assignment to F’ is equal to

Opt(F') =m — 3 INY| (9.13)
=1

Now combining the relations (9.13) and (9.12), we get
3|S™| > m + Opt(F') > 2- Opt(F")

The set S{™ is the set of clauses satisfied by the assignment constructed
by the augmented Johnson’s algorithm. Since the original algorithm John-
son and the augmented Johnson’s algorithm satisfy the same set of clauses
and since Opt(F) = Opt(F'), we conclude that the approximation ratio of
the algorithm Johnson for the MAX-SAT problem is Opt(F')/|S™)| < 1.5.

To see that the bound 1.5 is tight for the algorithm Johnson, consider
the following instance F}, of 3h clauses for MAX-SAT, where h is any integer
larger than 0.

Fyp = {(#3k41 V T3k12), (T3k41 V T3k+43), (Takr1) |0 <k < h -1}

It is easy to verify that the algorithm Johnson assigns z; = TRUE for all
1 <t < 3h, and this assignment satisfies exactly 2h clauses in Fj,. On the
other hand, the assignment z3; 11 = FALSE, T3;12 = T3x+3 = TRUE for all
0 < k < h — 1 obviously satisfies all 3k clauses in F},. []

Theorem 9.2.5 shows an example in which the precise approximation ra-
tio for a simple algorithm is difficult to derive. The next question is whether
the approximation ratio 1.5 on the MAX-SAT problem can be further im-
proved by a “better” algorithm for the problem. This has been a very
active research topic in recent years. In the next chapter, we will develop
new techniques that give better approximation algorithms for the MAX-SAT
problem.

9.3 Maximum 3-dimensional matching

Let X, Y, and Z be three disjoint finite sets. Given a set S C X xY x Z
of triples, a matching M in S is a subset of S such that no two triples
in M have the same coordinate at any dimension. The 3-DIMENSIONAL
MATCHING problem is defined as follows.

MAX 3D-MATCHING 317

3-DIMENSIONAL MATCHING (3D-MATCHING)
INPUT: aset S C X XY X Z of triples

OuTPUT: a matching M in S with the maximum number
of triples

The 3D-MATCHING problem is a generalization of the classical “marriage
problem”: Given n unmarried men and m unmarried women, along with a
list of all male-female pairs who would be willing to marry one another, find
the largest number of pairs so that polygamy is avoided and every paired
person receives an acceptable spouse. Analogously, in the 3D-MATCHING
problem, the sets X, Y, and Z correspond to three sexes, and each triple
in § corresponds to a 3-way marriage that would be acceptable to all three
participants.

Note that the marriage problem is simply the 2D-MATCHING problem:
given a set S C X X Y of pairs, find a maximum subset M of S such that
no two pairs in M agree in any coordinate. The 2D-MATCHING problem is
actually the standard bipartite graph matching problem. In fact, the disjoint
sets X and Y can be regarded as the vertices of a bipartite graph G, and each
pair in the set S corresponds to an edge in the graph G. Now a matching M
in S is simply a subset of edges in which no two edges share a common end.
That is, a matching in S is a graph matching in the corresponding bipartite
graph G. As we have studied in Chapter 3, the bipartite graph matching
problem, i.e., the 2D-MATCHING problem can be solved in time O(m+/n).

The decision version of the 3D-MATCHING problem is described as fol-
lows: given a set S C X xY x Z of triples, where each of the sets X, Y, and
Z has exactly n elements, is there a matching in S that contains n triples?
The decision version of the 3D-MATCHING problem is one of the six “ba-
sic” NP-complete problems [49]. It is easy to see that the decision version
of the 3D-MATCHING problem can be reduced in polynomial time to the
3D-MATCHING problem: a set S C X XY x Z of triples, where each of the
sets X, Y, and Z has exactly n elements, is a yes-instance for the decision
version of the 3D-MATCHING problem if and only if when S is regarded as
an instance for the 3D-MATCHING problem, S has an optimal value n. In
consequence, the 3D-MATCHING problem is NP-hard.

We consider polynomial time approximation algorithms for the 3D-
MATCHING problem.

Let S € X xY X Z be a set of triples and let M be a matching in S.
We say that a triple (z,y,2) in S — M does not contradict the matching M
if no triple in M has a coordinate agreeing with (z,y,z). In other words,

318 COMBINATORICAL METHODS

Algorithm. Apx3DM-First

Input: aset SC X xY x Z of triples
Output: a matching M in S

1. M = ¢;
2. for each triple (z,y,2) in S do

if (z,y, z) does not contradict M
then M = M U {(z,y,2)}.

Figure 9.7: First algorithm for 3D-MATCHING

(z,y,z) does not contradict the matching M if the set M U {(z,y, 2)} still
forms a matching in S.

Our first approximation algorithm for 3D-MATCHING is given in Fig-
ure 9.7.

It is easy to verify that the algorithm Apx3DM-First runs in polyno-
mial time. In fact, if we use three arrays for the elements in X, Y, and
Z, and mark the elements as “in M” or “not in M”, then in constant time
we can decide whether a triple (z,vy, z) contradicts the matching M. With
these data structures, the algorithm Apx3DM-First runs in linear time.

Theorem 9.3.1 The algorithm Apx3DM-First for the 3D-MATCHING
problem has its approximation ratio bounded by 3.

PrROOF. From the algorithm Apx3DM-First, it is clear that the set M
constructed is a matching in the given set S.

Let Mpax be a maximum matching in S. Let (z,y, 2) be any triple in
Miax- Either the triple (z,y, z) is also in the matching M, or, according to
the algorithm Apx3DM-First, the triple (z,y, z) contradicts the matching
M (otherwise, the triple (z,y, z) would have been added to M by the algo-
rithm). Therefore, in any case, at least one of the three elements z, y, and z
in the triple (z,y, z) is in a triple in M. Therefore, there are at least | Mmax|
different elements in the triples in the matching M. Since each triple in M
has exactly three different elements, we conclude that the number of triples
in M is at least |Mpax|/3. This gives

Opt(8)/|M| = |Mmax|/|M| < 3

The theorem is proved. [l

MAX 3D-MATCHING 319

It is easy to see that the bound 3 is tight for the algorithm Apx3DM-
First. Consider the following set of 4h triples, where h is any positive
integer.

Sh, = {(aiabiaci)a (aiadiaei)a (gzablahl)a (piaqiaci) | 1=]-a s ’h}

If the algorithm Apx3DM-First first picks the triples (a;, b;,ci), i@ =
1,...,h, then picks the other triples, then the matching M constructed
by the algorithm contains A triples:

My, = {(a;, bi,ci) | i=1,...,h} (9.14)

On the other hand, the maximum matching My, in the set S} contains 3h
triples:

Mmax = {(aiad’iaei)a (gubuhz)a (piaqiaci) | 1=]-1 s 7h‘}

Now we describe an improved approximation algorithm for the 3D-
MATCHING problem.

A matching M in the set S is mazimal if every triple in S — M contradicts
M. In particular, the matching constructed by the algorithm Apx3DM-
First is a maximal matching. The proof for Theorem 9.3.1 shows that the
size of a maximal matching is at least 1/3 of the size of a maximum matching
in §.

Let M be a maximal matching. By the definition, no triple can be added
directly to M to make a larger matching in S. However, it is still possible
that if we remove one triple from M, then we are able to add more than
one triple from § — M to M to make a larger matching. For example, the
matching M}, of h triples in (9.14) is a maximal matching in the set S,. By
removing the triple (a1,b1, 1) from the set M}, we will be able to add three
triples (a1, d1,€1), (91,b1, h1), (P1,491,c1) to make a matching of A+ 2 triples
in Sh-

We say that the matching M in S is 1-optimal if no such a triple in M
exists. More formally, we say that a matching M in S is I-optimal if M is
maximal and it is impossible to find a triple (a1, b1,¢1) in M and two triples
(ag,be,c2), and (as, bs,c3) in S — M such that

M —{(a1,b1,¢1)} U{(ag, b2, c2), (a3, b3, c3)}

is a matching in S.

Our second approximation algorithm for the 3D-MATCHING problem is
based on 1-optimal matchings. See Figure 9.8.

We analyze the algorithm Apx3DM-Second.

320 COMBINATORICAL METHODS

Algorithm. Apx3DM-Second

Input: aset SC X xY x Z of triples
Output: a matching M in S

1. construct a maximal matching M in S;
2. change = TRUE;
3. while change do
change = FALSE;
for each triple (a,b,c) in M do
M=M- {(avb7 C)};
let S» be the set of triples in S not contradicting M;
construct a maximum matching M, in S;;
if M, contains more than one triple
then M = M U M,; change = TRUE;
else M = M U{(a,b,c)}.

Figure 9.8: Second algorithm for 3D-MATCHING

Lemma 9.3.2 After each execution of the for loop in step 3 of the algorithm
Apx3DM-Second, the matching M is a mazimal matching.

PrOOF. Before the algorithm enters step 3, the matching M is maximal.

Since the set S, has no common element with the matching M after the
triple (a, b, ¢) is removed from M, for any matching M' in S,, M U M’ is a
matching in S. Moreover, since all triples in S — S, contradict M, and all
triples in S, — M, contradict M,, we conclude that all triples in S — (M U M,,)
contradict M U M,. That is, the matching M U M, is a maximal matching
in S, which is assigned to M if M, has more than one triple. In case M,
has only one triple, the triple (a, b, c) is put back to M, which by induction
is also maximal. []

Lemma 9.3.3 The matching constructed by the algorithm Apx3DM-
Second is I-optimal.

ProOOF. It is easy to see that there are a triple (a1,b1,¢1) in M and two
triples (ag,bo, c2) and (a3, bs,c3) in S — M such that

M —{(a1,b1,¢1)} U{(az, b2, c2), (a3, b3, c3)}

is a matching in S if and only if the matching M, in S, contains more
than one triple. Therefore, the algorithm Apx3DM-Second actually goes
through all triples in M and checks whether each of them can be traded for

MAX 3D-MATCHING 321

more than one triple in § — M. The algorithm stops when it finds out no
such trading is possible. In other words, the algorithm Apx3DM-Second
ends up with a 1-optimal matching M. []

Theorem 9.3.4 The algorithm Apx3DM-Second runs in polynomial
time.

PROOF. Suppose that the input instance S contains n triples.

As explained before, the algorithm Apx3DM-First constructs a maxi-
mal matching. Therefore, the maximal matching in step 1 of the algorithm
Apx3DM-Second can be constructed in linear time.

We first show that in each execution of the for loop in step 3 of the al-
gorithm Apx3DM-Second, the maximum matching M, in the set S, con-
tains at most 3 triples. Assume the contrary and let (a1,b1,c1), (a2, b, c2),
(a3, bs,c3), and (as,bs,cq4) be four triples in the maximum matching M,
in S,. Then at least one of them, say (a;,b1,c1), contains no element in
the triple (a,b,c) removed from M. Since (a1,b1,c1) does not contradict
M - {(a,b,c)}, (a1,b1,c1) does not contradict M even before the triple
(a,b,c) is removed from M. Therefore, before the triple (a, b, c) is removed,
the matching M is not maximal. This contradicts Lemma 9.3.2.

Therefore, a maximum matching in S, contains at most 3 triples. Thus,
to construct the maximum matching M, in S, we can try all groups of three
triples and all groups of two triples in S,.. There are only O(n?®) such groups
in the set S, (note S, is a subset of S so it contains at most n triples).
Therefore, in time O(n3), we can construct the maximum matching M, for
the set S,. In consequence, the for loop in step 3 takes time O(n*).

Since each execution of the while loop body increases the number of
triples in the matching M by at least 1, and a maximum matching in the
set S has at most n triples, we conclude that the algorithm Apx3DM-
Second has its running time bounded by O(n%). [

Remark. In fact, the maximum matching M, in the set S, can be con-
structed in linear time. This will reduce the total running time of the al-
gorithm Apx3DM-Second to O(n3). We leave this improvement to the
reader.

We finally consider the approximation ratio for the algorithm Apx3DM-
Second.

Theorem 9.3.5 The algorithm Apx3DM-Second has its approzimation
ratio bounded by 2.

322 COMBINATORICAL METHODS

ProOOF. We denote by M the matching in S constructed by the algorithm
Apx3DM-Second and let My« be a maximum matching in S. We say
that an element ¢ € X UY U Z is in a matching if a is in a triple in
the matching. Since the sets X, Y, and Z are disjoint, this introduces no
ambiguity.

Based on the matchings M and Mp,,x, we introduce a weight function
w(-) on elements in X UY U Z as follows.

e if an element ¢ is not in both M and M.y, then w(a) = 0;

e if an element @ is in both M and M.y, and a is in a triple of M.y
that contains only one element in M, then w(a) =1,

e if an element a is in both M and My,,,, and a is in a triple of M.y
that contains exactly two elements in M, then w(a) =1/2;

e if an element @ is in both M and M.y, and a is in a triple of M ax
that contains three elements in M, then w(a) =1/3;

The weight w(t) of a triple ¢ = (a,b,c) is the sum of the weights of its
elements: w(t) = w(a) + w(b) + w(c). According to the definition of the
weight function, each triple in the matching Mp,,x has weight exactly 1.

Let t = (a,b,c) be a triple in M. If w(t) > 2, then at least two elements
in ¢ have weight 1. Without loss of generality, suppose that w(a) = w(b) = 1.
By the definition, there are two triples ¢; = (a,b1,c¢1) and to = (a9,b,c2)
in the matching My, such that the elements b1, c1, a2, co are not in the
matching M. However, this would imply that

M — {(a,b,c)} U{(a,b1,c1), (a2,b,c2)}

is a matching in S, so that the matching M constructed by the algorithm

Apx3DM-Second would not be 1-optimal. This contradicts Lemma 9.3.3.
Thus, each triple in the matching M has weight at most 2. Since only

elements in both matchings M and My,,x have nonzero weight, we have

> w(t) =) w(t)
tE Mmax teM

Since each triple in M.y has weight 1, we have >,cp, w(t) = |Mmax|-
Moreover, since each triple in M has weight at most 2, we have

> w(t) <2[M|

teM

MAX 3D-MATCHING 323

This gives us
|Mimax| < 2|M|

or |[Mmax|/|M| < 2. This completes the proof. [

To see that the bound 2 is tight for the algorithm Apx3DM-Second,
consider the following instance

S = {(al, bl, C1), (ag, b2, CQ), (al,bg, 63), (ag, bl, C4), (a5, b2, C5),

(ag, b2, c1), (a1, b7, c2), (az,bs, c1), (ag, b1, ca)}

If the triples are given in this order, then step 1 of the algorithm Apx3DM-
Second, if it calls Apx3DM-First as a subroutine, will return the maximal
matching

M = {(al,bl,cl),(GQ,bQ,Cg)} (9.15)

It is not hard to see that the matching M given in (9.15) is already 1-
optimal. Thus, the algorithm Apx3DM-Second returns M of 2 triples as
the approximation matching. On the other hand, the maximum matching

Mmax = {(ala b37 03)7 (a57 b27 C5), (GQ, b87 Cl)a (0’9’ b17 CQ)}

in the set S contains 4 triples.

A natural extension of the algorithm Apx3DM-Second is to consider 2-
optimal, or in general k-optimal matchings. That is, we construct a maximal
matching M in S such that no k triples in M can be traded for k41 triples in
S— M. Tt is not very hard to see that for any fixed integer k > 1, a k-optimal
matching in S can be constructed in polynomial time. We can show that a
k-optimal matching gives an approximation ratio smaller than 2 for £ > 1.
For example, a 2-optimal matching has approximation ratio 9/5 while a 3-
optimal matching has approximation ratio 5/3. In general, for any given
constant € > 0, we can choose a proper integer k > 1 such that the ratio
of a maximum matching and a k-optimal matching is bounded by 1.5 + e.
Therefore, for any € > 0, there is a polynomial time approximation algorithm
for the 3D-MATCHING problem whose approximation ratio is bounded by
1.5 + €. Interested readers are referred to [18, 69]. It is unknown whether
there is a polynomial time approximation algorithm for the 3D-MATCHING
problem whose approximation ratio is smaller than 1.5.

Two generalizations of the 3D-MATCHING problems are the k-
DIMENSIONAL MATCHING problem and the k-SET PACKING problem:

324 COMBINATORICAL METHODS

k-DIMENSIONAL MATCHING
INPUT: aset S C X1 x X9 X --- X X, of k-tuples

OUuTPUT: a maximum subset M of S in which no two k-tuples
agree on any coordinate.

k-SET PACKING

INPUT: a collection T of sets Sy, S9, ..., Sy, where each set S;
contains at most k elements

OUuTPUT: a maximum subcollection P of disjoint sets in T'

Approximation algorithms for the k-DIMENSIONAL MATCHING problem and
the k-SET PACKING problem have been studied based on the techniques
presented in this section [69].

9.4 Minimum vertex cover

The decision version of the vertex cover problem is one of the six “basic”
NP-complete problems [49]. The optimization version of the vertex cover
problem has been a central problem in the study of approximation algo-
rithms.

Let G be an undirected graph. A vertex cover of G is a set C of vertices
in G such that every edge in G has at least one endpoint in C (thus, the
set C' “covers” the edges of G). Vertex covers of a graph are related to
independent sets of the graph by the following lemma.

Lemma 9.4.1 A set C of vertices in a graph G = (V, E) is a vertez cover
of G if and only if the set V — C' is an independent set in G.

PRrROOF. Suppose C' is a vertex cover. Since every edge in G has at least
one endpoint in C, no two vertices in V — C are adjacent. That is, V — C
is an independent set.

Conversely, if V' — C' is an independent set, then every edge in G has at
least one endpoint not in V' — C. Therefore, every edge in G has at least
one endpoint in C' and C forms a vertex cover. [

The minimum vertex cover problem is formally defined as follows.
MIN VERTEX COVER

Ig: the set of all undirected graphs

VERTEX COVER 325

Algorithm. VC-Apx-I

Input: a graph G
Output: a vertex cover C of G

1. C=40
2. for each edge e in G do

if no endpoint of e is in C

then add both endpoints of e to C;
3. return C.

Figure 9.9: Approximating vertex cover I

Sg: Sg(G) is the set of all vertex covers of the graph G
fo: fo(G,C) is the size of the vertex cover C of G.

optg: min

9.4.1 Vertex cover and matching

Recall that a matching in a graph G is a set M of edges such that no
two edges in M share a common endpoint. A vertex is matched if it is an
endpoint of an edge in M and unmatched otherwise.

The problems GRAPH MATCHING and MIN VERTEX COVER are closely
related. We first present a simple approximation algorithm for MIN VERTEX
COVER based on matching.

Lemma 9.4.2 Let M be a matching in a graph G and let C be a vertex
cover of G, then |M| < |C|. In particular, the size of a minimum vertezx
cover of G is at least as large as the size of a mazimum matching in G.

PROOF. Since the vertex cover C must cover all edges in G, each edge
in the matching M has at least one endpoint in C. Since no two edges in
M share a common endpoint, we conclude that the number |C| of vertices
in the vertex cover C is at least as large as the number |M| of edges in the
matching M. [

A matching M in a graph G is mazimal if there is no edge e in G such
that e ¢ M and M U{e} still forms a matching in G. Our first approximation
algorithm for MiN VERTEX COVER, based on maximal matchings, is given
in Figure 9.9.

326 COMBINATORICAL METHODS

Theorem 9.4.3 The algorithm VC-Apx-1I is a linear time approximation
algorithm with approzimation ratio 2 for MIN VERTEX COVER.

PrOOF. The algorithm obviously runs in linear time.

Because of the for loop in step 2 of the algorithm, every edge in G has
at least one endpoint in the set C. Therefore, C' is a vertex cover of the
graph G.

The for loop in step 2 of the algorithm implicitly constructs a maximal
matching M, as follows. Suppose we also initialize M = () in step 1, and
in step 2 whenever we encounter an edge e that has no endpoint in C, we,
in addition to adding both endpoints of e to C, also add the edge e to M.
It is straightforward to see that the set M constructed this way will be a
maximal matching and C' is the set of endpoints of the edges in M. Thus,
2|M| = |C|. Now by Lemma 9.4.2, we have (where Opt(G) is the size of a
minimum vertex cover of G)

I _ M| _2-0pt(0)
Opt(G) Opt(G) = Opt(G)

Thus, the approximation ratio of the algorithm is bounded by 2. []

GRAPH MATCHING and MIN VERTEX COVER are actually dual problems
in their formulations by integer linear programming. To see this, let G be a
graph of n vertices vy, ..., v, and m edges e, ..., e,,. Introduce n integral
variables z1, ..., z, to record the membership of the vertices in G in a
vertex cover such that x; > 0 if and only if the vertex v; is in the vertex
cover. Then the instance G of MIN VERTEX COVER can be formulated as
an instance Q¢ of the INTEGER LP problem:

Primal Instance Q¢

minimize T+ -+
subject to
Ty +xi > 1 fori=1,2,...,m
{suppose the two endpoints of the edge e; are v;, and v;,}

x; are integers and z; > 0 forj=1,2,...,n

The formal dual problem of this instance for the INTEGER LP problem is
(see Section 4.3 for more details):

Dual Instance Qf;

VERTEX COVER 327

maximize Yyr+-t Ym
subject to
yj1+yj2+"'+yjhj§1 forj=1,2,...,n
{suppose the vertex v; is incident on the edges e;,, €j,, ..., ejhj}

1; are integers and y; > 0 fori=1,2,...,m

If we define a set M of edges in G based on the dual instance G'Q such that
y; > 0 if and only if the edge e; in the graph G is in M, then the condition
Yir o+ Y, < 1for j = 1,...,n requires that each vertex v; in G be
incident to at most one edge in M, or equivalently, that the set M forms
a matching. Therefore, the dual instance Qf; in the INTEGER LP problem
exactly characterizes the instance G for GRAPH M ATCHING.

Combining this observation with Lemma 4.3.1 gives us an alternative
proof for Lemma 9.4.2.

9.4.2 Vertex cover on bipartite graphs

Lemma 9.4.2 indicates that the size of a maximum matching of a graph G
is not larger than the size of a minimum vertex cover of the graph. This
provides an effective lower bound for the minimum vertex cover of a graph.
Since GRAPH MATCHING can be solved in polynomial time while MIN VER-
TEX COVER is NP-hard, one should not expect that in general these two
values are equal. However, for certain important graph classes, the equal-
ity does hold, which induces polynomial time (precise) algorithms for MIN
VERTEX COVER on the graph classes. In this subsection, we use this idea
to develop a polynomial time (precise) algorithm for MIN VERTEX COVER
on the class of bipartite graphs. The algorithm will turn out to be very
useful in the study of approximation algorithms for MIN VERTEX COVER
on general graphs.

Let M be a matching in a graph G. We say that a path p = {ug,uq,...} s
an alternating path (with respect to M) if vertex ug is unmatched, the edges
[ugi—1,u9;] are in M, and the edges [ug;, ug;+1] are not in M, fori =1,2,....
Note that an alternating path of odd length in which the last vertex is also
unmatched is an augmenting path defined in Section 3.1. By Theorem 3.1.1,
the matching M is maximum if and only if there is no augmenting path with
respect to M.

We say that a vertex u is M -reachable from an unmatched vertex ug if
there is an alternating path starting at u¢ and ending at u. For a set U of
unmatched vertices, we say that a vertex u is M-reachable from U if u is

328 COMBINATORICAL METHODS

Algorithm. VC-BipGraph(G, M)

Input: bipartite graph G = (V1 U V2, E) and maximum matching M in G
Output: a minimum vertex cover C of G

1. let Ui be the set of unmatched vertices in Vi;

2. let Np be the set of vertices in V7 that are not M-reachable from Uy;
3. let R> be the set of vertices in V> that are M-reachable from Us;

4. output C = N1 U R».

Figure 9.10: Constructing a minimum vertex cover in a bipartite graph

M-reachable from a vertex in U.

Let G = (V1 U V,, E) be a bipartite graph, where every edge in G has
one endpoint in V; and one endpoint in V5. Let M be a maximum matching
in G. Consider the algorithm given in Figure 9.10. The algorithm VC-
BipGraph produces a set of vertices for the bipartite graph G, which we
will prove is a minimum vertex cover of the graph G.

Lemma 9.4.4 The algorithm VC-BipGraph runs in linear time and con-
structs a minimum vertex cover C for the bipartite graph G. In particular,
we have |C| = |M]|.

PROOF. The set R of M-reachable vertices from U; can be constructed
in linear time using the algorithm Bipartite Augment given in Section
3.1 (see Figure 3.3). Basically, we perform a searching procedure similar to
Breadth First Search, starting from each vertex in the set U;. Note that
in this situation, the algorithm Bipartite Augment never stops at step 3
since according to Theorem 3.1.1, there is no augmenting path with respect
to the maximum matching M. Once the set R is available, the set C is
easily obtained.

Every vertex in the set N; is matched because every unmatched vertex
in V7 is in the set U7, which is obviously M-reachable from Uj.

Now consider the set Ry of vertices in V, that are M-reachable from
U,. We claim that all vertices in Ry are matched. In fact, if v9 € Ry is
unmatched and p is an alternating path starting from an unmatched vertex
v1 in U; and ending at vo, then, since the graph G is bipartite, the path p
is of odd length. Therefore, the path p would be an augmenting path with
respect to the maximum matching M. This contradicts Theorem 3.1.1.

Let v1 € N and [v1,v] is an edge in the matching M. We claim vo & Ry.
In fact, if v9 is in Ry then the alternating path from a vertex u; in Uy to

VERTEX COVER 329

vg plus the edge [va,v1] in M would form an alternating path from u; to
v1. This would imply that v; is M-reachable from U, contradicting the
definition of the set IV;.

Therefore, each edge in the matching M has at most one endpoint in the
set C' = N1URy and all vertices in C are matched. Consequently, |C| < |M].

Now we prove that C is a vertex cover of the graph G. According to the
above discussion, the set V7 of vertices can be partitioned into three disjoint
parts: the set U; of unmatched vertices, the set Ry of matched vertices
M-reachable from Uj, and the set Ny of matched vertices not M-reachable
from U;. Let e = [v1, v2] be any edge in G, where v; € V; and vp € V5.

If v1 &€ Ny, then v1 € Uy or v1 € R;. In case v; € U; then the edge e is
not in M. Thus, [v1,v2] is an alternating path and vy € Ry. On the other
hand, suppose v1 € R;. Let p = {ug,...,v1} be an alternating path from
ug € Uy to v1. Since v1 is in the set V1, by the bipartiteness of the graph G,
p is of even length. Therefore, either the vertex v, is contained in the path
p or the path p plus the edge [vi,vs] forms an alternating path from wug to
vg. In either case, vy € Ry. This proves that for any edge e = [v1,v9] in the
graph G, either v1 € Ny or vo € Rs. In conclusion, C' = N; U Ry is a vertex
cover of G.

Combining the inequality |C| < |M| and Lemma 9.4.2, we conclude that
|C| = |M| and C is a minimum vertex cover of G. [J

Theorem 9.4.5 MIN VERTEX COVER on bipartite graphs can be solved in
time O(y/nm).

PRrROOF. By Corollary 3.3.8, a maximum matching of a bipartite
graph G can be constructed in time O(y/nm). The theorem follows from
Lemma 9.4.4. [

9.4.3 Local approximation and local optimization

By Theorem 9.4.3, the simple approximation algorithm VC-Apx-I given in
Figure 9.9 for MiNn VERTEX COVER has approximation ratio 2. One may
expect that the ratio can be easily improved using more sophisticated tech-
niques. However, despite long time efforts, no significant progress has been
made and asymptotically, the ratio 2 still stands as the best approximation
ratio for polynomial time approximation algorithms for the problem. In this
subsection, we introduce several techniques that lead to slight improvements
on the approximation ratio for MIN VERTEX COVER. The techniques can
also be extended to approximation algorithms with the same ratio for the

330 COMBINATORICAL METHODS

weighted version of MIN VERTEX COVER, in which each vertex has an as-
signed weight and we are looking for a vertex cover of the minimum weight.

The first technique has been called the “local optimization” in the liter-
ature, developed by Nemhauser and Trotter [99], which turns out to be very
useful in the study of approximation algorithms for MIN VERTEX COVER,
both for weighted and unweighted versions.

For a subset V' of vertices in a graph G, denote by G(V') the subgraph
of G induced by the vertex set V', that is, G(V') has V' as its vertex set
and contains all edges in G that have their both endpoints in V.

Theorem 9.4.6 There is an O(y/nm) time algorithm that, given a graph

G, constructs two disjoint subsets Cy and Vy of the vertices in G such that
(1) the set Cy plus any vertex cover of G(Vy) forms a vertex cover of G;
(2) there is a minimum vertez cover Cmin of G such that Cy C Crin;

(3) Opt(G(Vo)) = [Val/2.

PrROOF. Let {v1,...,v,} be the set of vertices in the graph G. Construct

a bipartite graph B of 2n vertices: v¥, v, ..., vZ vE such that there is an
edge [vf,vf] in B if and only if [v;,v;] is an edge in G.

Let Cp be a minimum vertex cover of the bipartite graph B. Define two
disjoint subsets of vertices in the graph G:

Co = {v; | both v} and vf are in Cp}

Vo = {v; | exactly one of ij and v]R isin Cp}

According to Theorem 9.4.5, the minimum vertex cover Cp of the bipartite
graph B can be constructed in time O(y/nm). Therefore, in order to prove
the theorem, it suffices to prove that the constructed subsets Cy and Vj
satisfy the conclusions in the theorem.

Let Iy = {vi,...,v5} — (Cop U Vp), then Iy is the set of vertices v; in
G such that both v/ and vf are not in Cp. For each edge [vi,v;] in G,
by the definition, [viL,vf] and [’U]L ,vE] are edges in the bipartite graph B.
Therefore, v; € Iy implies v; € Cy, and v; € V implies v; & Io.

Proof for (1). Let Cy be a vertex cover of the induced graph G(Vj).
For any edge [v;,v;] in G, if neither of v; and v; is in Cy, then one of them
must be in Cy U Iy (otherwise, [v;,v;] is an edge in G(Vj) that should be
covered by Cy). Without loss of generality, let v; € Cy U Iy. If v; € I then
vj € Cy. Therefore, if the edge [v;,v;] is not covered by Cy, then it must be
covered by Cy. This proves that Cy U Cy is a vertex cover of G.

Proof for (2). Let C be a minimum vertex cover of the graph G. We
show the set Cpin = Cp U (C' N Vj) is also a minimum vertex cover of G.

VERTEX COVER 331

For any edge [v;,v;] in the graph G, if v; & Cmin, then v; € Iy or v; €
Vo —C. If v; € Iy then vj € Cp. If v; € Vo — C then Uj ¢ Iy. So either
vj € Cp or v; € Vy. Moreover, v; ¢ C implies v; € C. Thus, v; must be in
CoU(VyNC). Combining these, we conclude that the set Cpyin = CoU(CNV))
covers the edge [v;,v;]. This proves that Cp;, is a vertex cover of G.

Now we show |Cpin| = |C|. For this we first construct a vertex cover for
the bipartite graph B. Define
T=CyUVyU(CnNlIy) W=CnCcQCy

Also define two subsets of vertices in the bipartite graph B:
Ly = {vf | v; € T} Ry = {v}’ | v; e W}

We prove C; = Lt U Ry is a vertex cover of the bipartite grpah B.

Let [Uz-L,vf] be an edge in B. By the definition, [v;,v;] is an edge in G.
If vl & Ly, then v; ¢ T = Co U Vo U (C N y), so v; € Ip — C, that is, v; € I
and v; € C. Since C must cover [v;,v;], we have v; € C. From v; € Iy, we
have v; € Cy. Therefore, in case ’U,L-L ¢ L7, we have v; € CNCy = W, which

implies ’UJR € Ry . Thus, C; is a vertex cover of B. Now
Vol +2|Col = |CB| < [Cpl = |Lr|+ [Rw| = |Co| + [Vo| + |C N Io| + |C'N Co

The inequality is because Cy is a vertex cover while Cg is a minimum vertex
cover of the bipartite graph B. From this we get immediately

|Col < |CNIhl+|CNCol=|CN (I UCh)l
Therefore,

|Cmin| — |COU (Cﬂ%” = ‘CO‘ + |Cﬂ‘/0|
< [CN(IoUGo)|+IC NVl =[CN(IoUCoNn Vo)l =|[C]

Since Cpip is a vertex cover and C' is a minimum vertex cover of the graph
G, we must have |Cpin| = |C| and Cyy, is a also a minimum vertex cover of
the graph G. Since Cy C Cin, statement (2) in the theorem is proved.
Proof for (3). Let C; be a minimum vertex cover of the induced graph
G(Vh). Then by statement (1) of the theorem, Cy = CyUC} is a vertex cover
of the graph G. Now if we let Ly = {vF|v; € Co} and Ry = {vE|v; € Oy},
then clearly Ly U Ry is a vertex cover of the bipartite graph B. Therefore

[Vo| +2|Co| = |C| < |[L2 U Ry| = 2|Cq| = 2|Cy| + 2|C1|

The inequality is because Cp is a minimum vertex cover while Lo U Ry is
a vertex cover of the bipartite graph B. This derivation gives immediately,
Vol < 2|Cy| = 20pt(G(Vy)). Statement (3) of the theorem follows. [

332 COMBINATORICAL METHODS

Corollary 9.4.7 Let G be a graph, and Cy and Vy be the subsets given in
Theorem 9.4.6. For any vertex cover Cy of the induced graph G(Vy), CoUCy
is a vertex cover of G and

[CoUCyv| . OV
Opt(G) — Opt(G(Wo))

PrRoOOF. The fact that CyUCYy is a vertex cover of G is given by statement
(1) in Theorem 9.4.6.

By statement (2) of Theorem 9.4.6, there is a minimum vertex cover Cpin
of G such that Cy C Cpin. Let C;, = Cmin—Cp. Then C_; covers all edges
in the induced graph G(Vj). In fact, C,;, is a minimum vertex cover of the
induced graph G(Vp). This can be seen as follows. We first show that C_, is

min

a subset of V. If C_;, is not a subset of Vj, then the smaller set C_; NV} is a
vertex cover of G(Vp). By statement (1) of Theorem 9.4.6, (C_; NVp)UCy is

a vertex cover of G. Now |(C_; NVo)UCy| < |C,;,UCs| = |Crnin| contradicts
the definition of Cin. This shows that C|; is a subset of 1 thus C_;, is a
vertex cover of G(Vp). C;, is also a minimum vertex cover of G(Vp) since
any smaller vertex cover of G(Vp) plus Cy would form a vertex cover of G

smaller than the minimum vertex cover Cpin = C_;, U Cp. Therefore

CoUCy| _ [Col +1Cv| _ [Gol+Cvl _ Icvl _ _ ICv]
Opt(G) |Crnin |Col + |Cy Cn Opt(G(V))

min | |

in‘

The inequality has used the fact C, ; is a minimum vertex cover of G(V})

so |Cil < |Cyv|. U

n

in

Corollary 9.4.7 indicates that in order to improve the approximation ratio
for MIN VERTEX COVER on the graph G, we only need to concentrate on
the induced graph G(Vp). Note that approximation ratio 2 is trivial for the
induced graph G(Vp): by statement (3) in Theorem 9.4.6, |V,|/Opt(G(Vp)) <
2. Therefore, simply including all vertices in the graph G(V}) gives a vertex
cover of size at most twice of Opt(G(Vp)).

By Lemma 9.4.1, the complement of a vertex cover is an independent set,
the above observation suggests that in order to improve the approximation
ratio for MIN VERTEX COVER, we can try to identify a large independent
set in G(Vp). Our first improvement is given in Figure 9.11.

Theorem 9.4.8 The algorithm VC-Apx-II for MIN VERTEX COVER runs
in time O(y/nm) and has approzimation ratio 2—2/(A+1), where A is the
largest verter degree in the given graph.

VERTEX COVER 333

Algorithm. VC-Apx-II

Input: a graph G
Output: a vertex cover C of G

1. apply Theorem 9.4.6 to construct the subsets Cp and Vp;
2. Gi=GW); I=0;
3. while G is not empty do
pick any vertex v in Gi;
I=1U{v};
delete v and all its neighbors from the graph Gi;
4. return C = (Vo — I)U Co.

Figure 9.11: Approximating vertex cover 11

PROOF. The running time of the algorithm VC-Apx-II is dominated by
step 1, which by Theorem 9.4.6 takes time O(y/nm).

Counsider the loop in step 3. The constructed set I is obviously an inde-
pendent set in the graph G(V;). According to the algorithm, for each group
of at most A + 1 vertices in G(V})), we conclude a new vertex in I. Thus,
the number of vertices in I is at least |V|/(A + 1). Therefore, V) — I is a
vertex cover of G(Vp) and |Vy — I| < (|[Vo|A)/(A + 1). Now

Vo1l _ (WA Aty _, 2

Opt(GVo)) = Wl/z — 7 A+l

where we have used the fact Opt(G(Vp)) > |Vo|/2 proved in Theorem 9.4.6.
Now the theorem follows directly from Corollary 9.4.7. [

Remark. The value A+1 is the approximation ratio in Theorem 9.4.8 can
be replaced by A. In fact, since every proper subgraph of the input graph
has a vertex of degree strictly smaller than A, in step 3 of the algorithm VC-
Apx-II, we can, except possibly for the first vertex, always pick a vertex of
degree smaller than A. Thus, in this case, we will include a vertex in I from
each group of at most A vertices. We leave the details to the readers.

For graphs of low degree, the approximation ratio of the algorithm VC-
Apx-IT is significantly better than 2. However, the value A can be as large
as n — 1. Therefore, in the worst case, what we can conclude is only that
the algorithm VC-Apx-II has an approximation ratio bounded by 2 — 2/n.

We seek further improvement by looking for larger independent sets.
We first show that for graphs with no short odd cycles, finding a larger

334 COMBINATORICAL METHODS

Algorithm. Large-IS(G, k)

Input: a graph G of n vertices and with no odd cycles of length < 2k — 1,
where k is an integer satisfying (2k — 1)* > n
Output: an independent set I in G

1. I=0
2. while G is not empty do
pick any vertex v in G}
Breadth First Search starting from v;
let Lo, L1, ..., L be the first k + 1 levels of vertices
in the Breadth First Search tree;
define th = U:‘:O L2i and D2t+1 = U::o L2¢+1, fOI‘ t= 0,]., Ly
let s be the smallest index satisfying |D;| < (2k — 1)|Ds—1];
I=TUD, i;
remove all vertices in Dy U D, from the graph G;
3. return I.

Figure 9.12: finding an independent set in a graph without short odd cycles

independent set is possible. Consider the algorithm given in Figure 9.12.

Lemma 9.4.9 For a graph G of n vertices with no odd cycles of length
< 2k — 1, where k is an integer satisfying (2k — 1)¥ > n, the Algorithm
Large-IS(G, k) runs in time O(nm) and constructs an independent set I of
size at least n/(2k).

ProOOF. First we need to show that it is always possible to fnd the index
s such that |Ds| < (2k — 1)|Ds—1|. Suppose such an index does not exist.
Then we have |D;| > (2k — 1)|D;_1| for all ¢ = 1,...,k. Therefore (note
|Dg| =1 and (2k — 1)* > n),

|Di| > (2k — 1)|Di_1| > (2k — 1)?|Dy—a| > -+ > (2k — 1)¥|Dy| > n

This is impossible, since Dy, is a subset of vertices in the graph G while G
has n vertices. Therefore, the index s always exists.

Since |Ds| < (2k — 1)|Ds_1|, we have |Ds_1| > (|Ds| + |Ds—1|)/(2k).
Therefore, each time when we remove |Dg| + |Ds_1| vertices from the graph
G, we include |Ds_1| > (|Ds| + |Ds—1])/(2k) vertices in the set I. In conse-
quence, the set I constructed by the algorithm Large-IS has at least n/(2k)
vertices.

What remains is to show that the set I is an independent set in G. For
a Breadth First Search tree, every edge in G either connects two vertices at

VERTEX COVER 335

the same level, or connects two vertices in the adjacent levels (See Appendix
A). Therefore, no edge is between two vertices that belong to different levels
in the set Ds_1 (note that Ds_; only contains either odd levels only or even
levels only in the Breadth First Search tree). Moreover, any edge connecting
two vertices at the same level in D; 1 would form an odd cycle of length
< 2k — 1 (recall s < k), which contradicts our assumption that the graph
G has no odd cycles of length < 2k — 1. In conclusion, no two vertices in
the set D;_1 are adjacent and the set Ds_ is an independent set. Since in
each execution of the loop body, we also remove vertices in the set Dy, there
is also no edge between two sets D;_; constructed in different stages in the
algorithm. Thus, the set I is an independent set in the graph G.

The analysis of the algorithm is easy. Each execution of the while loop
body is a Breadth First Search on the graph G, which takes time O(m),
and removes at least one vertex from the graph G. Therefore, the algorithm
runs in time O(nm). UJ

The conditions in Lemma 9.4.9 are bit too strong. We need to take care
of the situation where graphs contain short odd cycles. Suppose that the
vertices vy, vo, and vs form a triangle in a graph G. Then we observe that
every minimum vertex cover of G must contain at least two of these three
vertices. Therefore, if our objective is an approximation ratio larger than
1.5, then intuitively it will not hurt if we include all three vertices in our
vertex cover since the “local” approximation ratio for this inclusion is 1.5. In
general, for a subgraph H of h vertices in G, if we know the ratio h/Opt(H)
is not larger than our objective ratio, then it seems reasonable to simply
include all vertices in the subgraph H and remove H from G. This intuition
is confirmed by the following lemma.

Lemma 9.4.10 Let G be a graph and H be a subgraph induced by h vertices
in G. Let G- = G — H. Suppose that C~ is a vertex cover of the graph G~.
Then C~ U H 1is a vertex cover of the graph G and

cuH| _ lex h
Opt(G) = ") Opt(G-)’ Opt(H)

PROOF. Let [u,v] be an edge in the graph G. If one of u and v is in the
graph H, then certainly [u,v] is covered by C~ U H. If none of w and v is
in H, then [u,v] is an edge in G~ and must be covered by C~. Therefore,
C~ U H is a vertex cover of the graph G.

Let Cpin be a minimum vertex cover of the graph G. Let C_; be the

set of vertices in Cin that are in the graph G~, and let CH be the set of

min

336 COMBINATORICAL METHODS

Algorithm. VC-Apx-II1

Input: a graph G of n vertices
Output: a vertex cover C of G

1. Ci=0;

2. let k the smallest integer such that (2k — 1)* > n;

3. while G contains an odd cycle of length < 2k — 1 do
find an odd cycle X of length < 2k — 1;
add all vertices of X to Ci;
delete all vertices of X from the graph Gj

4. let the remaining graph be G', apply Theorem 9.4.6 to G’ to

construct the subsets Co and Vp of vertices in G';
5. apply the algorithm Large-IS(G(Vy), k) to construct an
independent set I in G(Vp);
Cy=CoU (Vo —I);
7. return C = C; UC(Cs,.

>

Figure 9.13: Approximating vertex cover III

vertices in Chin that are in H. Then C|; is a vertex cover of the graph G~

and CI._'is a vertex cover of the graph H. Therefore, we have

|IC-UH| |C"UH| |[C|+h
Opt(G) | Crnia| |C il + |CH,

min

< |C™|+h max |C~| h
~ Opt(G=)+ Opt(H) — Opt(G~)’ Opt(H)

here we have used the facts |C...| > Opt(G™), |CE | > Opt(H), and (a +
b)/(c + d) < max{a/c,b/d} for any positive numbers a, b, ¢, and d. [

If the subgraph H is a cycle of length h = 2k — 1, obviously we have
h/Opt(H) = (2k — 1)/k = 2 — 1/k. According to Lemma 9.4.10, if our
objective approximation ratio is not smaller than 2 — 1/k, then we can
remove the cycle H from the graph by simply including all vertices in H
in the vertex cover. Repeating this procedure, we will result in a graph G’
with no short odd cycles. Now applying the algorithm Large-IS on G’ gives
us a larger independent set I, from which a better vertex cover is obtained.
These ideas are implemented in the algorithm given in Figure 9.13.

Theorem 9.4.11 Approximation algorithm VC-Apx-III for MIN VER-

. loglogn
TEX COVER runs in time O(nm), and has approzimation ratio 2 — Slogn

VERTEX COVER 337

ProOOF. The time complexity of all steps, except step 3, of the algorithm
has been discussed and is bounded by O(nm). To find an odd cycle of length
bounded by 2k —1 in step 3, we pick any vertex v and perform Breadth First
Search starting from v for at most k + 1 levels. Either we will find an edge
connecting two vertices at the same level, which gives us an odd cycle of
length bounded by 2k — 1, or we do not find such an odd cycle. In the
former case, the cycle will be removed from the graph G, while in the latter
case, the vertex v is not contained in any odd cycle of length bounded by
2k — 1. Therefore, the vertex v can be removed from the graph in the latter
search for odd cycles. In any case, each Breadth First Search removes at
least one vertex from the graph. We conclude that at most n Breadth First
Searches are performed in step 3. Since each Breadth First Search takes time
O(m), the time complexity of step 3 is O(nm). Summarizing all these, we
conclude that the time complexity of the algorithm VC-Apx-III is O(nm).

We prove that the approximation ratio of the algorithm VC-Apx-II is
bounded by 2 — 1/k, where k is defined in step 2 of the algorithm.

Let H be the subgraph of G consisting of all the odd cycles removed in
step 3. Since each cycle X in H has length 25 — 1, where j < k, we have
(2§ —1)/Opt(X) = (2j —1)/j =2 —1/j <2 —1/k. Since all cycles in H
are disjoint, we have h/Opt(H) < 2—1/k, where h is the number of vertices
in H. By Lemma 9.4.10, to prove that the algorithm VC-Apx-III has an
approximation ratio bounded by 2 — 1/k, it suffices to proved that the set
C5 constructed in step 6 is a vertex cover of the graph G’ = G — H satisfying
|Ca|/Opt(G') <2 —1/k.

By Lemma 9.4.9, I is an independent set of at least |Vy|/(2k) vertices in
the graph G(Vp). Therefore, Vj — I is a vertex cover of G(Vj) with at most
Vol — [Vol/(2k) = |Vo|(1 — 1/(2k)) vertices. Therefore,

Vo—1] _ [Vol(@ —1/(2k)) _ [Vol(1 —1/(2k)) _, 1
Opt(G(V)) = Opt(G(Vo)) — [Vol/2 k

From this and Corollary 9.4.7, Co = Cy U (Vp — I) is a vertex cover of the
graph G’ satisfying
-1 1
Cof . Vo1

Opi(@) = Opt(G) =° &

Now |C|/Opt(G) < 2 — 1/k follows from Lemma 9.4.10. Thus, the approxi-
mation ratio of the algorithm VC-Apx-II is bounded by 2 —1/k. Since & is
the smallest integer satisfying (2k —1)¥ > n, we can derive from elementary

338 COMBINATORICAL METHODS

mathematics that & < (2logn)/(loglogn). This completes the proof of the
theorem. []

The ratio in Theorem 9.4.11 is best known result for polynomial time
approximation algorithms for MIN VERTEX COVER. We point out that the
above techniques can be extended to design approximation algorithms with
the same ratio for the weighted version of MIN VERTEX COVER. Interested
readers are referred to [11].

Chapter 10

Probabilistic Methods

Probabilistic methods have been developed recently and become a very pow-
erful and widely used tool in combinatorics and computer algorithm design.
In particular, randomized algorithms have found widespread applications in
many problem domains. A randomized algorithm is an algorithm that can
use the outcome of a random process. Typically, such an algorithm would
contain an instruction to “flip a coin,” and the result of that coin flip would
influence the algorithm’s subsequent execution and output. Two reasons
that have made randomized algorithms popular are their simplicity and ef-
ficiency. For many applications, randomized algorithms often provide the
simplest, most natural and most efficient solutions.

The original ideas of the probability methods, initiated by Paul Erdos,
can be described as follows: in order to prove the existence of a combi-
natorial object with a specified property A, we construct an appropriate
probabilistic space for all related objects, with or without the property A,
and show that a randomly chosen element in this space has property A with
positive probability. Note that this method is somehow “non-constructive”
in the sense that it does not tell how to find an object with property A.
A comprehensive discussion for probabilistic methods is given in Alon and
Spencer [2].

An implementation of the above probabilistic methods in randomized
algorithms is for certain combinatorial structures to prove that a randomly
chosen object has property A with a high probability. This in general im-
plies a simple and efficient randomized algorithm for finding an object with
property A: just randomly pick a few objects, then with a very high proba-
bility, an object with property A should be picked. Readers are referred to
Motwani and Raghavan [98] for more systematic discussions on randomized

339

340 PROBABILISTIC METHODS

algorithms.

Sometimes a randomized algorithm can be “derandomized”. Derandom-
ization is a process that converts a randomized algorithm into an efficient
deterministic algorithm that performs equally well. Therefore, the prob-
abilistic methods have also become an important technique in designing
efficient deterministic algorithms.

A common misconception regarding the probabilistic methods is that one
must have deep knowledge in probability theory in order to use the meth-
ods. This is far from the truth. In fact, a basic understanding of probability
theory along with familiarity with some clever combinatorial reasoning is
sufficient in many cases to derive interesting results using the probabilistic
methods and develop very powerful randomized algorithms. In this chap-
ter, we illustrate how efficient approximation algorithms for optimization
problems can be developed based on the probabilistic methods. We start
with a few basic concepts and useful principles in probability theory that
are directly related to our discussion. We then describe a general deran-
domization technique, using Johnson’s algorithm for the MAX-SAT problem
as an illustration (see Figure 9.5). Randomized approximation algorithms
for a variety of NP-hard optimization problems are then presented. These
randomized algorithms can be derandomized based on the derandomization
techniques.

10.1 Linearity of expectation

In this section, we describe several basic concepts and a few useful princi-
ples in probability theory that are directly related to our discussion. The
reader may read Appendix C in this book for a very quick review of the
fundamentals of probability theory.

Let (€, P) be a probabilistic space, where we assume that the sample
space € is countable (i.e., either finite or countably infinite). Let X be a
random variable over the probabilistic space (2, P). Recall that the ezpec-
tation F(X) of the random variable X on the probabilistic space (€2, P) is
defined by

E(X) =) X(q)P(q)

qeQ

provided that the series 3 cq X(q)P(q) is absolutely convergent. In this
case we say that the expectation F(X) exists.
Two random variables X and Y are independent if for any two real

LINEARITY OF EXPECTATION 341

numbers y; and y», we have
P(X1 =y1, X2 = yo) = P(X1 = y1) - P(X2 = yp)

The most fundamental tool of the probabilistic methods is the First Mo-
ment Method. The essence of the First Moment Method lies in the following
simple yet surprisingly powerful fact:

Theorem 10.1.1 (The First Moment Principle) Let X be a random
variable over a probabilistic space (2, P) and let t be a real number. If
E(X) <t then P(X <t)>0.

PrROOF. By the definition

E(X)=) X(@Pl@= > X@P@+ Y X(@P()
qeQ q:X(q)<t q:X(q)>1
If P(X <t) =0 then P(X > t) = 1, and for any sample point ¢ with
X(q) <t we have P(q) = 0. Therefore

E(X)= Y X(qP(q)>t-P(X>t)=t
X (g)>t

This contradicts the assumption F(X) <¢. O

Lemma 10.1.2 Let X and Y be random variables on a probabilistic space
(Q,P). If E(X) and E(Y) exist, then so do the expectations E(X +Y) and
E(aX), where a is any real number, and

E(X+Y)=EX)+EY) and E(X)=a E(X)

PROOF. The absolute convergence of the series 3°,.q(X(¢) + Y (q))P(q)
and }°,cq(a-X(q))P(q) follows directly from the absolute convergence of the
series 3 cq X (g)P(q) and 3 cq Y (q)P(q). Thus, the expectations E(X +
Y) and E(aX) exist.

According to the definition, we have

E(X+Y) = Y (X(q9) +Y(q)P(q)
qeN

= > X(q9)P(q) + > _Y(a)P(q)
qeN qeN
— E(X)+E(Y)

342 PROBABILISTIC METHODS

where the second equality is valid because of the absolute convergence of
the series >°,cq X(q)P(q) and 3,0 Y (q)P(g), and

E(aX) =) (a-X(q))P(q) =a-)Y_ X(q)P(q) = a- E(X)
qeQ qeN

This proves the lemma. []

A very useful principle, the linearity of expectation, follows directly from
Lemma 10.1.2.

Theorem 10.1.3 (Linearity of Expectation) Let X1, ..., X,, be ran-
dom variables on a probabilistic space (2, P) such that E(X;) exists for all
i. Then for any real numbers ay, ..., an, E(a1 X1 + -+ a, X},) exists and

E(a1 X1+ +anXy) = a1 E(X1) + -+ + an BE(Xp)

A remarkable property of Theorem 10.1.3 is that it has no restrictions
on the independence of the random variables X1, ..., X,.

Theorem 10.1.3 does not generalize to the product of random variables.
On the other hand, for independent random variables, we have the following
theorem.

Theorem 10.1.4 Let X and Y be two independent random variables on a
probabilistic space (2, P) such that E(X) and E(Y) exist. Then E(XY)
exists and

E(XY)=EX)E(Y)

PROOF. Again we give a proof under the assumption that the sample
space (2 is countable.

Let Rx and Ry be the ranges of X and Y, respectively. Since the sample
space (2 is countable, the ranges Rx and Ry are also countable. For each
value z in Rx and each value y in Ry, let

Agy={4q| X(g) =z and Y(q) =y}

We have
E(X)E(Y) = (3 X(9)P(9))(d>_Y(9)P(q))

qeN qeQ

= (202 = P@)(X (X y P@)

TERXx ¢:X(q)=x YyERy ¢:Y(q)=y

LINEARITY OF EXPECTATION 343

= (Y z-P(X=x)(), y-PY =y))

TERXx yERy

= Y Y zy-P(X=2)P(Y =y)

T€ERXx yERy

= Y Y ay-PX=zY=y)

r€ERX yERy

= Y Y ayPlAsy) (10.1)

TERX yERy

The fifth equality is because of the independence of the random variables
X and Y. Note that the validity of many derivations in (10.1) is heav-
ily based on the absolute convergence of the series 3 cq X(¢q)P(g) and
> qea Y (9)P(q), i-e., the existence of the expectations F(X) and E(Y). In
particular, the series > cp > cp, TV - P(Azy) is also absolutely conver-
gent. Therefore,

Do D wyPlAgy)= 3 Y my D P

z€Rx yERy z€Rx yERy qEAz y
= > > > X@Y(@P(g)=>_ X(qY(q9)P(q) = E(XY)
TERx YERy q€Azy qeQ

This proves the theorem. []

The concept of conditionality of probability can be conveniently gen-
eralized to the expectation of random variables. Let B be an event with
P(B) > 0 and let X be a random variable. The conditional expectation of
the random variable X relative to B is written as E(X|B) and defined by

E(X|B)=>_ X(q)P(q|B)
qeN

Thus, we simply replace in the formula E(X) = 3= cq X (g)P(g) the proba-
bilities by the conditional ones. Intuitively, E(X|B) is the “average value”
of the random variable X over the set B. Note that if F(X) exists then so
does E(X|B) because P(q|B) < P(q)/P(B) so the absolute convergence of
the series 3 cq X (q)P(q|B) follows directly from the absolute convergence
of the series 7 cq X(¢)P(g). In particular, the event B can be given by
another random variable Y. For example, E(X|Y = y) = E(X|By) where
the event By is defined by By ={ q | Y(¢) = y}-

344 PROBABILISTIC METHODS

Theorem 10.1.5 Let Ay, ..., A, be a partition of the sample space 2, and
let X be a random variable over the probabilistic space (2, P) such that E(X)

exists. Then
n

E(X) =) P(A)E(X|A;)
=1
PROOF. By the definition, E(X) = 3 ,cq X(¢)P(¢q). By Proposi-
tion C.2(1) in Appendix C, we have

n

P(q) =) _ P(qlA)P(4)
i=1
Therefore,

n

E(X) = Y X(q)-(Q_ PlalAi)P(4))

qeQ) =1
= Y P(4) > X(q)P(q|4)
i=1 qeQ)

P(A)E(X|4;)

n

=
—

The validity of the second equality is ensured by the absolute convergence
of the series 3° .o X(q)P(q). U

Theorem 10.1.3 can also be extended to conditional expectations, with
simple modifications in the proof. We state the result as follows and leave
the proof to the reader.

Theorem 10.1.6 Let X1, ..., X,, be random variables on a probabilistic
space (2, P) such that E(X;) exists for all i, and let B be any event with
P(B) > 0. Then for any real numbers a1, ..., an, E(a1 X1 +--- + ap X, | B)
exists and

10.2 Derandomization

As we mentioned at the beginning of this chapter, the probabilistic methods
in many cases supply effective randomized algorithms for various computa-
tion problems. In some cases, these randomized algorithms can be “deran-
domized” and converted into deterministic algorithms. The most common

DERANDOMIZATION 345

technique for derandomization is based on the method of conditional prob-
abilities due to Erdos and Selfridge [36]. In this section, we first describe a
randomized algorithm for the MAX-SAT problem, and show how the algo-
rithm is derandomized using the above method. This discussion re-interprets
Johnson’s algorithm (see Figure 9.5) for the MAX-SAT problem as a deran-
domization of a randomized algorithm. Based on this interpretation, we
show how to improve the approximation ratio of Johnson’s algorithm for
the MAX-SAT problem.

Recall that an instance of the MAX-SAT problem is a set of clauses F' =
{C1,...,Cy} on a set of boolean variables {z1,...,z,}, with the objective
to find an assignment 7 on the boolean variables that maximizes the number
of satisfied clauses.

Counsider the following randomized algorithm: for each boolean variable
z;, we independently assign z; with value TRUE with probability 1/2 and
FALSE with probability 1/2. This builds a probabilistic space (2, P) as
follows: each sample point 7 in the sample space €2 is an assignment to
the boolean variables {z1,...,z,}. Therefore, the sample space is finite
and has totally 2" sample points. For a boolean value b = TRUE or FALSE,
let B;,— be the event that includes all assignments in £ that assign the
boolean variable z; with value b. To simplify the expressions, we write
the probability P(Bj,—) in a more compact form P(z; = b). From our
construction, we know P(z; = b) = 1/2 for all boolean variables z; and for
all boolean value b. For an assignment 7, we will denote by 7(z;) the value of
the boolean variable x; under the assignment 7. For each assignment 7 € (2,
the probability P(7) is naturally defined by (note that by our construction,
the events By, _;(z;) and By, _;(z;) for i # j are independent):

P(T) = P(.’El = T(.’L'l), SR aP('T" = T(‘T”))
_ Plor = 7(m)) - Plon = (o)
1

2n

It is easy to verify that (€2, P) makes a probabilistic space. Note that this
also matches our intuition: we independently assign each boolean variable z;
by the value TRUE or FALSE with equal probability 1/2, thus all assignments
to the boolean variables {z1,...,z,} should be equally like: each of the 2"
assignments in the sample space 2 has probability 1/2".

Recall that we say an assignment satisfies a clause if the assignment
makes the clause have value TRUE. For each clause C; in the set F', 1 < j <
m, define a random variable X; on the sample space €2 such that for each

346 PROBABILISTIC METHODS

assignment 7 to the boolean variables {z1,...,z,}, we have

v _) 1 if 7 does not satisty Cj
Xi(r) = { 0 if 7 satisfies C;

The linear combination of these random variables X;, 1 < j < m, X =
X1 +---+ X,, defines a new random variable on the sample space) such
that for each assignment 7 in , X (7) is the number of clauses in F' not
satisfied by the assignment 7. We consider the expectations of these random
variables.

Let C; be a clause of k literals in F: Cj = (a1 V -+ V a;), where a), are
literals in {z1,...,z,}. Without generality, we assume that no variable z;
has both z; and Z; in the clause C}. Let Bj; be the set of assignments in (2
that do not satisfy the clause C;. Then Bj is an event in). It is easy to
see that an assignment 7 is in the event B; if and only if 7 makes all literals
ai, ..., ap have value FALSE. Thus,

P(Bj) = P(r(a1) = FALSE,...,T(a)) = FALSE)
= P(7(a1) = FALSE) - - P(7(a)) = FALSE)
1

Note that the second equality is because the values for two different boolean
variables z; and x; were assigned independently and the clause C; does not
contain both z; and z; for any variable z;, so the events B, (,;,)-raLsE and
B;(a;)=FALSE are independent.

By the definition of expectation

1
E(X;) =) X;(r)P(r) = Y P(1) = P(Bj) = oF
TEN TEB]‘
10.3 Linear Programming relaxation
Let F = {C,...,Cy} be a set of clauses on boolean variables z1, za, ..., T,

which is an instance of the MAX-SAT problem. For each boolean variable
z;, randomly assign z; = 1 with probability p;. The expectation value of
the number of clauses to be satisfied by this random assignment is

3 (1— M- I p@) (10.3)
j=1

r;€Cj T;€Cj

LP RELAXATION 347

As we discussed in the previous section, the extended Johnson’s algorithm
Johnson-Extended assigns each variable z; with value either 0 or 1 (de-
terministically) and keeps the expectation value of the number of clauses to
be satisfied nondeceasing. Therefore, at the end of the algorithm when every
boolean variable gets an assigned value while the expectation value of the
number of clauses to be satisfied is at least as large as the value in (10.3),
we obtain an assignment of the boolean variables such that the number of
clauses satisfied by this assignment is at least as large as (10.3).

In this section, we introduce a powerful technique, linear programming
relazation, and illustrate how this technique is used to improve the approx-
imation ratio for the MAX-SAT problem.

We first reduce the instance F' = {C1, ..., Cy, } of the MAX-SAT problem
to an instance of the integer linear programming problem INTEGER LP, as
we introduced in Section 5.1.

(IPr): maximize 21+ 20+ -+ 2p

subject to
in—l— Z(l—af:i)sz j=1,....m
z;€C; T;€C;
Ziz; =0 or 1 i1=1,....,n; j7=1,....,m
Clearly, an optimal solution (z9,...,22,2¢,...,22) to the instance IPp of
INTEGER LP gives an optimal assignment o, = (z9,...,22) to the in-

stance F' of MAX-SAT with maximized objective function value Opt(F) =
Opt(IPp) = z{+- - -+22,. Unfortunately, according to Theorem 77, INTEGER
LP is NP-hard.

Since general linear programming problem LP is solvable in polynomial
time (Theorem ?7), we try to “relax” the integral constraint in the instance
IPr for INTEGER LP and see how this relaxation would help us in deriving
a good approximation for the instance F' of MAX-SAT.

(LPp): maximize 2z1+20+ -+ 2m
subject to
ozt Yy (l-z)>z j=1,..,m
z;€Cj T;€Cj
0< 242 <1 1=1,....,n; j=1,...,m

Let A* = (z3,...,2},27,...,2},) be an optimal solution to the instance
LPr with optimal objective function value Opt(LPr) = 2{ +--- + z,. By
Theorem 77, A* can be constructed from LPr in polynomial time. Since

348 PROBABILISTIC METHODS

Algorithm. LP-Relaxation

Input: aset F = {C4,...,Cn} of clauses
Output: an assignment to the boolean variables in F'

1. solve the linear programming problem LPr and let the optimal
solution be (z1,..., %5, 21, -, 2m);

2. fori=1tondo p;=z];

3. call algorithm Johnson-Extended with the probability assignment

(p1,- -+, pn);
4. output the assignment constructed in step 3.

Figure 10.1: Approximating MAX-SAT by LP Relaxation

each feasible solution to the instance I Pr is also a feasible solution to the
instance LPp, we have Opt(LPr) > Opt(IPr), which gives an upper bound
Opt(LPg) for the optimal value Opt(F'). This estimation of the value Opt(F)
is obviously more precise than the bound m, which is the total number of
clauses in F', as we have used in the analysis for Johnson’s algorithm.

Unfortunately, the values (z7,...,z}) in A* cannot be directly used as
an assignment to the boolean variables zi, ..., z, in the instance F' of
MAX-SAT. In general, the value z} can be a non-integral number between
0 and 1 while assignining a boolean variable z; with a non-integral value
makes no sense. However, the values (z7,...,z}) do provide us with useful
information for a good assignment to the variables z1, ..., z,. For example,
suppose that 7 = 0.95 and z3 = 0.03. Then we would expect that in order
to maximize the objective function value, the variable z; seems to need to
take a large value while the variable z9 seems to need to take a small value.
In particular, if 1 and x2 are boolean variables, then it seems that z1 should
be likely to take value 1 while zo should be likely to take value 0.

A natural implementation of the above idea is to assign each boolean
variable z; = 1 with probability z} (note we have 0 < z < 1), then to
run the algorithm (Johnson-Extended). This algorithm is illustrated in
Figure 10.1.

Suppose that upon this random assignment, the algorithm Johnson-
Extended results in an assignment o, to the boolean variables z1, ..., z,
in the instance F' of MAX-SAT. By the discussion in the previous section,

LP RELAXATION 349

the number of clauses in F' satisfied by this assignment o, is

Er=Y" (1 - 11 a-=) I] w;‘> (10.4)

j=1 z,€Cj T;€C;

Therefore, the approximation ratio of this assignment o, is bounded by
Opt(F)/E*. Now we estimate the value E* in terms of the optimal solution
value Opt(F).

Lemma 10.3.1 Suppose that the clause C; in F has k literals. Then

1— I @ =xp) [=5 = Bez;

ziEC Z‘zEC
where (x3,...,2),27,...,2%) is an optimal solution to the instance LPp,

and By, =1 — (1 — 1/k)*. In particular, for any clause C; in F, we have

1— [a-2f)] = >(1_1)

ziEC IZEC

where e is the base of natural logarithms e =Y ooy 1/n! = 2.718.

ProOF. It is well-known that for any & nonnegative numbers a1, ag, ...,
ag, the arithmetic mean is at least as large as the geometric mean (for a
proof, see [?7]):

a1+a2-1];...+ak > Yarayar

Therefore, we have
HziEC’j (]‘ - x;k) HE{EC]' ‘/E:Lk
* «\ k
k

VAN

* « k
1 ZmiECJ- zi"'Zm €c; (1==7)
B k

z’-‘k
< e

The last inequality is because (z7,...,z},2],..., 2}

instance LPr of LP so we have

dNoozi+ > (1—-xf) > 2]

r;€Cj T;€Cj

) is a solution to the

350 PROBABILISTIC METHODS

Figure 10.2: The value f(z) is larger than Sjz.

From this inequality, we get immediately

N\ K
1- (1—-2z; z;>1-— — Z—]> 10.5

Define a function ¢(z) = 1 — (1 — z/k)*, then #(0) = 0 and t(1) = By.
Since the second derivative of the function ¢(z) is not larger than 0: t"(z) =
—(k—1)(1 —2/k)*¥2/k in the interval [0, 1] (we assume k > 1), the function
t(z) is concave in the interval [0,1]. This implies that the curve y = f(z)
is above the line y = Sz connecting the two points (0,0) and (1,) in the

interval [0,1] (see Figure 10.2). In particular, since 0 < z7 < 1, we have
f(z}) > Brzj. Combining this with (10.5), we obtain

1- H (1—2z) H z; >ﬂkz

z;€C} T;€C;

Since S is nonincreasing in terms of k, and since limg_,o, By =1 — 1/e,
we conclude that for any clause C;, we have

1- J] -2] x;‘2<1——>

z;€C} T;€C;

This completes the proof. [
Lemma 10.3.1 gives immediately the following theorem.

Theorem 10.3.2 The algorithm LP Relaxation for MAX-SAT runs in
polynomial time and has approzimation ratio bounded by e/(1 — e) ~ 1.58.

LP RELAXATION 351

PROOF. Since linear programming problem LP is solvable in polynomial
time, the algorithm LP Relaxation runs in polynomial time.

According to the discussion in the previous section, the assignment con-
structed by the algorithm satisfies at least

E’*:i(l— H (1—2z}) H xf)

j=1 z;€C} T;€C;
clauses in the instance F. According to Lemma 10.3.1,
1
1= T -a)] o> (1—g>z;-‘
z;€C} T;€C;

and notice that 377", 2} is the value of the optimal solution to the instance
LPp, which is at least as large as Opt(F'), we obtain

m

E* > (1 — 1) >z > (1 - %) Opt(F)

e/ -
J=1

This implies directly that the approximation ratio of the algorithm LP Re-

laxation is bounded by

(&
F)/E* < _
OPUE)/ B < 370 = 03

This completes the proof. []

A recent analysis [19] shows that the approximation ratio for Johnson’s
original algorithm is actually 1.5. Therefore, the ratio e/(1 — e) ~ 1.58 of
the algorithm LP Relaxation is actually not better than that of Johnson’s
original algorithm.

It is interesting to observe that the algorithm LP Relaxation and John-
son’s algorithm in some sense complement each other. According to The-
orem 7?7, the number of clauses satisfied by the assignment constructed by
Johnson’s algorithm is at least

UL 1
Y(1-ger) L L

j=1 k>1|C; =k

where o, = 1 — 1/2%, and by Lemma 10.3.1, the number of clauses satisfied
by the assignment constructed by LP Relaxation is at least

> Y e

E>1(Cjl=k

352 PROBABILISTIC METHODS

Algorithm. MaxSAT-Improved

Input: aset F = {C4,...,Cn} of clauses

Output: an assignment to the boolean variables in F'

1. call algorithm LP Relaxation to construct an assignment o; for F
2. call Johnson’s original algorithm to construct an assignment o2 for F;

3. output the better one of o1 and o.

Figure 10.3: Combining the LP Relaxation and Johnson’s algorithm

where 8 = 1 — (1 — 1/k)*. Note that the value oy incrases in terms of
k while the value (B descreases in terms of k. More specifically, Johnson’s
algorithm does better for clauses with more literals while the algorithm LP
Relaxation does better for clauses with fewer literals. This observation
motivates the idea of combining the two algorithms to result in a better
approximation ratio. Consider the algorithm given in Figure 10.3.

Theorem 10.3.3 The algorithm MaxSAT-Improved for MAX-SAT
runs in polynomial time and has approzimation ratio bounded by 4/3.

ProOOF. The algorithm obviously runs in polynomial time.

Let m s be the number of clauses in F' satisfied by the assignment con-
structed by Johnson’s original algorithm, and let mjy be the number of
clauses in F' satisfied by the assignment constructed by the algorithm LP
Relaxation. By the above discussion, we have

my>> . > o and mp > > Bz

k>1|Cj=k| k>1|Cj=k|

where a = 1-1/2% and 8y = 1—(1—-1/k)*. According to the algorithm, the
number of clauses satisfied by the assignment constructed by the algorithm
MaxSAT-Improved is

max{my,mr} > (mj+mp)/2
(ZkZl 22105=k| Ok T 2Lp>120|0;=k| ﬁkz;) /2
> (Zk21 2|C5=k| k2] + 2k>1 220, =k| /6kz;) /2

D k>1 22(C;=k| (%er_ﬂk) Zj

Y

SEMIDEFINITE PROGRAM 353

In the second inequality, we have used the fact 0 < 27 <1 for all j. Now it
is not difficult to verify that for k > 1, ay + S > 3/2. We conclude

3N .3
max{myj, mr} > Zj;zj > ZOpt(F)

Here we have used the fact that 772, z] is the value of an optimal solution
to the instance LPp, which is at least as large as Opt(IPr) = Opt(F).

This implies immediately that the approximation ratio of the algorithm
MaxSAT-Improved is bounded by 4/3. U

Approximation algorithms for MAX-SAT have been a very active re-
search area in the last two decades (for research before 1990 see [60], and
for more recent research see [8]). We make two remarks before we close this
section.

A natural generalization of the MAX-SAT problem is the WEIGHTED
MAX-SAT problem in which each clause has a weight and we are look-
ing for assignments to the boolean variables that maximize the sum of the
weights of the satisfied clauses. All algorithms we have discussed can be
easily modified to work for WEIGHTED MAX-SAT without affecting the
approximation ratio.

Relaxation techniques have been very successful in the recent study of
approximation algorithms for MAX-SAT. After the discovery of the approx-
imation algorithm for MAX-SAT based on linear programming relaxation,
as we discussed in this section, relaxation of other mathematical program-
mings has also been investigated. In particular, relaxations on semidefinite
programming have been investigated carefully for further improvement of
approximation ratio for MAX-SAT. On the other hand, the study of inap-
proximability of MAX-SAT has also been making significant progress. We
refer our readers to [61, 75] for recent updates of the research.

10.4 Semidefinite Program

354 PROBABILISTIC METHODS

Chapter 11

APX Completeness Theory

11.1 The probabilistic checkable proof systems
11.2 Maximum 3-Satisfiability has no PTAS
11.3 Reducibility among optimization problems
11.4 Constrained satisfiability problems

11.5 Optimization on bounded-degree graphs

11.6 Apx-completeness for 3D-MATCHING and
MEeTRIC TSP

355

356 APX COMPLETENESS

Part IV

Miscellany

357

Chapter 12

Non-Approximable Problems

12.1 Independent set and clique
12.2 Graph coloring

12.3 Dominating set

359

360 NON-APPROXIMABLE PROBLEMS

Chapter 13

Exponential Time
Algorithms

13.1 Satisfiability
13.2 Independent set

13.3 Parameterized vertex cover

361

362 EXPONENTIAL TIME ALGORITHMS

Bibliography

[1] A. V. AHo, J. E. HopcrOPT, AND J. D. ULLMAN, The Design and

Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass.,
1974.

[2] N. ALoN AND J. H. SPENCER, The Probabilistic Method, John Wiley
& Sons, Inc., New York, NY, 1992.

[3] K. APPEL AND W. HAKEN, Every planar map is four colorable, Part
I: Discharging, Illinois J. Math. 21, (1977), pp. 429-490.

[4] K. ApPEL AND W. HAKEN, Every planar map is four colorable, Part
I: Reducibility, Illinois J. Math. 21, (1977), pp. 491-567.

[5] S. ARORA, Polynomial time approximation schemes for Euclidean
traveling salesman and other geometric problems, Journal of the ACM
45 (1998), pp. 753-782.

[6] S. ArRORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY,
Proof verification and the hardness of approximation problems, Journal
of the ACM 45, (1998), pp. 501-555.

[7] S. ARORA AND S. SAFRA, Probabilistic checking of proofs: a new
characterization of NP, Journal of the ACM 45, (1998), pp. 70-122.

[8] T. AsaNO, T. ONO, AND T. HIRATA, Approximation algorithms for
the maximum satisfiability problem, Proc. 5th Scandinavian Workshop
on Algorithm Theory, Lecture Notes in Computer Science 1097, pp.
100-111, (1997).

[9] G. AusiELLO, P. CRESCENZI, AND M. PROTASI, Approximate solu-
tion of NP optimization problems, Theoretical Computer Science 150,
(1995), pp. 1-55.

363

364
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

B. S. BAKER, Approximation algorithms for NP-complete problems
on planar graphs, Journal of ACM 41, (1994), pp. 153-180.

R. BAR-YEHUDA AND S. EVEN, A local-ratio theorem for approximat-

ing the weighted vertex cover problem, Annals of Discrete Mathematics
25, (1985), pp. 27-46.

P. BERMAN AND G. SCHNITGER, On the complexity of approximating
the independent set problem, Information and Computation 96, (1992),
pp. 77-94.

P. BERMAN AND V. RAMAIYER, Improved approximations for the
Steiner tree problem, Proc. 38rd Ann. ACM-SIAM Symp. on Discrete
Algorithms, (1992), pp. 325-334.

M. Brum, R. Froyp, V. PraTT, R. RIVEST, AND R. TARJAN,
Time bounds for selection, Journal of Computer and System Science
7, (1973), pp. 448-461.

L. CA1 AND J. CHEN, On the amount of nondeterminism and the
power of verifying, STAM Journal on Computing 26, pp. 733-750, 1997.

L. CA1 AND J. CHEN, On fixed-parameter tractability and approx-

imability of NP-hard optimization problems, Journal of Computer and
System Sciences 54, pp. 465-474, 1997.

L. Car1, J. CHEN, R. DOWNEY, AND M. FELLOWS, On the structure
of parameterized problems in NP, Information and Computation 123,

(1995), pp. 38-49.

J. CHEN AND D. K. FRIESEN, The complexity of 3-dimensional
matching, Tech. Report, Dept. Computer Science, Texas A&M Uni-
versity, (1995).

J. CHEN, D. K. FRIESEN, AND H. ZHENG, Tight bound on Johnson’s
algorithm for maximum satisfiability, Journal of Computer and System

Sciences 58, pp. 622-640, (1999).

J. CHEN, S. P. KANCHI, AND A. KANEVSKY, A note on approx-

imating graph genus, Information Processing Letters 61, pp. 317-322,
1997.

J. CHEN, I. A. KaANJ, AND W. J1A, Vertex cover: further observations

and further improvements, Lecture Notes in Computer Science 1665
(WG’99), pp. 313-324, 1999.

BIBLIOGRAPHY 365

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J. CHEN AND C.-Y. LEE, General multiprocessor task scheduling,
Naval Research Logistics 46, pp. 57-74, 1999.

J. CHEN AND A. MIRANDA, A polynomial time approximation scheme
for general multiprocessor job scheduling, Proceedings of the 31st An-
nual ACM Symposium on Theory of Computing, pp. 418-427, 1999.

N. CHRISTOFIDES, Worst-case analysis of a new heuristic for the
traveling salesman problem, Tech. Report, GSIA, Carnegie-Mellon Uni-
versity, (1976).

K. L. CHUNG, FElementary Probability Theory with Stochastic Pro-
cesses, Pringer-Verlag, New York, NY, 1979.

E. G. CorFMAN, M. R. GAREY, AND D. S. JOHNSON, Approxi-
mation algorithms for bin packing — an updated survey, in Algorithm
Design for Computer System Design, (ed. G. Ausiello, M. Lucertini,
and P. Serafini), Springer-Verlag, 1984.

S. A. Cook, The complexity of theorem-proving procedures, Proc.
3rd Ann. ACM Symp. on Theory of Computing, (1971), pp. 151-158.

T. H. CorMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction
to Algorithms, McGraw-Hill Book Company, New York, 1992.

P. CrRESCENZI AND V. KANN, A compendium of NP optimization
problems, Manuscript, (1995).

P. CRESCENZI AND A. PANCONESI, Completeness in approximation
classes, Information and Computation 93, (1991), pp. 241-262.

G. B. DANTZIG, Linear Programming and Eztensions, Princeton Uni-
versity Press, Princeton, NJ, 1963.

U. DERIGS, A shortest augmenting path method for solving minimal
perfect matching problems, Networks 11, (1981), pp. 379-390.

E. A. DiniTs, Algorithm for solution of a problem of maximum flow
in a network with power estimation, Soviet Math. Dokl. 11, (1970), pp.
1277-1280.

J. EDMONDS, Paths, trees and flowers, Canad. J. Math. 17, (1965),
pp. 449-467.

366

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

BIBLIOGRAPHY

J. EDMONDS AND R. M. KARP, Theoretical improvements in al-
gorithmic efficiency for network flow problems, Journal of ACM 19,
(1972), pp. 248-264.

P. ERDOS AND J. SELFRIDGE, On a combinatorial game, Journal of
Combinatorial Theory, Series A 14, (1979), pp. 298-301.

R. FAGIN, Generalized first-order spectra and polynomial-time recog-
nizable sets, SIAM-AMS Proc., (1974), pp. 43-73.

U. FEIGE AND M. GOEMANS, Approximating the value of two prover
proof systems, with applications to MAX 2SAT and MAX DICUT,
Proc. 3rd Israel Symp. of Theory and Computing and Systems, (1995),
pp. 182-189.

W. FELLER, An Introduction to Probability Theory and Its Applica-
tions, Vol. I, John Wiley, New York, 1968.

W. FELLER, An Introduction to Probability Theory and Its Applica-
tions, Vol. II, John Wiley, New York, 1968.

W. FERNANDEZ DE LA VEGA AND G. S. LUEKER, Bin packing can be
solved within 1+ ¢ in linear time, Combinatorica 1, (1981), pp. 349-355.

L. R. ForD AND D. R. FULKERSON, Flows in Networks, Princeton
University Press, Princeton, NJ, 1962.

D. K. FrRIESEN, Tighter bounds for the multifit processor scheduling
algorithm, STAM Journal on Computing 13, (1984), pp. 170-181.

M. FURER AND B. RAGHAVACHERI, Approximating the minimum-
degree spanning tree to within one from the optimal degree, Proc. of the
3rd ACM-SIAM Symp. on Discrete Algorithms, (1992), pp. 317-324.

H. N. GABOW, An efficient implementation of Edmonds’ algorithm
for maximum matching on graphs, Journal of ACM 23, (1976), pp.
221-234.

Z. GAuL, Efficient algorithms for finding maximum matching in
graphs, Computing Surveys 18, (1986), pp. 23-38.

M. R. GAREY, R. L. GRAHAM, AND D. S. JOHNSON, Some NP-
complete geometric problems, Proc. 8th Ann. ACM Symp. on Theory
of Computing, (1976), pp. 10-22.

BIBLIOGRAPHY 367

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

M. R. GAREY, R. L. GrRaHAM, D. S. JOHNSON, AND A. C. YaoO,

Resource constrained scheduling as generalized bin packing, Journal of
Combinatorial Theory Series A 21, (1976), pp. 257-298.

M. R. GAREY AND D. S. JOHNSON, Strong NP-completeness results:
motivation, examples, and implications, Journal of ACM 25, (1978),
pp- 499-508.

M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A

Guide to the Theory of NP-completeness, Freeman, San Fransico, CA,
1979.

M. R. GAREY, D. S. JOHNSON, AND L. J. STOCKMEYER, Some
simplified NP-complete graph problems, Theoretical Computer Science

1, (1976), pp. 237-267.

M. X. GOEMANS AND D. P. WILLIAMSON, New 3/4-approximation
algorithms for the maximum satisfiability problem, STAM Journal on
Disc. Math. 7, (1994), pp. 656-666.

M. X. GOEMANS AND D. P. WILLIAMSON, Improved approximation
algorithms for maximum cut and satisfiability problems using semidef-
inite programming, Journal of ACM 42, (1995), pp. 1115-1145.

A. V. GOLDBERG, E. TARDOS, AND R. E. TARJAN, Network flow
algorithms, Tech. Report STAN-CS-89-1252, Dept. Computer Science,
Stanford Univ., (1989).

A. V. GOLDBERG AND R. E. TARJAN, A new approach to the
maximum-flow problem, Journal of ACM 35, (1988), pp. 921-940.

R. L. GRAHAM, Bounds for certain multiprocessing anomalies, Bell
Systems Technical Journal 45, (1966), pp. 1563-1581.

M. GRIGNI, E. KOUTSOUPIAS, AND C. PAPADIMITRIOU, An approx-
imation scheme for planar graph TSP, Proc. 36st Ann. IEEE Symp. on
the Foundation of Computer Science, (1995), to appear.

J. L. GRoss AND T. W. TUCKER, Topological Graph Theory, John
Wiley & Sons, New York, 1987.

J. L. GrRoss AND J. YELLEN, Graph Theory and Its Applications,
CRC Press, Boca Raton, 1999.

368

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

BIBLIOGRAPHY

P. HANSEN AND B. JAUMARD, Algorithms for the maximum satisfi-
ability problem, Computing 44, (1990), pp. 279-303.

J. HASTAD, Some optimal inapproximability results, Proc. 28th Annual
ACM Symposium on Theory of Computing, (1997), pp. 1-10.

D. S. HocHBAUM, Approximation algorithms for the set covering
and vertex cover problems, SIAM Journal on Computing 3, (1982), pp.
555-556.

D. S. HocuBauM AND D. B. SuMOYSs, Using dual approximation

algorithms for scheduling problems: theoretical and practical results,
Journal of ACM 34, (1987), pp. 144-162.

D. S. HocuBAauM AND D. B. SHMOYS, A polynomial approximation
scheme for scheduling on uniform processors: using the dual approxi-
mation approach, SIAM Journal on Computing 17, (1988), pp. 539-551.

D. S. HocHBAUM AND D. B. SHMOYS, A linear-time approxima-
tion scheme for scheduling on identical parallel machines, Information
Processing Letters, (1997), to appear.

I. HOLYER, The NP-completeness of edge coloring, SIAM Journal on
Computing 10, (1981), pp. 718-720.

J. E. HOPCROFT AND R. M. KARP, A n5/2 algorithm for maximum
matching in bipartite graphs, SIAM Journal on Computing 2, (1973),
pp. 225-231.

J. E. HOPCROFT AND R. E. TARJAN, Efficient planarity testing,
Journal of ACM 21, (1974), pp. 549-568.

C. A. J. HURKENS AND A. SCHRIJVER, On the size of systems of
sets every t of which have an SDR, with an application to the worst-
case ratio of heuristics for packing problems SIAM Journal on Discrete
Mathematics 2, (1989), pp. 68-72.

O. H. IBARRA AND C. E. KiMm, Fast approximation algorithms for
the knapsack and sum of subset problems, Journal of ACM 22, (1975),
pp. 463-468.

D. S. JOoHNSON, Approximation algorithms for combinatorial prob-
lems, Journal of Computer and System Sciences 9, (1974), pp. 256-278.

BIBLIOGRAPHY 369

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

D. S. JoHnNsON, The NP-completeness column: an ongoing guide,
Journal of Algorithms 13, (1992), pp. 502-524.

D. S. Jounson, A. DEMERS, J. D. UrLiMAN, M. R. GAREY,
AND R. L. GRAHAM, Worst-case performance bounds for simple
one-dimensional packing algorithms, SIAM Journal on Computing 3,

(1974), pp. 299-325.

V. KANN, Maximum bounded 3-dimensional matching is MAX SNP-
complete, Information Processing Letters 87, (1991), pp. 27-35.

H. KARLOFF AND U. ZWICK, A 7/8-approximation algorithm for
MAX-SAT? Proc. 88th IEEE Symposium on the Foundation of Com-
puter Science, (1997), pp. 406-415.

N. KARMAKAR, A new polynomial-time algorithm for linear program-
ming, Combinatorica 4, (1984), pp. 373-395.

N. KARMAKAR AND R. M. KARP, An efficient approximation scheme
for the one-dimensional bin packing problem, Proc. 23rd Ann. IEEE
Symp. on Foundation of Computer Science, (1982), pp. 312-320.

D. KARGER, R. MOTWANI, AND G. D. S. RAMKUMAR, On approxi-
mating the longest path in a graph, Lecture Notes in Computer Science

709, (1993), pp. 421-432.

R. M. KARP AND V. RAMACHANDRAN, Parallel algorithms for
shared-memory machines, in Handbook of Theoretical Computer Sci-

ence, Volume A. Algorithms and Complezity, (ed. J. van Leeuwen),
The MIT Press/Elsevier, 1990.

A. V. KARZANOV, Determining the maximum flow in the network
with the method of preflows, Soviet Math. Dokl. 15, (1974), pp. 434-437.

L. G. KHACHIAN, A polynomial algorithm for linear programming,
Doklady Akad. Nauk USSR 244, (1979), pp. 1093-1096.

S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI, On syn-

tactic versus computational views of approximability, Proc. 85th Ann.
IEEE Symp. on Foundation of Computer Science, (1994), pp. 819-836.

D. E. KNuTH, The Art of Computer Programming. Volume I: Fun-
damental Algorithms, Addison-Wesley, Reading, Mass., 1968.

370

[84]

[85]

[86]

[87]

[83]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

BIBLIOGRAPHY

D. E. KNuTH, The Art of Computer Programming. Volume III: Sort-
ing and Searching, Addison-Wesley, Reading, Mass., 1973.

P. G. KoLAlTis AND M. N. THAKUR, Logical definability of NP

optimization problems, Information and Computation 115, (1994), pp.
321-353.

P. G. KorLArTis AND M. N. THAKUR, Approximation properties of

NP minimization classes, Journal of Computer and System Sciences 50,
(1995), pp. 391-411.

E. L. LAWLER, Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart&Winston, 1976.

E. L. LAWLER, Fast approximation algorithms for knapsack problems,
Mathematics of Operations Research 4, (1979), pp. 339-356.

H. W. LENSTRA, Integer programming with a fixed number of vari-
ables, Mathematics of Operations Research 8, (1983), pp. 538-548.

K. J. LIEBERHERR AND E. SPECKER, Complexity of partial satisfac-
tion, Journal of ACM 28, (1981), pp. 411-421.

R. J. LipTON AND R. E. TARJAN, A separator theorem for planar
graphs, SIAM J. Appl. Math. 36, (1979), pp. 177-189.

R. J. LipTON AND R. E. TARJAN, Applications of a planar separator
theorem, STAM Journal on Computing 9, (1980), pp. 615-627.

C. LunND AND M. YANNAKAKIS, On the hardness of approximating
minimization problems, Journal of ACM 41, (1994), pp. 960-981.

S. MAHAJAN AND H. RAMESH, Derandomizing semidefinite program-
ming based approximation algorithms, Proc. 36th Ann. IEEE Symp. on
the Foundation of Computer Science, (1995), pp. 162-169.

S. MicALl AND V. V. VAZIRANI, An O(y/|V|: |E|) algorithm for
finding maximum matching in general graphs, Proc. 21st Ann. IEEE
Symp. on the Foundation of Computer Science, (1980), pp. 17-27.

B. MoNIEN, How to find long paths efficiently, Annals of Discrete
Mathematics 25, (1985), pp. 239-254.

R. MoTwAN1, Lecture Notes on Approzimation algorithms, Dept. of
Computer Science, Stanford University, 1995.

BIBLIOGRAPHY 371

[98] R. MOTWANI AND P. RAGHAVAN, Randomized Algorithms, Cam-
bridge University Press, New York, NY, 1995.

[99] G. L. NEMHAUSER AND L. E. TROTTER, Vertex packing: structural

properties and algorithms, Mathematical Programming 8, (1975), pp.
232-248.

[100] C. H. PApADIMITRIOU, Euclidean TSP is NP-complete, Theoretical
Computer Science 4, (1977), pp. 237-244.

[101] C. H. PAPADIMITRIOU, Combinatorial Complezity, Addison-Wesley,
Reading, MA, 1993.

[102] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimiza-
tion: Algorithms and Complexity, Englewood Cliffs, NJ: Prentice Hall,
1982.

[103] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Optimization, ap-
proximation, and complexity classes, Journal of Computer and System

Sciences 43, (1991), pp. 425-440.

[104] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, The traveling sales-

man problem with distances one and two, Mathematics of Operations
Research 18, (1993), pp. 1-11.

[105] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, On limited nondeter-
minism and the complexity of the V-C dimension, Journal of Computer
and System Sciences, (1995), to appear.

[106] F. P. PREPARATA AND M. I. SHAMOS, Computational Geometry:
An Introduction, Springer-Verlag, New York, 1985.

[107] R. C. PriM, Shortest connection networks and some generalizations,
Bell System Technical Journal 36, (1957), pp. 1389-1401.

[108] N. ROBERTSON, D. SANDERS, P. SEYMOUR, AND R. THOMAS, Ef-

ficiently four-coloring planar graphs, Proc. 28th ACM Symposium on
Theory of Computing, (1996), pp. 571-575.

[109] S. SAuNI, Algorithms for scheduling independent tasks, Journal of
ACM 23, (1976), pp. 116-127.

[110] S. SAHNI AND T. GONZALEZ, P-complete approximation problems,
Journal of ACM 23, (1976), pp. 555-565.

372 BIBLIOGRAPHY

[111] D. B. SHMOYS, Computing near-optimal solutions to combinato-
rial optimization problems, DIMACS Series in Discrete Mathematics,
(1995), to appear.

[112] R. E. TARJAN, Data structures and network algorithms, Society for
Industrial and Applied Mathematics, 1983.

[113] C. THOMASSEN, The graph genus problem is NP-complete, Journal
of Algorithms, (1989), pp. 568-576.

[114] V. G. VizING, On an estimate of the chromatic class of a p-graph
(in Russian), Diskret. Analiz 3, (1964), pp. 23-30.

[115] M. YANNAKAKIS, On the approximation of maximum satisfiability,
Journal of Algorithms 17, (1994), pp. 475-502.

[116] D. ZUCKERMAN, On unapproximable versions of NP-complete prob-
lems, SIAM Journal on Computing, (1995), to appear.

Part V

Appendix

373

Appendix A

Basic Graph Theory

Preliminaries

representations: adjacency matrix and adjacency list;
trees, connected components,

Basic algorithms

depth first search. depth first search number.
breadth first search. For breadth first seach, show that every in the
graph connects two vertices either at the same level or at adjacent levels.

Euler graphs

Definition A.1 An undirected connected graph G is an Fuler graph if there
is a closed walk in G that traverses each edge of G exactly once.

Theorem A.1 An undirected connected graph G is an Euler graph if and
only if every vertex of G has an even degree.

PROOF. Suppose that G is an Euler graph. Let W be a closed walk in G
that traverses each edge of G exactly once.

Let v be a vertex of G. Since W is a closed walk, each time W enters the
vertex v from an edge, W must leave the vertex v by another edge incident
on v. Therefore, each edge incident on v that is an “incoming” edge for W
must be paired with an edge incident on v that is an “outgoing” edge for

375

376 APPENDIX

W. Since W traverses each edge exactly once, we conclude that the number
of edges incident on v, i.e., the degree of v, is even.

Conversely, suppose that all vertices of the graph G have even degree.
We prove the theorem by induction on the number of edges in G. The
minimum such a graph G in which all vertices have even degree consists of
two vertices connected by two (multiple) edges. This graph is clearly an
Euler graph.

Now suppose that G has more than two edges. Let vy be any vertex of
G. We construct a maximal walk Wy starting from the vertex vy. That is,
starting from vy, on each vertex if there is an unused edge, then we extend
Wy along that edge (if there are more than one such edge, we pick any
one). The process stops when we hit a vertex u on which there is no unused
incident edge. We claim that the ending vertex u must be the starting vertex
vo. In fact, for each interior vertex w in the walk Wy, each time W, passes
through, Wy uses one edge to enter w and uses another edge to leave w.
Therefore, if the process stops at u and u # vy, then the walk W) has only
used an odd number of edges incident on u. This contradicts our assumption
that the vertex wu is of even degree. This proves the claim. Consequently,
the walk Wy is a closed walk.

The closed walk W can also be regarded as a graph. By the definition,
the graph W, itself is an Euler graph. According to the proof for the first
part of this theorem, all vertices of the graph Wy have even degree. Now
removing all edges in the walk Wy from the graph G results in a graph
Gy = G — Wy. The graph Gy may not be connected. However, all vertices
of Gy must have an even degree because each vertex of the graphs G and
Wy has an even degree.

Let Cy, O, ..., Ch be the connected components of the graph Gy. By
the inductive hypothesis, each connected component C; is an Euler graph.
Let W; be a closed walk in C; that traverses each edge of C; exactly once,
for i = 1,...,h. Moreover, for each i, the closed walk W, contains at least
one vertex v; in the connected component C; (if Wy does not contain any
vertex from Cj, then the vertices of C; have no connection to the vertices in
the walk Wy in the original graph G, this contradicts the assumption that
the graph G is connected).

Therefore, it is easy to insert each closed walk W; into the closed walk
Wy (by replacing any vertex occurrence of v; in Wy by the list W;, where W;
is given by beginning and ending with v;), for all 4 = 1,...,h. This forms
a closed walk W for the original graph G such that the walk W traverses
each edge of G exactly once. Thus, the graph G is an Euler graph. [

GRAPH THEORY 377

The proof of Theorem A.1 suggests an algorithm that constructs a closed
walk W for an Euler graph G such that the walk W traverses each edge
of G exactly once. This walk will be called an Fuler tour. By a careful
implementation, one can make this algorithm run in linear time. We leave
the detailed implementation to the reader. Instead, we state this result
without a proof as follows.

Theorem A.2 There is an algorithm that, given an Euler graph, constructs
an Euler tour in linear time.

PROOF. A formal proof is needed here. [

Planar graphs

378 APPENDIX

Appendix B

Basic Linear Algebra

vector, matrix, matrix multiplication, linearly independent, singular and
nonsingular matrix, solving a system of linear equations. show that if vy,
.., vy are n linearly independent vector in the n-dimensional space, and
vy is an n-dimensional vector such that vy can be represented by a linear
combination of vy, vg, ..., v,, then vy, v, ..., v, are linearly independent.
Cramer’s Rule for solving a linear system.
determinant of a matrix.

379

380 APPENDIX

Appendix C

Basic Probability Theory

In this appendix, we review some basic facts in probability theory that are
most related to the discussions we give in other chapters in this book. For
a more comprehensive study of probability theory, readers are referred to
standard probability theory textbooks, such as Chung [25] and Feller [39, 40].

Basic definitions

A probabilistic statement must be based on an underlying probabilistic space,
which consists of a sample space and a probabilistic measure imposed on the
sample space. A sample space can be an arbitrary set. Each element in the
sample space is called a sample point, and each subset of the sample space
is referred to as an event. To avoid a diverting complication and to make
this review more intuitive, we will always assume that the sample space is
countable (i.e., either finite or countably infinite).

Definition C.1 A probability measure on a sample space 2 is a function
P(-) on the events of § satisfying the following three axioms:

(1) For every event A C Q, we have 0 < P(4) < 1.

(2) P(Q2)=1.

(3) For any two disjoint events A and B in , i.e., AN B = (),

we have P(AUB) = P(A) + P(B).

A probabilistic space, (2, P), consists of a sample space 2 with a proba-

bility measure P defined on).

Intuitively, the sample space €2 represents the set of all possible outcomes
in a probabilistic experiment, and an event specifies a collection of the out-

381

382 APPENDIX

comes that share certain properties. The probability value P(A) measures
the “likelihood” of the event A.

From the definition, a number of simple facts can be deduced. We list
these facts as follows and leave the proofs to the reader.

Proposition C.1 Let (2, P) be a probabilistic space, then
(4) For any two events A and B such that A C B, we have
P(A) < P(B) and P(B— A)= P(B)— P(A).
(5) For a set S ={A1,...,An} of mutually disjoint events, we have
P(UgesAi) = Y pg,es P(Ai).
(6) For a set S ={Ai1,...,An} of arbitrary events, we have
P(Up;esAi) £ X aes P(A).

Properties (5) and (6) in Proposition C.1 also hold when the set S is
countably infinite. Using these facts, we can interpret the probability value
P(A) for an event A in a more intuitive way. Assuming the sample space
is countable, then the value P(A) can be expressed by

P(A) = P(A) _ P(Ugea{q}) _ quA P(q)

P(Q) P(Ugeald}) LyeaPla)
here we have written P(q) for P({q}) for a sample point ¢ in the sample
space €. Therefore, the probability P(A) is essentially the “proportion” of
the event A in the sample space {2 when each sample point ¢ is given a

“weight” P(q).

Conditional probability

Let (€2, P) be a probabilistic space. Let A and B be two events in the
sample space 2. Suppose that we already know that the outcome is in
the set B and we are interested in knowing under this condition, what is
the probability that the outcome is also in the set A. Thus, here we have
switched our attention from the original sample space (2 to the set B, and are
asking the proportion of the set AN B with respect to the set B. According
to the remark following Proposition C.1, this proportion is given by the
value (3,canp P(9))/ (X e P(q)) = P(AN B)/P(B). This motivates the
following definition.

Definition C.2 Assuming P(B) > 0 for an event B. The conditional prob-
ability of event A relative to B is denoted by P(A|B) and defined by
P(ANB)

PIAIB) = —p 5

PROBABILITY THEORY 383

Other phrases for the relativity condition “relative to B”, such as “given
B”, “kmowing B”, or “under the hypothesis B” may also be used.

Proposition C.2 Let A1, ..., A, be a partition of the sample space §2, that
is, U1 A; = Q and A;NAj =0 for i # j. Then for any event B, we have

(1) P(B) = Xi1 P(B|A:) P(4i).
(2) P(Ax|B) = (P(Ar) P(B|Ag))/ (X1 P(B|Ai) P(A:)) for all Ay.

PROOF. We have
P(B) = P(BNQ)=P(BN(UL4)) = P(UL, (BN A))

— S PBAA) =Y P(BIA)P(A)
=1

=1

The fourth equality follows from Proposition C.1(5) and the fact that Ay,
..., A, are mutually disjoint implies the mutual disjointness of the sets
BN A, ..., BN A,, and the last equality follows from the definition of the
conditional probability P(B|A;). This proves (1).

To prove (2), note that by the definitions of the conditional probabilities
P(Ag|B) and P(B|A) we have

P(BN Ag) = P(B)P(Ax|B) = P(Ay)P(B|Ay)

The second equality gives P(Ay|B) = P(A;)P(B|Ax)/P(B). Now using the
expression of P(B) in (1) gives (2). [J

Two events A and B are independent if P(A N B) = P(A)P(B).
More general, n events A1, ..., A, are independent if for any subset S
of {A1,...,An}, we have

P(() A)=][] P)

A;€S A;eS

The independence of two events A and B indicates that the condition B has
no effect on the probability of event A. This can be well-explained using the
definition of conditional probability: for two independent events A and B,
we have

Pup) = T = T — P

384 APPENDIX

Random variables

Definition C.3 A real-valued function X over a sample space 2 is called
a random wvariable on Q.

Note that a random variable can be defined on a sample space even
before any probability measure is mentioned for the sample space. For a
probabilistic space (£2, P) and a random variable X defined on (2, since the
random variable X is always associated with the sample space €2, we can
write P({ ¢ | ¢ € Q and X(¢) < y}) in a more compact form P(X < y)
without any ambiguity. Here X < y specifies a condition on the random
variable X, or equivalently it can be regarded as to define the event of sample
points ¢ that satisfy the condition X (q) < y. More generally, suppose that
X1, ..., X, are random variables defined on the same probabilistic space
(2, P), and that C1(X1), ..., Cp(X},) are arbitrary conditions on the random
variables X1, ..., X,,, respectively, then we write the probability

P({q|qeNand C1(Xi(q)) and --- and Cp(X,(q))})

in a more compact form P(Ci(X1),...,Cnh(Xy)).
The function
Fx(y) = P(X <y)

is called the distribution function of the random variable X.

Starting with some random variables, we can make new random variables
by operating on them in various ways. In particular, if X and Y are two
random variables on a probabilistic space (€2, P), then so is X + Y, where
X +Y is defined by (X +Y)(q) = X(¢g) + Y (g) for all sample points ¢ in €2.
Similarly, aX — bY and XY are also random variables over (€2, P), where a
and b are arbitrary real numbers.

Definition C.4 Two random variables X; and X5 are said to be indepen-
dent if for any two real numbers y; and y2, we have

P(X1 =y1,Xo =1y2) = P(X1 =y1)- P(X2 =12)

Expectation and variance

The definition of the expectation of a random variable is motivated by the
intuitive notion of the “average value” of the random variable over all sample
points in the sample space.

PROBABILITY THEORY 385

Definition C.5 The ezpectation of a random variable X on a probabilistic
space (€2, P) is written as E(X) and defined by (recall that we assume the
sample space 2 is countable)

E(X) =Y X(q)P(q)

qeN

provided that the series - .o X(q)P(q) is absolutely convergent (that is,
Ygea [X(@)P(g)| = XyealX(9)|P(g) < o). In this case we say that the
expectation of X exists.

The kth moment of a random variable X is defined to be E(X*). In
particular, the first moment of X is simply the expectation of X.

Definition C.6 The variant of a random variable X, denoted o?(X), is
defined to be
o*(X) = E((X - E(X))?)

Intuitively, for any sample point ¢, (X — E(X))(q) is the deviation of
the value X (gq) from the “average value” E(X) of X, which can take both
positive and negative values. Thus, simply averaging over all these devia-
tions may not be informative if we are interested in the magnitude of the
deviations. The square of this deviation, (X — E(X))?, still reflects, in a
looser way, this deviation and always gives a nonnegative value. Therefore,
the expectation 0%(X) = E((X — E(X))?) is a indicator of the average of
the magnitudes of this deviation.

386 APPENDIX

Appendix D

List of Optimization
Problems

MINIMUM SPANNING TREE (MSP)

Ip: the set of all weighted graphs G

Sg: S(G) is the set of all spanning trees of the graph G
fo: fo(G,T) is the weight of the spanning tree T' of G.
optg: min

SHORTEST PATH

Ig: the set of all weighted graphs G with two specified
vertices v and v in G

Sg: Sg(G) is the set of all paths connecting v and v in G

fo: fo(G,u,v, P) is the length of the path P (measured by
the weight of edges) connecting u and v in G

optg: min
KNAPSACK

Ig: the set of tuples T' = {s1,..., Sp;v1,...,v,; B}, where s;
and v; are for the size and value of the ith item,
respectively, and B is the knapsack size

Sq: Sq(T) is a subset S of pairs of form (s;,v;) in T such that
the sum of all s; in S is not larger than B

fo: fo(T,S) is the sum of all v; in S

optg: max

387

388 APPENDIX

MAKESPAN

Ig: the set of tuples T'= {t1,...,t,;m}, where ¢; is the
processing time for the ¢th job and m is the number
of identical processors

Sg: Sq(T) is the set of partitions P = (T1,...,Ty,) of the
numbers {t1,...,t,} into m parts

fo: fo(T,P) is equal to the processing time of the largest
subset in the partition P, that is,

fQ(T, P) = maxi {3y e, 1}

optg: min

MATRIX-CHAIN MULTIPLICATIONS

Ig: the set of tuples T' = {dy,dy, ..., d}, where suppose that
the ith matrix M; is a d;_1 X d; matrix

Sq: Sq(T) is the set of the sequences S that are the sequence
M x - -+ x M,, with proper balance parentheses inserted,
indicating an order of multiplications of the sequence

fo: fq(T,S) is equal to the number of element multiplications
needed in order to compute the final product matrix
according to the order given by S

optg: min

INDEPENDENT SET
Iy: the set of undirected graphs G = (V, F)

So: Sg(G) is the set of subsets S of V such that no two
vertices in S are adjacent

fo: fo(G,S) is equal to the number of vertices in S

optg: max

Contents

1 Introduction 1
1.1 Optimization problems 1

1.2 Algorithmic preliminary 6

1.3 Sample problems and their complexity 10
1.3.1 Minimum spanning tree L. 11

1.3.2 Matrix-chain multiplication 14

1.4 NP-completeness theory 18

I Tractable Problems 29
2 Maximum Flow 31
2.1 Preliminary o 32

2.2 Shortest path saturation method 40
2.2.1 Dinic’s algorithm o000 L. 45

2.2.2 Karzanov’s algorithm 46

2.3 Preflowmethod L. 53
24 Finalremarkso oL 64

3 Graph Matching 69
3.1 Augmentingpaths 70
3.2 Bipartite graph matching 00000, 73
3.3 Maximum flow and graph matching 78
3.4 General graph matching 84
3.5 Weighted matching problems 97
3.5.1 Theorems and algorithms 98

3.5.2 Minimum perfect matchings 101

ii

4

11

CONTENTS

Linear Programming

4.1 Basicconcepts L ool
4.2 The simplex method L.
43 Duality
4.4 Polynomial time algorithms

Which Problems Are Not Tractable?

5.1 NP-hard optimization problems
5.2 Integer linear programming is NPO
5.3 Polynomial time approximation

(1 + ¢)-Approximable Problems

Fully Polynomial Time Approximation Schemes

6.1 Pseudo-polynomial time algorithms
6.2 Approximation by scaling oL
6.3 Improving time complexity
6.4 Which problems have no FPTAS?

Asymptotic Approximation Schemes

7.1 The Bin Packing problem
7.1.1 Preliminaries and simple algorithms
7.1.2 The (4, 7)-Bin Packing problem
7.1.3 Asymptotic approximation schemes.
7.1.4 Further work and extensions

7.2 Graph edge coloring problem

7.3 On approximation for additive difference

Polynomial Time Approximation Schemes

8.1 The Makespan problem
8.1.1 The (1 + €)-BIN PACKING problem
8.1.2 A PTAS for MAKESPAN

8.2 Optimization on planar graphs

8.3 Optimization for geometric problems
8.3.1 Well-disciplined instances
8.3.2 The approximation scheme for EUCLIDEAN TSP . . .
8.3.3 Proof for the Structure Theorem
8.3.4 Generalization to other geometric problems

8.4 Which problems have no PTAS?

145
147
155
165

173

175
176
183
190
199

CONTENTS

IIT Constant Ratio Approximable Problems

9 Combinatorical Methods
9.1 Metric TSP o o
9.1.1 Approximation based on a minimum spanning tree . .
9.1.2 Christofides’ algorithm
9.2 Maximum satisfiability 0000
9.2.1 Johnson’s algorithm,
9.2.2 Revised analysis on Johnson’s algorithm
9.3 Maximum 3-dimensional matching
9.4 Minimum vertex covero
9.4.1 Vertex cover and matching
9.4.2 Vertex cover on bipartite graphs
9.4.3 Local approximation and local optimization

10 Probabilistic Methods
10.1 Linearity of expectation
10.2 Derandomization oL
10.3 Linear Programming relaxation
10.4 Semidefinite Program

11 APX Completeness Theory
11.1 The probabilistic checkable proof systems
11.2 Maximum 3-Satisfiability has no PTAS
11.3 Reducibility among optimization problems
11.4 Constrained satisfiability problems
11.5 Optimization on bounded-degree graphs
11.6 Apx-completeness for 3D-MATCHING and METRIC TSP . . .

IV Miscellany

12 Non-Approximable Problems
12.1 Independent set and clique
12.2 Graph coloring oL oL
12.3 Dominatingset o

13 Exponential Time Algorithms
13.1 Satisfiability
13.2 Independent set
13.3 Parameterized vertex cover

iii

291

295
295
296
300
304
307
309
316
324
325
327
329

339
340
344
346
353

355
355
355
355
355
355
355

357

359
359
359
359

iv CONTENTS

V Appendix 373
A Basic Graph Theory 375
B Basic Linear Algebra 379
C Basic Probability Theory 381
D List of Optimization Problems 387

List of Figures

1.1

1.2
1.3
14
1.5

2.1
2.2

2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3

A cycle C in Ty + e, where heavy lines are for edges in the

constructed subtree 77, and dashed lines are for edges in the

minimum spanning tree Ty that are not in 77.
Prim’s Algorithm for minimum spanning tree
Recursive algorithm for MATRIX-CHAIN MULTIPLICATION . .
The order for computing the elements for NUM and IND. . .
Dynamic programming for MATRIX-CHAIN MULTIPLICATION

A flow network withaflow.
The sink ¢ is not reachable from the source after deleting

saturated edges.o Lo
A flow larger than the one in Figure 2.1.
The residual network for Figure 2.1.
Ford-Fulkerson’s method for maximum flow
Construction of the layered network Lo
Dinic’s algorithm for a shortest saturation flow
Dinic’s algorithm for maximum flow
Computing the capacity for each vertex
Pushing a flow of value cap(v) fromv tot
Pulling a flow of value cap(v) from stov
Karzanov’s algorithm for shortest saturation flow
Karzanov’s algorithm for maximum flow
Pushing a flow along the edge [u,w]
Lifting the position ofa vertex v
Golberg-Tarjan’s algorithm for maximum flow
Maximum flow algorithms

Alternating path and augmenting path in a matching
General algorithm constructing graph matching
Finding an augmenting path in a bipartite graph

v

vi

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

8.1
8.2
8.3

LIST OF FIGURES

Dinic’s algorithm for maximum flow 79
From a bipartite graph to a flow network 79
Bipartite Augment fails to find an existing augmenting path 85
The modified breadth first search 86
Finding an augmenting path based on a good cross-edge . . . 88
The vertex vp is an end of the augmenting path pg 93
The vertex vp is an interior vertex of the augmenting path pp 94
Finding an augmenting path in a general graph 96
An algorithm constructing a maximum weighted matching . . 100
The general tableau format for the basic solution x 123
Tableau transformation 125
The Simplex Method algorithm 132
The Dual Simplex Method algorithm 141
Graham-Schedule 166
Dynamic programming for KNAPSACK 178
Dynamic programming for ccMAKESPAN 182
FPTAS for the KNAPSACK problem 186
FPTAS for the c-MAKESPAN problem 187
Modified algorithm c-Makespan-Dyn 191
Finding an upper bound on optimal solution value 193
Revision I for the FPTAS for the KNAPSACK problem 195
The First-Fit algorithm 213
The First-Fit-Decreasing algorithm 215
The (4, 7)-Precise algorithm 221
The algorithm (4, 7)-Precise2 223
The ApxBinPack algorithm 225
Edge coloring a graph G with deg(G) + 1 colors 233
A fan structure Lo 234
In case vp, and w miss a common color ¢g 235

Extending a cp-cs alternating path P, from v, not ending at w 236
Extending a cp-c, alternating path P}, from vj, not ending at w236

Surfaces of genus 0, 1, and 2. oL 240
An embeddingof Kson §7 241
The VaryBinPack algorithm 249
The algorithm ApxMakespan 254

The algorithm PlanarIndSet 260

LIST OF FIGURES vii

8.4
8.5
8.6
8.7
8.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13

10.1
10.2
10.3

(A) a regular dissection; (B) a (a, b)-shifted dissection 270
A shifted dissection structures 272
Constructing the (cg, mg)-light salesman tour for Dgp. 273
Reducing the number of crossings by patching 279
Reducing the number of crossings on a grid line 281
Approximating METRIC TSP 297
The minimum spanning tree T 298
METRIC TSP instance for MTSP-Apx-I. 299
Christofides’ Algorithm for METRIC TSP 302
Johnson’s Algorithm 0. 307
the augmented Johnson’s algorithm 310
First algorithm for 3D-MATCHING 318
Second algorithm for 3D-MATCHING 320
Approximating vertex cover Io 325
Constructing a minimum vertex cover in a bipartite graph . . 328
Approximating vertex cover IT.. 333
finding an independent set in a graph without short odd cycles334
Approximating vertex cover IIT 336
Approximating MAX-SAT by LP Relaxation 348
The value f(z) is larger than Sxz. 350

Combining the LP Relaxation and Johnson’s algorithm . . . 352

