A NEW COMPLETE LANGUAGE FOR DSPACE(log n)*

Jian-er CHEN

Department of Mathematics, Columbia University, New York, NY 10027, USA

Received 9 January 1989

An important open problem relating sequential and parallel computations is whether the space complexity on Turing machines is linearly related to the depth complexity on uniform circuits. Some graph problems have been successfully proved to be complete for $DSPACE(\log n)$ under $(\log n)$-depth Turing reducibility [3]. In this paper, we discuss $(\log n)$-depth many-one reducibility which is proved to be weaker than $(\log n)$-depth Turing reducibility. A new complete language for $DSPACE(\log n)$ under our reducibility is presented.

1. Introduction and definitions

An important open problem which relates sequential and parallel computations is to determine if the space complexity on Turing machines is linearly related to the depth complexity on uniform circuits. The best result known is by Borodin [1]:

$$\text{DEPTH}(s(n)) \subset DSPACE(s(n)) \subset \text{DEPTH}((s(n))^2).$$

Any improvement to this is a breakthrough. One approach is to find a "hardest" problem in $DSPACE(s(n))$ and see if it can be accepted by a uniform circuit family of subquadratic depth. Some attempts have been made and some graph problems have been successfully proved to be complete for $DSPACE(\log n)$ under $(\log n)$-depth Turing reducibility (will be defined later) [3]. In this paper, we discuss $(\log n)$-depth many-one reducibility which is proved to be weaker than the $\log n$-depth Turing reducibility. We present a new problem which is complete for $DSPACE(\log n)$ under our reducibility.

Some basic definitions are given below.

A (Boolean) circuit C with n inputs and m outputs is a finite directed acyclic graph with nodes (called gates) labelled as follows. The circuit C has n "input gates" with indegree zero labelled x_1, \ldots, x_n, respectively. All other gates of indegree zero are labelled either 0 or 1. All gates of indegree one are labelled \neg. All other gates have indegree two and are labelled either \lor or \land. Exactly m gates are labelled output gates and have labels y_1, \ldots, y_m, respectively. The size of C is the number of gates of C, and the depth of C is the length of the longest path from some input to some output. The circuit C computes a function $f: \{0,1\}^n \rightarrow \{0,1\}^m$ in the obvious way.

* This work is supported in part by NSF grants DCR-84-01898 and DCR-84-01633.

0166-218X/89/$3.50 \copyright 1989$, Elsevier Science Publishers B.V. (North-Holland)
A circuit family with input size \(g(n) \) and output size \(h(n) \) is a sequence \(\{ C_n \mid n \geq 1 \} \) of circuits, where \(C_n \) is a circuit with \(g(n) \) inputs and \(h(n) \) outputs. Let \(f = \{ f_n \mid n \geq 1 \} \) be a sequence of Boolean functions, where \(f_n : \{0,1\}^{g(n)} \rightarrow \{0,1\}^{h(n)} \). We say that the circuit family \(\{ C_n \mid n \geq 1 \} \) computes \(f \) iff \(C_n \) computes \(f_n \) for all \(n \). A circuit family \(\alpha \) can also be used to accept a set \(S \subseteq \{0,1\}^* \) if \(\alpha \) computes the characteristic function of \(S \).

A circuit family \(\alpha = \{ C_n \mid n \geq 1 \} \) is uniform if the transformation \(1^n \rightarrow C_n \) (where \(C_n \) is an encoding of the circuit \(C_n \)) can be performed in \(O(\log n) \) space on a deterministic Turing machine.

A circuit family \(\alpha = \{ C_n \mid n \geq 1 \} \) is in \(\text{DEPTH}(d(n)) \) if \(\alpha \) is uniform and there is a constant \(c \) such that for all \(n \) the circuit \(C_n \) has depth at most \(c \cdot d(n) \). Note that by the uniformity condition, if \(\alpha = \{ C_n \mid n \geq 1 \} \) is in \(\text{DEPTH}(d(n)) \), then there is a polynomial \(p \) such that the size of \(C_n \) is bounded by \(p(n) \) for all \(n \).

We also say that a function \(f : \{0,1\}^* \rightarrow \{0,1\}^* \) is in \(\text{DEPTH}(d(n)) \) if \(f \) is computed by a circuit family \(\alpha \) in \(\text{DEPTH}(d(n)) \), and a language \(L \) is in \(\text{DEPTH}(d(n)) \) if \(L \) is accepted by a circuit family \(\alpha \) in \(\text{DEPTH}(d(n)) \). The context will always make our meaning clear.

2. Logarithmic depth reducibilities

In this section, we will discuss two different kinds of \((\log n)\)-depth reducibilities: The \((\log n)\)-depth Turing reducibility and the \((\log n)\)-depth many-one reducibility.

To define the \((\log n)\)-depth Turing reducibility, we need the notion of an oracle gate. An oracle gate in a circuit is a \(k \) inputs, one output gate which, on an input \(x \) of length \(k \), will produce the value \(1 \) on its output edge iff \(x \) is in the specified oracle set. The contribution of this node to the depth of the path on which it lies in the circuit is \(\lceil \log k \rceil \). An oracle circuit \(C^A \) relative to an oracle set \(A \subseteq \{0,1\}^* \) is a circuit whose gates can be oracle gates computing the characteristic function of the oracle set \(A \) (more precisely, if \(g \) is an oracle gate with \(k \) inputs in \(C^A \), then \(g \) computes the characteristic function of \(\{0,1\}^k \cap A \)). An oracle circuit family \(\alpha^A = \{ C^A_n \mid n \geq 1 \} \) relative to \(A \) is then a sequence of circuits such that \(C^A_n \) is an oracle circuit relative to \(A \) for all \(n \geq 1 \).

Given the discussion above, it now makes sense to define uniform oracle circuit families, and to define the relative class \(\text{DEPTH}^A(d(n)) \) (for full discussion, the reader is referred to \([2, 10]\)).

Definition 2.1. A language \(L \) is log \(n \)-depth Turing reducible to a language \(A \) (written \(L \leq_{\text{TD}}^A A \)) if and only if there is a uniform oracle circuit family \(\alpha^A = \{ C^A_n \mid n \geq 1 \} \) in \(\text{DEPTH}^A(\log n) \) which accepts \(L \).

We are more interested in the following "weaker" reducibility.
Definition 2.2. A language \(A \) is \((\log n)\)-depth many-one reducible to a language \(B \) if and only if there is a function \(f : \{0,1\}^* \rightarrow \{0,1\}^* \) which can be computed by a circuit family \(\{C_n\}_{n \geq 1} \) in \text{depth}(\log n)\), such that for all \(x \in \{0,1\}^* \), \(x \in A \) if and only if \(f(x) \in B \). We will write this relation as \(A \leq_{\text{LD}} B \).

The following theorem shows that the \((\log n)\)-depth many-one reducibility is "weaker" than the \(\log n \)-depth Turing reducibility in a natural sense.

Definition 2.3. Let \(\leq_A \) and \(\leq_B \) be two reducibilities. \(\leq_A \) is strictly stronger than \(\leq_B \) if
1. for any pair of languages \(L_1 \) and \(L_2 \), \(L_1 \leq_B L_2 \) implies \(L_1 \leq_A L_2 \);
2. there is a pair of languages \(S_1 \) and \(S_2 \) such that \(S_1 \leq_A S_2 \) holds but \(S_1 \leq_B S_2 \) does not hold.

Theorem 2.4. The reducibility \(\leq_{\text{LD}} \) is strictly stronger than the reducibility \(\leq_{\text{LD}} \).

Proof. Ladner, Lynch and Selman [7] have given a language \(L \in \text{DEXTIME} \) which is not reducible to its complement \(\text{co}-L \) under the Karp reducibility. Thus this language is not reducible to its complement \(\text{co}-L \) under the reducibility \(\leq_{\text{LD}} \) since the circuit families in \text{depth}(\log n)\) are of polynomial size (see [4]). However, the language \(L \) is obviously reducible to its complement \(\text{co}-L \) under the \(\leq_{\text{LD}} \) reducibility. \(\square \)

3. A complete language for \text{dSPACE}(\log n)\) under \(\leq_{\text{LD}} \)

Definition 3.1. Let \(\leq \) be a reducibility. A language \(L \) is \(\leq \)-hard for the class \(C \) if and only if \(S \leq L \) for all \(S \) in \(C \). Further, \(L \) is \(\leq \)-complete for \(C \) if and only if \(L \) is \(\leq \)-hard for \(C \) and \(L \in C \).

Recently, some graph problems have been successfully proved to be \(\leq_{\text{LD}} \)-complete for \text{dSPACE}(\log n)\) [3] (a closer examination reveals that these problems are also \(\leq_{\text{LD}} \)-complete for \text{dSPACE}(\log n)). Here we present a new \(\leq_{\text{LD}} \)-complete language for \text{dSPACE}(\log n).

A \textit{k-head finite automaton} is a Turing machine with only one read-only tape and \textit{k} heads on this tape. We call a \textit{k-head finite automaton} \textit{one-way} if all heads of it can move only to the right but cannot move to the left (it is allowed for the heads to make stationary moves), otherwise we call it \textit{two-way}.

Define a language \(i-k\)-\text{DFA} as follows:

\[i-k\text{-DFA} = \{ x \# M \mid M \text{ is a } i\text{-way } k\text{-head deterministic finite automaton accepting the string } x \}. \]
We are going to prove that 1-2-DFA is \(L^D_m \)-complete for \(\text{DSPACE}(\log n) \). Before doing this, we first need some lemmas.

The first lemma is due to Hartmanis [5].

Lemma 3.2. If a language \(L \) is in \(\text{DSPACE}(\log n) \), then there exist an integer \(k \) and a two-way \(k \)-head deterministic finite automaton \(F \) accepting \(L \).

Lemma 3.3. Given a two-way \(k \)-head deterministic finite automaton \(M_1 \), there exist a function \(f_1 \), which can be computed by a circuit family in \(\text{DEPTH}(\log n) \), and a one-way \((k+1)\)-head deterministic finite automaton \(M_2 \) such that for all \(x \), \(M_2 \) accepts \(f_1(x) \) if and only if \(M_1 \) accepts \(x \).

Proof. Given a two-way \(k \)-head deterministic finite automaton \(M_1 \), without loss of generality, we assume that the running time of \(M_1 \) is not greater than \(a \cdot n^k \), where \(n \) is the length of the input and \(a \) is a constant. Then we define

\[
f_1(x) = (x \neq \#)^{k-a \cdot n^k}.
\]

We construct a one-way \((k+1)\)-head deterministic finite automaton \(M_2 \) such that for all \(x \), \(M_2 \) accepts \(f_1(x) \) if and only if \(M_1 \) accepts \(x \).

\(M_2 \) will use \(k \) of its heads to simulate the \(k \) heads of \(M_1 \), respectively, and use the extra head as a counter. More precisely, suppose that the \(k \) heads of \(M_1 \) are \(H_1, \ldots, H_k \), then let the \(k+1 \) heads of \(M_2 \) be \(S_1, \ldots, S_{k+1} \). At the beginning of the computation of the automata, suppose all heads are placed at the left end of the inputs. Inductively, if after step \(i \), the head \(H_j \) of \(M_1 \) is pointing to the \(j \)th symbol of the input, then the head \(S_j \) of \(M_2 \) will be pointing to the \(j \)th symbol of the \(j \)th copy of the \(\# \) in the string \(f_1(x) \), i.e., the symbols being pointed by \(H_j \) and \(S_j \) are the same, \(1 \leq j \leq a \cdot n^k \), \(1 \leq j \leq k \). \(M_2 \) also remembers in its finite control the current state of \(M_1 \). Therefore in this configuration, \(M_2 \) can determine completely what \(M_1 \) will do in next step. If in next step \(M_1 \) moves its head \(H_j \) one square to right, then \(M_2 \) moves its corresponding head \(S_j \) one square to right; if \(H_j \) is moved one square to left, then \(S_j \) is moved one square to right; finally, if \(H_j \) makes a stationary move, then \(S_j \) is moved one square to right. The extra head \(S_{k+1} \) of \(M_2 \) is used to count these \(n \), \(n+1 \) and \(n+2 \). It is easy to see that after these modifications, \(M_2 \) is in the configuration corresponding to the configuration of \(M_1 \) at the end of the \((i+1)\)st step. \(M_2 \) accepts \(f_1(x) \) when it finds that \(M_1 \) is in an accepting state. For each step of \(M_1 \), the heads of \(M_2 \) cross at most \(k \) copies of \(\# \). Since \(M_1 \) runs in time \(a \cdot n^k \), there are enough copies (\(k \cdot a \cdot n^k \) copies) of \(\# \) in \(f_1(x) \) for \(M_2 \) to complete the simulation of the whole computation of \(M_1 \). It is obvious that the function \(f_1(x) \) can be computed by a circuit family in \(\text{DEPTH}(\log n) \) and \(M_2 \) accepts \(f_1(x) \) if and only if \(M_1 \) accepts \(x \). \(\square \)

Lemma 3.4. Given a one-way \(k \)-head deterministic finite automaton \(M_2 \), there exist a function \(f_2 \), which can be computed by a circuit family in \(\text{DEPTH}(\log n) \), and
a one-way two-head deterministic finite automaton \(M_2 \) such that for all \(x \), \(M_3 \) accepts \(f_2(x) \) if and only if \(M_2 \) accepts \(x \).

Proof. We only prove Lemma 3.4 for the case \(k = 3 \). The proof can be easily generalized for any integer \(k \).

Given a one-way three-head deterministic finite automaton \(M_2 \). Without loss of generality, we can assume that the running time of \(M_2 \) is at most \(3n \). Given an input \(x = x_1 \ldots x_n \in \{0,1\}^n \), the value of the function \(f_2(x) \) will be a string \(uuu \) where each segment \(u \) is a three-track string of the following form:

![Diagram of three-head automaton](image)

More precisely, \(f_2(x) \) will be a three-track string, on the first track the track string is \((x_1, x_2, \ldots, x_n)^{3n}\); on the second track the track string is \((x_1^r, x_2^r, \ldots, x_n^r)^{3n}\); and on the third track the track string is \((x_1^r, x_2^r, \ldots, x_n^r)^3\). Now each position in \(f_2(x) \) will be a possible tape head configuration of \(M_2 \). For example, the square of \(f_2(x) \) which contains \(x_i \), \(x_j \) and \(x_h \) on its first, second and third tracks, respectively, would indicate that the first, second and third heads of \(M_2 \) are pointing to the \(i \)th, \(j \)th and \(h \)th symbols of the input \(x \), respectively. Now it is easy to see how our one-way two-head deterministic finite automaton \(M_3 \) simulates \(M_2 \): \(M_3 \) uses one head to simulate the movements of the heads of \(M_2 \) and uses another head as a counter. Suppose that the heads of \(M_2 \) are \(S_1 \), \(S_2 \) and \(S_3 \) and the heads of \(M_3 \) are \(T_1 \), \(T_2 \). At the beginning of the computations, all heads are placed on the left end of the inputs. Inductively, suppose that after the \(i \)th step, the heads \(S_1 \), \(S_2 \) and \(S_3 \) of \(M_2 \) are pointing to the \(i \)th, \(i \)jth and \(i \)th symbols of the input \(x \), respectively, then the head \(T_1 \) of \(M_3 \) will be pointing to the \(i \)th symbol of the \(i \)th subsegment of the \(i \)th subsegment of \(f_2(x) \) (this symbol contains \(x_i \), \(x_i \) and \(x_i \) on its first, second and third tracks, respectively). To simulate one step of \(M_2 \), \(M_3 \) works as follows: If \(M_2 \) moves its head \(S_1 \) (\(S_2 \), \(S_3 \)) one square to the right, then \(M_3 \) moves its head \(T_1 \) one square (\(n \) squares, \(n^2 \) squares) to the right. The head \(T_2 \) is used as a counter to count these numbers \(n \) and \(n^2 \). It is easy to check that \(M_3 \) simulates \(M_2 \) correctly. Moreover, the function \(f_2(x) \) can be computed by a circuit family in \(\text{DEPTH}(\log n) \).

Now we can prove our main theorem.

Theorem 3.5. 1-2-DFA is \(\leq_{\text{m}}^{1D} \)-complete for \(\text{DSPACE}(\log n) \).
Proof. To prove that 1-2-DFA is in \(\text{dSPACE}(\log n) \) is easy: Given an input \(x \# M \), the Turing machine \(T \) first checks whether \(M \) encodes a one-way two-head deterministic finite automaton, then simulates \(M \) on input \(x \) step by step. \(T \) only needs to store a triple \((s, p_1, p_2)\) in the simulation, where \(s \) is the current state of \(M \) and \(p_1 \) and \(p_2 \) are the current positions of the two heads of \(M \), respectively. Under reasonable assumptions, it can be seen that \(T \) runs in \(O(\log n) \) space.

Let \(L \) be a language in \(\text{dSPACE}(\log n) \). By our Lemmas 3.2–3.4, there exist a function \(f_3 \) (\(f_3 = f_2 \circ f_1 \)), which can be computed by a circuit family in \(\text{DEPTH}(\log n) \), and a one-way two-head deterministic finite automaton \(M \) such that for any \(x \), \(M \) accepts \(f_3(x) \) if and only if \(x \in L \). Thus the function \(f : x \to f_3(x) \neq M \) is a witness to the fact \(L \leq_m^D \text{1-2-DFA} \).

It is interesting to note that there is a fixed one-way two-head deterministic finite automaton \(M \) whose computation is the "hardest" with respect to the corresponding parallel implementation.

Theorem 3.6. There is a one-way two-head deterministic finite automaton \(M_d \) such that if the language accepted by \(M_d \) is in \(\text{DEPTH}(\log^{1+\varepsilon}(n)) \) for some \(\varepsilon \geq 0 \), then
\[\text{dSPACE}(\log n) \not\subseteq \text{DEPTH}(\log^{1+\varepsilon}(n)) \).

Proof. Since the 1-2-DFA is in \(\text{dSPACE}(\log n) \), there exist a function \(F_1 \), which can be computed by a circuit family in \(\text{DEPTH}(\log n) \), and a one-way two-head deterministic finite automaton \(M_d \) such that for any \(x \), \(M_d \) accepts \(F_1(x) \) if and only if \(x \in \text{1-2-DFA} \). Now for a given language \(L \) in \(\text{dSPACE}(\log n) \), since 1-2-DFA is \(\leq_m^D \)-complete for \(\text{dSPACE}(\log n) \), there is a function \(F_2 \), which can be computed by a circuit family in \(\text{DEPTH}(\log n) \), such that for any \(x \), \(x \in L \) if and only if \(F_2(x) \in \text{1-2-DFA} \). Combining the functions \(F_1 \) and \(F_2 \), we conclude that for any \(x \), \(x \in L \) if and only if \(F_1(F_2(x)) \) is accepted by the one-way two-head deterministic finite automaton \(M_d \). It is obvious that the function \(F = F_1 \circ F_2 \) can be computed by a circuit family in \(\text{DEPTH}(\log n) \).

We will call the \(M_d \) in Theorem 3.6 basic one-way two-head deterministic finite automaton.

From Theorem 3.6, we can easily show a graph problem which is \(\leq_m^D \)-complete for \(\text{dSPACE}(\log n) \).

We suppose that graphs are represented by adjacency matrices. An acyclic directed graph is a tree if it is connected and each node of it has outdegree at most 1. A forest is a directed graph such that all of its connected components are trees. We define the Forest accessibility problem (FAP) as follows:

\[\text{FAP} = \{ F \# n_1 \neq n_2 \mid \text{in the forest } F \text{ there is a directed path from node } n_1 \text{ to node } n_2 \}. \]

It is easy to prove the following lemma.
Lemma 3.7. A directed graph G is a forest if and only if the following two conditions hold:

1. each node in G has outdegree at most 1;
2. no cycles exist in G.

Theorem 3.8. FAP is \(\leq_{m}^{\log} \)-complete for \(\text{DSpace}(\log n) \).

Proof. To see that FAP is in \(\text{DSpace}(\log n) \), we use the following algorithm: Given an input $F \neq n_1 \neq n_2$, we can test if F satisfies conditions (1) and (2) in Lemma 3.7 in $O(\log n)$ space: condition (1) is easy. To make sure condition (2) is satisfied assuming (1) is satisfied, we go from each node N in F at most $n + 1$ steps (where n is the number of nodes in F) and see if N can be reached again. If there is a cycle in F, then clearly there is a node N in F from which we can reach it again in at most $n + 1$ steps. When F is a forest, we go from node n_1 and see if we can reach node n_2, then accept or reject accordingly.

Now we prove that FAP is \(\leq_{m}^{\log} \)-hard for \(\text{DSpace}(\log n) \). Let M_d be the basic one-way two-head deterministic finite automaton and let $L \in \text{DSpace}(\log n)$. By Theorem 3.6, there is a function F, which can be computed by a circuit family in $\text{Depth}(\log n)$ such that $x \in L$ if and only if $F(x)$ is accepted by M_d. Each configuration C of M_d can be represented as (q, p_1, p_2) where q is a state of M_d, p_1 and p_2 are the head positions of head 1 and head 2, respectively. Given an input $F(x)$, the connections of configurations of M_d are fixed: There is an edge from configuration C_1 to configuration C_2 if and only if C_1 is a succeeding configuration of C_2. For this fixed input, all the configurations and the connections above form a forest forest since M_d is one-way and deterministic. M_d accepts $F(x)$ if and only if there is a directed path in forest from the accepting configuration to the initial configuration. Moreover, the function $F_1 : F(x) \rightarrow \text{forest}$ can be computed by a circuit family in $\text{Depth}(\log n)$. This completes our proof. \(\square \)

Remark. In [3] it is independently proved that FAP is \(\leq_{m}^{\log} \)-complete for \(\text{DSpace}(\log n) \).

4. Remarks

We have shown that the computation performed by one-way two-head finite automata is the “hardest” computation in \(\text{DSpace}(\log n) \) with respect to parallel implementation. This fact gives us an evidence that there is an intrinsic difference between one-head finite automata and multihead finite automata, as we will discuss in next few paragraphs.

In 1965, Rosenberg [9] claimed that: for any integer $k \geq 1$, one-way $(k+1)$-head finite automata are strictly stronger than one-way k-head finite automata, i.e., for
each \(k \), there is a language \(L_k \) which can be accepted by a one-way \((k + 1)\)-head finite automaton but cannot be accepted by any one-way \(k \)-head finite automata. Rosenberg’s conjecture was finally proved by Yao and Rivest [11]. The similar results were also obtained for two-way finite automata by Ibarra [6]. However, our Theorem 3.6 and Lemma 3.2 tell us that there is no intrinsic difference between two-head finite automata and \(k \)-head finite automata for \(k \geq 2 \) with respect to their parallel implementations.

On the other hand, Ladner and Fischer have given a \((\log n)\)-depth parallel implementation for one-head finite automata [8]. If we believe that \(\text{DSPACE}(\log n) \neq \text{DEPTH}(\log n) \), then our Theorem 3.6 shows that it takes more parallel time to simulate two-head finite automata than to simulate one-head finite automata.

References