CSCE 420 Guest Lecture

Introduction to Machine Learning

- Yoonsuck Choe
 Professor
 TAMU CSE

- September 29, 2014
What Is Machine Learning?

- A subfield of AI that is rapidly growing in importance.
- Performance of a system is improved based on learning experience.
- Learning from data.
Why Machine Learning?

- Abundance of data: the data deluge.
 - Scientific instruments.
 - Data acquisition devices.
 - Internet and the web.
 - All sectors of human society producing and digitizing data (e.g., your cell phone).
- Not enough human expertise or human power to make sense of such huge amounts of data.
Machine Learning in the News

- IBM’s Watson beats human champions: Jeopardy (game show)
- Google detects cats from YouTube videos.
- Google Glass app recognizes people it sees.
- Legal, medical, financial applications.
What Does It Take to do ML?

A lot of math (but not too deep):

- Linear algebra
- Calculus
- Probability and statistics
- Differential geometry
- Numerical methods
Types of Machine Learning

1. Supervised learning
 - Input-Target pairs
 - \(\{⟨\vec{x}_i, \vec{t}_i⟩| i = 1, 2, ..., n\} \)

2. Unsupervised learning
 - A bunch of inputs (unlabeled)
 - \(\{\vec{x}_i| i = 1, 2, ..., n\} \)

3. Reinforcement learning
 - state\(_1 \rightarrow\) action\(_1 \rightarrow\) state\(_2 \rightarrow\) action\(_2 \rightarrow\) state\(_3, ...\), reward
 - \(s_{t+1} = \delta(s_t, a_t), r_{t+1} = \rho(s_t, a_t) \)
Example Data

- Left: supervised
- Right: unsupervised
- Typically very high dimensional (10,000, 1 million [or more]).
High-dimensional Data

$\rightarrow [240, 240, \ldots, 232, \ldots.]$

2,500-D vector

- Images: these are 2D images, but ...

- These are $50 \times 50 = 2,500$-dimensional vectors.
 - Each such image is a single point in 2,500-dimensional space.
Supervised Learning
Supervised Learning

• Regression: approximating \(y = f(x) \)

• Classification: face recognition, hand-written character recognition, credit risk assessment, etc.

• Techniques:
 – Neural networks
 – Decision tree learning
 – Support vector machines
 – Radial basis functions
 – Naive Bayes learning
 – k-nearest neighbor
Neural Networks

- Input, hidden, and output units.
- Connection weights are adjusted based on $\langle \vec{x}_t, \vec{t}_t \rangle$ and error in the output.
Decision Tree Learning

- Building a tree from scratch, one attribute at a time.
- Maximized information gain (checking which attribute reduces uncertainty the most?).
Support Vector Machine

- Similar to a one-layer neural network.
- Learning rule is different.
- Nice optimality properties.
Supervised Learning Issues

- How well will it do on training inputs?
- How well will it do on novel inputs?
 - Generalization.
- How many samples needed for sufficient performance and generalization?
 - Sample complexity
 - Curse of dimensionality
 - Computational learning theory
- Catastrophic forgetting (online learning hard).
Addendum: Curse of Dimensionality

- Exponentially many points needed to achieve same density of training samples.

From: Yoshua Bengio’s page
Unsupervised Learning
Unsupervised Learning

- Clustering, feature extraction, blind source separation, dimensionality reduction, etc.

- Techniques:
 - Principal Component Analysis (PCA)
 - Self-Organizing Maps (SOM)
 - Independent Component Analysis (ICA)
 - Multi-Dimensional Scaling (MDS)
 - ISOMAP, Locally Linear Embedding (LLE)
Principal Component Analysis

- Finding orthogonal axes that result in maximum variance when projected.
- Large portion of information resides in the first few principal components.
- Dimensionality reduction.
Self-Organizing Maps

- Units occupy a regular grid (1D, 2D, 3D), with reference vector.
- Inputs matched to units with most similar reference vectors.
- Reference vectors adjusted based on match and neighbor on grid.
- Nearby units represent similar inputs.
Independent Component Analysis

- Find additive sources (right) based on their mixtures (e.g., image patches to the left).
- Sources assumed to be statistically independent from each other and non-Gaussian.
- Feature extraction, blind source separation.
Manifold Learning: ISOMAP, etc.

- Low-dimensional manifold embedded in high-dimensional space.
- Recover the manifold. Geodesic distance a central concept.
- Dimensionality reduction, visualization, etc.
Unsupervised Learning Issues

- Discovering structure.
- Discovering features.
- Removing redundancy.
- How many clusters?
- What distance measures to use?
Reinforcement Learning
Reinforcement Learning

• Very different from supervised and unsupervised learning.

• Multi agent control, robot control, game playing, scheduling, etc.

• Techniques:
 – Value function-based: Q-learning, Temporal difference (TD) learning
Learning the Meaning of Neural Spikes

- What do these blinking lights mean? (Choe et al. 2007).
What If They Are Brain Responses
to Something
They Are Visual Cortical Responses to Oriented Lines

This is a problem of grounding.
Use Reinforcement Learning

- Direct access to **encoded internal state** (sensory array) only.
- Action is enabled, which can **move the gaze**.
- How does this solve the grounding problem?
Action for Unchanging Internal State

- Diagonal motion causes the *internal state* to remain *unchanging* over time.
- Property of such a movement *exactly reflects* the property of the input I: Semantics figured out through action.
Reinforcement Learning

- Learn state-to-action mapping to maximize invariance in internal state.
Results: Learned $R(s, a)$

- Initial
- Ideal
- Final

Synthetic image

(a) Initial
(b) Ideal
(c) Final

Natural images

(a) Initial
(b) Ideal
(c) Plant
(d) Oleander

- Learned $R(s, a)$ close to ideal.
Results: Gaze Trajectory

(a) Input

(b) Initial

(c) Final
Brief Summary

• Decoding of encoded representation can be done without external reference.

• Action and changes in the internal representation induced by action is the key.

• Reinforcement learning plays a key role.
Reinforcement Learning Issues

- Discrete states and actions is a norm.
- Scalability an issue.
- Certain assumptions: state-action pair visited infinitely often.
- Online learning, safety, transfer, etc.
Wrap Up
Summary

- Machine learning is a rapidly developing field with great promise:
 - Big data
 - New theoretical insights (e.g., deep learning)

- Three types of ML:
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

- Need to look beyond ML:
 - ML good at solving problems, but not posing problems (Choe and Mann 2012).