CIMVSP Panel Discussion

Bert SHI

Dept. of Electronic and Computer Engineering
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, HONG KONG
ebert@ee.ust.hk

Questions

- Is there a single dominant functional/operational principle of brain function and biological intelligence?
- What is (are) your favorite principle(s) of brain function/biological intelligence, and why do you think so?
- What is needed to progress?

My interpretation: As engineers who hope to build "intelligent" systems, what aspect of the brain should we focus on?

My answer: The brain uses a distributed representation of input stimuli based on neurons selective along a multi-dimensional stimulus space.

Cortical Visual Processing

From E. R. Kandel et. al., Principles of Neural Science

Why multidimensional selectivity?

- Measured in cortex
- Important perceptually
 - (van Ee and Anderson, Nature, 2001)

Multidimensional selectivity

- Position
- Spatial frequency (size)
- Temporal frequency (change)
- Color
- Orientation
- Binocular Disparity (depth)
- Direction/speed of motion
- Curvature

Improvement over isolated cues

Motion and stereo
Motion only
Stereo only

Motion and stereo
Motion only
Stereo only
Conjecture

- V1 (and visual cortex in general) reformat
 the visual data so that it is easier to interpret
 - I/O ratio for retina: 100/1 (compression)
 - I/O ratio V1: input:output ratio ~ 1:50
 (expansion!)
- Neuromorphic systems for visual perception
 should simultaneously integrate information
 from all cues (orientation, disparity, motion)
 at a very early stage.

Why is this important?

- The brain’s representation of input stimulus
 is what enables it to learn a wide variety of
 tasks
 - rapidly
 - flexibly
 - generically
 - efficiently
- Although we have focused on perception, it
 is likely that a similar principle will hold for
 action.

What is needed?

- Biology: Mapping the multidimensional
 selectivity of neurons in the visual cortex,
 especially in areas beyond V1
- Theory: Probabilistic models of the relationship
 between model neural responses and
 behaviorally relevant input stimulus variables
- Hardware: Efficient hardware architectures for
 simulating large populations of neurons with
 multidimensional selectivity
- Systems: Robotic systems that couple
 neuromorphic representations with action to
 generate behavior