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Abstract— In flash-lag effect (FLE), the position of a moving
object is perceived to be ahead of a brief flash when they are
actually co-localized. This phenomenon may be due to motion
extrapolation: The nervous system has internal conduction delay,
thus signals received with a delay in central areas have to be
extrapolated for the internal state to be temporally aligned with
that of the environment. The precise neural mechanism of such
a process has not been fully investigated. Here, we propose that
facilitating synapses can be a potential candidate. We tested this
idea in FLE and showed that our model behavior is consistent
with experimental data. In sum, facilitatory neural dynamics may
underlie delay compensation, thus giving rise to FLE.

I. I NTRODUCTION

Flash-lag effect refers to a visual phenomenon in which the
position of a moving object is perceived to be ahead of a
briefly flashed object when they are actually co-localized [1],
[2]. Interestingly, flash-lag effect has been found in various
sensorimotor modalities such as motor performance [3], audi-
tory perception [4]; and in various visual modalities such as
color, pattern entropy, and luminance [5].

A potential explanation for flash-lag effect (FLE) is motion
extrapolation: Flash-lag effect may be caused by a delay
compensation mechanism embedded in our nervous system
(see, e.g., [2], [6]). Fig. 1 illustrates visual motion flash-
lag effect in view of the motion extrapolation hypothesis. In
Fig. 1a, the stateS(t) of a moving object (black rectangle)
which is physically aligned with a flashed object (white solid
rectangle) in the environment is received at a peripheral sensor
(such as the retina) at timet. The state informationS(t)
takes time (= ∆t) to travel from the sensor to the central
nervous system in the organism. If the delay is not taken
into consideration, the perceived location of the moving object
based on stateS(t) will be outdated by timet+∆t (Fig. 1b).
In that case, there will be no flash-lag effect because the
location information of moving stimulus and flashing stimulus
are the same, albeit delayed (Fig. 1b). On the other hand, if
the received object location is corrected based on a predicted
(or extrapolated) state of the moving object fort + ∆t,
i.e., S(t + ∆t), then the extrapolated object location will be
closer to the actual environmental state at the time of the
perception (Fig. 1c). The flashed object, on the contrary, is
perceived without extrapolation because the abrupt flashing
has no previous history to be extrapolated from. Thus, visual
displacement occurs between the moving bar and the flashed
bar due to such a discrepancy in extrapolation.

However, the motion extrapolation model has some limi-
tations. For example, humans do not perceive displacement
between a flashed object and a moving object when the moving
object stops or reverses its direction of motion at the time of
the flash [7] (see Fig. 2a for an illustration of motion reversal).
In other words, to make human subjects perceive a moving
bar and a flashed bar to be aligned at the instant of flash,
the flashed bar should be presented ahead of the moving bar.
However, as the position of the moving bar approaches the
motion reversal point, the gap between the perceived location
of the two objects decreases (i.e., diminished flash-lag effect)
and increases again after motion reversal. As illustrated in
Fig. 2a, the perceived location of the moving bar leads (solid
line), while that of the flashed object lags behind (points
marked∗).

To resolve this issue, “postdiction” [8] has been suggested
as an alternative, which explains that the visual system uses
motion information occurringafter time t to compute the per-
ceived location at timet. It distinguishes perception time from
neural-activity time assuming that perception is established by
integrating information from the past, the present, and the
near future that fall within a fixed temporal window. With
the postdiction model, the lack of flash lag effect around the
point of motion reversal can be explained. However, with this
scheme, the nervous system would face perceptual delay (from
80 to 100 ms) in addition to neural transmission delay (tens
to hundreds of milliseconds), which can become a serious
problem for real time computation.

Despite its limitation in explaining motion reversal (or
termination) condition, the extrapolation model has many
desirable properties [9], [10], [11], [12]. In this paper, we
suggest that the limitation can be overcome by an extended ex-
trapolation model. An interesting question arises at this point:
“What is the neural mechanism embedded in central nervous
system to implement such an extrapolation process?” This is
an important question that has not been fully investigated.
One potential mechanism is the facilitatory dynamics found
in neurons. Previously, facilitating (or depressing) synapses
have been studied in the context of memory (e.g., sensitization
and habituation, [13], [14]) or temporal information process-
ing [15], [16], [17], [18]. Here, we suggest that facilitating
synapses may also play an important role in compensating
for neural delays. Facilitatory neural activity may effectively
compensate for neural delays, and as a result it may cause
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Fig. 1. Flash-lag effect in the view of compensation mechanism for neural delay.

extrapolation in perception (e.g., as expressed in the visual
flash-lag effect).

To test our idea, we formalized the extrapolation mechanism
as facilitatory neural activity (we call it thefacilitation model)
and revisited the motion reversal FLE previously modeled by
postdiction [19]. The results indicate that our facilitation model
can successfully account for the data from human subjects
for both FLE in continuous motion and abolished FLE in
motion reversal point, while minimizing the effect of neural
conduction delay.

Our initial facilitation model is based on a firing-rate model,
where continuous-valued neural activity was represented as a
single real number. However, biological neurons communicate
via spikes, thus the biological plausibility of the facilitation
model may be questioned. To address this issue, we derived a
spike-based model based on known neurophysiological mech-
anisms that can express facilitatory behavior. We extended
an existing facilitating synapse model [15], [16] to account
for both increasing and decreasing firing rates, thus firmly
grounding the facilitation model on a biological foundation.

In the following, first, the model and experiment with
motion reversal FLE will be presented to test whether the
facilitation model can explain the FLE in terms of delay
compensation (Sec. II). Next, a spike-based single-neuron
model for facilitating activity will be proposed, followed by
tests with luminance FLE (Sec. III). Finally, we will conclude,
with a brief discussion of possible extensions of the model
presented in this paper (Sec. IV–V).

II. FACILITATION MODEL FORDELAY COMPENSATION

To test our facilitation model as a delay compensation
method, we conducted experiments in the motion reversal
FLE and compared the results to that of postdictive optimal
smoothing model. First, we will briefly review the postdiction
model by Rao et al. [19] (Sec. II-A) and then present our
facilitation model (Sec. II-B).

A. Optimal smoothing: postdictive perception

Rao et al. [19] formalized postdiction usingoptimal smooth-
ing, a commonly used method in engineering applications [20].

They tested the model in motion reversal FLE and showed
that optimal smoothing can successfully account for the curve
around the reversal point which is observed in human experi-
ments (Fig. 2a, t = t1). Using Kalman filtering [21], the best
estimate of the location̂X(t) of a moving object at timet is
derived from its predicted location̄X(t) with error correction
G(t)(X(t)−X̄(t)) after observing the current valueX(t) [19]:

X̂(t) = X̄(t) + G(t)(X(t)− X̄(t)), (1)

X̄(t) = X̂(t− 1) + c(t− 1)Ŷ (t− 1), (2)

whereG(t) is a gain term,c(t− 1) denotes motion direction
at time t − 1 (1 for forward and−1 for reverse trajectory),
and Ŷ (t− 1) = Ȳ (0) = a, which indicates the velocity of the
object (a = 1). To estimate the final perceived location, the
best estimatêX is recursively smoothed using the estimation
from future time steps:

Xsm(t) = X̂(t) + h(t)(Xsm(t + 1)− X̄(t + 1)), (3)

where h(t) is a gain term andXsm(t) the final perceived
location of the moving object at timet.

Fig. 2b shows results from motion reversal experiments
modeled by Eq. 1 through 3 (withG(t) = 0.7, h(t) = 0.5).
Thex axis represents time (second) and they axis the location
of the object. The velocity of the moving bar was 1 m/sec
and the neural delay 500 ms. The actual trajectory of the two
objects (solid line for the moving bar and∗ for the flashed bar)
resulted in delayed neural activityX. Based on the inputX,
the optimal smoothing method generates a predicted, filtered,
and smoothed estimation for the perceived object location.
Notice that even though the smoothed trajectory (solid dark
line) faithfully reproduced the curve around reversal point
(Fig. 2a, t = t1), the estimated location undershot the actual
locations unlike in the standard flash-lag effect for continuous
motion without reversal. Another point to note here is that for
the standard FLE, the smoothed trajectory should be shifted
to the left based on the temporal integration of position
signals (see [8], [19] for details). Certain problems arise here
since the final perceptual location is determined by recursive
smoothing (which is possible onlyafter observing all the input
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Fig. 2. Motion reversal experiment and optimal smoothing.
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Fig. 3. Facilitatory neural activity.

data), and the temporal window needs visual integration mark
(i.e., flash) to be set on, which contradicts with the finding
that localization error exists when there is no accompanying
flash [9], [11]. Also, the window size is hard to determined for
a varying stimulus configuration. In sum, the smoothing model
may be difficult to be applied within the nervous system, which
has to work in almost real time.

B. Facilitation model: extrapolative perception

Besides its limitation in explaining motion reversal in FLE,
the extrapolation model has many desirable properties [9],
[10], [11], [12]. In this section, we will derive a simple fa-
cilitation (extrapolation) model and its extension to overcome
limitations regarding motion reversal or termination.

How can the motion extrapolation model be implemented
in the nervous system? Our hypothesis is that for fast extrap-
olation, single neurons should be able to extrapolate. Let us
assume that the activation valueXi(t) of a neuroni at time
t represent the the perceived location of a moving object at
time t. In a network of neurons, the activation level can be
defined as follows:

Xi(t) = g(
∑
j∈Ni

wijXj(t)), (4)

whereg(·) is a nonlinear activation function (such as a sigmoid
function), Ni the set of neurons sending activation to neuron
i (the connectivity graph should be free of cycles), andwij

the connection weight from neuronj to neuroni. Based on
Eq. 4, the activity of a neuron with facilitating mechanism
can be defined as follows (we will drop the neuron indexi for
notational simplicity):

A(t) = X(t) + (X(t)−A(t− 1))r, (5)

whereA(t) is the facilitated activation level at timet, X(t) the
instantaneous activation solely based on the present input at
time t, andr the facilitation rate (0 ≤ r ≤ 1). The basic idea
is that the current instantaneous activationX(t) is augmented
with the rate of changeX(t) − A(t − 1) modulated by the
facilitation rater. We will refer to the rate of change as∆a(t)
(= X(t)−A(t− 1)).

Note that Eq. 5 is similar to extrapolation using forward Eu-
ler’s method where the continuous derivativeA′(·) is replaced
with its discrete approximation∆a(·) [22] (p. 710). Fig. 3
shows how facilitatory activity is derived from the current
and past neural activity (for both increasing and decreasing
activation levels). Basically, the activation levelA(t) at timet

(wheret coincides with the environmental time) is estimated
using the inputX(t) that arrived with a delay of∆t. If the
facilitatory rater is close to 0.0,A(t) reduces toX(t), thus
it will lag behind in comparison to the environment. Ifr is
close to 1.0, maximum extrapolation will be achieved.

We will now apply our model to the motion reversal experi-
ment under the same conditions as in Sec. II-A. Fig. 4a shows
the results whereX(t) corresponds to the delayed neural
activity arrived in the visual cortex andA(t) the facilitated
perception for the location of the moving bar (r = 0.5). If
there is no facilitating neural activity, the perceived location
will be significantly behind the real positions (refer to Fig. 1b
for better understanding of this point). With facilitatory neural
activity, however, the delayed neural signal is facilitated so
that the perceived locations (solid line) become closer to the
actual location (solid line with∗) of the moving bar in the
environment at the same instant. Notice that the visual FLE
occurs due to the spatial gap between the facilitated activity for
the moving bar (solid line) and the non-facilitated activity for
the flashed bar (dotted line). However, as mentioned above
as a shortcoming of the extrapolation model, the facilitated
perception generates an overshoot around the reversal point,
which is not found in human experiments.

What happens at the instant of the motion termination or
reversal? A potential answer is that the misperception (i.e.,
overshoot at reversal) is corrected by backward masking with
an immediate motion offset signal (see [23] for details). The
motion offset signal which arrives at the time of extrapolation
can cancel out the extrapolatory neural activity so that there
is no overshooting perceived at the terminating (or reversal)
point. This is consistent with the postdiction model to some
extent such that information occurring after timet can affect
the judgment about the perceived location at timet. However,
differentiating from optimal smoothing, our model uses ex-
trapolated activityA(t) instead of the filtered estimatêX(t)
for smoothing, and considers only one step future event to
modify the estimate. (We assume that the time step is much
smaller than the transmission delay, i.e.,1 � ∆t.) Thus, the
perceived location can be redefined as follows:

Asm(t) = A(t) + h(t)(A(t + 1)−X(t + 1)), (6)

where Asm is called facilitated smoothing value. Compared
to Eq. 3, Eq. 6 is much simpler and suitable for real-time
perception. Fig. 4b shows the result using Eq. 6 (withh(t) set
to 0.4). Compared to Fig. 4a, facilitated smoothing (Asm; dark
solid line) successfully produces no-overshoot at the time of
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Fig. 4. Perceived trajectory in the facilitation model.

reversal as well as closely approximating the overshoot events
for continuous visual motion.

This computational result strongly suggests that our nervous
system may use extrapolatory neural mechanisms for delay
compensation as well as a small delay in perception to increase
perceptual accuracy.

III. SPIKE-BASED MODEL FOR FACILITATING ACTIVITY

The model in the previous section treated neural activity
as a single real number. How could the facilitatory dynamics
as described in Eq.5 and Eq.6 be implemented in a more
biologically plausible manners? In this section, we will pro-
pose a spike-based model based on known neurophysiological
mechanisms that can potentially express facilitatory behavior.

A. Single neuron model with facilitating synapses

Dynamic synapses generate short-term plasticity which
shows activity-dependent decrease (depression) or increase
(facilitation) in synaptic transmission occurring within several
hundred milliseconds from the onset of the activity (for
reviews see [24], [17], [25]). Especially, facilitating synapses
cause growth of postsynaptic response through increasing
synaptic efficacy with successive presynaptic spikes. (Synaptic
efficacy is the fraction of neural transmitter released when
presynaptic action potentials arrive at the axon terminal.)
Unlike depressing synapses, the rate of neural transmitter
release is not constant but is a dynamic variable in facilitating
synapses.

According to the dynamic synapse model by Markram
and colleagues, based on neurophysiological data [16], [15],
synaptic efficacyU evolves over time as described in the
following differential equation:

dU

dt
= −U

τf
+ C(1− U)δ(t− ts), (7)

whereτf is the time constant for the decay ofU ; C a constant
determining the increase inU when a successive action
potential (AP) arrives at timets at the synaptic terminal; and
δ(·) the Dirac delta function. This equation is already suitable
enough to replicate the facilitating dynamics in Eq. 5 when
the activation level is increasing (as in Fig. 3a). However, it
is not capable of handling cases where the activation level is
decreasing (as in Fig. 3b). Ideally, extrapolation should work
for both increasing and decreasing trends.

Here we modify the equation by redefiningC as a dynamic
variable which is varied in proportion to the change of input
firing rate:

C =
(

I(n− 1)− I(n)
|I(n− 1)− I(n)|

) (
I(n− 1)

I(n)

)
r, (8)

whereI(n) is the interspike interval between then-th spike
and the(n− 1)-th spike which reflects whether a spike train
consists of high-frequency APs or low-frequency APs. The
first term in Eq. 8 determines the sign ofC: “+” for increase
or “−” for decrease in firing rate. The second term represents
the ratio of the change in frequency, andr is a gain parameter.
As the input firing rate increases,C becomes positive and
increases proportional to the rate of change in frequency. On
the contrary, as the firing rate decreases,I(n) becomes larger
which results in a negativeC and thus leads to the decrease
in the synaptic efficacyU .

With this, we can now fully describe our membrane poten-
tial model, (cf. [16], [15]). The time course of postsynaptic
currentP (t) at timet triggered by incoming spikes is defined
as follows:

P (t) = Ee
− t

τp , (9)

E = AU, (10)

whereE is the excitatory postsynaptic potential (EPSP) am-
plitude; τp the time constant of decay inP (t); A a constant
for maximum postsynaptic response amplitude; andU the
synaptic efficacy as defined above. Finally, the membrane
potentialVm(t) at time t evolves as follows:

Vm(t) = Vm(t− 1)e−
t

τm + P (t)(1− e−
t

τm ). (11)

The membrane potential is determined by the membrane cur-
rentP (t) at that moment and the previous membrane potential
Vm(t − 1), both of which are regulated by a membrane time
constantτm. The last part of the spiking neuron model is
the spike generation mechanism. OnceVm exceeds the spike
thresholdθ, a spike is generated, followed by an absolute
refractory period ofτrefrac during which spikes cannot be
generated. With the model above, we simulated a single neuron
under increasing or decreasing input firing rate.

B. Experiment with visual luminance flash-lag effect

When a stationary disk continuously becomes brighter in
luminance, it appears brighter than a neighboring flashed
object of equal luminance (and analogously, darker for a disk
becoming darker) [5]. Such perceptual phenomena expressing
extrapolation (brighter than bright, and darker than dark) can
be modeled at a single-neuron level using facilitating synapses
as described in the previous section.

Through sensory transduction, sensory signals such as pho-
tons hitting the retina are converted into spikes (or action
potentials). These spikes cause a chain reaction through the
sensory pathway to reach the primary sensory area (the pri-
mary visual cortex, in case of vision). Our interest mostly lies
in the last part of the journey of these spikes, where the input
spike train releases neurotransmitters from presynaptic neurons



to a postsynaptic neuron through facilitating synapses. Further
simplifying this, we assumed that there is only one synapse.
By varying the spike firing rate in the presynaptic neuron,
we are able to model the extrapolatory phenomenon described
above.

We tested two types of input: (1) increasing firing rate
(analogous to the visual stimulus becoming brighter) and (2)
decreasing firing rate (modeling the visual stimulus becoming
darker). The parameters used for the simulation below were
as follows: Initial value for synaptic efficacyU = 0.2; U -
recovery time constantτf = 150 ms; postsynaptic potential
time constantτp = 30 ms; membrane current time constant
τm = 200 ms; spike thresholdθ = 160 mV; duration of abso-
lute refractory periodτrefrac = 4 ms; maximum postsynaptic
response amplitudeA = 300; and C-gain r = 0.175. The
results are shown in Fig. 5. As the results show, the facilitating
synapse model generated extrapolatory neural activity for both
increasing and decreasing firing rate conditions. Dynamic
change in the synaptic efficacyU caused the postsynaptic
neuron to generate more spikes than the input when the input
firing rate was increasing (Fig. 5a). On the other hand, the
postsynaptic neuron generated less spikes than what it received
when the input firing rate was decreasing (Fig. 5b).

This kind of behavior is quite reasonable if we consider
the following. Suppose the spikes in the presynaptic neuron
(the top rows in Fig. 5) were originated earlier (about 100
ms) in peripheral sensors. Here is an example sequence of
events: (1) Peripheral spiking at 300 ms would be replicated
at 400 ms in the presynaptic neuron in the top row, due to
the delay. (2) The postsynaptic neuron (bottom row) receiving
input from the presynaptic neuron (top row) at 300 ms fires
from information from 200 ms in the periphery. (3) However,
the postsynaptic neuron’s firing rate at 300 ms (bottom row)
is nearly the same as that of the presynaptic neuron’s rate at
400 ms (top row). This means that the postsynaptic neuron,
at time 300 ms, is exactly firing at the same frequency as
the peripheral neuron at time 300 ms (refer to (1) above),
precisely reflecting the present environmental state. Note that
the presynaptic (top row) and the postsynaptic (bottom row)
neuron in Fig. 5 are both located in the central nervous system
as shown in Fig. 1.

In contrast with the previously defined facilitating synapse
equation (Eq. 7, [16], [15]), our modified equation (Eq. 7 with
Eq. 8) was able to generate extrapolated neural activity under
both increasing and decreasing firing rate. These experiments
suggest that dynamic facilitating synapses can trigger a general
extrapolatory neural activity, thus providing a neurophysiolog-
ical basis for the model in Sec. II. In sum, the time-varying
stimuli (brighter or darker in luminance) were extrapolated to
be perceived close to the present intensity of light, while the
firing rate of abrupt stimulus was the same as the presynaptic
neuron (not shown). The different firing rates between two
stimuli might cause FLE in visual luminance change.

The last question to be resolved is what neural mechanisms
can implement backward masking so that it can cancel out
potential overshooting occurring at a motion-reversal point.

We suggest that inhibitory synaptic transmission conveying
motion offset signal may prevent the postsynaptic neuron from
generating surplus spikes. Fig. 6 shows the pre-postsynaptic
neural activity where motion offset signal follows the input
spike train (top row) consisting of increasing firing rate. The
second row in Fig. 6 shows that spikes of motion offset
stimulus are delivered by an inhibitory synapse immediately
following the input spike train. The motion offset signal was
generated immediately after the last signal of continuously
changing stimuli (around 400 ms at the periphery), and de-
livered with neural delay (100 ms) at presynaptic neuron.
Influenced by inhibitory postsynaptic potential (IPSP) the
increased postsynaptic membrane current is pulled down (the
third row), which makes the postsynaptic neuron to fire the
same number of APs as that of the presynaptic neuron (cf.
Fig. 5a) so that extrapolation of firing rate did not occur at
the moment of stimulus termination.

IV. D ISCUSSION

The main contribution of this paper is that it proposed
a biologically plausible neural mechanism on which mo-
tion extrapolation model can be grounded. We proposed and
tested a neurophysiologically based facilitating synapse model,
demonstrating that extrapolatory dynamics can compensate for
neural transmission delay and various FLE may arise due to
such a mechanism. We also showed that the lack of such an
effect at motion reversal (or termination) can be interpreted
as due to inhibitory synaptic dynamics. In fact, the motion
reversal of moving bar and the visual luminance experiments
showed that facilitatory neural activity helped align the internal
state of the nervous system with the present rather than with
the past environmental state.

We expect that our approach can be extended to explain
other extrapolatory phenomena in perceptual experiments such
as flash-lag effects in color, pattern entropy, localization, or
orientation. However, to do this, our single-neuron approach
has to be extended. For example, unlike luminance, neurons
sensitive to orientation only respond to a narrow range of
orientations. This means that a whole range of orientation
cannot be represented with a single neuron, thus increase
or decrease in firing rate in these neurons cannot indicate
the presence of varying orientations in the input. For this
case, facilitation has to go across different orientation-selective
neurons. Another interesting future direction would be to
verify whether neurons with facilitating synapses are more
often found in places where delay compensation is needed
more, for example, at the end of long, slow axons, or where
precise real-time information is needed.

V. CONCLUSION

In this paper, we have shown that facilitatory (extrapolatory)
dynamics found in facilitating synapses can be the basic
neural mechanism for motion extrapolation. Experiments with
a moving object trajectory showed that facilitatory activation
can successfully reproduce the visual motion flash-lag effect
(i.e., overshooting in continuous motion as well as the lack
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of such an effect at motion reversal). Also, an extended
facilitating synapse model allowed the facilitation model to be
firmly grounded on neurophysiology. Experiments with FLE
with change in visual luminance turned out that facilitating
postsynaptic activity can generate extrapolated neural activity
under both increasing and decreasing firing rate conditions. In
sum, we showed that facilitating synaptic dynamics can serve
as a delay compensation mechanism, which may give rise to
the various flash-lag effects, and help biological organisms to
perceive the present environmental state in real time.
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