
1

Abstract

This paper is about the computer analogy of
the brain and how it can both help and hinder
our understanding of the human mind. It is
based on the assumptions that the mind can be
understood in terms of the working of the
brain, and that the brain’s function is to process
information: that it is some kind of a computer,
as contrasted for example with the heart which
is a pump. It is a computer whose design we do
not understand but try to, by analogy; that is,
by making a model—a “cognitive com-
puter”—based on our understanding of com-
puters, brains, and the working of the mind.

Human intelligence and language are funda-
mentally analogical and figurative whereas
lower forms of intelligence and conventional
computers treat meaning literally. Therefore,
the challenge in designing a cognitive com-
puter is to find the kinds of information repre-
sentation and operations that make figurative
meaning come out naturally. The paper dis-
cusses holistic representation, which is uncon-
ventional and looks promising and worthy of
investigation—it easily encodes recursive (list)
structure, for example—and points out a dan-
ger in taking too literally cognitive models that
have been developed on conventional comput-
ers, such as the following of rules.

Intr oduction

The human mind is unlike any computer or
program we know. It is not literal, and when
meaning is taken literally, the result can be
funny or total nonsense. That’s the humor of

. 1. Real World Computing Partnership. Support of
this research by Japan’s Ministry of Interna-
tional Trade and Industry through the RWCP is
gratefully acknowledged.

2. Swedish Institute of Computer Science.

puns. This must mean that the human mind,
although capable of being literal, is fundamen-
tally figurative or symbolical or analogical.
How else could we judge a literal interpretation
as being at once both accurate and wrong?

The growth of the human mind—our grasp
of things—is largely due to analogical perceiv-
ing and thinking. Some things are meaningful
to us at birth or without learning; they are
mostly things necessary for survival. The rest
we learn through experience. Some learning is
associative, as when we learn cause and effect.
This kind of learning is basic to all animals.

To follow an example, or imitate, is a more
advanced form of learning and is common at
least in mammals and birds. It involves a basic
form of analogy. The learner identifies with a
role model—perceives one as the other, makes
an analogical connection or mapping between
oneself and the other.

Full-fledged analogy is central to human
intelligence. We relate the unfamiliar to the
familiar, and we see the new in terms of the
old. This is most evident in language, which is
thoroughly metaphorical. New and unfamiliar
things are expressed and explained in familiar
terms that are understood not literally but figu-
ratively. It is possible that full-fledged analogy
and human language need each other and that
our faculties for them have coevolved.

Analogy is such an integral part of us that
we hardly notice it nor pay it its proper dues.
That is, until we try to program a computer to
act like a human. AI has puzzled over the pro-
gramming of humanlike behavior for three
decades. At first it was thought that program-
ming computers to understand language, to
translate, and the like, were just around the
corner, waiting only for computers to get large
and fast enough. Now they are large and fast,

Dual Role of Analogy in the Design of a Cognitive Computer

Pentti Kanerva
RWCP1 Theoretical Foundation SICS2 Laboratory

SICS, Box 1263, SE-164 29 Kista, Sweden
E-mail: kanerva@sics.se

2

many things have been tried and much has
been learned, but the puzzle remains and we
have no clear idea of how to solve it.

This paper is a personal view of the lessons
this holds for us. The theme is that we must
rethink computing, put figurative meaning and
analogy at its center, and find computing
mechanisms that make it come out naturally.
This can be construed as designing a new kind
of computer, a “cognitive computer,” that is a
better model of the brain than present-day
computers are. I will also try to verbalize
things that students of connectionist architec-
tures take for granted but that might puzzle
others, the main idea being that implementa-
tion matters when we try to understand how
the mind works.

The Computer as a Brain and the
Brain as a Computer

Equating computers with brains is an example
of analogical thinking. Early computers were
dubbed electronic brains, computers have
memory, and we even say that a program
knows, wants, or believes so and so. Such
anthropomorphizing seems natural to us and it
serves a purpose. It brings a technological
mystery within the realm of the familiar, since
we already have an idea of what the brain does
even if we don’t know just how it does it.

We also talk of the brain as a computer. Its
appeal is in that whereas the mechanisms of
the brain are hidden, those of the computer are
available to us, and through them we could
possibly understand the brain’s mechanisms.
The principle is sound and is the thesis behind
Turing’s imitation game: If we can build a
machine that behaves in the same way as a nat-
ural system does, we have understood the natu-
ral system.

Analogies not only help our thinking but
they also channel and limit it. The computer
analogy of the brain or of the mind has cer-
tainly done so, as modeling in cognitive sci-
ence and AI has been dominated by programs
written for the computer, while philosophical
and qualitative treatment of issues is looked
upon with suspicion.

Many things are modeled successfully on
computers, such as weather, traffic flow,

strength of materials and structures, industrial
processes, and so forth. However, there are
special pitfalls when the thing being mod-
eled—the brain—is itself some kind of a com-
puter: the danger is that our models begin to
look like the computers they run on or the pro-
gramming languages they are written in. For
example, we talk of human short-term or work-
ing memory and think of the computer’s active
registers, or we talk of human long-term mem-
ory and think of the computer’s permanent
storage (RAM or disk), or we talk of the gram-
mar of a language and think of a tree-structure
or a set of rewriting rules programmed in Lisp.
Of course these are analogical counterparts,
but there is a danger of taking them too liter-
ally. Human memory works very differently
from computer memory, and the brain is not a
Lisp machine nor the mind a logic program.
Some analogical comparisons have not been at
all useful in understanding the working of the
mind; for example, equating the brain with the
computer’s hardware and the mind with its
software. Finally, there is a worse danger of
failing to notice what is missing in our models
of the mind because it is missing or invisible in
computers. To safeguard against it, we must
treat the subject qualitatively: Our models may
behave as advertised, but is that how people
behave; for example, how they use language?

Artificial Neural Nets as
Biologically Moti vated Models of

Computing

The computer’s and brain’s architectures are
very different. Perhaps the differences account
for the difficulty in programming computers to
be more lifelike and less literal-minded. This
has motivated the study of alternative comput-
ing architectures called (artificial) neural nets
(NN), or parallel distributed processing (PDP),
or connectionist architectures. The hope is that
an architecture more similar to the brain’s
should produce behavior more similar to the
brain’s, which is a valid analogical argument.
Unfortunately it does not tell us what in the
architecture matters and what is incidental, and
unfortunately our neural nets are not signifi-
cantly more figurative than traditional comput-
ers.

3

Neural-net research has made a valuable
contribution by focusing our attention on rep-
resentation. Computer theoreticians and
engineers know, for example, that the repre-
sentation of numbers has a major effect on cir-
cuit design. A representation that works well
for addition works reasonably well also for
multiplication, whereas a representation that
allows very fast multiplication is useless for
addition. Thus a representation is a compro-
mise that favors some operations and hinders
others.

Information in computers is stored locally,
that is, in records with fields. Local representa-
tion—one unit per concept—is common also in
neural nets. The alternative is to distribute
information from many sources over shared
units. It is more brainlike, at least superficially,
and it has been studied and used with neural
nets for a long time. I take distributed represen-
tation to be fundamental to the brain’s opera-
tion and believe that a cognitive computer
should be based on it, and that therefore we
should find out all we can about the encoding
of information into, and operating with, distrib-
uted representations.

Neural-net research has shown that these
representations are robust and support some
forms of generalization: representations (pat-
terns) that are similar on the surface—close
according to some metric—are treated simi-
larly, for example as belonging in the same or
similar classes. The representations are also
suitable for learning from examples. The learn-
ing takes place by statistical averaging or clus-
tering of representations (self-organizing). It is
not very creative but it can be subtle and life-
like, which makes it cognitively interesting. It
can produce behavior that looks like rule-fol-
lowing although the system has no explicit
rules, as was demonstrated with the learning of
the past tense of English verbs by Rumelhart
and McClelland (1986). This is a significant
discovery, in that it demonstrates a principle
that probably governs the working of the brain
in general and should govern the working of a
cognitive computer. What we see and describe
as rule-following is an emergent phenomenon
that reflects an underlying mechanism. How-
ever, the rules do not produce the behavior
even if they may accurately describe it.

Description vs. Explanation

The distinction between description and expla-
nation of behavior is so central that I will high-
light it with an example. Consider heredity.
Long before the genetic bases of heredity were
known, people knew about dominant and
recessive traits and had figured out the basic
laws of inheritance. For example, a plant spe-
cies may come in three varieties, with white,
pink, or red flowers, and cross-pollinating the
white with the red always produces plants with
pink flowers. The specific rule is that all of the
first generation is pink, and when pink-flow-
ered plans are crossed with each other, one-
fourth of the offspring is white, one-fourth red,
and half pink. So we can say that the inherit-
ance mechanism works by this rule. However,
no mechanism in the reproductive system
keeps counting the numbers of offspring to
make sure that the proportions come out right:
“I have made so and so many white flowers,
it’s time to make the same number of red flow-
ers.” It is not the rule that makes the propor-
tions come out in a certain way. The
proportions are an outward reflection of the
mechanism that passes traits from one genera-
tion to the next. It is significant, however, that
long before chromosomes or genes, or RNA
and DNA were discovered, people speculated
correctly about a hereditary mechanism that
would produce offspring in those proportions.
Clearly, the laws provided a useful description
of the behavior, and accurate description often
leads to discovery and explanation.

The situation is similar with regard to lan-
guage and to mental functions at large. For
example, we attribute the patterns of a lan-
guage to its grammar and we devise sets of
rules by which the grammar works. However,
it is not the grammar that generates sentences
in us when we speak or write. The regularities
captured in the grammar are an outward
expression of our underlying mechanisms for
language—the grammar is an emergent phe-
nomenon. This distinction is easily lost when
we produce language output with computers,
for there we actually use the grammar to gener-
ate sentences, and we work hard to develop a
comprehensive grammar for a language. And
when we think of the computer as a model of

4

the brain and use computers to model mental
functions, we tacitly assume that the brain uses
grammar rules to generate language. Formal
logic as a model of thinking can be criticized
on similar grounds. It may describe rational
thought but it does not explain thinking. Our
understanding of the mechanisms of mind is
not yet sufficient to allow us to explain think-
ing and language. The best we can do is to
describe them, but as our descriptions improve,
our chances for discovering the mechanisms
improve.

The Brain as a Computer for
Modeling the World, and Our

Model of the Brain’s Computing

It is useful to think of the brain as a computer if
we make the analogy between the two suffi-
ciently abstract. So what in computers should
we look at? The organization of computation
as a sequence of programmed instructions for
manipulating pieces of data stored in memory
seems like an overly restricted a model of how
the brain or the mind works. A more useful
analogy is made at the level of computers as
state machines, the states being realized as
configurations of matter, or patterns in some
physical medium. Mental states and subjective
experience then correspond to—or are caused
by—physical states so that when a physical
state repeats, the corresponding subjective
experience repeats. Thus the patterns that
define the states are the objective counterpart
of the subjective experience. Our senses are the
primary source of the patterns, and our built-in
faculties for pleasure and pain give primary
meaning to some of the patterns. Brains are
wired for rich feedback, and when the feed-
back works in such a way that an experience
created by the senses—i.e., a succession of
states—can later be created internally, we have
the basis for learning. With learning, rich net-
works of meaningful states can be built.

The evolutionary function of this computer
is to make the world predictable: the brain
models the world as the world is presented to
us by our senses. It appears to compute with
patterns of activity over large sets of neurons.
To study such computing mathematically, we
can model the patterns by large patterns of bits,

emphasizing the large size of the patterns, as
that gives the models their power. The key
question is, how do patterns that have already
been established and have become meaningful,
give rise to new patterns; how do existing con-
cepts give rise to new concepts.

I have used the binary Spatter Code
(Kanerva, 1996) to model computing with
large patterns. The code is related to Plate’s
Holographic Reduced Representation (HRR;
Plate, 1994) and allows simple demonstrations
of it. The representation is distributed so that
every item of information that is included in a
composed pattern—every constituent pat-
tern—contributes to every bit of the composed
pattern: the patterns are holographic or holistic.

Computing with Lar ge Patterns

The following description is in traditional sym-
bolic terms and uses a two-place relation
r(x, y) and a triplett = (x, y, z) as examples.

Space of Representations
All HRRs, including the Spatter Code, work

with large random patterns, or high-dimen-
sional random vectors. All things—variables,
values, composed structures, mappings
between structures—are elements of a com-
mon space: they are very-high-dimensional
random vectors with independent, identically
distributed components The dimensionality of
the space, denoted byN, is usually between
1,000 and 10,000. The Spatter Code uses dense
binary vectors (i.e., 0s and 1s are equally prob-
able). The vectors are written in boldface, so
that x stands for anN-vector representing the
variable or rolex, anda stands for anN-vector
representing the value or fillera, for example.

Item Memory or Clean-up Memory
Some operations produce approximate vec-

tors that need to be cleaned up (i.e., identified
with their exact counterparts). That is done
with an item memory that stores all valid vec-
tors known to the system, and retrieves the
best-matching vector when cued with a noisy
vector, or retrieves nothing if the best match is
no better than what results from random
chance. The item memory performs a function
that, at least in principle, is performed by an
autoassociative neural memory.

5

Binding
Binding is the first level of composition in

which things that are very closely associated
with each other are brought together. A vari-
able is bound to a value with a binding opera-
tor that combines theN-vectors for the variable
and the value into a singleN-vector for the
bound pair. The Spatter Code binds with coor-
dinatewise (bitwise) Boolean Exclusive-OR
(XOR, ⊗), so that the variablex having the
valuea (i.e.,x = a) is encoded by theN-vector
x⊗a whosenth bit is the bitwise XORxn⊗an
(xn and an are thenth bits ofx anda, respec-
tively). An important property of all HRRs is
that binding of two random vectors produces a
random vector that resemblesneither of the
two.

Unbinding
The inverse of the binding operator breaks a

bound pair into its constituents: finds the filler
if the role is given, or the role if the filler is
given. The XOR is its own inverse function, so
that, for example, (x⊗a)⊗a = x finds the vec-
tor to whicha is bound inx⊗a.

Merging
Merging is the second level of composition

in which identifiers and bound pairs are com-
bined into a single item. It has also been called
‘superimposing’ (superposition), ‘bundling’,
and ‘chunking’. It is done by a (normalized)
mean vector, and the merging ofG andH is
written as [G + H], where […] stands for nor-
malization. The relationr(a, b) can be repre-
sented by merging the representations forr, ‘x
= a’, and ‘y = b’. It is encoded by

R = [r + x⊗a + y⊗b]

The normalized mean of binary vectors is
given by bitwise majority rule, with ties broken
at random. An important property of all HRRs
is that merging of two or more random vectors
produces a random vector that resembleseach
of the merged vectors.

Distributivity
In all HRRs, the binding and unbinding

operators distributes over the merging opera-
tor, so that, for example,

[G + H + I] ⊗a = [G⊗a + H ⊗a + I ⊗a]

Distributivity is a key to analyzing HRRs.

Probing
To find out whether the vectora appears

bound in another vectorR, we probeR with a
using the unbinding operator. For example, if
R represents the above relation, probing it with
a yields a vectorX that is recognizable asx (X
will retrieve x from the item memory). The
analysis is as follows:

X = R⊗a = [r + x⊗a + y⊗b] ⊗a

which becomes

X = [r ⊗a + (x⊗a)⊗a + (y⊗b)⊗a]

by distributivity and simplifies to

X = [r ⊗a + x + y⊗b⊗a]

ThusX is similar tox; it is also similar tor ⊗a
andy⊗b⊗a, but they are not stored in the item
memory and thus act as random noise.

The functions described so far are sufficient
for traditional symbol processing, for example,
for realizing a Lisp-like list-processing system.
Holistic mapping, which is discussed next, is a
parallel alternative to what is traditionally
accomplished with sequential search and sub-
stitution.

Holistic Mapping and Simple Analogical
Retrieval

Probing is the simplest form of holistic map-
ping. It approximately maps a composed pat-
tern into one of its bound constituents, as
discussed above and seen in the following
example. LetF be a holistic pattern represent-
ing France: that its capital is Paris, geographic
location is Western Europe, and monetary unit
is franc. Denote the patterns for capital, Paris,
geographic location, Western Europe, money,
and franc byca, Pa, ge, WE, mo, and fr .
France is then represented by the pattern

F = [ca⊗Pa + ge⊗WE + mo⊗fr]

ProbingF for “the Paris of France” is done by
mapping (XORing) it withPa and it yields

F⊗Pa = [ca + ge⊗WE ⊗Pa + mo⊗fr ⊗Pa]

(see ‘Probing’ above) and is approximately
equal toca:

F⊗Pa ≈ ca

XORing with Pa has mappedF approximately
into ca, meaning that Paris is France’s capital.

Much more than that can be done in a single

6

mapping operation, as shown in the following
two examples. LetS be a holistic pattern for
Sweden with capital Stockholm (St), located in
Scandinavia (Sc), and with monetary unit
krona (kr). This information about Sweden is
then represented by the pattern

S = [ca⊗St + ge⊗Sc + mo⊗kr]

We can now ask ‘What is the Paris of Swe-
den?’ If we take the question literally and do
the mappingS⊗Pa, as above, we get nothing
recognizable, so we must take Paris in a more
general sense. ‘Paris of France’ gave us a rec-
ognizable result above (i.e., approximatelyca),
so we can use it: we can mapS (XOR it) with
F⊗Pa and we get

S⊗F⊗Pa ≈ St

which is recognizable as the pattern for Stock-
holm. The derivation is based on distributivity
and is similar to the one given under ‘Probing’.
The significant thing inS⊗F⊗Pa is thatS⊗F
can be thought of as a binding of two com-
posed patterns of equal status, rather than a
binding of a variable to a value, and also as a
holistic mapping between France and Sweden,
capable of answering analogy questions of the
kind ‘What is the Paris of Sweden?’ and ‘What
is the krona of France?’

Holistic mapping allowsmultiple substitu-
tions at once. What will happen to the pattern
for France if we substitute Stockholm for Paris,
Scandinavia for Western Europe, and krona for
franc, all at once, and how is the substitution
done? We create a mapping pattern as above,
by binding the corresponding items to each
other with XOR and by merging the results:

M = [Pa⊗St + WE ⊗Sc + fr ⊗kr]

Mapping the pattern for France withM then
gives

F⊗M
= [ca⊗Pa + ge⊗WE + mo⊗fr]

⊗ [Pa⊗St + WE ⊗Sc + fr ⊗kr]
= [ca⊗Pa

⊗ [Pa⊗St + WE ⊗Sc + fr ⊗kr]
+ ge⊗WE

⊗ [Pa⊗St + WE ⊗Sc + fr ⊗kr]
+ mo⊗fr

⊗ [Pa⊗St + WE ⊗Sc + fr ⊗kr]]

by distributivity, which becomes

[[ca⊗Pa⊗Pa⊗St + ca⊗Pa⊗WE ⊗Sc
+ ca⊗Pa⊗fr ⊗kr]

+ [ge⊗WE ⊗Pa⊗St + ge⊗WE ⊗WE ⊗Sc
+ ge⊗WE ⊗fr ⊗kr]

+ [mo⊗fr ⊗Pa⊗St + mo⊗fr ⊗WE ⊗Sc
+ mo⊗fr ⊗fr ⊗kr]]

again by distributivity. That simplifies to

[[ca⊗St + ca⊗Pa⊗WE ⊗Sc
+ ca⊗Pa⊗fr ⊗kr]

+ [ge⊗WE ⊗Pa⊗St + ge⊗Sc
+ ge⊗WE ⊗fr ⊗kr]

+ [mo⊗fr ⊗Pa⊗St + mo⊗fr ⊗WE ⊗Sc
+ mo⊗kr]]

and is recognizable as

[ca⊗St + ge⊗Sc + mo⊗kr]

In other words,

F⊗M ≈ S

so that a single mapping operation composed
of multiple substitutions changes the pattern
for France to an approximate pattern for Swe-
den, recognizable by the clean-up memory.

Toward a New Model of
Computing

Holistic representation and holistic mapping
hint at the possibility of organizing computing
around analogy. However, the examples that I
have shown are not very strong. This could
mean that large random patterns and the sug-
gested operations on them are not a good way
to compute, but it is also possible that they are,
but that we are not using them correctly. What
stands out about the examples is that they are
built around established notions of variable,
value, property, relation, and the like. These
are high-level abstractions that help us describe
abstract things to each other, but they may be
poor indicators of what goes on in the brain.
For example, should a pattern for a variable,
such as capital city in the above examples, be
related to patterns that stand for individual cit-
ies, and how should those be related to the pat-
terns for the countries they are capitals of?
There are many questions to answer before we
can decide about the utility or futility of com-
puting with large patterns.

What is appealing about large random pat-
terns is that they have rich and subtle mathe-

7

matical properties, and they lend themselves to
parallel computing. Furthermore, the brain’s
connections and patterns of activity suggest
that kind of computing.

For a computer to work like the human
mind, it must be extremely flexible in its use of
symbols. It cannot stumble on the multiplicity
of meanings that a word can have but rather it
must be able to benefit from the multiplicity.
The human mind conquers the unknown by
making analogies to that which is known, it
understands the new in terms of the old. In so
doing it creates ambiguity or, rather, it creates
rich networks of mental connections and
becomes robust.

My hunch is that after we understand how
the brain handles analogy—how it treats one
thing as another—and have programmed it into
computers, programming computers to handle
language will be an easy task, but it will not be
easy before.

References

Kanerva, P. (1996) Binary spatter-coding of
orderedK-tuples. In C. von der Malsburg,
W. von Seelen, J.C. Vorbrüggen, and B.
Sendhoff (eds.),Artificial Neural Networks
(Proc. ICANN ’96, Bochum, Germany),
pp. 869–873. Berlin: Springer.

Plate, T.A. (1994) Distributed Representation
and Nested Compositional Structure.
Ph.D. Thesis. Graduate Department of
Computer Science, University of Toronto.

Rumelhart, D.E, and McClelland, J.L. (1986)
On learning the past tenses of English
verbs. In J.L. McClelland and D.E. Rumel-
hart (eds.),Parallel Distributed Processing
2: Applications, pp. 216–271. Cambridge,
Mass.: MIT Press.

Advances in Analogy Research: Integration of Theory and Data from
the Cognitive, Computational, and Neural Sciences. Workshop.
Sofia, Bulgaria, July 17–20, 1998.

