
ELSEX’IER Parallel Computing 22 (1996) 327-333 

PARALLEL 
COMPUTING 

Short communication 

A concurrent dynamic task graph + 

Theodore Johnson a* *, Timothy A. Davis a, Steven M. Hadfield b 

a Department of Computer and Information Sciences, University of Florida, 
Gainesville, FI 32611-6120, USA 

b Department of Mathematical Sciences, US Air Force Academy, CO, USA 

Received 5 August 1994; revised 30 December 1994,28 July 1995, 15 September 1995 

Abstract 

Task graphs are used for scheduling tasks on shared memory parallel processors when 
the tasks have dependencies. If the program’s task graph is known ahead of time, then the 
tasks can be statically and optimally allocated to the processors. If the tasks and task 
dependencies are not known ahead of time (the case in some sparse matrix algorithms), 
then task scheduling must be performed dynamically. We present a simple algorithm for a 
concurrent dynamic-task graph. A processor that needs to execute a new task can query the 
task graph for a new task, and new tasks can be added to the task graph dynamically. 

Keywords: Shared memory multiprocessors; Task graph scheduling; Multifrontal method; 
Sparse matrices; Lu factorisation 

1. Introduction 

A common method for expressing parallelism is through a task graph. Each 
node in the task graph represents a unit of work that needs to be performed, and 
edges represent dependencies between tasks. If there is an edge from task t, to 
task t, in the task graph, then t, must complete before t, can begin. Previous 
work [2,7,9,10,11,15,16] has assumed that the task graph is specified ahead of time. 
This is often a reasonable assumption, since the task graph can often be generated 
by a parallelizing compiler, or by an a-priori analysis of the problem to be solved. 

If the task graph is specified ahead of time, it can be analyzed for static 
scheduling purposes. The scheduling can be static or dynamic. In static scheduling, 

* Corresponding author. Email: ted@cis.ufl.edu 
’ This project is supported the National Science Foundation (ASC-9111263, DMS-9223088). 

0167-8191/96/%15.00 0 1996 Elsevier Science B.V. All rights reserved 
SSDI 0167-8191(95)00061-5 



328 T Johnson et al. /Parallel Computing 22 (1996) 327-333 

the tasks are allocated to the processors before the computation starts [2,9,15,16]. 
In dynamic scheduling, the tasks are allocated to processors during the computa- 
tion [7,11]. If good task execution time estimates can be made in advance, static 
scheduling will outperform dynamic scheduling, but dynamic scheduling will adjust 
to the actual execution conditions. 

In this paper, we propose a scheduling structure, the dynamic-tusk graph, or 
DTG, that allows the task graph to be specified during the program execution. A 
DTG is useful when the structure of the problem instance is determined at 
execution time. This work was motivated by the problem of parallelizing the 
unsymmetric-pattern multifrontal method for the LU factorization of unsymmetric 
sparse matrices [3,5,6]. 

2. Concurrent dynamic-task graph 

A dynamic-tusk graph 53 = (Y’, .w’), or DTG, consists of a set of labeled 
vertices 7 and a set of arcs on the vertices s’. The arcs in s?’ are the dependen- 
cies among the tasks. If the arc (tl, t2) is in B’, then task t, must complete 
execution before task t, can start execution. We call t, the prerequisite task, and 
t, the dependent task. Obviously, the DTG must be an acyclic directed graph. The 
nodes correspond to tasks, and are labeled: 
U: if the task is unexecuted, 
E: if the task is executing, 
I? if the task has finished execution, or 
N: if the task is not yet defined. 
A task t, is eligible for execution only if all tasks ti such that (ti, t,) EJX? are 
labeled F (similar to a mature node in [15]). 

There are three operations on a DTG: 
(1) add task(t, 0): The add-task operation adds task t to the DTG, and 

specifies that the set of tasks D = itI,. . . , t,} must finish execution before t can 
start execution. The set D is task t’s dependency set. 

(2) t = g e t-t a s kc): The g e t t a s k operation returns a task that is eligible for 
execution. If there is no eligible task, the processor blocks until a task becomes 
eligible. 

(3) finished-task(t): The finished-task operation declares that task t 
has completed its execution. 

When a task is added to the DTG, it must be uniquely named. A processor can 
name the task it adds to the DTG with a sample from a local counter appended to 
its processor id, or with a pointer to a description of the task. The application 
might naturally provide a unique task name. For example, in a multifrontal sparse 
matrix solver the name of the task can be the row index of initial pivot of the 
frontal matrix [3]. 

When a task is added to the DTG (via the add t a s k operation), it is labeled 
U. When a task is selected for execution, its label% changed to E. When a task 
completes its execution, it performs the f i n i s h ed_t a s k operation, which 



T. Johnson et al. /Parallel Computing 22 (1996) 327-333 329 

changes the task state to F. If in the a dd_t a s k operation, task t specifies that it is 
dependent on task t’ but t’ has not yet been added to the DTG, then task t must 
create an entry for t’ and specify that t’ is ltot yet defined by setting the state of f’ 
to N. When add-t a s k(t’, 0) is executed, the state of t’ changes to U. 

We initially assume that all tasks in a task’s dependency set have already been 
added to the DTG, and later extend our algorithms to handle not-yet-defined 
tasks. Since all tasks in the DTG have been determined, this assumption is 
reasonable. Furthermore, it lets us reclaim tasks from the DTG. Whenever a task 
finishes execution, it is dropped from the DTG. If an ad d-t a s k operation cannot 
find a task t, ED in the DTG, then td has finished. 

A task is represented by a tusk record in the DTG. The task record contains a 
field for the name of the task, information necessary for executing the task, the 
number of unfinished prerequisite tasks ND, and a list of the dependent tasks 
dependent. 

A DTG operation needs to find the tasks in the DTG without an explicit search. 
We use a static-sized open hash table. The primary purpose of the hash table is to 
permit parallel access to the tasks in the DTG, so the number of hash table 
buckets only needs to be proportional to the number of processors (as opposed to 
the number of tasks). If the DTG has few buckets, the buckets of the DTG might 
be required to store many task records, so the records should be stored in some 
fast access structure, such as binary tree. The bucket data structure does not need 
to be a concurrent data structure, instead the entire bucket can be locked. The 
hash table operations are: 

(1) enter task(t): put a new task in the hash table. 
(a) lock hash table bucket 
(b) insert t into bucket. 

Cc) unlock hash table bucket. 

(2) p = tans 1 at e-t as k(t): search the hash table for the task, and return a 
pointer to the task. 
(a) lock hash table bucket. 
(b) find and Lock t (if t is not found, release 

all locks and return NIL). 

(cl unlock hash table bucket. 

(3) de L et e-t a s k(t): remove t from the hash table. 
(a) lock hash table bucket. 

(b) find and lock t. 
Cc) remove t from bucket. 

Cd> unlock t and hash table bucket. 

We store the dependency pointers in the record of the prerequisite task. When 
a task is added to the DTG, all tasks in the dependency set must be modified. 
Fortunately, the hash table permits a fast lookup. 

The last issue is finding tasks that are eligible for execution. We assume that 
pointers to these tasks are stored in a separate data structure, the eligible queue. A 



330 T. Johnson et al. /Parallel Computing 22 (19%) 327-333 

hash table 

Fig. 1. Concurrent task graph data structures. 

task can be inserted into the eligible queue, and the eligible queue can be queried 
for an operation to execute. We leave the implementation and the semantics of the 
eligible queue unspecified for now, since there are many possible alternatives. 

The pseudo-code for the add-task, get task, and delete task opera- 
tions follows. The lock can be a simple busy-wait lock, or the contention-free MCS 
lock [13]. Each task graph entry t has three fields: a field for the lock, a count of 
the number of unfinished prerequisite tasks (ND), and a list of tasks that depend on 
t (dependent). When a t ran s 1 a t e-t a s k operation is performed, the lock on the 
hash table entry is retained. This ensures that the task remains in the task graph 
until it is modified (in spite of the concurrent execution of a f i n i she d-t as k 

operation). The data structures for the concurrent dynamic-task graph are shown 
in Fig. 1. 

add_task(t, D) 

t.ND= 1 D 1 
enter-task(t) 
number-finished=0 
for i =I to 1 D 1 do 

s=translate_task(i ‘th task in D) 

if s is null // i.e., finished 

number finished++ - 
else 

add t to s->dependent 

unlock(s) 
if number-finished>0 

Lock(t) 



T. Johnson et al. /Parallel Computing 22 (1996) 327-333 331 

t.ND- =number_finished 
if t.ND==O 

add t to the eligible queue 

unlock(t) 

get-task0 
get a task t from the eligible queue 

return(t) 

finished-task(t) 
delete-task(t) // from hash table only 

for i =I to 1 t.dependent 1 
s=i ‘th task in t.dependent 

Lock(s) 

s->ND-- 
if s->ND==O 

add s to the eligible queue 
reclaim the space used by t 

2.1 Extensions 

In this section, we discuss some possible extensions and optimizations of the 
concurrent DTG. 

Not-Ready Tasks. The algorithms that we presented depend on the assumption 
that all tasks in a new task’s dependency set exist in the DTG. While this 
assumption is usually safe, it might not hold if new tasks are generated in parallel. 
Two tasks, t, and t, might be created in concurrently, where t, depends on t,, but 
t, is added to the DTG first. 

To distinguish between not-yet-defined and finished tasks the state of a task is 
explicitly stored in the task. A finished task is retained in the DTG and is marked 
F. When a task s E D(t) is accessed in the for loop of the add t a s k operation s 
does not exist in the hash table, a task record for s is created, & state is set to N, 
and a pointer to t is added. If a record for s exists in the hash table, its state is 
tested to determine whether or not the task has finished. The en t e r-t a s k hash 
table operation must be modified to account for the possibility that the task t 
already exists as a not-yet-defined task. 

Dense Task Names. The concurrent DTG requires a hash table if the range of 
task names is large and the names of the actual tasks is sparse. In some 
applications, the tasks in the DTG are relatively dense in their name space. An 
example are frontal matrices in an unsymmetric multifrontal sparse matrix algo- 
rithm [3]. The task can be named by the row of the upper left hand pivot, so there 
are IZ possible task names. Sparse matrix algorithms contain several O(n) supple- 
mentary data structures, so allocating a bucket for each possible task name does 



332 T. Johnson et al. /Parallel Computing 22 (1996) 327-333 

not create an excessive space overhead. Allocating a bucket for each task greatly 
simplifies the implementation of the DTG, since the hash table operations become 
simple O(1) procedures. In addition, the bucket lock serves as the task record lock, 
so only half the number of locks need to be set as would otherwise be needed. 

3. Eligible queue 

The DTG operations require a scheduler to select among different eligible 
tasks; making the best scheduling decision is NP-complete. The best heuristics are 
based on global information about the task graph. Since our task graph is 
constructed dynamically, we are constrained to select among limited-knowledge 
schedulers, which are not based on global information. Our studies indicate that a 
wide range of limited-knowledge schedulers provide sufficient performance. 

We simulated the execution of the DTG with several limited-knowledge sched- 
ulers, including FIFO, Maximum task weight, and Maximum dependencies. To 
drive the simulator, we used both synthetic traces and traces derived from the 
DAG of a parallel sparse matrix factorization algorithm [6]. We found that the best 
DTG scheduler algorithms yielded speedups within 5% of each other, and within 
10% of limited-knowledge schedulers on static task graphs. We therefore recom- 
mend a method with low overhead such as a simple lock-free FIFO queue [14], or 
Manber’s concurrent pools [12]. 

We also examined the effect of varying the number of buckets in the hash table. 
We found that setting the number of buckets to the number of processors always 
gave good performance. Further increasing the number of buckets did not increase 
performance substantially. 

4. Conclusion 

In this paper, we present a concurrent data structure suitable for performing 
dynamic-task graph scheduling. We present the concurrent dynamic-task graph, 
which allows the task graph of the computation to be specified while the parallel 
computation proceeds. Such a capability is useful for certain classes of parallel 
computations, such as LU factorization of unsymmetric sparse matrices. 

References 

[ll R. Ayani, LR-algorithm: Concurrent operations on priority queues, in: Proc. Second IEEE Symp. 
Parallel and Distributed Processing, (1990) 22-25. 

[2] E.G. Coffman, Computer and Job-Shop Scheduling (John Wiley, 1976). 
(31 T.A. Davis and I.S. Duff, An unsymmetric-pattern multifrontal method for sparse LU factoriza- 

tion, to appear in SL4MJ. Matrix Analysis and Applications. See also University cf Florida, Dept. of 
CIS report TR-94-038. 



T. Johnson et al. /Parallel Computing 22 (1996) 327-333 333 

[4] IS. Duff, R.G. Grimes and J.G. Lewis, Sparse matrix test problems, ACM Trans. Math. So&v. 1.5 
(1989) l-14. 

[S] S.M Hadfield, On the LU factorization of sequences of identically structured sparse matrices 
within a distributed memory environment, PhD thesis, Computer and Information Sciences 
Department, University of Florida, Gainesville, FL (also TR-94-0191, 1994. Available via anony- 
mous ftp to ftp.cis.ufl.edu:cis/tech-reports. 

[6] S.M. Hadfield and T.A. Davis, Potential and achievable parallelism in the unsymmetric-pattern 
multifrontal LU factorization method for sparse matrices, in: Proc. Fifth SLAM Co@ on Applied 
Linear Algebra (1994) 387-391. 

[7] J. Ji and M. Jeng, Dynamic task allocation on shared memory multiprocessor systems, in: ICPP 
(1990) I: 17-21. 

[S] T. Johnson, A concurrent dynamic task graph, Technical Report TR93-011, Computer and 
Information Sciences Department, University, of Florida, Gainesville, FL 1994. Available via 
anonymous ftp to ftp.cis.ufl.edu:cis/tech-reports. 

[9] H. Kasahara and S. Narita, Practical multiprocessor scheduling algorithms for efficient parallel 
processing, IEEE Trans. Comput. C-33 (1984) 1023-1029. 

[lo] D. Klappholz and S. Narita, Practical multiprocessor scheduling algorithms for efficient parallel 
processing, EEE Trans. Comput. C-33 (1984) 31.5-321. 

[ll] D. Klappholz and H.C. Park, Parallelized process scheduling for a tightly-coupled mimd machine, 
in: Int. Conf on Parallel Processing (1984) 315-321. 

[12] U. Manber, On maintaining dynamic information in a concurrent environment, SOlM J. Comput. 

15(4) (1986) 1130-1142. 
[13] J.M. Mellor-Crummey and M.L. Scott, Algorithms for scalable synchronization on shared-memory 

multiprocessors, ACM Trans. Comput. Syst. 9(l) (1991) 21-65. 
[14] S. Prakash, Y. H. Lee and T. Johnson, A non-blocking algorithm for shared queues using 

compare-and-swap; in: Proc. Int. Conf on Parallel Processing (1991) 1168-1175. 
[15] Shirazi, Wang and Pathak, Analysis and evaluation of heuristic methods of static task scheduling, 

J. Parallel and Distributed Comput. 10 (1990) 222-232. 
[16] 2. Yin, C. Chui, R. Shu and K. Huang, Two precedence-related task-scheduling algorithms, Znt. J. 

High Speed Comput. 3(3) (1991) 223-240. 


