An Approximate Minimum Degree Ordering
Algorithm

Patrick R. Amestoy* Timothy A. Davis' Iain S. Duff!

SIAM J. Matrix Analysis & Applic., Vol 17, no 4, pp. 886-905,
Dec. 1996

Abstract

An Approximate Minimum Degree ordering algorithm (AMD) for
preordering a symmetric sparse matrix prior to numerical factoriza-
tion is presented. We use techniques based on the quotient graph for
matrix factorization that allow us to obtain computationally cheap
bounds for the minimum degree. We show that these bounds are of-
ten equal to the actual degree. The resulting algorithm is typically
much faster than previous minimum degree ordering algorithms, and
produces results that are comparable in quality with the best orderings
from other minimum degree algorithms.

*ENSEEIHT-IRIT, Toulouse, France. email: amestoy@enseeiht.fr.

fComputer and Information Sciences Department University of Florida, Gainesville,
Florida, USA. phone: (904) 392-1481, email: davis@cis.ufl.edu. Technical reports and
matrices are available via the World Wide Web at http://www.cis.ufl.edu/"davis, or by
anonymous ftp at ftp.cis.ufl.edu:cis/tech-reports. Support for this project was provided
by the National Science Foundation (ASC-9111263 and DMS-9223088). Portions of this
work were supported by a post-doctoral grant from CERFACS.

fRutherford Appleton Laboratory, Chilton, Didcot, Oxon. 0X11 0QX England, and
European Center for Research and Advanced Training in Scientific Computation (CER-
FACS), Toulouse, France. email: isd@letterbox.rl.ac.uk. Technical reports, informa-
tion on the Harwell Subroutine Library, and matrices are available via the World Wide
Web at http://www.cis.rl.ac.uk/struct/ARCD/NUM.html, or by anonymous ftp at sea-
mus.cc.rl.ac.uk/pub.

1 Introduction

When solving large sparse symmetric linear systems of the form Ax = b, it is
common to precede the numerical factorization by a symmetric reordering.
This reordering is chosen so that pivoting down the diagonal in order on
the resulting permuted matrix PAP? = LL” produces much less fill-in and
work than computing the factors of A by pivoting down the diagonal in the
original order. This reordering is computed using only information on the
matrix structure without taking account of numerical values and so may not
be stable for general matrices. However, if the matrix A is positive-definite
[21], a Cholesky factorization can safely be used. This technique of preceding
the numerical factorization with a symbolic analysis can also be extended to
unsymmetric systems although the numerical factorization phase must allow
for subsequent numerical pivoting [1, 2, 16]. The goal of the preordering is
to find a permutation matrix P so that the subsequent factorization has the
least fill-in. Unfortunately, this problem is NP-complete [31], so heuristics
are used.

The minimum degree ordering algorithm is one of the most widely used
heuristics, since it produces factors with relatively low fill-in on a wide range
of matrices. Because of this, the algorithm has received much attention over
the past three decades. The algorithm is a symmetric analogue of Markowitz’
method [26] and was first proposed by Tinney and Walker [30] as algorithm
S2. Rose [27, 28] developed a graph theoretical model of Tinney and Walker’s
algorithm and renamed it the minimum degree algorithm, since it performs
its pivot selection by choosing from a graph a node of minimum degree.
Later implementations have dramatically improved the time and memory
requirements of Tinney and Walker’s method, while maintaining the basic
idea of selecting a node or set of nodes of minimum degree. These improve-
ments have reduced the memory complexity so that the algorithm can operate
within the storage of the original matrix, and have reduced the amount of
work needed to keep track of the degrees of nodes in the graph (which is the
most computationally intensive part of the algorithm). This work includes
that of Duff and Reid [10, 13, 14, 15]; George and Mclntyre [23]; Eisenstat,
Gursky, Schultz, and Sherman [17, 18]; George and Liu [19, 20, 21, 22]; and
Liu [25]. More recently, several researchers have relaxed this heuristic by
computing upper bounds on the degrees, rather than the exact degrees, and
selecting a node of minimum upper bound on the degree. This work includes
that of Gilbert, Moler, and Schreiber [24], and Davis and Duff [8, 7]. Davis

and Duff use degree bounds in the unsymmetric-pattern multifrontal method
(UMFPACK), an unsymmetric Markowitz-style algorithm. In this paper, we
describe an approximate minimum degree ordering algorithm based on the
symmetric analogue of the degree bounds used in UMFPACK.

Section 2 presents the original minimum degree algorithm of Tinney and
Walker in the context of the graph model of Rose. Section 3 discusses the
quotient graph (or element graph) model and the use of that model to reduce
the time taken by the algorithm. In this context, we present our notation
for the quotient graph, and present a small example matrix and its graphs.
We then use the notation to describe our approximate degree bounds in
Section 4. The Approximate Minimum Degree (AMD) algorithm and its
time complexity is presented in Section 5. In Section 6, we first analyse
the performance and accuracy of our approximate degree bounds on a set
of test matrices from a wide range of disciplines. The AMD algorithm is
then compared with other established codes that compute minimum degree
orderings.

Throughout this paper, we will use the superscript £ to denote a graph,
set, or other structure obtained after the first k pivots have been chosen and
eliminated. For simplicity, we will drop the superscript when the context is
clear.

2 Elimination graphs

The nonzero pattern of a symmetric n-by-n matrix, A, can be represented
by a graph G° = (V° EY), with nodes V° = {1,...,n} and edges E°. An
edge (4,7) is in E° if and only if a;; # 0 and 7 # j. Since A is symmetric, G°
is undirected.

The elimination graph, G* = (V¥ E¥), describes the nonzero pattern of
the submatrix still to be factorized after the first k& pivots have been chosen
and eliminated. It is undirected, since the matrix remains symmetric as it
is factorized. At step k, the graph G* depends on G*~! and the selection of
the kth pivot. To find G¥, the kth pivot node p is selected from V1. Edges
are added to E¥~! to make the nodes adjacent to p in G*~! a clique (a fully
connected subgraph). This addition of edges (fill-in) means that we cannot
know the storage requirements in advance. The edges added correspond to
fill-in caused by the kth step of factorization. A fill-in is a nonzero entry L;;,
where (PAP”);; is zero. The pivot node p and its incident edges are then

removed from the graph G*~! to yield the graph G*. Let Adj (i) denote the
set of nodes adjacent to 7 in the graph G*. When the kth pivot is eliminated,
the graph G* is given by

VE =V {p}

and
E* = (E*'U (Adjge (p) x Adjge-i(p)) N (VF x VF),

The minimum degree algorithm selects node p as the kth pivot such that
the degree of p, t, = |[Adjge—1(p)|, is minimum (where |...| denotes the size of
a set or the number of nonzeros in a matrix, depending on the context). The
minimum degree algorithm is a non-optimal greedy heuristic for reducing the
number of new edges (fill-ins) introduced during the factorization. We have
already noted that the optimal solution is NP-complete [31]. By minimizing
the degree, the algorithm minimizes the upper bound on the fill-in caused by
the kth pivot. Selecting p as pivot creates at most (¢ — t,)/2 new edges in

G.

3 Quotient graphs

In contrast to the elimination graph, the quotient graph models the factor-
ization of A using an amount of storage that never exceeds the storage for
the original graph, G° [21]. The quotient graph is also referred to as the
generalized element model [13, 14, 15, 29]. An important component of a
quotient graph is a clique. It is a particularly economic structure since a
clique is represented by a list of its members rather than by a list of all
the edges in the clique. Following the generalized element model, we refer
to nodes removed from the elimination graph as elements (George and Liu
refer to them as eliminated nodes). We use the term wariable to refer to
uneliminated nodes.

The quotient graph, ¢ = (V*, V' Bk, Fk), implicitly represents the elim-
ination graph G*, where G° = GO, VO =V, V' =0, E° = E, and E = 0.
For clarity, we drop the superscript k in the following. The nodes in G consist
of variables (the set V), and elements (the set V). The edges are divided
into two sets: edges between variables £ C V x V| and between variables
and elements £ C V x V. Edges between elements are not required since we
could generate the elimination graph from the quotient graph without them.
The sets V° and E' are empty.

We use the following set notation (A, £, and L) to describe the quotient
graph model and our approximate degree bounds. Let A; be the set of
variables adjacent to variable ¢ in G, and let &; be the set of elements adjacent
to variable ¢ in G (we refer to &; as element list 4). That is, if ¢ is a variable
in V', then

A ={j:(,5) e E} CV,

E={e:(i,e) e B} CV,

and

The set A; refers to a subset of the nonzero entries in row ¢ of the original
matrix A (thus the notation A). That is, A? = {j : a;; # 0}, and A¥ C AF1
for 1 < k <n. Let L, denote the set of variables adjacent to element e in G.
That is, if e is an element in V, then we define

L.=Adjg(e)={i:(i,e) e E} C V.

The edges E and E in the quotient graph are represented using the sets
A; and &; for each variable in G, and the sets L. for each element in G.
We will use A, £, and L to denote three sets containing all A;, &, and
L., respectively, for all variables i and all elements e. George and Liu [21]
show that the quotient graph takes no more storage than the original graph
(| A*| + |EF| + | £%] < |A?| for all k).

The quotient graph G and the elimination graph G are closely related. If
7 is a variable in G, it is also a variable in G, and

Adjg (1) = (AiU U £e> \ i}, (1)

ees;

where the “\” is the standard set subtraction operator.

When variable p is selected as the kth pivot, element p is formed (variable
p is removed from V and added to V). The set £, = Adj;(p) is found using
equation (1). The set £, represents a permuted nonzero pattern of the kth
column of L (thus the notation £). If i € £,, where p is the kth pivot, and
variable i will become the mth pivot (for some m > k), then the entry L,
will be nonzero.

Equation (1) implies that L. \ {p} C £, for all elements e adjacent to
variable p. This means that all variables adjacent to an element e € £, are

adjacent to the element p and these elements e € &, are no longer needed.
They are absorbed into the new element p and deleted [15], and reference
to them is replaced by reference to the new element p. The new element p
is added to the element lists, &;, for all variables ¢ adjacent to element p.
Absorbed elements, e € &,, are removed from all element lists.

The sets A, and &,, and L, for all e in &, are deleted. Finally, any entry
j in A;, where both 7 and j are in £, is redundant and is deleted. The set A;
is thus disjoint with any set £, for e € &;. In other words, A¥ is the pattern
of those entries in row 7 of A that are not modified by steps 1 through & of
the Cholesky factorization of PAPT. The net result is that the new graph G
takes the same, or less, storage than before the kth pivot was selected.

The following equations summarize how the sets £, £, and A change when
pivot p is chosen and eliminated. The new element p is added, old elements
are absorbed, and redundant entries are deleted:

Ch = (c’f—l\ U ce> UL,

ec&p

Er = (Ek_l\ U e) U {p}

ec&p

AP = (AN (L, x £,)) U (VE X VE)

3.1 Quotient graph example

We illustrate the sequence of elimination graphs and quotient graphs of a
10-by-10 sparse matrix in Figures 1 and 2. The example is ordered so
that a minimum degree algorithm recommends pivoting down the diagonal
in the natural order (that is, the permutation matrix is the identity). In
Figures 1 and 2, variables and elements are shown as thin-lined and heavy-
lined circles, respectively. In the matrices in these figures, diagonal entries
are numbered, unmodified original nonzero entries (entries in A) are shown
as a solid squares. The solid squares in row ¢ form the set A;. The variables
in current unabsorbed elements (sets £.) are indicated by solid circles in the
columns of L corresponding to the unabsorbed elements. The solid circles in
row ¢ form the set &. Entries that do not correspond to edges in the quotient
graph are shown as an x. Figure 1 shows the elimination graph, quotient
graph, and the matrix prior to elimination (in the left column) and after the

Figure 1: Elimination graph, quotient graph, and matrix for first three steps.

(c) Factors and active submatrix

G6

459 a5—g 459

(a) Elimination graph

gG

(b) Quotient graph
1 X X
2 XX X
3 XXX
X 4 XXX
XX B5XX X
XXXXX 6 @XX
XXX@7XXNH
X XX8X X
X XXX X 9 X
X X 10

(c) Factors and active submatrix

Figure 2: Elimination graph, quotient graph, and matrix for steps 4 to 7.
4 5

G7
10—

g9

il
X

XXX XX XX X
@ X X X XXX
XX®BXX X

X © XX X X

Bxxe

w
XX
X

X
X

X
XXX »
X XXu

first three steps (from left to right). Figure 2 continues the example for the
next four steps.

Consider the transformation of the graph G2 to the graph G3. Variable 3 is
selected as pivot. We have L3 = A3 = {5, 6, 7} (a simple case of equation (1)).
The new element 3 represents the pairwise adjacency of variables 5, 6, and
7. The explicit edge (5,7) is now redundant, and is deleted from A5 and A;.

Also consider the transformation of the graph G* to the graph G°. Vari-
able 5 is selected as pivot. The set Aj is empty and & = {2,3}. Following
equation (1),

L; = (AsULyULs)\ {5}
= (WU{5,6,93U{5,6,7})\ {5}
= {6,7,9},

which is the pattern of column 5 of L (excluding the diagonal). Since the new
element 5 implies that variables 6, 7, and, 9 are pairwise adjacent, elements
2 and 3 do not add any information to the graph. They are removed, having
been “absorbed” into element 5. Additionally, the edge (7, 9) is redundant,
and is removed from A; and Ay. In G*, we have

AGZ(D 86:{27374}
Az = {97 10} & = {374}
Ay ={7,8,10} & = {2}

After these transformations, we have in G°,

Ag =0 E = {4,5}
Ar={10} &={4,5},
Ag = {8,10} & = {5}

and the new element in G°,

[,5 - {6, 7, 9}

3.2 Indistinguishable variables and external degree

Two variables ¢ and j are indistinguishable in G if Adjq (i) U{i} = Adj,(j)U
{j}. They will have the same degree until one is selected as pivot. If i is
selected, then j can be selected next without causing any additional fill-in.

10

Selecting ¢ and j together is called mass elimination [23]. Variables i and j
are replaced in G by a supervariable containing both ¢ and j, labeled by its
principal variable (i, say) [13, 14, 15]. Variables that are not supervariables
are called simple variables. In practice, new supervariables are constructed
at step k only if both ¢ and j are in £, (where p is the pivot selected at step
k). In addition, rather than checking the graph G for indistinguishability,
we use the quotient graph G so that two variables ¢ and j are found to
be indistinguishable if Adjg(¢) U {i} = Adjg(j) U {j}. This comparison is
faster than determining if two variables are indistinguishable in G, but may
miss some identifications because, although indistinguishability in G implies
indistinguishability in G, the reverse is not true.

We denote the set of simple variables in the supervariable with principal
variable i as i, and define i = {i} if 7 is a simple variable. When p is selected as
pivot at the kth step, all variables in p are eliminated. The use of supervari-
ables greatly reduces the number of degree computations performed, which
is the most costly part of the algorithm. Non-principal variables and their
incident edges are removed from the quotient graph data structure when they
are detected. The set notation A and L refers either to a set of supervari-
ables or to the variables represented by the supervariables, depending on the
context. In degree computations and when used in representing elimination
graphs, the sets refer to variables; otherwise they refer to supervariables.

In Figure 2, detected supervariables are circled by dashed lines. Non-
principal variables are left inside the dashed supervariables. These are, how-
ever, removed from the quotient graph. The last quotient graph in Figure 2
represents the selection of pivots 7, 8, and 9, and thus the right column of
the figure depicts G7, G?, and the matrix after the ninth pivot step.

The external degree d; =t; — |i| + 1 of a principal variable i is

(Lg'ﬁe) \1)

since the set A; is disjoint from any set £, for e € &. At most (d; — d;)/2
fill-ins occur if all variables in i are selected as pivots. We refer to t; as the
true degree of variable 7. Selecting the pivot with minimum external degree
tends to produce a better ordering than selecting the pivot with minimum
true degree [25] (also see Section 6.2).

di = [Adjg (i) \ i = [Ai \ i + (2)

11

3.3 Quotient-graph-based minimum degree algorithm

A minimum degree algorithm based on the quotient graph is shown in Al-
gorithm 1. It includes element absorption, mass elimination, supervariables,
and external degrees. Supervariable detection is simplified by computing a
hash function on each variable, so that not all pairs of variables need be
compared [3]. Algorithm 1 does not include two important features of Liu’s
Multiple Minimum Degree algorithm (MMD): incomplete update [17, 18] and
multiple elimination [25]. With multiple elimination, an independent set of
pivots with minimum degree is selected before any degrees are updated. If a
variable is adjacent to two or more pivot elements, its degree is computed only
once. A variable j is outmatched if Adj, (1) C Adj, (7). With incomplete de-
gree update, the degree update of the outmatched variable j is avoided until
variable i is selected as pivot. These two features further reduce the amount
of work needed for the degree computation in MMD. We will discuss their
relationship to the AMD algorithm in the next section.

The time taken to compute d; using equation (2) by a quotient-graph-
based minimum degree algorithm is

@(‘AZ| + Z |‘Ce|)> (3)

e€e&;

which is Q(|Adjgx (7)]) if all variables are simple.! This degree computation is
the most costly part of the minimum degree algorithm. When supervariables
are present, in the best case the time taken is proportional to the degree of
the variable in the “compressed” elimination graph, where all non-principal
variables and their incident edges are removed.

4 Approximate degree

Having now discussed the data structures and the standard minimum de-
gree implementations, we now consider our approximation for the minimum
degree and indicate its lower complexity.

! Asymptotic complexity notation is defined in [6]. We write f(n) = ©(g(n)) if there
exist positive constants ci, c2, and ng such that 0 < c¢1g(n) < f(n) < cag(n) for all
n > ng. Similarly, f(n) = Q(g(n)) if there exist positive constants ¢ and ng such that
0 < cg(n) < f(n) for all n > ng; and f(n) = O(g(n)) if there exist positive constants ¢
and ng such that 0 < f(n) < ¢g(n) for all n > nyg.

12

Algorithm 1 (Minimum degree algorithm, based on quotient graph)
V ={l..n}
V=0
for i =1ton do

A;={j:a; #0and i # j}

E=10

d; = | Al

i={i}
end for
k=1

while k£ <n do
mass elimination:
select variable p € V' that minimizes d,
L, = (Ap U Ueesp Ee) \p
for eachic £, do
remove redundant entries:
Ai= (AN Lp) \p
element absorption:
&= (& \ gp) U {p}
compute external degree:
di = | AN+ | (Ueee, £) \]
end for
supervariable detection, pairs found via hash function:
for each pair i and j € £, do
if i and j are indistinguishable then
remove the supervariable j:

i=iUj

d; = d; — |j

V=V\{j}

A =10

g =10
end if

end for
convert variable p to element p:

V=Vu{ph\é&

V=V\{p}
A, =0
E =10
k=k+ |p|

end while

13

Algorithm 2 (Computation of |£,.\ £,| for all e € V)
assume w(k) <0, for k=1,...,n
for each supervariable i € £, do
for each element e € &; do
if (w(e) < 0) then w(e) = |L.|
w(e) = w(e) — i
end for
end for

We assume that p is the kth pivot, and that we compute the bounds only
for supervariables i € £,,. Rather than computing the exact external degree,
d;, our Approzimate Minimum Degree algorithm (AMD) computes an upper
bound [8, 7],

n—k,
—ind 4 FIL\
. =min¢ i p \ b : (4)
AN+ L\ i+ D0 L\ Lyl

ec&i\{p}

The first two terms (n—k, the size of the active submatrix, and d, + 1L\,
the worst case fill-in) are usually not as tight as the third term in equation (4).
Algorithm 2 computes |L. \ L£,| for all elements e in the entire quotient
graph. The set L, splits into two disjoint subsets: the external subset L.\ L,
and the internal subset L. N L,. If Algorithm 2 scans element e, the term
w(e) is initialized to |L£.| and then decremented once for each variable i
in the internal subset L. N £,, and, at the end of Algorithm 2, we have
w(e) = |Le] = [LeN L, = |Lc\ Lp]. If Algorithm 2 does not scan element e,
the term w(e) is less than zero. Combining these two cases, we obtain

| w(e) ifw(e) >0
L\ Lyl = { |L.| otherwise

élgorithrn 2 is followed by a second loop to compute our upper bound degree,
d; for each supervariable i € £,, using equations (4) and (5). The total time

for Algorithm 2 is
o> I&]).

iec,

} , foralle e V. (5)

14

The second loop to compute the upper bound degrees takes time

(> (il +1&1)). (6)

iec,

The total asymptotic time is thus given by expression (6).

Multiple elimination [25] improves the minimum degree algorithm by up-
dating the degree of a variable only once for each set of independent pivots.
Incomplete degree update [17, 18] skips the degree update of outmatched
variables. We cannot take full advantage of the incomplete degree update
since it avoids the degree update for some supervariables adjacent to the
pivot element. With our technique (Algorithm 2), we must scan the element
lists for all supervariables i in £,. If the degree update of one of the su-
pervariables is to be skipped, its element list must still be scanned so that
the external subset terms can be computed for the degree update of other
supervariables in £,. The only advantage of multiple elimination or incom-
plete degree update would be to skip the second loop that computes the
upper bound degrees for outmatched variables or supervariables for which
the degree has already been computed.

If the total time in expression (6) is amortized across the computation of
all supervariables i € £, then the time taken to compute d; is

O(| Al + 1&]) = O(A7),

which is ©(|Adjgk(7)|) if all variables are simple. Computing our bound takes
time proportional to the degree of the variable in the quotient graph, G. This
is much faster than the time taken to compute the exact external degree (see
expression (3)).

4.1 Accuracy of our approximate degrees

Gilbert, Moler, and Schreiber [24] also use approximate external degrees that
they can compute in the same time as our degree bound d;. In our notation,
their bound d; is ~
di = A\ i+ D 1L\).
e€et;
Since many pivotal variables are adjacent to two or fewer elements when
selected, Ashcraft, Eisenstat, and Lucas [4] have suggested a combination of

15

0@- and d;,
i={ % mel=2

otherwise

Computing d; takes the same time as d; or dz, except when |€;| = 2. In this
case, it takes O(|A;| + |£¢|) time to compute d;, whereas computing d; or d;
takes ©(|.A4;|) time. In the Yale Sparse Matrix Package [17] the |£.\ £,| term
for the & = {e, p} case is computed by scanning £, once. It is then used to
compute d; for all ¢ € £, for which & = {e,p}. This technique can also be
used to compute d;, and thus the time to compute d; is O(|4;| 4 |£.|) and
not O(|A;| + | L)

Theorem 4.1 Relationship between external degree and the three approwi-
mate degree bounds. The equality d; = d; = = d; = d; holds when || < 1.
The inequality d; = d; = d; < d; holds when |E| = 2. Finally, the inequal-

ity d; < d; < d; = d; holds when |Ei| > 2. Consequently, the inequality

~ —~

s < d; ; d; holds for all values of |&;|.

&
IN
al

Proof. The bound d; is equal to the exact degree when variable 7 is
adjacent to at most one element (|&;| < 1). The accuracy of the d; bound is
unaffected by the size of A;, since entries are removed from A that fall within
the pattern £ of an element. Thus, if there is just one element (the current
element p, say), the bound d; is tight. If |€i| is two (the current element, p,
and a prior element e, say), we have

i = A\ + 1L, \ 1] + [\ i = di + [(Lo N L) \).

The bound d; counts entries in the set (£, N L,) \ i twice, and so d; will be
an overestimate in the possible (even likely) case that a variable j # i exists
that is adjacent to both e and p. Combined with the definition of d, we have
d; = d; = d; when |&] < 1, d; = d; < d; when |§] = 2, and d; < d; = d;
when |&;] > 2. R

If |&€] < 1 our bound d; is exact for the same reason that d; is exact. If
|€i| is two we have

= AN\ [+ L\ i+ [L\ Ly = d

No entry is in both A; and any element £, since these redundant entries are
removed from A;. Any entry in £, does not appear in the external subset

16

(L\L,). Thus, no entry is counted twice, and d; = d; when |&;| < 2. Finally,
consider both d; and d; when |&;] > 2. We have

di= AN+ L \i[+ D0 L\ L

ec&i\{p}
and R
di = A\ i+ £, \i] + Z |Cc\]
e€&\{p}
Since these degree bounds are only used when computing the degree of a
supervariable i € £,,, we have i C £,,. Thus, d; < d; when |&;] > 2. O

Note that, if a variable ¢ is adjacent to two elements or less then our
bound is equal to the exact external degree. This is very important, since
most variables of minimum degree are adjacent to two elements or less.

4.2 Degree computation example

We illustrate the computation of our approximate external degree bound in
Figures 1 and 2. Variable 6 is adjacent to three elements in G and G*. All
other variables are adjacent to two or less elements. In G3, the bound dg is
tight, since the two sets |£1 \ L3] and |Ls \ L3] are disjoint.

In graph G*, the current pivot element is p = 4. We compute

de = |Ai\i[+[£, \] + (Z\{}\Ee\ﬁp\)

= [ON{6}H + {6, 7,8} \ {6} + (I£2\ La + [L3\ La])
{7, 8} + (1{5,6,91 \ {6, 7,8} + [{5,6, 7} \ {6, 7, 8}])
{7, 83 + ({5, 9} + [{5}])
5.

The exact external degree of variable 6 is dg = 4, as can be seen in the
elimination graph G* on the left of Figure 2(a). Our bound is one more than
the exact external degree, since the variable 5 appears in both £\ £, and
L3\ Ly, but is one less than the bound 0@ which is equal to 6 in this case.
Our bound on the degree of variable 6 is again tight after the next pivot step,
since elements 2 and 3 are absorbed into element 5.

17

5 The approximate minimum degree algorithm

The Approximate Minimum Degree algorithm is identical to Algorithm 1,
except that the external degree, d;, is replaced with d;, throughout. The
bound on the external degree, d;, is computed using Algorithm 2 and equa-
tions (4) and (5). In addition to the natural absorption of elements in £,, any
element with an empty external subset (|£. \ £,| = 0) is also absorbed into
element p, even if e is not adjacent to p. This aggressive element absorption
improves the degree bounds by reducing |£|. For many matrices, aggressive
absorption rarely occurs. In some cases, however, up to half of the elements
are aggressively absorbed. Consider the matrix

a;; 0 a3 ay

0 ax a3 axn
az; agy azz 0 |’
as agp 0 ay

where we assume the pivots are chosen down the diagonal in order. The
external subset |£; \ Laf is zero (£ = Lo = {3,4}). Element 2 aggresively
absorbs element 1, even though element 1 is not adjacent to variable 2 (ajo
is zero).

As in many other minimum degree algorithms, we use a set of n linked
lists to assist the search for a variable of minimum degree. A single linked list
holds all supervariables with the same degree bound. Maintaining this data
structure takes time proportional to the total number of degree computations,
or O(|LJ) in the worst case.

Computing the pattern of each pivot element, £, takes a total of O(|L|)
time overall, since each element is used in the computation of at most one
other element, and the total sizes of all elements constructed is O(|LJ).

The AMD algorithm is based on the quotient graph data structure used
in the MA27 minimum degree algorithm [13, 14, 15]. Initially, the sets A
are stored, followed by a small amount of elbow room. When the set L,
is formed, it is placed in the elbow room (or in place of A, if |€,] = 0).
Garbage collection occurs if the elbow room is exhausted. During garbage
collection, the space taken by A; and &; is reduced to exactly |.A4;| + |&;| for
each supervariable i (which is less than or equal to |.A?|) and the extra space
is reclaimed. The space for A, and &, for all elements e € V is fully reclaimed,
as is the space for L. of any absorbed elements e. Each garbage collection

18

takes time that is proportional to the size of the workspace (normally ©(|A])).
In practice, elbow room of size n is sufficient.

During the computation of our degree bounds, we compute the following
hash function for supervariable detection [3],

Hash(i) = d i+ e|lmod(n—1)p+1,
jE-Ai 6651'

which increases the degree computation time by a small constant factor. We
place each supervariable i in a hash bucket according to Hash(i), taking time
O(|L|) overall. If two or more supervariables are placed in the same hash
bucket, then each pair of supervariables i and j in the hash bucket are tested
for indistinguishability. If the hash function results in no collisions then the
total time taken by the comparison is O(|A]).

Ashcraft [3] uses this hash function as a preprocessing step on the entire
matrix (without the mod (n—1) term, and with an O(|V|log |V|) sort instead
of |V| hash buckets). In contrast, we use this function during the ordering,
and only hash those variables adjacent to the current pivot element.

For example, variables 7, 8, and 9 are indistinguishable in G°, in Fig-
ure 2(a). The AMD algorithm would not consider variable 8 at step 5, since
it is not adjacent to the pivot element 5 (refer to quotient graph G° in Fig-
ure 2(b)). AMD would not construct 7 = {7,9} at step 5, since 7 and 9 are
distinguishable in G°. Tt would construct 7 = {7, 8,9} at step 6, however.

The total number of times the approximate degree d; of variable i is
computed during elimination is no more than the number of nonzero entries
in row k of L, where variable ¢ is the kth pivot. The total time taken
to compute d; using Algorithm 2 and equations (4) and (5) is O(].AY]), or
equivalently O(|(PAP”),|), the number of nonzero entries in row & of the
permuted matrix. The total time taken by the entire AMD algorithm is thus
bounded by the degree computation,

0 (z Ll |(PAPT)..). @

This bound assumes no (or few) supervariable hash collisions and a constant
number of garbage collections. In practice these assumptions seem to hold,
but the asymptotic time would be higher if they did not. In many problem
domains, the number of nonzeros per row of A is a constant, independent

19

of n. For matrices in these domains, our AMD algorithm takes time O(|L|)
(with the same assumptions).

6 Performance results

In this section, we present the results of our experiments with AMD on a wide
range of test matrices. We first compare the degree computations discussed
above (t, d, d, d, and cf), as well as an upper bound on the true degree,
t=d+]i|— 1. We then compare the AMD algorithm with other established
minimum degree codes (MMD and MA27).

6.1 Test Matrices

We tested all degree bounds and codes on all matrices in the Harwell /Boeing
collection of type PUA, RUA, PSA, and RSA [11, 12] (at orion.cerfacs.fr
ornumerical.cc.rl.ac.uk), all non-singular matrices in Saad’s SPARSKIT2
collection (at ftp.cs.umn.edu), all matrices in the University of Florida col-
lection (available from ftp.cis.ufl.edu in the directory pub/umfpack/matrices),
and several other matrices from NASA and Boeing. Of those 378 matrices, we
present results below on those matrices requiring 500 million or more floating-
point operations for the Cholesky factorization, as well as the ORANIG7S
matrix in the Harwell/Boeing collection and the EX19 in Saad’s collection
(a total of 26 matrices). The latter two are best-case and worst-case examples
from the set of smaller matrices.

For the unsymmetric matrices in the test set, we first used the maximum
transversal algorithm MC21 from the Harwell Subroutine Library [9] to reorder
the matrix so that the permuted matrix has a zero-free diagonal. We then
formed the symmetric pattern of the permuted matrix plus its transpose.
This is how a minimum degree ordering algorithm is used in MUPS [1, 2].
For these matrices, Table 1 lists the statistics for the symmetrized pattern.

Table 1 lists the matrix name, the order, the number of nonzeros in
lower triangular part, two statistics obtained with an exact minimum degree
ordering (using d), and a description. In column 4, we report the percentage
of pivots p such that |€,| > 2. Column 4 shows that there is only a small
percentage of pivots selected using an exact minimum degree ordering that
have more than two elements in their adjacency list. Therefore, we can expect
a good quality ordering with an algorithm based on our approximate degree

20

Table 1: Selected matrices in test set

Matrix n nz Percentage of | Description

[Ep| > 2 1&] > 2
RAEFSKY3| 21,200 733,784 0.00 13.4 | fluid/structure interaction, turbulence
VENKATO1 | 62,424 827,684 0.71 15.7 | unstructured 2D Euler solver
BCSSTK32 | 44,609 985,046| 0.20 27.3 | structural eng., automobile chassis
EX19 12,005 123,937 1.57 29.4 | 2D developing pipe flow (turbulent)
BCSSTK30 | 28,924 1,007,284 0.66 31.8 | structural eng., off-shore platform
CT20STIF | 52,329 1,323,067 0.77 33.2 | structural eng., CT20 engine block
NASASRB | 54,870 1,311,227| 0.06 35.0 | shuttle rocket booster
OLAF 16,146 499,505 0.41 35.2 | NASA test problem
RAEFSKY1| 3,242 145,517 0.00 38.9 | incompressible flow, pressure-driven pipe
CRYSTKO03 | 24,696 863,241 | 0.00 40.9 | structural eng., crystal vibration
RAEFSKY4 | 19,779 654,416 0.00 41.4 | buckling problem for container model
CRYSTKO02 | 13,965 477,309 0.00 42.0 | structural eng., crystal vibration
BCSSTK33 | 8,738 291,583 | 0.00 42.6 | structural eng., auto steering mech.
BCSSTK31 | 35,588 572,914 0.60 43.1 | structural eng., automobile component
EX11 16,614 540,167 0.04 43.3 | CFD, 3D cylinder & flat plate heat exch.
FINAN512 | 74,752 261,120 1.32 46.6 | economics, portfolio optimization
RIM 22,560 862,411 2.34 63.2 | chemical eng., fluid mechanics problem
BBMAT 38,744 1,274,141| 5.81 64.4 | CFD, 2D airfoil with turbulence
EX40 7,740 225,136| 17.45 64.7 | CFD, 3D die swell problem on square die
WANG4 26,068 75,564 | 15.32 78.3 | 3D MOSFET semicond. (30x30x30 grid)
LHR34 35,152 608,830 7.69 78.7 | chemical eng., light hydrocarbon recovery
WANGS3 26,064 75,552 15.29 79.2 | 3D diode semiconductor (30x30x30 grid)
LHR71 70,304 1,199,704| 8.47 81.1 | chemical eng., light hydrocarbon recovery
ORANI678 2,529 85,426| 6.68 86.9 | Australian economic model
PSMIGR1 3,140 410,781 6.65 91.0 | US county-by-county migration
APPU 14,000 1,789,392| 15.64 94.4 | NASA test problem (random matrix)

21

bound. In column 5, we indicate how often a degree d; is computed when
|€i| > 2 (as a percentage of the total number of degree updates). Table 1 is
sorted according to this degree update percentage. Column 5 thus reports
the percentage of “costly” degree updates performed by a minimum degree
algorithm based on the exact degree. For matrices with relatively large values
in column 5, significant time reductions can be expected with an approximate
degree based algorithm.

Since any minimum degree algorithm is sensitive to tie-breaking issues, we
randomly permuted all matrices and their adjacency lists 21 times (except for
the random APPU matrix, which we ran only once). All methods were given
the same set of 21 randomized matrices. We also ran each method on the
original matrix. On some matrices, the original matrix gives better ordering
time and fill-in results for all methods than the best result obtained with the
randomized matrices. The overall comparisons are not however dependent
on whether original or randomized matrices are used. We thus report only
the median ordering time and fill-in obtained for the randomized matrices.

The APPU matrix is a random matrix used in a NASA benchmark, and
is thus not representative of sparse matrices from real problems. We include
it in our test set as a pathological case that demonstrates how well AMD
handles a very irregular problem. Its factors are about 90% dense. It was
not practical to run the APPU matrix 21 times because the exact degree
update algorithms took too much time.

6.2 Comparing the exact and approximate degrees

To make a valid comparison between degree update methods, we modified
our code for the AMD algorithm so that we could compute the exact external
degree (d), our bound (d), the d bound, the d bound, the exact true degree
(t), and our upper bound on the true degree (#). The six codes based on d, d,
d, d, t, and T (columns 3 to 8 of Table 2) differ only in how they compute the
degree. Since aggressive absorption is more difficult when using some bounds
than others, we switched off aggressive absorption for these six codes. The
actual AMD code (in column 2 of Table 2) uses d with aggressive absorption.

Table 2 lists the median number of nonzeros below the diagonal in L (in
thousands) for each method. Results 20% higher than the lowest median |L|
in the table (or higher) are underlined. Our upper bound on the true degree
(t) and the exact true degree (t) give nearly identical results. As expected,
using minimum degree algorithms based on external degree noticeably im-

Table 2: Median fill-in results of the degree update methods

Matrix Number of nonzeros below diagonal in L, in thousands
AMD d d d d t 7
RAEFSKY3 | 4709 | 4709 4709 4709 5114 | 4992 4992
VENKATO01 | 5789 | 5771 5789 5798 6399 | 6245 6261
BCSSTK32 5080 | 5081 5079 5083 5721 | 5693 5665
EX19 319 319 319 318 366 343 343
BCSSTK30 3752 | 3751 3753 3759 4332 | 4483 4502
CT20STIF 10858 | 10758 10801 11057 13367 | 12877 12846
NASASRB 12282 | 12306 12284 12676 14909 | 14348 14227
OLAF 2860 | 2858 2860 2860 3271 | 3089 3090
RAEFSKY1 | 1151 | 1151 1151 1151 1318 | 1262 1262
CRYSTKO03 | 13836 | 13836 13836 13836 _17550 | 15507 15507
RAEFSKY4 | 7685 | 7685 7685 7685 9294 | 8196 8196
CRYSTKO02 6007 | 6007 6007 6007 7366 | 6449 6449
BCSSTK33 2624 | 2624 2624 2640 3236 | 2788 2787
BCSSTK31 5115 | 5096 5132 5225 6194 | 6079 6057
EX11 6014 | 6016 6014 6014 7619 | 6673 6721
FINAN512 4778 | 4036 6042 11418 11505 | 8235 _8486
RIM 3948 | 3898 3952 3955 4645 | 4268 4210
BBMAT 19673 | 19880 19673 21422 37820 | 21197 21445
EX40 1418 | 1386 1417 1687 1966 | 1526 1530
WANG4 6547 | 6808 6548 6566 7871 | 7779 7598
LHR34 3618 | 3743 3879 11909 27125 | 4383 4435
WANGS3 6545 | 6697 6545 6497 7896 | 7555 7358
LHR71 7933 | 8127 8499 28241 60175 | 9437 9623
ORANIG78 147 147 146 150 150 147 146
PSMIGRI1 3020 | 3025 3011 3031 3176 | 2966 2975
APPU 87648 | 87613 87648 87566 87562 | 87605 87631

22

23

proves the quality of the ordering (compare columns 3 and 7, or columns 4
and 8). From the inequality d < d<d< 07, we would expect a similar rank-
ing in the quality of ordering produced by these methods. Table 2 confirms
this. The bound d and the exact external degree d produce nearly identical
results. Comparing the AMD results and the d column, aggressive absorption
tends to result in slightly lower fill-in, since it reduces |£] and thus improves
the accuracy of our bound. The d bound is often accurate enough to produce
good results, but can fail catastrophically for matrices with a high percentage
of approximate pivots (see column 4 in Table 1). The less accurate d bound
produces notably worse results for many matrices.

Comparing all 378 matrices, the median |L| when using d is never more
than 9% higher than the median fill-in obtained when using the exact external
degree, d (with the exception of the FINAN512 matrix). The fill-in results for
d and d are identical for nearly half of the 378 matrices. The approximate
degree bound d thus gives a very reliable estimation of the degree in the
context of a minimum degree algorithm.

The FINAN512 matrix is highly sensitive to tie-breaking variations. Its
graph consists of two types of nodes: “constraint” nodes and “linking” nodes
[5]. The constraint nodes form independent sparse subgraphs, connected to-
gether via a tree of linking nodes. This matrix is a pathological worst-case
matrix for any minimum degree method. All constraint nodes should be or-
dered first, but linking nodes have low degree and tend to be selected first,
which causes high fill-in. Using a tree dissection algorithm, Berger, Mul-
vey, Rothberg, and Vanderbei [5] obtain an ordering with only 1.83 million
nonzeros in L.

Table 3 lists the median ordering time (in seconds on a SUN SPARCsta-
tion 10) for each method. Ordering time twice that of the minimum median
ordering time listed in the table (or higher) is underlined. Computing the
d bound is often the fastest, since it requires a single pass over the element
lists instead of the two passes required for the d bound. It is, however, some-
times slower than d because it can generate more fill-in, which increases the
ordering time (see expression (7)). The ordering time of the two exact degree
updates (d and t) increases dramatically as the percentage of “costly” degree
updates increases (those for which |&;| > 2).

Garbage collection has little effect on the ordering time obtained. In the
above runs, we gave each method elbow room of size n. Usually a single
garbage collection occurred. At most two garbage collections occurred for
AMD, and at most three for the other methods (aggressive absorption reduces

Table 3: Median ordering time of the degree update methods

Matrix Ordering time, in seconds

AMD d d d d t 7
RAEFSKY3 1.05 1.10 1.09 1.05 1.02 1.15 1.09
VENKATO1 4.07 495 4.11 4.47 3.88 4.32 3.85
BCSSTK32 4.67 5.64 4.54 4.91 4.35 5.55 448
EX19 0.87 1.12 0.89 1.01 0.86 1.09 0.87
BCSSTK30 3.51 5.30 3.55 3.65 3.51 438 3.38
CT20STIF 6.62 8.66 6.54 7.07 6.31 8.63 6.45
NASASRB 7.69 11.03 7.73 9.23 7.78 11.78 7.99
OLAF 1.83 2.56 1.90 2.16 1.83 233 1.78
RAEFSKY1 0.27 0.34 0.28 0.32 0.25 0.35 0.28
CRYSTKO03 3.30 4.84 3.08 3.68 3.14 5.23 3.30
RAEFSKY4 2.32 290 2.18 2.45 2.08 3.12 2.07
CRYSTKO02 1.49 2.34 1.55 1.64 1.45 2.04 152
BCSSTK33 0.91 1.36 1.05 0.99 0.85 1.62 091
BCSSTK31 4.55 7.53 492 5.68 4.56 741 492
EX11 2.70 4.06 2.77 3.00 2.60 4.23 2.89
FINAN512 15.03 34.11 14.45 17.79 15.84 46.49 18.58
RIM 5.74 10.38 5.69 6.12 5.72 10.01 5.58
BBMAT 27.80 115.75 27.44 42.17 23.02 129.32 28.33
EX40 1.04 1.56 1.10 1.09 0.95 1.46 1.12
WANG4 5.45 11.45 5.56 6.98 5.21 11.59 5.88
LHR34 19.56 109.10 25.62 45.36 43.70 12541 24.73
WANG3 5.02 10.45 5.49 6.52 4.81 11.02 5.02
LHR71 46.03 349.58 58.25 129.85 121.96 389.70 60.40
ORANIG78 5.49 196.01 8.13 6.97 7.23 199.01 8.45
PSMIGRI1 10.61 334.27 10.07 14.20 8.16 339.28 9.94
APPU 41.75 | 2970.54 39.83 43.20 40.64 | 3074.44 38.93

24

25

the memory requirements).

6.3 Comparing algorithms

In this section, we compare AMD with two other established minimum degree
codes: Liu’s Multiple Minimum Degree (MMD) code [25] and Duff and Reid’s
MAZ27 code [15]. MMD stores the element patterns £ in a fragmented manner
and requires no elbow room [20, 21]. It uses the exact external degree,
d. MMD creates supervariables only when two variables i and j have no
adjacent variables and exactly two adjacent elements (£; = £; = {e, p}, and
A; = A; = 0, where p is the current pivot element). A hash function is
not required. MMD takes advantage of multiple elimination and incomplete
update.

MA27 uses the true degree, t, and the same data structures as AMD.
It detects supervariables whenever two variables are adjacent to the current
pivot element and have the same structure in the quotient graph (as does
AMD). MA27 uses the true degree as the hash function for supervariable
detection, and does aggressive absorption. Neither AMD nor MA27 take
advantage of multiple elimination or incomplete update.

Structural engineering matrices tend to have many rows of identical nonzero
pattern. Ashcraft [3] has found that the total ordering time of MMD can be
significantly improved by detecting these initial supervariables before start-
ing the elimination We implemented the pre-compression algorithm used in
[3], and modified MMD to allow for initial supervariables. We call the re-
sulting code CMMD (“compressed” MMD). Pre-compression has little effect
on AMD, since it finds these supervariables when their degrees are first up-
dated. The AMD algorithm on compressed matrices together with the cost
of pre-compression was never faster than AMD.

Table 4 lists the median number of nonzeros below the diagonal in L
(in thousands) for each code. Results 20% higher than the lowest median
|L| in the table (or higher) are underlined. AMD, MMD, and CMMD find
orderings of about the same quality. MA27 is slightly worse because it uses
the true degree (t) instead of the external degree (d).

Considering the entire set of 378 matrices, AMD produces a better me-
dian fill-in than MMD, CMMD, and MA27 for 62%, 61%, and 81% of the
matrices, respectively. AMD never generates more than 7%, 7%, and 4%
more nonzeros in L than MMD, CMMD, and MA27, respectively. We have
shown empirically that AMD produces an ordering at least as good as these

Table 4: Median fill-in results of the four codes

Matrix Number of nonzeros below diagonal
in L, in thousands
AMD MMD CMMD MA27

RAEFSKY3 | 4709 4779 4724 5041
VENKATO01 | 5789 5768 5811 6303
BCSSTK32 5080 5157 0154 9710
EX19 319 322 324 345

BCSSTK30 3752 3788 3712 4529
CT20STIF 10858 11212 10833 12760
NASASRB 12282 12490 12483 14068
OLAF 2860 2876 2872 3063
RAEFSKY1 | 1151 1165 1177 1255
CRYSTKO03 | 13836 13812 14066 15496
RAEFSKY4 | 7685 7539 7582 8245

CRYSTKO02 6007 5980 6155 6507
BCSSTK33 2624 2599 2604 2766
BCSSTK31 5115 5231 5216 6056
EX11 6014 5947 6022 6619
FINAN512 4778 8180 8180 8159
RIM 3948 3947 3914 4283
BBMAT 19673 19876 19876 21139
EX40 1418 1408 1401 1521
WANG4 6547 6619 6619 7598
LHR34 3618 4162 4162 4384
WANGS3 6545 6657 6657 7707
LHR71 7933 9190 9190 9438
ORANI678 147 147 147 147

PSMIGR1 3020 2974 2974 2966
APPU 87648 87647 87647 87605

27

other three methods for this large test set.

If the apparent slight difference in ordering quality between AMD and
MMD is statistically significant, we conjecture that it has more to do with
earlier supervariable detection (which affects the external degree) than with
the differences between the external degree and our upper bound.

Table 5 lists the median ordering time (in seconds on a SUN SPARCsta-
tion 10) for each method. The ordering time for CMMD includes the time
taken by the pre-compression algorithm. Ordering time twice that of the
minimum median ordering time listed in the table (or higher) is underlined.
On certain classes of matrices, typically those from structural analysis appli-
cations, CMMD is significantly faster than MMD. AMD is the fastest method
for all but the EX19 matrix. For the other 352 matrices in our full test set,
the differences in ordering time between these various methods is typically
less. If we compare the ordering time of AMD with the other methods on
all matrices in our test set requiring at least a tenth of a second of ordering
time, then AMD is slower than MMD, CMMD, and MA27 only for 6, 15,
and 8 matrices respectively. For the full set of matrices, AMD is never more
than 30% slower than these other methods. The best and worst cases for the

relative run-time of AMD for the smaller matrices are included in Table 5
(the EX19 and ORANI678 matrices).

7 Summary

We have described a new upper bound for the degree of nodes in the elim-
ination graph that can be easily computed in the context of a minimum
degree algorithm. We have demonstrated that this upper-bound for the de-
gree is more accurate than all previously used degree approximations. We
have experimentally shown that we can replace an exact degree update by
our approximate degree update and obtain almost identical fill-in.

An Approximate Minimum Degree (AMD) based on external degree ap-
proximation has been described. We have shown that the AMD algorithm
is highly competitive with other ordering algorithms. It is typically faster
than other minimum degree algorithms, and produces comparable results to
MMD (which is also based on external degree) in terms of fill-in. AMD typ-
ically produces better results, in terms of fill-in and computing time, than
the MA27 minimum degree algorithm (based on true degrees).

Table 5: Median ordering time of the four codes

Matrix Ordering time, in seconds

AMD MMD CMMD MA27
RAEFSKY3 1.05 2.79 1.18 1.23
VENKATO01 4.07 9.01 4.50 5.08
BCSSTK32 4.67 12.47 5.51 6.21
EX19 0.87 0.69 0.83 1.03
BCSSTK30 3.51 7.78 3.71 4.40
CT20STIF 6.62 26.00 9.59 9.81
NASASRB 7.69 22.47 11.28 12.75
OLAF 1.83 _5.67 4.41 2.64
RAEFSKY1 0.27 _0.82 0.28 0.40
CRYSTKO3 3.30 10.63 3.86 5.27
RAEFSKY4 2.32 5.24 2.36 2.91
CRYSTKO02 1.49 3.89 1.53 2.37
BCSSTK33 0.91 2.24 1.32 1.31
BCSSTK31 4.55 11.60 7.76 7.92
EX11 2.70 7.45 5.05 3.90
FINANb12 15.03 895.23 897.15 40.31
RIM 5.74 9.09 8.11 10.13
BBMAT 27.80 200.86 201.03 134.58
EX40 1.04 2.13 2.04 1.30
WANG4 5.45 10.79 11.60 9.86
LHR34 19.56 139.49 141.16 77.83
WANGS3 5.02 10.37 10.62 8.23
LHR71 46.03 396.03 400.40 215.01
ORANIG678 5.49 124.99 127.10 124.66
PSMIGRI1 10.61 186.07 185.74 229.51
APPU 41.75 _5423.23 5339.24 _2683.27

28

29

8 Acknowledgments

We would like to thank John Gilbert for outlining the d; < d; portion of
the proof to Theorem 4.1, Joseph Liu for providing a copy of the MMD
algorithm, and Cleve Ashcraft and Stan Eisenstat for their comments on a
draft of this paper.

30

References

1]

[10]

P. R. AMESTOY, Factorization of large sparse matrices based on a mul-
tifrontal approach in a multiprocessor environment, INPT PhD Thesis

TH/PA/91/2, CERFACS, Toulouse, France, 1991.
P. R. AMESTOY, M. DAYDE, AND 1. S. DUFF, Use of level 3 BLAS

in the solution of full and sparse linear equations, in High Performance
Computing: Proceedings of the International Symposium on High Per-
formance Computing, Montpellier, France, 22-24 March, 1989, J.-L.
Delhaye and E. Gelenbe, eds., Amsterdam, 1989, North Holland, pp. 19—
31.

C. ASHCRAFT, Compressed graphs and the minimum degree algorithm,
SIAM J. Sci. Comput. , 1995, to appear.

C. AsHCRAFT, S. C. E1SENSTAT, AND R. F. Lucas. personal com-
munication.

A. BERGER, J. MULVEY, E. ROTHBERG, AND R. VANDERBEI, Solving
multistage stochachastic programs using tree dissection, Tech. Report
SOR-97-07, Program in Statistics and Operations Research, Princeton
University, Princeton, New Jersey, 1995.

T. H. CorMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction
to Algorithms, MIT Press, Cambridge, Massachusets, and McGraw-Hill,
New York, 1990.

T. A. Davis AND 1. S. DUFF, An unsymmetric-pattern multifrontal
method for sparse LU factorization, STAM J. Matrix Anal. Applic. , to
appear.

—, Unsymmetric-pattern multifrontal methods for parallel sparse LU
factorization, Tech. Report TR-91-023, CISE Dept., Univ. of Florida,
Gainesville, FL, 1991.

I. S. DUFF, On algorithms for obtaining a maximum transversal, ACM
Trans. Math. Software, 7 (1981), pp. 315-330.

I. S. Durr, A. M. ERisMAN, AND J. K. REID, Direct Methods for
Sparse Matrices, London: Oxford Univ. Press, 1986.

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

31

I. S. Durr, R. G. GRIMES, AND J. G. LEWIS, Sparse matriz test
problems, ACM Trans. Math. Software, 15 (1989), pp. 1-14.

—, Users’ guide for the Harwell-Boeing sparse matriz collection (Re-
lease 1), Tech. Report RAL-92-086, Rutherford Appleton Laboratory,
Didcot, Oxon, England, Dec. 1992.

I. S. Durr AND J. K. REID, A comparison of sparsity orderings for

obtaining a pivotal sequence in Gaussian elimination, J. Inst. of Math.
Appl., 14 (1974), pp. 281-291.

— MA27 — A set of Fortran subroutines for solving sparse symmetric
sets of linear equations, Tech. Report AERE R10533, HMSO, London,
1982.

— The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Software, 9 (1983), pp. 302-325.

— The multifrontal solution of unsymmetric sets of linear equations,
SIAM J. Sci. Comput., 5 (1984), pp. 633-641.

S. C. E1sENSTAT, M. C. GURSKY, M. H. SCHULTZ, AND A. H. SHER-

MAN, Yale sparse matriz package, I: The symmetric codes, Internat. J.
Numer. Methods Eng., 18 (1982), pp. 1145-1151.

S. C. E1sEnsTAT, M. H. SCHULTZ, AND A. H. SHERMAN, Algorithms
and data structures for sparse symmetric Gaussian elimination, STAM

J. Sci. Comput., 2 (1981), pp. 225-237.

A. GEORGE AND J. W. H. L1u, A fast implementation of the minimum
degree algorithm using quotient graphs, ACM Trans. Math. Software, 6

(1980), pp. 337-358.

—, A minimal storage implementation of the minimum degree algo-
rithm, STAM J. Numer. Anal., 17 (1980), pp. 282-299.

—, Computer Solution of Large Sparse Positive Definite Systems, En-
glewood Cliffs, New Jersey: Prentice-Hall, 1981.

—, The evolution of the minimum degree ordering algorithm, SIAM
Review, 31 (1989), pp. 1-19.

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32

A. GEORGE AND D. R. MCINTYRE, On the application of the minimum
degree algorithm to finite element systems, SIAM J. Numer. Anal., 15
(1978), pp. 90-111.

J. R. GILBERT, C. MOLER, AND R. SCHREIBER, Sparse matrices in
MATLAB: design and implementation, STAM J. Matrix Anal. Applic.,
13 (1992), pp. 333-356.

J. W. H. Liu, Modification of the minimum-degree algorithm by multi-
ple elimination, ACM Trans. Math. Software, 11 (1985), pp. 141-153.

H. M. MARKOWITZ, The elimination form of the inverse and its appli-

cation to linear programming, Management Science, 3 (1957), pp. 255
269.

D. J. RosE, Symmetric Elimination on Sparse Positive Definite Sys-
tems and the Potential Flow Network Problem, PhD thesis, Applied
Math., Harvard Univ., 1970.

— A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations, in Graph Theory and Computing,
R. C. Read, ed., New York: Academic Press, 1973, pp. 183-217.

B. SPEELPENNING, The generalized element method, Tech. Report Tech-
nical Report UTUCDCS-R-78-946, Dept. of Computer Science, Univ. of
[linois, Urbana, 1L, 1978.

W. F. TINNEY AND J. W. WALKER, Direct solutions of sparse net-

work equations by optimally ordered triangular factorization, Proc. of
the IEEE, 55 (1967), pp. 1801-1809.

M. YANNAKAKIS, Computing the minimum fill-in is NP-complete,
SIAM J. Alg. Disc. Meth., 2 (1981), pp. 77-79.

