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Abstract. In this paper we discuss a hypergraph-based unsymmetric nested dissection (HUND)
ordering for reducing the fill-in incurred during Gaussian elimination. It has several important
properties. It takes a global perspective of the entire matrix, as opposed to local heuristics. It takes
into account the asymmetry of the input matrix by using a hypergraph to represent its structure.
It is suitable for performing Gaussian elimination in parallel, with partial pivoting. This is possible
because the row permutations performed due to partial pivoting do not destroy the column separators
identified by the nested dissection approach. The hypergraph nested dissection approach is essentially
equivalent to graph nested dissection on the matrix A7 A, but we need only the original matrix A
and never form the usually denser matrix AT A. The usage of hypergraphs in our approach is
fairly standard, and HUND can be implemented by calling an existing hypergraph partitioner that
uses recursive bisection. Our implementation uses local reordering constrained column approximate
minimum degree (CCOLAMD) to further improve the ordering. We also explain how weighted
matching (HSL routine MC64) can be used in this context. Experimental results on 27 medium and
large size matrices with highly unsymmetric structures compare our approach to four other well-
known reordering algorithms. The results show that it provides a robust reordering algorithm, in the
sense that it is the best or close to the best (often within 10%) of all the other methods, in particular
on matrices with highly unsymmetric structures.
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1. Introduction. Solving a sparse linear system of equations Ax = b is an
important operation for many scientific applications. Gaussian elimination can be
used to accurately solve these systems and consists of decomposing the matrix A into
the product of L and U, where L is a lower triangular matrix and U is an upper
triangular matrix. Due to the operations associated with the Gaussian elimination,
some of the elements that are zero in the original matrix become nonzero in the
factors L and U. These elements are referred to as fill elements. Hence one of the
important preprocessing steps preceding the numerical computation of the factors L
and U consists in reordering the equations and variables such that the number of fill
elements is reduced.

Although this problem is NP-complete [39], in practice there are several efficient
fill-reducing heuristics. They can be divided into two groups. The first group uses
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greedy heuristics to locally reduce the number of fill elements at each step of Gaussian
elimination. One of the representative heuristics is the minimum degree algorithm.
This algorithm uses the graph associated with a symmetric matrix to permute it
such that the vertex of minimun degree is eliminated at each step of the factoriza-
tion. Several variants, such as multiple minimum degree [34] (MmMD) and approximate
minimum degree [1] (AMD), improve the minimum degree algorithm in terms of time
and/or memory usage.

The second group is based on global heuristics and uses graph partitioning to
reorder the matrix such that it has fill only in some specific blocks. Nested dissec-
tion [20] is the main technique used in the graph partitioning approach. This algorithm
uses the graph of a symmetric matrix and employs a divide-and-conquer approach.
The graph partitioning approach has the advantage of reordering the matrix into a
form suitable for parallel execution. State-of-the-art nested dissection algorithms use
multilevel partitioning [26, 32]. A widely used routine is METiS_NoDEND from the
MeTis [31] graph partitioning package.

It has been observed in practice that minimum degree is better at reducing the fill
for smaller problems, while nested dissection works better for larger problems. This
observation has lead to the development of hybrid heuristics that consist of applying
several steps of nested dissection, followed by the usage of a local greedy heuristic on
local blocks [27].

For unsymmetric matrices, the above algorithms use the graph associated with the
symmetrized matrix A+ A7 or AT A. The approach of symmetrizing the input matrix
works sometimes well. However, computing the nonzero structure of A” A can be time
consuming in practice. There are few heuristics that compute an ordering for AT A
without explicitly forming the structure of AT A. The column approximate minimum
degree [12] (CoLamp) is a local greedy heuristic that implements the approximate
minimum degree algorithm on A7 A without computing the structure of AT A. The
approach of wide separators [6] is a global approach that orders the graph of AT A
by widening separators obtained in the graph of AT 4+ A. In [6], the wide separator
method was combined with Coramp local ordering. We use a similar hybrid approach,
but we do not use wide separators.

There are few approaches in the literature that aim at developing fill-reducing al-
gorithms that use as input the structure of A alone. For local heuristics, this is due to
the fact that the techniques for improving the runtime of minimum degree are difficult
to extend to unsymmetric matrices. In fact the minimum degree algorithm was devel-
oped from the Markowitz algorithm [37], which was proposed earlier for unsymmetric
matrices. In the Markowitz algorithm, the degree of a vertex (called the Markowitz
count) is defined as the product of the number of nonzeros (nnzs) in the row and the
nnzs in the column corresponding to this vertex. It is expensive to determine the
Markowitz count at each step of the algorithm. Hence, a recent local greedy heuristic
for unsymmetric matrices [2] uses local symmetrization techniques to approximate
the Markowitz count associated with each vertex. This work has been extended in [3]
where the numerical values of the input matrix are also taken into account.

In this paper we present one of the first fill-reducing ordering algorithms that fully
exploits the asymmetry of the matrix and that is also suitable for parallel execution.
We refer to this algorithm as the hypergraph-based unsymmetric nested dissection
(Hunp). It uses a variation of nested dissection, but it takes into account the asym-
metry of the input matrix by employing a hypergraph to represent its nonzero struc-
ture. Using this hypergraph, the algorithm first computes a hyperedge separator of
the entire hypergraph that divides it into two disjoint parts. The matrix is reordered

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/28/12 to 128.227.35.31. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

3428 L. GRIGORI, E. G. BOMAN, S. DONFACK, AND T. A. DAVIS

such that the columns corresponding to the hyperedge separator are ordered after
those in the disconnected parts. The nested dissection is then recursively applied to
the hypergraph of the two disconnected parts, respectively.

The usage of hypergraphs in our algorithm is fairly standard. The algorithm
can be implemented by calling one of the existing hypergraph partitioners that uses
recursive bisection. However, there are two main contributions in this paper. The
algorithm uses as input the structure of A alone and does not need to compute the
structure of AT A. We discuss later in the paper the relations between using the
hypergraph of A or the graph of AT A to reorder A. In addition we show how the
partitioning algorithm can be used in combination with other important techniques
in sparse Gaussian elimination. This includes permuting large entries on the diag-
onal [17] and a technique for improving stability in solvers implementing Gaussian
elimination with static pivoting [35] as well as other local orderings.

An important property of our approach is that the structure of the partitioned
matrix is insensitive to row permutations. In other words, the row permutations in-
duced by pivoting during Gaussian elimination do not destroy the column separators.
Hence the fill is reduced because it can occur only in the column separators and in the
disconnected parts of the matrix. But also this property is particularly important for
a parallel execution, since the communication pattern, which depends on the column
separators, can be computed prior to the numerical factorization. In addition, the
partitioning algorithm can be used in combination with other important techniques
in sparse Gaussian elimination.

We note that a partitioning algorithm that takes into account the asymmetry of
the input matrix was also considered by Duff and Scott in [18, 19]. There are several
important differences with our work. The authors focus on the parallel execution
of LU factorization, and their goal is to permute the matrix to a so-called singly
bordered block diagonal (SBBD) form. In this form the matrix has several diagonal
blocks (which can be rectangular), and the connections between them are put together
in the columns ordered at the end of the matrix. The advantage of this form is that the
diagonal blocks can be factorized independently, though special care must be taken
since the blocks are often nonsquare. The authors rely on a different approach for
computing this form, and they do not analyze it for fill-reducing ordering.

The remainder of the paper is organized as follows. In section 2 we give several
basic graph theory definitions, and we describe in detail the nested dissection process.
In section 3 we present our HunD algorithm and its different steps. Section 4 discusses
relations to graph models as the graph of AT A or the bipartite graph of A. In section 5
we present experimental results that study the effectiveness of the new algorithm, in
terms of fill, on a set of matrices with highly unsymmetric structures. We also compare
the results with other fill-reducing ordering algorithms. Finally, section 6 concludes
the paper.

2. Background: Nested dissection and hypergraphs.

2.1. Nested dissection. Nested dissection [20, 33] is a fill-reducing ordering
method based on the divide-and-conquer principle. The standard method applies
only to symmetric matrices; here we show a nonsymmetric variation.

The sparsity structure of a structurally symmetric matrix is often represented as
an undirected graph. The nested dissection method is based on finding a small vertex
separator, S, that partitions the graph into two disconnected subgraphs. If we order
the rows and columns corresponding to the separator vertices S last, the permuted
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matrix PAPT has the form

A 0 Az
0 Ay A,
Aly A, As

where the diagonal blocks are square and symmetric. Now the diagonal blocks 411 and
Agz can be factored independently and will not cause any fill in the zero blocks. We
propose a similar approach in the nonsymmetric case, based on a column separator.
Suppose we can permute A into the form

Aun 0 Az
0 Axp A,
0 0 Ass

where none of the blocks are necessarily square. (This is known as SBBD form.)
Then we can perform Gaussian elimination, and there will be no fill in the zero
blocks. Furthermore, this property holds even if we allow partial pivoting and row
interchanges. Note that if any of the diagonal blocks are square, then A is reducible
and the linear systems decouple.

The question is how to obtain an SBBD structure with a small column separator.
There are two common approaches: a direct approach [5, 29], and indirect methods
that first find doubly bordered block diagonal form [19]. We choose the direct method
and use hypergraph partitioning.

2.2. Hypergraph partitioning and ordering. In this paper we consider the
hypergraph model to represent the nonzero structure of an unsymmetric matrix.
Other graph models are briefly discussed in section 4. A hypergraph H(V, E) con-
tains a set of vertices V' and a set of hyperedges E (also known as nets), where each
hyperedge is a subset of V. We will use the column-net hypergraph model of a sparse
matrix [7] where each row corresponds to a vertex and each column is a hyperedge.
Hyperedge e; contains the vertices given by the nonzero entries in column j. An
example of a matrix A is given in (2.1), and its hypergraph is shown in Figure 2.1.

123 45 6 7 8 9

1 T T
2 T T
3 T x x
4 x T
(2.1) A=5 T x x
6 T x
7 T T
8 T x
9 x T T

Suppose we partition the vertices (rows) into two sets, Ry and Rs. This induces
a partition of the hyperedges (columns) into three sets: Ci,Cs, and C3. Let C; be
the set of hyperedges (columns) where all the vertices (rows) are in Ry. Similarly, let
C be the set of hyperedges (columns) where all the vertices (rows) are in Ry. Let C3
be the set of hyperedges (columns) that are “cut”; that is, they have some vertices in
R, and some in Ry. Note that some of the sets R; or C; could be empty, though this
rarely happens in practice. Now let P be a row permutation such that all of R; is

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/28/12 to 128.227.35.31. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

3430 L. GRIGORI, E. G. BOMAN, S. DONFACK, AND T. A. DAVIS

“Ng M

® o @

ANy

Ng

o6 @ =N, @

Fic. 2.1. Hypergraph of matriz A in (2.1). The large circles are vertices, and the small black
dots represent hyperedges (nets).

ordered before Rs, and let Q be a column permutation such that all of Cy is ordered
before Cs, and all of C5 is ordered before C3. Then

A 0 Agg
2.2 PAQ = .
(22) @ ( 0 A A23)

If one of the sets C; is empty, then the corresponding column block in (2.2) is
also empty, and the decomposition simplifies. Even when C; and Cs are nonempty,
it may happen that some rows in Aj; or Aso are all zero. In this case, permute such
rows to the bottom, and we get

- A 0 A
(2.3) PAQ=| 0 Ay Ay
0 0 Ass

Observe that when A has full rank, blocks Aj; (A1) and Asy (Asz) cannot have
more columns than rows.

Figure 2.2 displays the result of the first step of unsymmetric nested dissection
applied on the hypergraph in Figure 2.1. The matrix obtained after permuting matrix
Ain (2.1) is presented in (2.4). This equation cannot be further reduced to the form
presented in (2.3).

123 45 6 7 8 9

1 T T

2 T T

3 x T

4 T T T
(2.4) PAQ =5 x x x

6 T T

7 T

8 T

9 T x
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Fic. 2.2. The result of the first step of unsymmetric nested dissection applied on the hypergraph
in Figure 2.1; the hyperedge separator is Es = {n1,ng}.

Hypergraph partitioning has been well studied [7]. The objective is to partition
the vertices into two parts such that there are approximately equally many vertices in
each part, and the number of cut hyperedges is minimized. Although it is an NP-hard
problem, fast multilevel algorithms give good solutions in practice. Good software is
readily available, like PaToH [8], hMetis [30], and Zoltan [16]. The k-way partitioning
problem (k > 2) is usually solved by recursive bisection.

3. An algorithm using unsymmetric nested dissection. We present an
algorithm that uses unsymmetric nested dissection and has three stages. First, we
apply HunD to limit the fill. Second, we perform row interchanges based on numerical
values to reduce pivoting. Third, we apply a local reordering on local blocks to again
reduce fill, following the state-of-the-art hybrid approach used in ordering methods.
We note that the second stage is optional, and it is not always used by existing solvers.
We include it here to show how it can be used in combination with the unsymmetric
nested dissection ordering. We refer to the first step as Hunp and to the overall
process as enhanced HUND.

3.1. Hypergraph recursive ordering. Recall our goal is to find permutations
Py and @ such that (P;AQ1)(QTz) = Pyb is easier to solve than the original system
Az = b. Our idea is to apply the block decomposition (2.2) recursively. This is
quite different from most recursive approaches for ordering linear systems because
our blocks are usually not square.

Figure 3.1(left) shows the sparsity structure of P;AQ; after two levels of bisec-
tion. We continue the recursive bisection until each block is smaller than a chosen
threshold. As in symmetric nested dissection, we expect it is beneficial to switch to
a local ordering algorithm on small blocks, but in principle one could continue the
recursion until each block has only one row or column. We sketch the recursive or-
dering heuristic in Algorithm 1. In this variant, the recursion stops at a constant
block size, tmin. Alternatively, we can partition the hypergraph into a fixed number
of parts, k, and derive the column separators from the partitioning. An advantage
of the latter approach is we can use standard hypergraph partitioning tools and only
call the partitioner once.

Algorithm 1 differs from the more common SBBD method (cf. Duff and Scott
[18, 19]) in that we use the SBBD technique recursively. It differs from traditional
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1 2 3 4 5 6 7 1 2 3 4 5 6 7

Fi1c. 3.1. The matriz after hypergraph ordering (left) and after row permutation from matching
(right).

(symmetric) nested dissection method because the row and column permutations usu-
ally differ and were derived by hypergraph partitioning instead of vertex separators.
Although recursive hypergraph bisection has been described in several papers, Algo-
rithm 1 is presented here in the context of sparse matrix ordering.

ALGORITHM 1 HUND (HYPERGRAPH UNSYMMETRIC NESTED DISSECTION).

1: Function [p, q] = Hunp(A)
2: [m,n] = size(A)
3: if min(m,n) < tyi, then

p= 1m
q= l:n
else

Create column-net hypergraph H for A

Partition H into two parts using hypergraph partitioning

Let p and ¢ be the row and column permutations, respectively, to permute A
into the block structure in (2.2)

10:  [mq,n1] = size(A11)

11: [pl,ql] = HunD (All)

12: [pg,(]z] = HunD (AQQ)

13 p=p(p1,p2+m1)

14: g=q(q1,q2 +n1)

15: end if

3.2. Stabilization. The ordering procedure above takes only the structure into
account and not the numerical values. An approach that can be used to stabilize the
factorization or to minimize pivoting is to permute large entries to the diagonal. A
standard approach is to model this as matching in the bipartite graph [17], and the
HSL [28] routine MC64 can be used. This permutation step for obtaining a strong di-
agonal can be helpful for dynamic (partial) pivoting methods, since the number of row
swaps can be significantly reduced, thereby speeding up the factorization process [17].
It is essential for static pivoting methods [35] because it decreases the probability of
encountering small pivots during the factorization. However, this step is optional, and
it is not always used by existing solvers. We do not use it in the experimental results
in section 5. We discuss it here such that we can explain how it can be performed in
combination with HUND.
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The matrix obtained after applying the matching permutation to permute the
rows on the matrix at the left in Figure 3.1 is shown at the right in Figure 3.1. Observe
that after row permutation, the diagonal blocks are now square. The remaining rows
in the originally rectangular blocks have been “pushed down”. All the permutations
applied on the matrix after this step should be symmetric. Note, however, that the
following steps do not need the diagonal blocks to be square.

3.3. Local reordering. The goal of this step is to use local strategies to further
decrease the fill in the blocks of the permuted matrix. Algorithms such as constrained
AMmD (CAwmD) [11] or constrained CoLamp (CCoramp) [11] can be used for this step.
These algorithms are based on AmD, respectively, CoLamp, and have the property of
preserving the partitioning obtained by the unsymmetric nested dissection algorithm.
This is because in a constrained ordering method, each node belongs to one of up
to m constraint sets. In our case, a constraint set corresponds to a separator or a
partition. After the ordering it is ensured that all the nodes in set zero are ordered
first, followed by all the nodes in set one, and so on.

A preprocessing step useful for the efficiency of direct methods consists of re-
ordering the matrix according to a postorder traversal of its elimination tree. This
reordering tends to group together columns with the same nonzero structure, so they
can be treated as a dense matrix during the numeric factorization. This allows for
the use of dense matrix kernels during numerical factorization and hence leads to a
more efficient numeric factorization.

In order to preserve the structure obtained in the previous steps, we compute
the elimination tree corresponding to the diagonal blocks of the input matrix. Note
that in practice, postordering a matrix preserves its structure but can change the
fill in the factors L and U. We remark that the local reordering should be applied
symmetrically so that the diagonal is preserved.

3.4. Algorithm summary. In summary, the LU factorization with partial piv-
oting based on enhanced HUND contains several distinct steps in the solution process
(step 2 is optional):

1. Reorder the equations and variables by using the HunD heuristic that chooses
permutation matrices P; and ()1 so that the number of fill-in elements in the
factors L and U of P AQ; is reduced.

2. Choose a permutation matrix P, so that the matrix P, Py AQ1 has large entries
on the diagonal. The above permutation helps for some solvers to ensure the
accuracy of the computed solution.

3. Find a permutation matrix P; using a local heuristic and a postorder of the
elimination tree associated with the diagonal blocks such that the fill-in is
further reduced in the matrix P3P2P1AQ1P§F . In our tests this is achieved
using constrained CoraMp and postordering based on the row merge tree [22]
of the diagonal blocks.

4. Compute the numerical values of L and U.

The execution of the above algorithm on a real matrix (Fp18) is displayed in
Figure 3.2. The structure of the original matrix is presented at top left. The structure
obtained after the unsymmetric nested dissection HUND is presented at top right. The
structure obtained after permuting to place large entries on the diagonal using MC64
is displayed at bottom left. Finally, the structure obtained after the local ordering is
displayed at bottom right.
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Afd18 A: patoh bissection A: patoh bissection+MC64

T\ R 0

5000 \\ 5000 g& 5000 -
FRN

QN A
1 0000 10000 g H 10000
\ N
mool NN \ 15000 S 15000
0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000
nz = 63406 nz = 63406 nz = 63406
A: patoh bissection+MC64+(ccolamd|camd) Diag block(A) A: Post etree

0

5000 5000 5000

-

10000 10000 - 10000

15000 15000 15000

PRSI
0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000
nz = 63406 nz = 60333 nz = 63406

Fi1G. 3.2. FExzample of application of preprocessing steps on a real matriz FD18. Displayed
are (a) the structure of the original matriz FD18, (b) the structure obtained after HUND, (c) after
MC64, and (d) after CCOLAMD.

4. Relation to graph models. We have chosen to work with the hypergraph
of A (column-net model). Alternatively, we could have worked with a graph derived
from A, such as the graph of AT A or the bipartite graph of A. Another option is to
use the wide separator approach discussed in [6]. In this section we discuss relations
between the hypergraph model and these three other approaches.

The graph corresponding to the structure of B = AT A is known as the column
intersection graph, since B;; # 0 iff columns ¢ and j of A intersect. Catalyiirek
[10] and Catalyiirek and Aykanat [9] showed that a hyperedge separator for A is a
vertex separator in B, and proposed to use hypergraph separators in A to obtain a fill-
reducing ordering for B. Their main application was linear systems from interior-point
methods for linear programming. In addition we show here that a vertex separator in
B also gives a hyperedge separator in A; thus these problems are essentially equivalent.

THEOREM 4.1. A column (hyperedge) separator for A is a vertex separator for
AT A and vice versa.

Proof. (=): Let Is be the index set of a column (hyperedge) separator in A,
and let Iy, I; be the index sets for the two remaining parts. (Note one of Iy or I
could be empty.) Therefore, columns in I; intersect only columns in I; and Ig for
i =0, 1. In the column intersection graph (AT A), let V; correspond to columns I; and
Vs correspond to Ig. It follows that there are no edges between Vj and Vi; therefore
Vs is a vertex separator. (<): Let V be the vertices in the graph of ATA, let Vg
be a separator, and let V;, ¢ = 0,1, be the remaining vertex sets. By construction,
there is no edge between Vy and Vi. An edge in G(AT A) corresponds to a path of
length two in the bipartite graph or hypergraph of A. Thus the rows corresponding
to Vo and V; are only connected through the columns (hyperedges) corresponding to
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Vs. When these are removed, the rows corresponding to V) and V; are no longer
connected; hence Vg is a column (hyperedge) separator in A. O

Another approach consists of using the bipartite graph of A. The bipartite graph
of the n X n matrix A is equivalent to the graph of the 2n x 2n matrix

0 A

The separators obtained from bisection partitioning of the graph of C' can be used
to permute the matrix A to a doubly bordered block diagonal form. This approach
is used, for example, in [18].

It is easy to see that a vertex separator in the graph of C' might not be a column
separator in the hypergraph of A. Consider the simple matrix

1 2 3
1 T
A= 2 x
3 r x x

Its augmented matrix C' has the following structure:

1 2 3 4 5 6

T T
r X
x

The graph of the augmented matrix C' can be partitioned in two parts {1,4} and
{2,5,6}, and the vertex separator is formed by {3}. The permuted matrix C' becomes

1 4 2 5 6 3

1 x

4 T T
pcpT = 2 &

5 T x

6 T

3 x T x

The vertex 3 corresponds to the last row of A, which has nonzeros in all the
columns of the matrix A. Hence it is not possible to partition the column-net hyper-
graph of A in two disconnected parts as in (2.2).

In other words, vertices in the separator of the graph of C' which correspond to
row vertices of A might not belong to the column separator of the hypergraph of A.
Note that when the separator of the graph of C' consists purely of column vertices,
then these do in fact form a column (hyperedge) separator in the hypergraph of A.
Instead of using hypergraphs, we could have used bipartite graphs, but the hypergraph
model is more natural since we can use hypergraph partitioning (not a constrained
version of bipartite graph partitioning).

The approach presented in [6] consists of finding a wide separator in G(AT + A)
which corresponds to a separator in G(AT A). The wide separator in G(AT + A) is
defined as being formed by the vertices of a vertex separator of G(AT + A) plus their
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adjacent vertices in one of the disconnected subgraphs. The authors show that a wide
separator in G(AT 4 A) is a separator in G(AT A). However, the converse is not always
true. The authors show that the converse is true for matrices that are structurally
symmetric and that have a nonzero diagonal.

Hence in general a separator in the hypergraph H(A), which corresponds to a
separator in the graph G(AT A), will not be a wide separator in the graph G (AT 4 A).
Consider the example presented in [6]:

1 x
A= 2 r
3 T

Vertex 3 is a separator in G(AT + A). A wide separator is formed by vertices
{1,3} or by vertices {2, 3}.

Note that column 3 of A is a column/hyperedge separator in H(A) as well as a
separator in G(AT A). But it does not correspond to a wide separator in G(AT + A).
Hence the wide separator approach is different and may produce larger separators
than the approach we propose in this paper.

5. Experimental results. In this section we present experimental results for
enhanced HunD ordering applied to real world matrices. The tests are performed on
a 2.4 GHz dual core Intel, with 3.3 GB of memory. As stated in the introduction,
our goal is to reorder the matrix into a form that is suitable for parallel computation,
while reducing or at least maintaining comparable the number of fill-in elements in the
factors L and U to other state-of-the-art reordering algorithms. In the experiments,
we compare the performance of the new ordering algorithm with other widely used
ordering algorithms such as AmMp, CoLaMD, and METIS (nested dissection) in terms
of size of the factors. We study the execution time of the new ordering compared to
other reordering algorithms. We also discuss the quality of the partitioning in terms
of size of the separators.

We use a set of matrices with highly unsymmetric structures that represent a
variety of application domains. We present in Table 5.1 their characteristics, which
include the matrix order, the nnzs in the input matrix A, the nonzero pattern sym-
metry, the numerical symmetry, and the application domain. The nonzero pattern
symmetry represents the percentage of nonzeros for which both a;; and a;; are nonze-
ros. The numerical symmetry is computed as the percentage of nonzeros for which
a;; = aj;. The matrices are available from the University of Florida sparse matrix
collection [14] and are listed according to their nnzs. Some of the matrices in our test
set are highly reducible such as LHR71c, MULT_DCOP_03, RAEFSKYG. These matrices
can benefit from a different preprocessing in which they are first permuted to a block
upper triangular form using the Dulmage-Mendelsohn decomposition and then an
ordering heuristic is applied on each diagonal block. However, we keep these matri-
ces in our test set since several solvers such as UMFPACK [13], SuperLU [15], and
SuperLU_DIST [35] do not apply the Dulmage-Mendelsohn decomposition and can
benefit from our approach.

We compare the hypergraph-based ordering with four widely used fill-reducing
ordering algorithms, that is, Amp, Coramp, and MEeTis nested dissection (applied on
the structure of A + AT or on the structure of AT A). The quality of each algorithm
can be evaluated using several criteria, as the nnz entries in the factors L and U, the
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TABLE 5.1
Benchmark matrices and their characteristics: the order, the nnzs nnz(A), the nonzero pattern
symmetry (Str. Sym.), the numeric symmetry (Num. Sym.), and the application domain.

Str. | Num.

# Matrix Order n | nnz(A) sym. sym. Application domain

1 SWANG1 3169 20841 | 100% 0% Semiconductor device sim
2 LNS_3937 3937 25407 | 85% 0% Fluid dynamics
3 POLI_LARGE 15575 33074 0% 0% Chemical process simulation
4 MARK3JAC020 9129 56175 7% 1% Economic model
5 FD18 16428 63406 0% 0% Crack problem
6 LHRO4 4101 82682 2% 0% Light hydrocarbon recovery
7 RAEFSKY6 3402 137845 0% 0% Incompressible flow
8 SHERMANACB 18510 145149 15% 3% Circuit simulation
9 BAYER(04 20545 159082 0% 0% Chemical process simulation
10 ZHAO?2 33861 166453 | 92% 0% Electromagnetism
11 MULT_DCOP_03 25187 193216 61% 1% Circuit simulation
12 | JAN99JAC120SC 41374 260202 0% 0% Economic model
13 BAYERO1 57735 277774 0% 0% Chemical process simulation
14 SINC12 7500 294986 2% 0% | Single material crack problem
15 ONETONE1 36057 341088 7% 4% Circuit simulation
16 | MARK3JAC140sC 64089 399735 7% 1% Economic model
17 AF23560 23560 484256 | 100% 0% Airfoil eigenvalue calculation
18 E40R0100 17281 553562 31% 0% Fluid dynamics
19 SINC15 11532 568526 1% 0% | Single material crack problem
20 ZD_JAC2_DB 22835 676439 | 30% 0% Chemical process simulation
21 LHR34C 35152 764014 0% 0% Light hydrocarbon recovery
22 SINC18 16428 973826 1% 0% | Single material crack problem
23 TORSO2 115967 | 1033473 99% 0% Bioengineering
24 TWOTONE 120750 | 1224224 24% 11% Circuit simulation
25 LHRT71C 70304 | 1528092 0% 0% Light hydrocarbon recovery
26 Av41092 41092 | 1683902 0% 0% Unstructured finite element
27 BBMAT 38744 | 1771722 53% 0% | Computational fluid dynamics

number of floating point operations performed during the numerical factorization, and
the factorization time. We restrict our attention to the first criterion, the nnzs in the
factors L and U. (We also computed the number of operations, and the results were
quite similar to the nonzero counts.)

The HunD reordering heuristic presented in Algorithm 1 starts with the hyper-
graph of the input matrix and partitions it recursively into two parts. The recursion
is stopped when a predefined number of parts is reached. In our tests we use Pa-
ToH [8] (with a fixed seed of 42 for the random number generator) to partition the
hypergraph in a predefined number of parts. PaToh uses recursive multilevel bisec-
tion, and hence it implements hypergraph partitioning as described in Algorithm 1
and allows us to permute the matrix to the form presented in (2.3). In PaToH, we set
cuttype = PATOH _CUTPART to minimize the number of hyperedges cut, which
corresponds to the number of columns in the border block. We had initially imple-
mented HunD calling PaToH for each bisection step as in Algorithm 1, but this lead
to slow execution times, due to excessive copying of the submatrices. Here we report
only on the version where we partition into a predefined number of parts, and the
recursive bisection is handled efficiently within PaToH.

To study the performance of HUND we vary the number of parts (denoted as k) in
which the matrix is partitioned as 16, 64, and 128. In adition we use two settings for
PaToH: default and quality. The latter is PaToH optimized to obtain a better quality
of the partitioning, but this can lead to a slower execution time.
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5.1. Enhanced versus other reordering algorithms: Results with Su-
perLU. In our first set of tests we use LU factorization with partial pivoting imple-
mented in the SuperLU solver [15]. SuperLU uses threshold partial pivoting, with a
preference for the diagonal element. We report results for SuperLU with a threshold
of 1 that implements LU with partial pivoting in which at each step of factorization
the element of maximum magnitude in the current column of L is used as pivot. We
have also performed experiments with different values, as, for example, a threshold of
0.1, and a similar behavior of the algorithms has been observed.

To evaluate enhanced HUND, two preprocessing steps presented in section 3.4 are
performed before the LU factorization with partial pivoting. First, the matrix is re-
ordered using a HunD heuristic. Second, the matrix is reordered using the CCoLamD
algorithm, as presented in [11], and based on a postorder traversal of the row merge
tree [22] of the diagonal blocks. After these two preprocessing steps, the LU factoriza-
tion with partial pivoting of SuperLU is called. For the other reordering algorithms
we do not use the second preprocessing step; that is, only the fill-reducing ordering is
applied.

Table 5.2 displays for each reordering algorithm tested the fill-in; that is, the ratio
of the nnzs of L and U to the nnzs of A. The cases represented in the table by “-”
mean that SuperLU failed due to too much fill-in generated, and hence a memory

TABLE 5.2
Fill in the factors L and U, computed as nnz(L + U — I)/nnz(A) obtained by different fill-
reducing strategies with SuperLU using a threshold of value 1. The best result among COLAMD,
AMD, METIS on AT + A, METIS on AT A, and enhanced HUND-default is marked in boldface for
each matriz.

# [ CoLAMD [ AMD METIS | METIS | Enhanced HUND-default || Enhanced HUND-quality

(AT + A) | (ATA) k=16 k=64 | k=128 | k=16 | k=64 | k = 128
1 7.5 5.7 6.0 8.3 8.5 8.5 8.3 8.7 8.3 8.2
2 13.6 | 44.2 27.7 15.3 15.5 15.4 15.6 15.3 15.2 15.5
3 1.1 1.0 1.0 1.1 11.4 11.5 11.6 11.4 11.5 11.0
4 41.7 | 91.3 57.1 32.6 30.9 30.2 31.4 30.7 30.8 30.0
5 17.8 | 312.8 293.6 16.8 21.9 17.6 17.5 20.7 17.7 16.7
6 4.0 21.5 13.6 4.7 4.8 4.8 4.8 4.9 5.0 4.8
7 79| 23.6 15.5 7.0 7.3 7.7 7.4 7.2 6.8 6.4
8 23.0 7.9 68.5 39.3 69.1 12.7 31.4 26.3 37.1 10.6
9 3.5 8.7 21.5 4.0 3.5 3.7 3.7 3.5 3.7 3.8
10 104.0 - 227.1 66.7 87.1 65.4 64.8 87.0 65.1 62.8
11 8.2 110.8 180.1 - 40.0 8.4 5.2 38.2 14.0 4.0
12 18.7 | 100.4 69.9 19.4 19.1 17.3 17.0 17.1 16.8 17.1
13 4.8 | 22.1 33.5 5.3 5.0 5.1 5.1 5.0 5.2 5.1
14 54.4 | 53.1 52.5 32.9 34.4 32.2 33.2 34.5 32.1 32.9
15 13.7| 75.0 34.6 14.4 13.4 13.7 12.8 12.9 13.1 12.8
16 116.1 - 122.9 54.7 51.3 48.9 47.3 49.8 48.0 47.4
17 25.0 | 46.3 25.5 27.7 32.0 30.1 30.1 31.4 29.5 29.7
18 14.7 - 34.0 13.0 15.2 14.1 13.6 14.6 12.6 12.9
19 67.8 | 66.9 68.1 43.2 44.2 42.5 44.9 43.4 42.6 42.6
20 5.6 | 11.5 7.7 7.1 6.2 6.2 6.3 6.1 6.0 6.2
21 4.6 | 42.2 24.0 4.9 4.9 5.6 5.1 4.8 5.7 5.1
22 81.1 - 87.1 56.6 65.6 63.8 63.9 66.3 63.4 48.9
23 16.7 9.9 8.9 13.5 16.2 19.4 16.9 15.9 17.9 16.5
24 13.3 - - 20.9 21.4 25.6 22.1 20.3 19.4 20.5
25 4.7 | 43.2 24.8 5.0 4.8 5.6 5.6 4.8 5.4 5.6
26 25.5 - - 16.4 25.4 16.3 16.1 22.6 15.8 15.6
27 28.1 - 57.6 28.2 30.5 27.0 28.5 30.7 27.9 27.7
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requirement that exceeded the limits of our computer. We focus on evaluating the
performance of Hunp based on PaToH with default parameter settings (Hunp-default
in the tables) and a varying number of partitions k = 16,64,128. We also present
results obtained by HunD based on PaToH with quality parameter settings (HUND-
quality in the tables). As we will see later, HunD-quality has a longer execution than
Hunp-default. Hence in practice it could be used when several matrices with the
same nonzero structure need to be factored, and the reordering algorithm is called
only once.

We observe that for 11 matrices in our test set, one variant of enhanced HUND-
default induced the least fill-in compared to the other state-of-the-art reordering al-
gorithms Coramp, AmD, and METIS. For 12 other matrices, each of AMp and CoramMD
produced the best results, while METIS produced the best result for 6 matrices.

For most of the matrices, enhanced Hunp-default produces comparable results
when the number of partitions increases from 16 to 128. As displayed in Table 5.2,
the fill-in has a large value between 30 and 70 for the matrices MARK3JAC020, ZHAO2,
SINC12, MARK3JAC140sc, siNcl5, and siNcl8 (numbers 4,10, 14,16, 19, and 22). How-
ever, for these matrices enhanced HunD produced the best, or close to the best, results.
The other reordering strategies lead generally to a larger number of fill-in elements.
CoLamp leads to a fill-in factor between 42 and 116, and Metis (AT A) leads to a fill-in
factor between 32 and 66. For these cases enhanced Hunp-default significantly out-
performs CoLamDp. Note that matrices siNc12, siNc15, and sINC18 come from the same
application domain (single-material crack problem) as well as matrices MARK3JAC020
and MARK3JAC140sc (economic model).

We consider more in detail the fill-in the factors L and U obtained by the two
global strategies in our tests, enhanced HUND (with kparts = 128) and METIs (applied
on the structure of AT A, which was better than A + AT). For most of the matrices
in our test set enhanced HUND leads to comparable results to METIS, and sometimes
it outperforms METIS. The best result is obtained for matrix SHERMANACB, for which
enhanced HunD leads to almost four times less fill than METIS.

Figure 5.1 displays a performance profile of four orderings: enhanced Hunp-default
with kparts = 64, CoLamp, MeTis with AT A, and MeTis with A + AT. In a perfor-
mance profile, a method will have a point (z,y) in the graph if for y percent of the
problems in the test set, the method leads to a fill-in that is within a factor of  (or
better) of the fill-in found by the best method for those problems. We can notice that
enhanced HUND provides a robust ordering, being either the best or within 10% of the
best performance.

5.2. Enhanced HUND versus other reordering algorithms: Results with
UMFPACK. UMFPACK is a right-looking multifrontal method which factorizes a
sparse matrix using a sequence of frontal matrices, where each frontal matrix holds
a contiguous set of pivot rows and columns. The ordering strategy in UMFPACK
combines a fill-reducing symbolic preordering with adjustments made during numeric
factorization.

As the first step of fill-reducing ordering, all pivots with zero Markowitz cost
(referred to as singletons) are removed from the matrix. These correspond to the
leading and trailing 1-by-1 blocks from a permutation to block triangular form. After
singletons are removed, the remaining matrix is permuted to reduce fill-in in the LU
factorization.

In UMFPACK’s unsymmetric strategy, Hunp (followed by CCoramp on local
blocks), Coramp, or MeTtis (applied to AT A) is used to order the columns. In the
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Performance prafile of ordering methods for Super LU
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Fi1G. 5.1. Performance profile of ordering methods with SuperLU. The performance is better
closer to 1.

symmetric strategy, AMD or Metis (applied to A + A7) is used to order both the
rows and columns, and a preference is given to the diagonal when selecting pivots.
UMFPACK has an automatic strategy, which examines the matrix and tries to select
the best strategy; we do not use this default method in the results in this paper. Note
that we do not use MC64 to permute large entries on the diagonal of the matrix, since
this step is not useful for UMFPACK’s unsymmetric strategy.

The numerical factorization can revise the ordering computed by the symbolic
preanalysis. Numerical threshold partial pivoting is used to select pivots within the
pivot columns.

The size of each frontal matrix F' is bounded by the frontal matrix that would arise
in a sparse multifrontal QR factorization. Since this can be much larger than what
is needed by an LU factorization, columns within each frontal matrix are reordered
during numerical factorization to further reduce fill-in. This column reordering is
only performed for the unsymmetric strategy; it is not performed by the symmetric
strategy. Since UMFPACK is a right-looking method, it can consider the sparsity
of a candidate pivot row when deciding whether or not to select it. This can be a
key advantage over left-looking methods such as SuperLU [15]. Left-looking methods
cannot consider the sparsity of candidate pivot rows, since the matrix to the right of
the pivot column has not yet been updated when the pivot row is selected.

There are thus three primary differences between UMFPACK and SuperLU which
affect the results presented in this paper:

1. UMFPACK removes singletons prior to factorization; SuperLU does not.

2. UMFPACK’s unsymmetric strategy revises its column orderings within each
frontal matrix to reduce fill-in; SuperLLU does not revise the column orderings
with each supercolumn.

3. UMFPACK can select a pivot row based on sparsity; SuperLU cannot.

Complete results are shown in Table 5.3. Figure 5.2 displays a performance profile
of just four of the unsymmetric orderings (enhanced Hunp-default with kparts = 64,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/28/12 to 128.227.35.31. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

HUND ALGORITHM 3441

TABLE 5.3
Fill in the factors L and U, computed as nnz(L 4+ U — I)/nnz(A), using UMFPACK.

# | CoLAMD | AMD METIS | METIS Enhanced HUND
(AT +A) | (ATA) | k=16 | k=64 | k=128
1 11.5 40.5 23.8 14.5 14.1 14.1 14.1
2 14.5 | 134.4 125.0 14.0 14.9 14.5 14.6
3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
4 2.5 4.0 11.7 2.8 2.7 2.9 2.9
5 6.9 5.7 6.0 7.7 7.3 7.4 7.3
6 32.9 45.0 36.9 29.3 26.1 25.4 25.8
7 3.0 13.0 9.5 3.8 3.8 3.7 3.6
8 1.0 2.0 2.1 1.0 1.0 1.0 1.0
9 78.7 47.2 28.4 55.7 57.5 53.0 52.0
10 1.9 2.3 2.8 2.3 1.9 2.0 2.0
11 4.4 4.1 4.9 4.1 4.3 4.2 4.3
12 8.8 7.6 9.5 10.7 8.9 8.8 8.9
13 3.0 4.7 13.0 3.6 3.4 3.5 3.5
14 38.3 36.5 35.4 20.6 32.7 21.1 21.4
15 79.6 63.9 42.0 44.7 43.5 41.0 40.9
16 10.2 - 37.8 11.6 10.1 9.9 10.2
17 22.0 | 16.9 17.5 24.9 25.7 26.3 26.2
18 49.9 - 46.5 29.9 42.5 26.4 40.2
19 6.8 14.4 11.6 8.5 6.6 7.4 8.4
20 4.6 9.8 6.1 5.6 5.1 5.4 5.1
21 3.8 26.8 20.9 4.2 3.8 4.0 4.2
22 60.7 - - 38.9 - - -
23 5.9 - 14.4 8.3 8.0 7.9 8.3
24 3.8 28.4 - 4.2 3.8 4.0 4.1
25 14.3 9.4 8.9 11.6 13.6 13.1 13.6
26 20.2 56.1 - 11.2 12.6 12.0 11.7
27 23.7 - 25.8 25.6 24.2 23.7 23.0
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Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/28/12 to 128.227.35.31. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

3442 L. GRIGORI, E. G. BOMAN, S. DONFACK, AND T. A. DAVIS

Coramp, MeTis with AT A, and MeTis with A4+ A7T). Overall, enhanced HunD provides
a robust ordering with a performance profile superior to both CorLamp and METIS.
Notice that for about two-thirds of the matrices, the performance of enhanced HunD
(k = 64) is within 10% of the best performance.

5.3. Quality of the partitioning. In this section we discuss the separators ob-
tained during HUND’s unsymmetric nested dissection. These separators are important
because they tend to have an impact on the fill in the factors L and U as well as on
the suitability of the reordered matrix for parallel execution. Fill in the factors can
occur in the separators and in the diagonal blocks; hence the smaller the separator
size, the fewer nonzeros should be obtained in the factors. In a parallel execution,
the communication will incur during the factorization of the separators. Hence the
communication will be reduced for separators of a smaller size.

We summarize here the more detailed results presented in the technical report [21]
for Hunp-default with k& = 128. We discuss the size of the separators corresponding
to the first three levels of unsymmetric nested dissection. The results for the other
levels were in general less than 1%.

For most of the matrices, the separators obtained by HunD-default are of small
size and contain less than 5% of the columns of the matrix (very often less than 1%).

However, for six matrices in our test set, the number of columns and the nnzs
in the separators of the first and the second level are very large. For example, for
matrix MULT_DCOP_03 (number 11), around 40% of the columns are in the first level
separator, and an average of 11.5% of the columns are in the second level separator.
Matrices SHERMANACB, siNC12, siNc15, and siNc18 (numbers 8, 14,19, 22) have more
than 15% of the columns in the first level separator. As already previously observed
and as reported in Table 5.2, for matrices in sinc family, enhanced HunD leads to a
high amount of fill in the factors L and U. This observation shows that the size of
the separator has an important impact on the quality of the reordering, that is, the
nnzs in the factors L and U.

However, this is not always true. For example, the matrices znao2 and
MARK3JAC140sc (numbers 10, 16) have separators of small size. But the fill in the
factors L and U is high: 64 for znao2 and 47 for mark3AC140scC.

5.4. Runtime of enhanced HunD. Table 5.4 displays the execution time of
each reordering algorithm tested. The execution times displayed for MEeTIs include
the time for forming A7 + A and AT A, respectively. The execution times displayed
for enhanced Hunp include the hypergraph partitioning with PaToH and the local
ordering of diagonal blocks with CCoramp. As it could be expected, the execution
time of enhanced HUND increases with increasing number of partitions. Enhanced
Hunp based on PaToH with quality parameter settings (enhanced Hunp-quality in
the table) is usually between two and three times slower than enhanced Hunp with
default parameter settings (enhanced Hunp-default in the table) for a same number
of partitions. In this discussion, we focus on the results obtained by enhanced HunD
default.

For the matrices in our test set, CoLaMD and AmD are faster than METIs and
enhanced Hunp. Comparing the global approaches’ algorithms suitable for sparse
LU factorization with partial pivoting of unsymmetric matrices, we can note that for
smaller matrices, METIs on AT A and enhanced Hunp-default with 16 partitions have
comparable execution times. However, for larger matrices MeTis on AT A becomes
slower than enhanced Hunp-default. In these cases, the computation of A7 A becomes
an important part of the ordering time. This can be observed in our test set starting
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TABLE 5.4
Ordering time in seconds of COLAMD, AMD, METIS (applied on AT + A and AT A), and
enhanced HUND. The best time is marked in boldface for each matriz. Enhanced HUND is tested
with two different settings of PaToH: default and quality (enhanced HUND default and enhanced
HUND quality). The number of partitions is varied as k = 16,64, 128.

# [ CoLAMD [ AMD | METIS | METIS | Enhanced HUND default || Enhanced HUND quality

(AT + A) | (ATA) k=16 k=64 | k=128 | k=16 | k =64 | k = 128
1 0.02 | 0.00 0.03 0.05 0.12 0.29 0.42 0.43 1.04 1.33
2 0.02 | 0.02 0.05 0.12 0.16 0.29 0.38 0.70 1.25 1.49
3 0.00 | 0.02 0.15 0.17 0.08 0.12 0.16 0.23 0.45 0.62
4 0.07 | 0.05 0.17 0.28 0.30 0.53 0.65 1.17 1.91 2.23
5 0.02 | 0.03 0.22 0.30 0.28 0.61 0.87 1.19 2.53 3.46
6 0.05 | 0.02 0.15 0.22 0.24 0.35 0.36 1.05 1.54 1.46
7 0.02 | 0.00 0.03 0.17 0.20 0.25 0.29 0.82 1.08 1.12
8 0.42 | 0.07 0.25 8.42 0.36 0.51 0.50 5.35 5.78 5.62
9 0.08 | 0.07 0.42 0.60 0.41 0.72 0.86 1.40 2.79 3.19
10 0.10 - 0.57 0.88 0.83 1.37 1.72 4.06 6.02 7.76
11 0.12 | 0.12 0.32 - 1.25 1.39 1.49 14.27 13.84 13.21
12 0.55 | 0.38 0.75 1.40 1.13 1.35 1.56 3.45 4.55 5.26
13 0.20 | 0.15 1.00 1.67 0.63 1.27 1.57 2.14 4.70 6.28
14 0.08 | 0.17 0.47 0.75 0.52 0.56 0.63 1.73 1.96 1.83
15 0.13| 0.15 0.72 1.08 0.84 1.08 1.26 2.43 3.78 4.49
16 0.47 - 1.47 2.55 1.74 2.47 2.87 6.83 | 10.12 11.55
17 0.73 | 0.20 0.65 1.80 1.49 2.25 2.39 4.21 6.72 8.46
18 0.07 - 0.20 0.63 0.73 1.02 1.20 2.32 3.40 4.31
19 0.17 | 0.33 0.83 1.52 0.90 0.99 1.06 2.12 3.19 2.76
20 1.02 | 0.78 1.98 4.53 2.45 3.19 3.26 5.53 8.11 9.22
21 0.37 | 0.22 1.73 2.80 1.39 2.36 2.85 4.13 7.61 9.96
22 0.32 - 1.32 3.12 1.49 1.72 1.82 5.97 4.06 4.53
23 0.68 | 0.22 1.67 3.23 1.88 3.08 3.95 5.86 | 11.79 15.63
24 0.75| 0.78 - 15.07 2.86 3.90 4.29 7.13 | 11.66 14.58
25 0.75 | 0.48 3.75 6.18 2.46 3.84 5.11 6.08 | 11.39 16.95
26 0.52 - 2.37 17.02 5.92 6.91 7.75 12.99 | 16.25 17.58
27 2.67 - 2.55 8.55 6.78 8.16 8.58 15.06 | 20.61 21.91

with matrix sinc15. For example, for matrix av41092, Metis on AT A is almost 3
times slower than enhanced HunDp-default with 16 partitions.

6. Conclusions and future work. We have presented a new ordering algo-
rithm (Hunp) for unsymmetric sparse matrix factorization, based on hypergraph par-
titioning and unsymmetric nested dissection. To enhance performance, we proposed a
hybrid method that combines the nested dissection with local reordering. Our method
allows partial pivoting without destroying sparsity. We have tested the method us-
ing SuperLU and UMFPACK, two well-known partial pivoting LU codes. Empirical
experiments show that our method is highly competitive with existing ordering meth-
ods. In particular, it is robust in the sense that for about two-thirds of the matrices
in our study it performs close to the best of all the other existing methods (within
10%). Thus, it is a good choice as an all-purpose ordering method.

The Hunp method was designed for parallel computing, though we evaluated
only it in serial here. The recursive top-down design allows coarse-grain parallelism,
as opposed to local search methods like AMD and CorLamp. For symmetric systems,
nested dissection ordering is considered superior for large systems, and it is reasonable
to expect the same holds for unsymmetric systems. The most expensive part of
enhanced HUND is hypergraph partitioning, which can be done efficiently in parallel
using the Zoltan toolkit [16]. The matching for strong diagonal can also be performed
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F1G. 6.1. Ezample of variable direction (row or column) hybrid method. The top level separator
is a column separator (rightmost block). The first (left) subproblem has a row separator, while the
second (right) subproblem has a column separator.

in parallel [36], though no parallel MC64 is yet available. Local reordering can be
done locally in serial. Thus, our approach is well suited for fully parallel solvers that
aim at being time and memory scalable [25, 35].

There are several directions for future work. HUND uses a column separator ap-
proach based on the column-net hypergraph model, where rows are vertices. The first
direction of research is to use other options, as to use the row-net hypergraph model,
where columns are vertices. The method will work as before, except now we find
row separators instead of column separators. The row separator approach is advan-
tageous when the row separator is smaller than the column separator. However, row
permutations can now destroy the sparsity structure. This variation is thus not suit-
able for partial pivoting with row interchanges (though partial pivoting with column
interchanges would be fine).

Since the best variation (row or column) depends on the matrix structure, an
intriguing idea is to combine these two methods. The idea is to try both partitioning
methods for every bisection and pick the best. This gives a recursive decomposition
that uses a combination of row and column separators, and it is illustrated in Fig-
ure 6.1. This row-or-column hybrid method is also used in the Mondriaan method
for sparse matrix partitioning [38]. Obtaining a strong diagonal is a bit more difficult
with the hybrid method. As usual, we compute a matching in the bipartite graph,
but it is not obvious how to apply this as a permutation. A pure row-or-column per-
mutation of the entire matrix will ruin the sparsity structure. Instead, parts of the
matrix should be permuted by columns and other parts by rows. We omit the details
here.

A second direction is to study hybridization with other local (greedy) ordering
methods, in particular, the recent unsymmetric methods by Amestoy, Li, and Ng [2]
and Amestoy, Li, and Pralet [3].

A third direction of research is the usage of hypergraph partitioning in a parallel
algorithm for performing the LU factorization of sparse matrices. It will be interest-
ing to study the effect of the ordering on the performance of existing parallel solvers
such as SuperLU_DIST [35] or MUMPS [4]. We note that MUMPS favors symmetric
structures. Since HunD can destroy the symmetry for matrices that have a nearly
symmetric structure, its usage might not be beneficial in the context of MUMPS. In
addition, our goal is to design an algorithm that exploits the form of the matrix ob-
tained after hypergraph partitioning and that uses tournament pivoting, a new stable
pivoting strategy introduced in [23, 24] that reduces the amount of communication
performed in parallel LU factorization.
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