
Pergamon
,I’ ‘2

Computers them. Engng Vol. 20, No. 617, pp. 641-646. 1996
Copyright @ 1996 Elscvier Science Ltd

Printed in Great Britain. All rights reserved
0098-1354(95)00198-O 0098-1354/96 $lS.OO+O.OO

MULTIFRONTAL VS FRONTAL TECHNIQUES FOR
‘i. - CHEMICAL PROCESS SIMULATION ON ,.

SUPERCOMPUTERS

S. E. ZITNEY,’ J. MALLYA,’ T. A. DAVIS’ and M. A. STADTHERR’ t

’ Cray Research Inc., 655E Lone Oak Drive, Eagan, MN 55121, U.S.A., ‘Department of Chemical
Engineering, University of Illinois, 600 S. Mathews Avenue, Urbana, IL61801, U.S.A. and

3 Computer and Information Sciences Department, University of Florida, Gainesville, FL 32611,
U.S.A.

(Received 7 April 1995; received for publication II May 1995)

Abstract-A critical computational step in large-scale process simulation using rigorous equation-based
models is the solution of a sparse linear equation system. Traditional sparse solvers based on indirect
addressing are not effective on supercomputers because they do not vectorize well. By relying on
vectorized dense matrix kernels, the multifrontal and frontal methods provide much better perfor-
mance, as demonstrated using several examples. These examples are also used to compare the
performance of frontal and multifrontal solvers. On problems with good initial matrix orderings the
frontal method is most effective, while without a good initial ordering the multifrontal method is
attractive.

INTRODUCTION
. .

Steady-state or dynamic simulation tools are widely
used in the design, optimization, and operation of
chemical processes. Increasingly these tools are
being used industrially in very large-scale, plant-
wide studies based on rigorous physical and chemi-
cal models. These trends have been made possible
by impressive gains in computer performance and
advances in numerical methods. Leading the way,
modem supercomputers offer vector and parallel
processing architectures for solving problems that,
until now, could not be solved with other computa-
tional tools. Today, this leading-edge technology is
increasingly seen at price levels that make it more
widely available to process systems engineers. Thus,
the use of supercomputer technolpgy in process
simulation is more practicable than ever before, and
provides opportunities to solve larger-scale and
more realistic plant models than ever before.
However, since most current methods for solving
process simulation problems were developed for use
on conventional serial machines, they usually do not
effectively take advantage of the vector and parallel
processing architecture of supercomputers. Thus, to
exploit supercomputing (as opposed to just using a
supercomputer) requires the rethinking of the solu-
tion strategies used in process simulation. In this

t To whom all correspondence should be addressed. (Fax:
217-244-8068; Internet: markst@uiuc.edu).
Presented at Fifth International Symposium on Process
Systems Engineering (PSE ‘94), Kyongju, Korea, 30
May-3 June, 1994.

paper, we consider the sparse linear equation solv-
ing strategies used in this context.

BACKGROUND

In large-scale process simulation using rigorous
equation-based models, the key computational step,
representing as much as 90% of the computation
time on industrial problems (Zitney et al., 1992,
1994a), is often the solution of a large sparse system
of linear equations. ~ Process simulation matrices,
however, do not have any of the desirable structural
or numerical properties, such as symmetry, positive
definiteness, diagonal dominance, and bandedness,
often associated with sparse matrices, and usually
exploited in developing efficient algorithms for vec-
tor and parallel computation. Recent work (Zitney,
1992; Zitney and Stadtherr, 1993a, b; Zitney et al.,
1994b) has demonstrated the potential of the frontal
method as a sparse linear equation solver for process
simulation problems. In fact, an implementation of
the frontal method (FAMP), developed at the
University of Illinois and Cray Research Inc., has
now been incorporated in Cray Research versions of
commercially used tools such as ASPEN PLUS,
BATCHFRAC, RATEFRAC, and SPEEDUP
(Aspen Technology Inc.).

The frontal method is effective because, unlike
traditional general-purpose sparse matrix solvers
such as MA28 (Harwell) and LUlSOL (University
of Illinois) that rely on indirect addressing, it makes
use of easily vectorizable full matrix operations

642 S. E. ZITNEY et al.

performed on a sex&of frontal matrices. However,
for process simulation problems the frontal matrices
are often relatively large and sparse. Thus, while a
high computational rate can be achieved when oper-
ating on the frontal matrices, a large number of
unnecasary operations on zeros are performed,
thus lowering overall performance.

In this paper we consider the multijrontal method
as an alternative to the frontal method. The multi-
frontal method, many aspects of which have recently
been reviewed by Liu (1992), is a generalization of
the frontal method, and was originally developed for
symmetric systems. Like the frontal method, it also
exploits low-level parallelism and vectorization
through the use of dense matrix kernels on frontal
matrices (e.g., Amestoy and Duff, 1989). However,
the frontal matrices are generally smaller and denser
than in the frontal method. Furthermore the multi-
frontal method offers more opportunities for
exploiting a higher level of parallelism than the
frontal method. Though this classical multifrontal
approach can be applied to unsymmetric systems
(Duff and Reid, 1984), this has met with only
limited success when the pattern of nonzeros is
highly unsymmetric (as is the case for the matrices
under consideration here). Recently a new
unsymmetric-pattern multifrontal algorithm has
been described by Davis and Duff (1993, in press).
In the new algorithm, unlike the classical multifron-
tal approach, frontal matrices are permitted to be
rectangular and the unsymmetric structure is
accounted for explicitly through the use of a directed
acyclic graph. The performance of this new multi-
frontal method in process simulation problems on a
CRAY Y-MP supercomputer is compared here with
that of the frontal method (FAMP), as well as that
of the conventional code MA28.

FRONTAL METHOD

The use of the frontal method has been demon-
strated in a simple example given by Zitney and
Stadtherr (1993a). The basic idea is to restrict elimi-
nation operations to a frontal matrix, on which
dense matrix operations are performed. Beginning
with the first row, equations are assembled (added)
into the frontal matrix until some variable or vari-
ables become fully summed (i.e., all their nonzero
elements appear in the frontal matrix). Partial pivot-
ing is then applied, the fully summed variable or
variables are eliminated, and the pivot row(s) and
column(s) removed from the frontal matrix. The
assembly process then begins again and the method
proceeds to alternate between assembly and elimi-
nation phases until the matrix factorization is com-
plete. To implement the frontal method, we use

1234567

X xx
X xxx-
xxx X
xxx x x

xx xx
xx

xx x x
Fig. 1. Matrix used as an example in the text.

here the code FAMP, which originated at the
University of Illinois (Zitney and Stadtherr, 1993a)
and was later extended at Cray Research to include
the use of BLAS2 and BLAS3 dense matrix kernels,
as well as an out-of-core option for solving very
large-scale problems, and separate analyze- __
factorize, factorize, and solve options.

MULTIFRONTAL METHOD
t_ Tj

The unsymmetric-pattern multifrontal method
factors a sparse, unsymmetric matrix with a
sequence of dense frontal matrices, each of which
corresponds to one or more steps of the overall LU
factorization. To demonstrate the basic idea in the
unsymmetric-pattern multifrontal method we use
the example shown in Fig. 1. An initial pivot ele-
ment is chosen, say element (1,l). The first frontal
matrix is then started with this pivot row and column
and all contributions to them. This leads to the
matrix shown in Fig. 2(a). The pivot operation is
then performed using a dense matrix kernel. As
shown in Fig. 2(b), this computes a row of II and a
column of L, as well as a contribution block (in the
nonpivot rows and columns) that is saved for later
use. Another pivot is now selected and a new frontal
matrix begun. Say element (3,2) is selected, and
note that this implies an unsymmetric permutation

145
lxxx
2x
3x

rr

4x
7x

(a)

1

lu
2 P
3 I

r

4 P
7 I

4 5

uu
xx
xx
xx
xx

UN
Fig. 2. First frontal matrix in multifrontal method if first
pivot is (1.1). (a) Before factorization; (b) after factoriza-

tion.

Chemical process simulation on supercomputers 643

2 3 4 5 7 ,; .ii 2 3 4 5 7

qyr’ $-g-g

(4 (b)
Fig. 3. Next frontal matrix if (3,Z) is the next pivot. Note
that pivoting on (4,3) can also be done in this frontal

matrix. (a) Before factorization; (b) after factorization.

of the matrix. The frontal matrix is started with row
3 and column 2; all contributions to this row and
column must now be assembled, both those from the
original matrix elements and those from the contri-
bution block of the previous frontal matrix. This
leads to the matrix shown in Fig. 3(a). Note that
since all contributions to row 4 and column 3 can
also be assembled into this frontal matrix, an addi-
tional pivot (4,3) can be performed, resulting in Fig.
3(b). The search for additional pivots that can be
performed within a frontal matrix, or that can be
performed with only a small growth of the frontal
matrix is significant since it allows the use of BLAS3
.as opposed to BLAS2 kernels.

Frontal matrices continue to be assembled and
pivot operations performed in them until the L and
U factors are completed. In the next section we
focus on the implementation of the multifrontal
method and how it differs from the frontal method.

MULTIFRONTAL VS FRONTAL METHOD

We discuss here only the sequential implemen-
tation of the unsymmetric-pattern multifrontal
method of Davis and Duff (1993, in press), as
embodied in the UMFPACK library (Davis, 1993).
A copy of UMFPACK may be obtained via anony-
mous ftp to ftp.cis.ufl.edu in the lpublumfpack
directory (it is free for non-commercial use only).

In the frontal method, the pivot order of the
columns is dependent on the row ordering, and the
pivot order of the rows can vary only within certain
constraints. A row can become pivotal any time
between the time it is entered into the frontal matrix
and the end of the factorization. Rows are entered
into the frontal matrix in a predefined order. The
pivot column ordering depends solely on the initial
preordering of the rows. Unlike the frontal method,
UMFPACK finds both a row and column pivot
ordering as the matrix is factorized. No preordering,
or partial preordering, is used.

At the start of the factorization, no frontal matrix
exists. UMFPACK starts a new frontal matrix with a

global Markowitz-style pivot search. Suppose row i
and column j are selected as the kth pivot row and
column. A new cj X ri frontal matrix is formed in a
working array of size (G . cj) X (G . ri), where the
column degree Cj and row degree ri are the number
of nonzeros in column j and row i of the partially- .’
factorized submatrix, and Gs 1 is a parameter con-
trolling frontal matrix growth. The pivot row and
column, some of the entries of the original matrix,
and some of the updates from previous frontal
matrices are assembled (added) into the current
frontal matrix. Not all original entries or previous
frontal updates can be assembled into the current
frontal matrix (unless the current frontal matrix is as
large as the (n-k) x (n-k) submatrix yet to be
factorized). The approximate degree update phase
determines upper and lower bounds on the number
of nonzeros in the cj rows and ri columns affected by
this frontal matrix. These bounds are used for subse-
quent pivot searches (it is too costly to maintain the
true degrees of each row and column).

The frontal matrix is augmented with additional
pivots, using a local pivot search of rows and col-
umns within the frontal matrix. Augmentation con-
tinues until a subsequent pivot would cause the size
of the frontal matrix (including all of its pivot rows
and columns) to become larger than the working
array. The frontal matrix ‘E,, for steps k through
k+gk- 1 of the LU factorization, where glr is the
number of pivots factorized within E,, can be repre-
sented as follows:

c; c;

R; Fk Bk

[1 ti; Tk Dk

The frontal matrix is labeled with the ordered sets
R; and C; (the gl, pivot rows and columns, respecti-
vely), and with the sets Ri and C; (the non-pivotal
rows and columns that contain entries updated by
the gk pivots). Contributions t0 the maWiCeS Fk, Bk,

and Tk must be fully assembled; however, Dk may
hold only a partial summation of the original matrix
elements and contributions from previous frontal
matrices. The pivot block Fk is now factored
(Fk = L;Ui), thus computing the block-column Li of
L and block-row U; of U, and replacing Dk with the
Schur complement D;= Dk - L;U;. Thus, the fac-
torized frontal matrix is:

; C;

R; L; \lJ; U;

.:[I] I,
k 0;

where the notation L; \ U; indicates two matrices
packed in the same array. The goal of multifrontal

644 S. E. ZITNEY et al.

methods is to replace indirect addressing in inner-
most loops with’ dense matrix kernels such as the
Level-3 BLAS (Dongarra et al., 1990). A frontal
matrix Ek can be factorized with the Level-3 BLAS
if gk is greater than one.

The method generates a directed acyclic graph (a
dug) during factorization that describes the assembly
process and precedence between the frontal
matrices. This dag is referred to as the assembly dag,
since it functions in a similar role as the assembly
tree in the classical, symmetric-pattern multifrontal
method (MA37) (Duff and Reid, 1984). In contrast,
the assembly dag for the frontal method would
simply be a linear chain, although the frontal
method does not make use of such a dag. These dags
or trees also express the parallelism inherent in the
method, if each frontal matrix factorization is con-
sidered a separate task. Thus, the frontal method
cannot exploit parallelism between the tasks, where-
as the multifrontal methods can. UMFPACK is
better suited to unsymmetric matrices than MA37,
and simulations show comparable levels of exploi-
table parallelism in the two methods (Hadfield and
Davis, 1992, 1994).

The frontal method only stores the Dk term in its
single working array, writing the pivot rows and
columns into a separate data structure for the LU
factors. The multifrontal method stores all of Ek
until the factorization of Ek is complete. Thus, if the
assembly dag in UMFPACK were forced to be a
linear chain (as in the frontal method), UMFPACK
would still require more than one frontal matrix
(unless the single frontal matrix is n x II, which
defeats the purpose).

RESULTS AND DISCUSSION

Tables 1 and 2 present results for the comparison
of UMFPACK, FAMP, and MA28 on two problem
sets to be described below. All times are given in
cpu seconds on one processor of a CRAY ‘Y-MP
system. The analyze/factor (AF) time is that
required to determine a pivot sequence and factor
the matrix; the factor (F) time is that required to
factor the matrix given a pivot sequence; and the
solution (S) time is that required to obtain a solution
given the LU factors and a right-hand-side vector.
The memory figures reported (in megawords) repre-
sent the minimum required; more memory was
actually used in these runs. Attempting to use the
minimum memory would significantly lengthen fac-
torization times. Two memory figures for FAMP are
given: oc refers to use of the out-of-core option and
ic to the memory that would have been required to
keep the problem in core, as is done in the other two
methods. The number of nonzeros in the LU factors
is provided as a measure of the amount of numer$al
computation performed by each method. In MA28
and UMFPACK, the relative threshold pivot toler-
ance used was 0.2; FAMP uses partial pivoting. The
growth factor G in UMFPACK was set at 3. No a
priori reordering of the matrices was performed
outside the packages used. Cases marked NS were
not solved due to excessive computational require-
ment.

The first problem set (Table 1) involves eight
process simulation problems. Rdistl, rdist2, and
rdisda are reactive distillation problems described
by Zitney (j992), hydrlc and extrlb are dynamic

Table 1. Comparison of sparse matrix solvers on first problem set. All limes are in cpu seconds on one processor of
a CRAY Y-MP system. Memory is in megawords. Cases marked NS were not solved due to excessive computational

requirement. See text for discussion and further definition of terms

Name
Order
Nonzeros

AF Time
MA28
UMFPACK
FAMP

F Time
MA28
UMFPACK
FAMP

S Time
MA28
UMFPACK
FAMP

NZ in LCJ
MA28
UMFI’ACK
FAMP

Memory
MA28
UMFPACK
FAMP-ic

-0c

rdistl rdistl rdist3a hydrlc
4134 3198 2398 5308

94,408 56,934 61,896 25,276

104.79
1.78
0.43

5.21 1.85 3.65 0.25
0.56 0.34 0.41 0.31
0.42 0.24 0.21 0.20

0.035 0.024 0.021 0.025
0.022 0.017 0.014 0.026
0.021 0.019 0.012 0.019

841,900 398,775 539,726 73,954
573,287 309,420 439,796 121,901
624,140 547,202 324,680 133,399

2.166 1.020 1.412 0.250
1.185 0.723 0.847 0.395
1.412 1.197 0.753 0.391
0.166 0.105 0.106 0.126

50.00 58.26 7.06
1.45 1.62 1.43
0.25 0.22 0.23

extrlb lhr_4k
2836 4101

12,094 82,682

4.74 52.81
0.67 4.73
0.09 0.46

0.12 2.31
0.15 0.71
0.08 0.44

0.013 0.026
0.014 0.023
0.010 0.023

37,541 459,626
65,062 495,503
51,735 517,Oc4

0.134 1.232
0.233 1.217
0.152 1.250
0.053 0.218

lhr_l’lk
17,576

381,975

522.01 NS
16.54 73.06
2.14 8.00

27.67 NS
3.14 13.67
1.99 7.37

0.135 NS
0.101 0.415 *
0.096 0.369

3,445,a27 NS
2,225,140 9,667,709
13937,363 7,181,471

7.866 NS
4.238 16.431
4.756 16.922

1 hr_‘lOk
70.304

1,528&Z

0.885 2.563

Chemical process simulation on supercomputers 645

simulation problems descr#d by Zitney et al.
(1994b), and the lhr problems are extensions of the
light hydrocarbon recovery process described by
Zitney and Stadtherr (1993a). On these problems,
both the frontal (FAMP) and multifrontal (UMF-
PACK) methods.ar_e significantly faster than MA28,
reflecting the use of vectorized dense matrix kernels.
Also, on these problems, the frontal method outper-
forms the multifrontal method. This is due to the
presence of a good initial row ordering in these
matrices. The performance of the frontal method
depends strongly on the initial row ordering; thus in
general some a priori reordering step is required,
though there appears to be no consistently good
technique for doing this on unsymmetric problems.
The time to perform this reordering would have to
be added to the frontal method’s AF time. No such
reordering is needed in the multifrontal method. It
was fortuitous in these cases that the matrices had a
good (though probably not optimal) initial ordering.
Such a good ordering is not uncommon if the equa-
tions describing each unit (or equilibrium stage) in a
process are kept together, and if adjacent units and
streams are numbered consecutively, thus resulting
in a nearly block-banded matrix corresponding to
the unit-stream nature of the problem. Whether or
not this will occur depends on the simulation soft-
ware that generates the matrix and on the unit and
stream numbers assigned by the user in the input to
the simulation package. Some problems, such as the

ones used here, that primarily involve separation
columns, are especially likely to have a good initial
ordering. However, good initial orderings cannot be
guaranteed; thus there is a need either for a priori-
reordering schemes, or techniques, like the multi-
frontal method, that do not require them. . .’

To see the effect of not having such a good initial
ordering, a second problem set (Table 2) involving
five additional simulation problems were considered
(see Davis and Duff (1993, in press) for the sources
of these problems). These are two circuit simulation
problems (add32 and mem +), an electrical power
system problem (gemutll), a computational fluid
dynamics problem (lns_3937), and a reservoir simu-
lation problem (shermati). On these problems the
potential of the multifrontal method can be seen.
On one problem (mem +), the frontal method is not
even competitive, due to the extremely large frontal
matrix required to factor the matrix. The perfor-
mance of the frontal method could be improved
using an a priori reordering scheme, but unless this
can be done cost effectively, the multifrontal
approach may still be more attractive. A combined
frontal/multifrontal solver, as described recently by
Davis (1994) may also be attractive on some prob-
lems.

Finally it should be noted that all runs reported
here were made on a single,vector processor. Thus,
while vectorization was exploited, there are still
higher levels of parallelism that have not been

Fig. 2. Comparison of sparse matrix solvers on second problem set. All times
are in cpu seconds on one processor of a CRAY Y-MP system. Cases marked
NS were not solved due to excessive computational requirement. Memory is

in megawords. See text for discussion and further definition of terms

Matrix
Name 1 ns_3937 Sherman5 add32 mem + gematll
Order 3937 3312 4960 17,758 4929
Nonzeros 25,407 20,793 19,848 99,147 33,108

AF Time
MA28 20.87 6.40 0.33 2.05 0.75
UMFPACK 3.24 1.40 0.58 3.10 0.66
FAMP 5.63 1.90 0.67 NS 0.48

F Time
MA28 2.30 0.76 0.14 0.81 0.23
UMFPACK 1.07 0.50 0.21 0.96 0.24
FAMP 5.57 1.87 0.59 NS 0.44

S Time
MA28 0.027 0.016 0.024 0.087 0.027
UMFPACK 0.030 0.016 0.023 0.094 0.020
FAMP 0.052 0.021 0.016 NS 0.019

NZinLlJ
MA28 423,305 167,256 23,914 126,150 51,727
UMFPACK 761,194 426,616 46,953 202,888 97,195
FAMP 2,268,987 799,907 31,388 NS 257,346

Memory
MA28 1.130 0.464 0.156 0.681 0.219
UMFPACK 1.558 0.864 0.287 1.316 0.394
FAMP-ic 4.644 1.458 4.779 NS 0.891

-0c 2.383 0.663 4.760 NS 0.637

646 S. E. Z~INEY et al.

exploited. As disypsped ,above, the multifrontal
method is better’ suited than the frontal method to
exploiting parallelism at the task level. The recent
experiments of Hadfield and Davis (1994) have
demonstrated this significant potential for paralle-
lism. Lopki_ng to the future, it is this feature of the
multifrontal method that may make it especially
useful in solving process simulation and other prob-
lems on supercomputers.

Acknowledgements-This work was supported in part by
the National Science Foundation under Grants
DDM-9024946 and DMI-9322682 at the University of
Illinois and Grants ACS-9111263 and DMS-9223088 at the
University of Florida, and through the allocation of super-
computer resources, by Florida State University, the
National Center for Supercomputing Applications at the
University of Illinois, and Cray Research Inc. Steve Hamm
at Motorola provided the mem + and add32 matrices.

REFERENCES

Amestoy P. and I. S. Duff, Vectorization of a multiproces-
sor multifrontal code. Int. .I. Supercomput. Appl. 3, 41
(1989).

Davis T. A., User’s guide for the unsymmetric-pattern
multifrontal package (UMFPACK). Technical Report
TR-93-020 (available via anonymous ftp to ftp.cis.ufl.
edu in the lpublumfpack directory), CIS Department,
University of Florida, Gainesville, FL (1993).

Davis T. A., A combined unifrontal/multifrontal method
for unsymmetric sparse matrices. Presented at Fijth
SIAM Conf. on Applied Linear Algebra, Snowbird,
Colorado, July 1994 (available as Technical Report
TR-94-005 via anonymous ftp to ftp.cis.ufl.edu in the
Ipublumfpack directory).

Davis T. A. and I. S. Duff, An unsymmetric-pattern
multifrontal method for sparse LU factorization.
Technical Report TR-93-018 (available via anonymous
ftp to ftp.cis.ufl.edu in the lpublumfpack directory), CIS
Department, Ubiversity of Florida, Gainesville, FL
(1993).

Davis T. A. and I. S. Duff, An unsymmetric-pattern
mutlifrontal method for sparse LU factorization. SIAM
J. Matrix Anal. Appl., in press.

Dongarra J. J., J. Du Croz and S. Hammarling, A set of
level 3 basic linear algebra subprograms. ACM -Trans.
Math. Sofiw. 16, 1-17 (1990).

Duff I. S. and J. K. Reid, The multifrontal solution of
unsymmetric sets of linear equations. SIAM 1. Sci; St&.-
Comput. 5, 633-641 (1984).

Hadfield S. M. and T. A. Davis, Analysis of pqtential
parallel implementations of the unsymmetric-pattern
multifrontal method for sparse LU factorization.
Technical Report TR-92-017 (available via anonymous
ftp to ftp.cis.ufl.edu in the lpublumfpack directory),.CIS
Department, University of Florida, Gainesville, FL
(1992).

Hadfield S. M. and T. A. Davis, Potential and achievable
parallelism in the unsymyetric-pattern multifrontal LU
factorization method for sparse matrices. Presented at
Fifh SIAM Conf. on Applied Linear Algebra, Snowbird,
Colorado, July 1994 (available as Technical Report
TR-94-006 via anonymous ftp to ftp.cis.ufl.edu in the
lpublumfpack directory).

Liu J. W. H., The multifrontal method for sparse matrix
solution: Theory and practice. SIAM Rev. 34, 82-109
(1992).

Zitney S. E., Sparse matrix methods for chemical process
separation calculations on supercomputers. In
Proceedings of Supercomputing ‘92, pp. 414-423, IEEE
Computer Society Press, Los Alamitos, CA (1992).

Zitney S. E. and M. A. Stadtherr, Frontal algorithms for
equation-based chemical process flowsheeting on vector
and parallel computers. -Computers them. Engng ?c=
319-338 (1993a).

Zitney S. E: and fi. A. Stadtherr, Supercomputing strate-
gies for the design and analysis oi complex separation
systems. Znd. Ennnn them. Res. 32. 604-612 f1993bl.

Zitney S. E., R. J. kmarger and P. Winter, The‘impa&.of
supercomputing on dynamic simulation using the
SPEEDUP system., Presented at AIChE National
Meeting, New Orleans, March 1992.

Zitney S. E., L. Brilll, L. Lang and R. Zeller, Plantwide
dynamic simulation on supercomputers: modeling a
Bayer distillation process. Presented at Foundations of
Computer Aided Process Design, Snowmass Village,
Colorado, July 1994a.

Zitney S. E., K. V. Camarda and M. A. Stadtherr, Impact
of supercomputing in simulation and optimization of
process operations. In Proc. Second Int. Conf. on
Foundations of Computer-Aided Process Operations
(Edited by Rippen D. W. T., J. C. Hale and J. F.
Davis), pp. 463-468. CACHE Corp., Austin, TX
(1994b).

