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Abstract-A critical computational step in large-scale process simulation using rigorous equation-based 
models is the solution of a sparse linear equation system. Traditional sparse solvers based on indirect 
addressing are not effective on supercomputers because they do not vectorize well. By relying on 
vectorized dense matrix kernels, the multifrontal and frontal methods provide much better perfor- 
mance, as demonstrated using several examples. These examples are also used to compare the 
performance of frontal and multifrontal solvers. On problems with good initial matrix orderings the 
frontal method is most effective, while without a good initial ordering the multifrontal method is 
attractive. 

INTRODUCTION 
. . 

Steady-state or dynamic simulation tools are widely 
used in the design, optimization, and operation of 
chemical processes. Increasingly these tools are 
being used industrially in very large-scale, plant- 
wide studies based on rigorous physical and chemi- 
cal models. These trends have been made possible 
by impressive gains in computer performance and 
advances in numerical methods. Leading the way, 
modem supercomputers offer vector and parallel 
processing architectures for solving problems that, 
until now, could not be solved with other computa- 
tional tools. Today, this leading-edge technology is 
increasingly seen at price levels that make it more 
widely available to process systems engineers. Thus, 
the use of supercomputer technolpgy in process 
simulation is more practicable than ever before, and 
provides opportunities to solve larger-scale and 
more realistic plant models than ever before. 
However, since most current methods for solving 
process simulation problems were developed for use 
on conventional serial machines, they usually do not 
effectively take advantage of the vector and parallel 
processing architecture of supercomputers. Thus, to 
exploit supercomputing (as opposed to just using a 
supercomputer) requires the rethinking of the solu- 
tion strategies used in process simulation. In this 
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paper, we consider the sparse linear equation solv- 
ing strategies used in this context. 

BACKGROUND 

In large-scale process simulation using rigorous 
equation-based models, the key computational step, 
representing as much as 90% of the computation 
time on industrial problems (Zitney et al., 1992, 
1994a), is often the solution of a large sparse system 
of linear equations. ~ Process simulation matrices, 
however, do not have any of the desirable structural 
or numerical properties, such as symmetry, positive 
definiteness, diagonal dominance, and bandedness, 
often associated with sparse matrices, and usually 
exploited in developing efficient algorithms for vec- 
tor and parallel computation. Recent work (Zitney, 
1992; Zitney and Stadtherr, 1993a, b; Zitney et al., 
1994b) has demonstrated the potential of the frontal 
method as a sparse linear equation solver for process 
simulation problems. In fact, an implementation of 
the frontal method (FAMP), developed at the 
University of Illinois and Cray Research Inc., has 
now been incorporated in Cray Research versions of 
commercially used tools such as ASPEN PLUS, 
BATCHFRAC, RATEFRAC, and SPEEDUP 
(Aspen Technology Inc.). 

The frontal method is effective because, unlike 
traditional general-purpose sparse matrix solvers 
such as MA28 (Harwell) and LUlSOL (University 
of Illinois) that rely on indirect addressing, it makes 
use of easily vectorizable full matrix operations 
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performed on a sex&of frontal matrices. However, 
for process simulation problems the frontal matrices 
are often relatively large and sparse. Thus, while a 
high computational rate can be achieved when oper- 
ating on the frontal matrices, a large number of 
unnecasary operations on zeros are performed, 
thus lowering overall performance. 

In this paper we consider the multijrontal method 
as an alternative to the frontal method. The multi- 
frontal method, many aspects of which have recently 
been reviewed by Liu (1992), is a generalization of 
the frontal method, and was originally developed for 
symmetric systems. Like the frontal method, it also 
exploits low-level parallelism and vectorization 
through the use of dense matrix kernels on frontal 
matrices (e.g., Amestoy and Duff, 1989). However, 
the frontal matrices are generally smaller and denser 
than in the frontal method. Furthermore the multi- 
frontal method offers more opportunities for 
exploiting a higher level of parallelism than the 
frontal method. Though this classical multifrontal 
approach can be applied to unsymmetric systems 
(Duff and Reid, 1984), this has met with only 
limited success when the pattern of nonzeros is 
highly unsymmetric (as is the case for the matrices 
under consideration here). Recently a new 
unsymmetric-pattern multifrontal algorithm has 
been described by Davis and Duff (1993, in press). 
In the new algorithm, unlike the classical multifron- 
tal approach, frontal matrices are permitted to be 
rectangular and the unsymmetric structure is 
accounted for explicitly through the use of a directed 
acyclic graph. The performance of this new multi- 
frontal method in process simulation problems on a 
CRAY Y-MP supercomputer is compared here with 
that of the frontal method (FAMP), as well as that 
of the conventional code MA28. 

FRONTAL METHOD 

The use of the frontal method has been demon- 
strated in a simple example given by Zitney and 
Stadtherr (1993a). The basic idea is to restrict elimi- 
nation operations to a frontal matrix, on which 
dense matrix operations are performed. Beginning 
with the first row, equations are assembled (added) 
into the frontal matrix until some variable or vari- 
ables become fully summed (i.e., all their nonzero 
elements appear in the frontal matrix). Partial pivot- 
ing is then applied, the fully summed variable or 
variables are eliminated, and the pivot row(s) and 
column(s) removed from the frontal matrix. The 
assembly process then begins again and the method 
proceeds to alternate between assembly and elimi- 
nation phases until the matrix factorization is com- 
plete. To implement the frontal method, we use 
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Fig. 1. Matrix used as an example in the text. 

here the code FAMP, which originated at the 
University of Illinois (Zitney and Stadtherr, 1993a) 
and was later extended at Cray Research to include 
the use of BLAS2 and BLAS3 dense matrix kernels, 
as well as an out-of-core option for solving very 
large-scale problems, and separate analyze- __ 
factorize, factorize, and solve options. 

MULTIFRONTAL METHOD 
t_ Tj 

The unsymmetric-pattern multifrontal method 
factors a sparse, unsymmetric matrix with a 
sequence of dense frontal matrices, each of which 
corresponds to one or more steps of the overall LU 
factorization. To demonstrate the basic idea in the 
unsymmetric-pattern multifrontal method we use 
the example shown in Fig. 1. An initial pivot ele- 
ment is chosen, say element (1,l). The first frontal 
matrix is then started with this pivot row and column 
and all contributions to them. This leads to the 
matrix shown in Fig. 2(a). The pivot operation is 
then performed using a dense matrix kernel. As 
shown in Fig. 2(b), this computes a row of II and a 
column of L, as well as a contribution block (in the 
nonpivot rows and columns) that is saved for later 
use. Another pivot is now selected and a new frontal 
matrix begun. Say element (3,2) is selected, and 
note that this implies an unsymmetric permutation 
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Fig. 2. First frontal matrix in multifrontal method if first 
pivot is (1.1). (a) Before factorization; (b) after factoriza- 

tion. 
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(4 (b) 
Fig. 3. Next frontal matrix if (3,Z) is the next pivot. Note 
that pivoting on (4,3) can also be done in this frontal 

matrix. (a) Before factorization; (b) after factorization. 

of the matrix. The frontal matrix is started with row 
3 and column 2; all contributions to this row and 
column must now be assembled, both those from the 
original matrix elements and those from the contri- 
bution block of the previous frontal matrix. This 
leads to the matrix shown in Fig. 3(a). Note that 
since all contributions to row 4 and column 3 can 
also be assembled into this frontal matrix, an addi- 
tional pivot (4,3) can be performed, resulting in Fig. 
3(b). The search for additional pivots that can be 
performed within a frontal matrix, or that can be 
performed with only a small growth of the frontal 
matrix is significant since it allows the use of BLAS3 
.as opposed to BLAS2 kernels. 

Frontal matrices continue to be assembled and 
pivot operations performed in them until the L and 
U factors are completed. In the next section we 
focus on the implementation of the multifrontal 
method and how it differs from the frontal method. 

MULTIFRONTAL VS FRONTAL METHOD 

We discuss here only the sequential implemen- 
tation of the unsymmetric-pattern multifrontal 
method of Davis and Duff (1993, in press), as 
embodied in the UMFPACK library (Davis, 1993). 
A copy of UMFPACK may be obtained via anony- 
mous ftp to ftp.cis.ufl.edu in the lpublumfpack 
directory (it is free for non-commercial use only). 

In the frontal method, the pivot order of the 
columns is dependent on the row ordering, and the 
pivot order of the rows can vary only within certain 
constraints. A row can become pivotal any time 
between the time it is entered into the frontal matrix 
and the end of the factorization. Rows are entered 
into the frontal matrix in a predefined order. The 
pivot column ordering depends solely on the initial 
preordering of the rows. Unlike the frontal method, 
UMFPACK finds both a row and column pivot 
ordering as the matrix is factorized. No preordering, 
or partial preordering, is used. 

At the start of the factorization, no frontal matrix 
exists. UMFPACK starts a new frontal matrix with a 

global Markowitz-style pivot search. Suppose row i 
and column j are selected as the kth pivot row and 
column. A new cj X ri frontal matrix is formed in a 
working array of size (G . cj) X (G . ri), where the 
column degree Cj and row degree ri are the number 
of nonzeros in column j and row i of the partially- .’ 
factorized submatrix, and Gs 1 is a parameter con- 
trolling frontal matrix growth. The pivot row and 
column, some of the entries of the original matrix, 
and some of the updates from previous frontal 
matrices are assembled (added) into the current 
frontal matrix. Not all original entries or previous 
frontal updates can be assembled into the current 
frontal matrix (unless the current frontal matrix is as 
large as the (n-k) x (n-k) submatrix yet to be 
factorized). The approximate degree update phase 
determines upper and lower bounds on the number 
of nonzeros in the cj rows and ri columns affected by 
this frontal matrix. These bounds are used for subse- 
quent pivot searches (it is too costly to maintain the 
true degrees of each row and column). 

The frontal matrix is augmented with additional 
pivots, using a local pivot search of rows and col- 
umns within the frontal matrix. Augmentation con- 
tinues until a subsequent pivot would cause the size 
of the frontal matrix (including all of its pivot rows 
and columns) to become larger than the working 
array. The frontal matrix ‘E,, for steps k through 
k+gk- 1 of the LU factorization, where glr is the 
number of pivots factorized within E,, can be repre- 
sented as follows: 

c; c; 

R; Fk Bk 

[ 1 ti; Tk Dk 

The frontal matrix is labeled with the ordered sets 
R; and C; (the gl, pivot rows and columns, respecti- 
vely), and with the sets Ri and C; (the non-pivotal 
rows and columns that contain entries updated by 
the gk pivots). Contributions t0 the maWiCeS Fk, Bk, 

and Tk must be fully assembled; however, Dk may 
hold only a partial summation of the original matrix 
elements and contributions from previous frontal 
matrices. The pivot block Fk is now factored 
(Fk = L;Ui), thus computing the block-column Li of 
L and block-row U; of U, and replacing Dk with the 
Schur complement D;= Dk - L;U;. Thus, the fac- 
torized frontal matrix is: 

; C; 

R; L; \lJ; U; 

.:[I ] I, 
k 0; 

where the notation L; \ U; indicates two matrices 
packed in the same array. The goal of multifrontal 
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methods is to replace indirect addressing in inner- 
most loops with’ dense matrix kernels such as the 
Level-3 BLAS (Dongarra et al., 1990). A frontal 
matrix Ek can be factorized with the Level-3 BLAS 
if gk is greater than one. 

The method generates a directed acyclic graph (a 
dug) during factorization that describes the assembly 
process and precedence between the frontal 
matrices. This dag is referred to as the assembly dag, 
since it functions in a similar role as the assembly 
tree in the classical, symmetric-pattern multifrontal 
method (MA37) (Duff and Reid, 1984). In contrast, 
the assembly dag for the frontal method would 
simply be a linear chain, although the frontal 
method does not make use of such a dag. These dags 
or trees also express the parallelism inherent in the 
method, if each frontal matrix factorization is con- 
sidered a separate task. Thus, the frontal method 
cannot exploit parallelism between the tasks, where- 
as the multifrontal methods can. UMFPACK is 
better suited to unsymmetric matrices than MA37, 
and simulations show comparable levels of exploi- 
table parallelism in the two methods (Hadfield and 
Davis, 1992, 1994). 

The frontal method only stores the Dk term in its 
single working array, writing the pivot rows and 
columns into a separate data structure for the LU 
factors. The multifrontal method stores all of Ek 
until the factorization of Ek is complete. Thus, if the 
assembly dag in UMFPACK were forced to be a 
linear chain (as in the frontal method), UMFPACK 
would still require more than one frontal matrix 
(unless the single frontal matrix is n x II, which 
defeats the purpose). 

RESULTS AND DISCUSSION 

Tables 1 and 2 present results for the comparison 
of UMFPACK, FAMP, and MA28 on two problem 
sets to be described below. All times are given in 
cpu seconds on one processor of a CRAY ‘Y-MP 
system. The analyze/factor (AF) time is that 
required to determine a pivot sequence and factor 
the matrix; the factor (F) time is that required to 
factor the matrix given a pivot sequence; and the 
solution (S) time is that required to obtain a solution 
given the LU factors and a right-hand-side vector. 
The memory figures reported (in megawords) repre- 
sent the minimum required; more memory was 
actually used in these runs. Attempting to use the 
minimum memory would significantly lengthen fac- 
torization times. Two memory figures for FAMP are 
given: oc refers to use of the out-of-core option and 
ic to the memory that would have been required to 
keep the problem in core, as is done in the other two 
methods. The number of nonzeros in the LU factors 
is provided as a measure of the amount of numer$al 
computation performed by each method. In MA28 
and UMFPACK, the relative threshold pivot toler- 
ance used was 0.2; FAMP uses partial pivoting. The 
growth factor G in UMFPACK was set at 3. No a 
priori reordering of the matrices was performed 
outside the packages used. Cases marked NS were 
not solved due to excessive computational require- 
ment. 

The first problem set (Table 1) involves eight 
process simulation problems. Rdistl, rdist2, and 
rdisda are reactive distillation problems described 
by Zitney (j992), hydrlc and extrlb are dynamic 

Table 1. Comparison of sparse matrix solvers on first problem set. All limes are in cpu seconds on one processor of 
a CRAY Y-MP system. Memory is in megawords. Cases marked NS were not solved due to excessive computational 

requirement. See text for discussion and further definition of terms 

Name 
Order 
Nonzeros 

AF Time 
MA28 
UMFPACK 
FAMP 

F Time 
MA28 
UMFPACK 
FAMP 

S Time 
MA28 
UMFPACK 
FAMP 

NZ in LCJ 
MA28 
UMFI’ACK 
FAMP 

Memory 
MA28 
UMFPACK 
FAMP-ic 

-0c 

rdistl rdistl rdist3a hydrlc 
4134 3198 2398 5308 

94,408 56,934 61,896 25,276 

104.79 
1.78 
0.43 

5.21 1.85 3.65 0.25 
0.56 0.34 0.41 0.31 
0.42 0.24 0.21 0.20 

0.035 0.024 0.021 0.025 
0.022 0.017 0.014 0.026 
0.021 0.019 0.012 0.019 

841,900 398,775 539,726 73,954 
573,287 309,420 439,796 121,901 
624,140 547,202 324,680 133,399 

2.166 1.020 1.412 0.250 
1.185 0.723 0.847 0.395 
1.412 1.197 0.753 0.391 
0.166 0.105 0.106 0.126 

50.00 58.26 7.06 
1.45 1.62 1.43 
0.25 0.22 0.23 

extrlb lhr_4k 
2836 4101 

12,094 82,682 

4.74 52.81 
0.67 4.73 
0.09 0.46 

0.12 2.31 
0.15 0.71 
0.08 0.44 

0.013 0.026 
0.014 0.023 
0.010 0.023 

37,541 459,626 
65,062 495,503 
51,735 517,Oc4 

0.134 1.232 
0.233 1.217 
0.152 1.250 
0.053 0.218 

lhr_l’lk 
17,576 

381,975 

522.01 NS 
16.54 73.06 
2.14 8.00 

27.67 NS 
3.14 13.67 
1.99 7.37 

0.135 NS 
0.101 0.415 * 
0.096 0.369 

3,445,a27 NS 
2,225,140 9,667,709 
13937,363 7,181,471 

7.866 NS 
4.238 16.431 
4.756 16.922 

1 hr_‘lOk 
70.304 

1,528&Z 

0.885 2.563 
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simulation problems descr#d by Zitney et al. 
(1994b), and the lhr problems are extensions of the 
light hydrocarbon recovery process described by 
Zitney and Stadtherr (1993a). On these problems, 
both the frontal (FAMP) and multifrontal (UMF- 
PACK) methods.ar_e significantly faster than MA28, 
reflecting the use of vectorized dense matrix kernels. 
Also, on these problems, the frontal method outper- 
forms the multifrontal method. This is due to the 
presence of a good initial row ordering in these 
matrices. The performance of the frontal method 
depends strongly on the initial row ordering; thus in 
general some a priori reordering step is required, 
though there appears to be no consistently good 
technique for doing this on unsymmetric problems. 
The time to perform this reordering would have to 
be added to the frontal method’s AF time. No such 
reordering is needed in the multifrontal method. It 
was fortuitous in these cases that the matrices had a 
good (though probably not optimal) initial ordering. 
Such a good ordering is not uncommon if the equa- 
tions describing each unit (or equilibrium stage) in a 
process are kept together, and if adjacent units and 
streams are numbered consecutively, thus resulting 
in a nearly block-banded matrix corresponding to 
the unit-stream nature of the problem. Whether or 
not this will occur depends on the simulation soft- 
ware that generates the matrix and on the unit and 
stream numbers assigned by the user in the input to 
the simulation package. Some problems, such as the 

ones used here, that primarily involve separation 
columns, are especially likely to have a good initial 
ordering. However, good initial orderings cannot be 
guaranteed; thus there is a need either for a priori- 
reordering schemes, or techniques, like the multi- 
frontal method, that do not require them. . .’ 

To see the effect of not having such a good initial 
ordering, a second problem set (Table 2) involving 
five additional simulation problems were considered 
(see Davis and Duff (1993, in press) for the sources 
of these problems). These are two circuit simulation 
problems (add32 and mem + ), an electrical power 
system problem (gemutll), a computational fluid 
dynamics problem (lns_3937), and a reservoir simu- 
lation problem (shermati). On these problems the 
potential of the multifrontal method can be seen. 
On one problem (mem + ), the frontal method is not 
even competitive, due to the extremely large frontal 
matrix required to factor the matrix. The perfor- 
mance of the frontal method could be improved 
using an a priori reordering scheme, but unless this 
can be done cost effectively, the multifrontal 
approach may still be more attractive. A combined 
frontal/multifrontal solver, as described recently by 
Davis (1994) may also be attractive on some prob- 
lems. 

Finally it should be noted that all runs reported 
here were made on a single,vector processor. Thus, 
while vectorization was exploited, there are still 
higher levels of parallelism that have not been 

Fig. 2. Comparison of sparse matrix solvers on second problem set. All times 
are in cpu seconds on one processor of a CRAY Y-MP system. Cases marked 
NS were not solved due to excessive computational requirement. Memory is 

in megawords. See text for discussion and further definition of terms 

Matrix 
Name 1 ns_3937 Sherman5 add32 mem + gematll 
Order 3937 3312 4960 17,758 4929 
Nonzeros 25,407 20,793 19,848 99,147 33,108 

AF Time 
MA28 20.87 6.40 0.33 2.05 0.75 
UMFPACK 3.24 1.40 0.58 3.10 0.66 
FAMP 5.63 1.90 0.67 NS 0.48 

F Time 
MA28 2.30 0.76 0.14 0.81 0.23 
UMFPACK 1.07 0.50 0.21 0.96 0.24 
FAMP 5.57 1.87 0.59 NS 0.44 

S Time 
MA28 0.027 0.016 0.024 0.087 0.027 
UMFPACK 0.030 0.016 0.023 0.094 0.020 
FAMP 0.052 0.021 0.016 NS 0.019 

NZinLlJ 
MA28 423,305 167,256 23,914 126,150 51,727 
UMFPACK 761,194 426,616 46,953 202,888 97,195 
FAMP 2,268,987 799,907 31,388 NS 257,346 

Memory 
MA28 1.130 0.464 0.156 0.681 0.219 
UMFPACK 1.558 0.864 0.287 1.316 0.394 
FAMP-ic 4.644 1.458 4.779 NS 0.891 

-0c 2.383 0.663 4.760 NS 0.637 
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exploited. As disypsped ,above, the multifrontal 
method is better’ suited than the frontal method to 
exploiting parallelism at the task level. The recent 
experiments of Hadfield and Davis (1994) have 
demonstrated this significant potential for paralle- 
lism. Lopki_ng to the future, it is this feature of the 
multifrontal method that may make it especially 
useful in solving process simulation and other prob- 
lems on supercomputers. 
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