Algorithm xxx: Reliable Calculation of Numerical
Rank, Null Space Bases, Pseudoinverse Solutions,
and Basic Solutions using SuiteSparseQR

LESLIE V. FOSTER

San Jose State University
and

TIMOTHY A. DAVIS
University of Florida

The SPQR_RANK package contains routines that calculate the numerical rank of large, sparse,
numerically rank-deficient matrices. The routines can also calculate orthonormal bases for numer-
ical null spaces, approximate pseudoinverse solutions to least squares problems involving rank-
deficient matrices, and basic solutions to these problems. The algorithms are based on SPQR
from SuiteSparseQR (ACM Transactions on Mathematical Software 38, Article 8, 2011). SPQR is
a high-performance routine for forming QR factorizations of large, sparse matrices. It returns an
estimate for the numerical rank that is usually, but not always, correct. The new routines improve
the accuracy of the numerical rank calculated by SPQR and reliably determine the numerical rank
in the sense that, based on extensive testing with matrices from applications, the numerical rank
is almost always accurately determined when our methods report that the numerical rank should
be correct. Reliable determination of numerical rank is critical to the other calculations in the
package. The routines work well for matrices with either small or large null space dimensions.
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1. INTRODUCTION

For an m X n matrix A, the numerical rank of A can be defined as the number of
singular values larger than a specified tolerance 7. Calculation of numerical rank is
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2 . L. V. Foster and T. A. Davis

important in the presence of rounding errors and fuzzy data [Golub and Van Loan
1996, p. 72]. If the numerical rank of a matrix A is r and X is a subspace of
dimension n — r, we say that X is a numerical null space of A for tolerance 7 if
A <T 1
e, [l As])/|la] < 7 1)
Throughout the paper || - || indicates the Euclidean norm. It follows that if N is an
n X (n — r) matrix whose columns form an orthonormal basis for X', then

|AN]| < 7. (2)
If we wish to solve the least squares problem

min || Az — b (3)

and if the numerical rank 7 of A is less than n, then it is useful to find the minimal
norm or pseudoinverse solution [Bjérck 1996, p. 15] to

mmm||ﬁx —b||. (4)

where A has (exact) rank r and is close to A. We call the minimum norm solution
to (4) the approximate pseudoinverse solution to (3). Another solution to (3) that
can be useful is a basic solution. Here, by basic solution we mean an approxi-
mate solution to (3) where the number of nonzero components in x is less than or
equal to the estimated rank of A determined by the routine SPQR. Calculations of
numerical ranks, numerical null spaces, approximate pseudoinverse solutions, and
basic solutions are useful in many applications [Chan and Hansen 1992], [Enting
2002], [Gotsman and Toledo 2008], [Hansen 1998], [Li and Zeng 2005]. The focus of
this paper is on the calculation of these quantities for sparse and potentially large
matrices in the presence of computer arithmetic or other errors.

The routines in SPQR_RANK calculate estimates of upper and lower bounds for
singular values of A and use these estimates to report a warning when the calculated
numerical rank may be incorrect. Section 3.5 demonstrates that either the rank is
accurately determined or an accurate warning is returned (with one rare exception).

The most widely used method for determination of the numerical rank, an or-
thonormal basis for the numerical null space, and an approximate pseudoinverse
solution to (3) is the singular value decomposition (SVD): A = UDVT, where U is
an m x m orthogonal matrix, V' is an n X n orthogonal matrix, and D is an m X n
diagonal matrix whose diagonal entries, 01 > 02 > ... > Opin(m,n), are the singular
values of A. Let r be the numerical rank of A for some tolerance 7, so that o, > 7
and 0,41 < 7. Also let X be the last n — r columns of V' and X be the span of the
columns of X. It follows from the SVD definition, A = UDVT, that

amax [|Aa/lfal| = ors1 and [|AX]| = o1 (5)
Furthermore, by the minimax characterization of singular values [Bjorck 1996, p. 14]
for any other subspace & of dimension n —r
e[| Axll/|fal] > o1,
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20XX.
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Although the singular value decomposition is, in the above sense, the most accurate
method for calculating the numerical rank and a numerical null space, the SVD is
expensive to compute for a large matrix because sparsity cannot be exploited in X.
Therefore, it is of interest to explore alternatives to the SVD for these problems.

A critical tool for our algorithms is the SuiteSparseQR package [Davis 2011]. The
SPQR routine in SuiteSparseQR. is a high-performance, sparse QR factorization
based on the multifrontal method. In addition to the speed of SPQR, two features
that are important for our use are the ability to estimate the numerical rank of
A and the ability to represent an orthogonal matrix, @, in sparse format using
Householder transformations. The sparse representation of @ leads to a sparse
representation for the orthonormal basis of the numerical null space, enabling the
computation of null spaces of high dimension.

The numerical rank estimated by SPQR relies on Heath’s method [Heath 1982],
which is often but not always accurate [Foster 1990]. We estimate bounds on
certain singular values of A to determine if the numerical rank calculated by SPQR
is correct. Furthermore, if the numerical rank returned by SPQR is incorrect, our
routines are able, in most cases, to correct the numerical rank and determine a
corresponding orthonormal basis for the numerical null space, basic solution, and
an approximate pseudoinverse solution to (3).

It can be difficult to accurately determine the numerical rank if the tolerance 7 is
near a singular value of A. In this case, changes in the tolerance or in A can change
the numerical rank. However, when there is a significant gap in the singular values
so that o, >> 0,41, 7 lies between o,4; and o,, and 7 is near neither, then small
changes in A or the tolerance 7 will not affect the numerical rank. Hansen [Hansen
1998, p. 2] uses the term “rank-deficient problem” for matrices with a cluster of
small singular values with a well-determined gap between large and small singular
values. [Pierce and Lewis 1997, p. 177, 179] use the term “well-posed” for problems
with a significant gap in the singular values. Following [Bischof and Quintana-Ort{
1998, p. 227], we use the term “well defined numerical rank” for matrices with
a well-determined gap in the singular values. Our routines often work better for
matrices with a well defined numerical rank.

In the following section we discuss SPQR and our new algorithms:

(1) SPQR-BASIC, which determines a basic solution to (3);

(2) SPQR-NULL, which constructs an orthonormal basis for the numerical null
space of A;

(3) SPQR-PINV, which constructs an approximate pseudoinverse solution to (3);

(4) and SPQR_-COD, which uses the complete orthogonal decomposition, defined
below, to construct the approximate pseudoinverse solution to (3).

As is discussed in Section 2.7, the routines require varying amounts of computations
and memory use. In Section 3 we discuss numerical experiments and Section 4
contains conclusions.

2. ALGORITHMS AND SINGULAR VALUE ERROR BOUNDS

The four algorithms mentioned above all estimate upper and lower bounds on cer-
tain singular values to determine whether the numerical ranks determined by the

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20XX.



4 . L. V. Foster and T. A. Davis

algorithms appear to be correct. Four well known results below are used to de-
termine the estimated bounds; the first three provide rigorous error bounds for
singular value locations, and the last theorem is used to estimate error bounds on
certain singular values:

THEOREM 1. (Singular Value Perturbation Bounds) [Golub and Van Loan
1996, p. 449] If A and E are m by n matrices, then for k = 1,2,..., min(m,n)
lok(A+ E) — or(A)| < ||E|| where o1 (A) is the k" singular value of matriz A.

THEOREM 2. (Singular Value Interlace Property) [Golub and Van Loan
1996, p. 449] Let A = [ay,...,a,] be a column partition of the m by n matriz A
with m > n. If A, =la1,...,a,), then forr=1,...,n—1

01 (ArJrl) > Ul(Ar) > JQ(ArJrl) > .2 Ur(ArJrl) > UT(AT) > Jr+1(Ar+1)~

THEOREM 3. (Singular Value Minimax Property) [Bjorck 1996, p. 14] If A
is an m by n matriz and if S is a subspace of R™, then for k =1,2,... , min(m,n)

A
ox(A) = min ma [[Az] .
dim(S)=n—k+1 x€S, z#0 ||.23||

THEOREM 4. (Eigenvalue Error Bound) [Demmel 1997, p. 205] Let A be an
n by n symmetric matriz, v be a unit vector in R™, and X\ be a scalar. Then A has
an eigenpair Av; = \v; satisfying |N; — | < ||Av — \vl|.

Our routines SPQR_BASIC, SPQR_NULL, SPQR_PINV, and SPQR_-COD (dis-
cussed in Sections 2.3 to 2.6) are based on SPQR (see Section 2.1) and subspace
iteration applied to the inverse of certain matrices to estimate small singular values
(SPQR-SSI, in Section 2.2). These methods rely upon our SPQR_SSP routine to
estimate matrix norms (see the Appendix). Section 2.7 summarizes the key dif-
ferences between our algorithms (see Table I). Section 2.8 briefly discusses other
algorithms in the literature that can be used for calculation of numerical rank,
pseudoinverse solutions, basic solutions, or numerical null spaces of a matrix.

2.1 SPQR

SPQR [Davis 2011] is a high-performance, multifrontal sparse QR factorization
method that appears as the built-in qr in MATLAB. It returns an estimate of the
numerical rank ¢ of A [Heath 1982], and decomposes A into

R R R
AP1:Q1R+E1:Q1<01>+E1:Q1< 011 012>+E1 (6)

where P; is an n X n permutation matrix, Q1 is an m x m orthogonal matrix, E; is
an m X n error matrix, R is a m X n right trapezoidal matrix (assuming ¢ < n), Ry
is an £ X n right trapezoidal matrix, Ry is a £ x £ triangular matrix whose diagonal
entries are larger in magnitude than a given tolerance 7, and Ry2 is {x (n—¢). SPQR
can return () as a sparse matrix or as a set of sparse the elementary Householder
transformations. We rely upon the latter, which takes much less memory but is not
available via the built-in MATLAB qr function. In most cases ¢ equals the true
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numerical rank r of A, but in some cases R;1, although technically nonsingular, is
very ill-conditioned. In such a case r < ¢, which we discuss in in the next section.
SPQR also returns || E1||r, where || - || indicates the Frobenius norm.

Given a tolerance 7, Heath’s technique estimates the numerical rank of A by
comparing the magnitude of diagonal entries in R to 7. In SPQR the implemen-
tation of Heath’s idea is done by triangularizing the matrix A using Householder
transformations. If, after the i*" column is forced to zero below the diagonal, the
magnitude of the diagonal entry is less than or equal to 7, then the diagonal entry
ri; is set to zero. The i*" column is implicitly permuted to the right of the current
partly triangularized matrix and the new i*" column is processed with Householder
transformations.

THEOREM 5. Let A be an m X n matriz, let (6) be the decomposition produced
by SPQR, and let w be a vector consisting of the diagonal entries that are set to
zero during the QR factorization in SPQR. Then

|Er[[P = [[w]|  and (7)

L] < fJw|| < vn— £ 7. (8)

PROOF. Assume orthogonal transformations 1 and P; in (6) are applied to A
without dropping diagonal entries and define the unperturbed factorization

R=QTAP,. 9)

Compare R in the unperturbed factorization (9) with R in (6). Suppose for some
i, ryi < 7. The " column of R is moved to the right and r;; is set to zero so
that the entire column on or below element i is zero. Subsequent Householder
transformations act only on a subset of rows ¢ to m of this column. Thus, in the
perturbed matrix (with 7; = 0) the column remains zero on or below element 4.
When the orthogonal transformations are applied in the unperturbed factorization
(9), at step i of the algorithm the norm of rows i to m of column ¢ has magnitude ;.
Subsequent orthogonal Householder transforms do not change this norm. Therefore,
when the algorithm is complete, for each column with a diagonal entry set to zero,
the norm of the difference in the column of R and R is |r;;|. The other columns of
R and R are identical. ||E||p = ||w|| in (7) follows. The inequalities in (8) follow
by norm properties and since w can have at most n — £ nonzero entries. [

2.2 Subspace Iteration to Estimate Singular Values of a Nonsingular Triangular Matrix

Usually ¢, the estimated numerical rank determined by SPQR, is a good estimate
of the correct numerical rank r of A: in most cases £ = r and in many other
cases £ and r are relatively close. If so, the ¢ x ¢ matrix Rj; (and also the ¢ x ¢
matrix 7" defined in Section 2.6) has a low dimensional numerical null space. Let R
represent any £ x £ nonsingular, triangular matrix with a low dimensional numerical
null space. For example R could be R1;. We can efficiently estimate the smallest
singular values of such a matrix R and the corresponding singular vectors using
an appropriate iterative method applied to R~7R~!. One could use, for example,
Lanczos method as implemented in ARPACK [Lehoucq et al. 1998]. We found,
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6 . L. V. Foster and T. A. Davis

however, that subspace iteration (sometimes called orthogonal iteration [Golub and
Van Loan 1996, p. 332]) is more reliable and more suitable for our use.

There is a variety of potential implementations of subspace iteration when calcu-
lating eigenvalues of symmetric matrices [Parlett 1980, pp. 289-293] and these can
be adapted to finding singular values of nonsymmetric matrices [Berry 1994], [Vo-
gel and Wade 1994], [Gotsman and Toledo 2008]. Our implementation of subspace
iteration, which we call algorithm SPQR_SSI, is given on the following page.

The key to the stopping criteria in SPQR_SSI is to continue the algorithm until
the estimates of singular value r and r + 1 are sufficiently accurate so that

or(A) >7 and o,41(A) <7 (10)
We describe some of the details in terms of the final U, V and s1,...,s;. The code
uses equivalent conditions involving $1,. .., $x, U, and V in the repeat loop (except

for condition (2), which is calculated after leaving the loop for efficiency):

(1) (a) sy >7and (b) so <7

(2) (a) ||[RV(:,2:k)|| <7 and (b) ||[RTU(:,2: k)|| < 7 (using MATLAB notation)
(3) e1 < fls1 — 7]

(4) e; < fSl

The algorithm fails if the maximum number of iterations or maximum block size is
exceeded without meeting all of these four conditions for success. By the singular
value minimax property (Theorem 3) in exact arithmetic each of (1b), (2a) or (2b)
imply the second condition in (10). In finite precision arithmetic, it is useful to
require all three conditions to insure that o,41(A) < 7.

. 0 R U U RV -US
Theorem 4 applied to columns of (RT 0 ) (V) — (V) S = ( 0 )

implies that, for each j, 1 < j < k, |s; — a] < e; for some singular value o of
R. Therefore, for each j, 1 < j < k, e; is a bound on the error in using s; to
approximate some singular value of R. In our testing usually |s; — ov—rtj| < e;.
However, since this is not guaranteed by the theory, we consider e; to be an estimate
for a bound on the error in approximating o,—j1; with s;.

If we assume that |s; — 0| < e, then this inequality, (1a), and (3) with f =1
imply the first condition in (10). Since e; is only an estimate for a bound on |s1—o|,
in our stopping criteria we require that (3) and (4) are true with f < 1. The default
value in our code, f = 0.1, works well in the testing described in Section 3.

In most cases the estimated rank determined by SPQR is identical or close to the
true numerical rank. Therefore, the block size b in Algorithm SPQR_SSI is usually
small. At each iteration the singular value decompositions take O(£b?) operations,
which is thus normally a small amount of work. The extra work for increasing the
size of U also requires O(¢b?) operations per step, when necessary. Because b is
increased as needed, the choice of the initial block size is not critical.

Algorithm SPQR_SST is related to Algorithm SI in [Vogel and Wade 1994, p. 741]
and Algorithm SPIT in [Chan and Hansen 1990, p. 525]. Neither of these algorithms
dynamically increase the block size and Algorithm SI estimates large singular values,
not small singular values.

Theorem 3.1 of [Vogel and Wade 1994, p. 742] describes the convergence rates of
the approximate singular values in Algorithm SI to the singular values of R. Since
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SPQR_SSI: subspace iteration to estimate singular values
Input:
e R: an ¢ x { nonsingular, triangular matrix
e 7: the tolerance defining the numerical rank of R
e other options including init_block_size, the initial block size (default 3);
block_size_increment, the increment for the block size (default 5); max_block_size, the
maximum block size (default 10); max_iters, the maximum number of iterations
(default 100); and convergence factor f <1 (default 0.1), discussed above
Output:
e U: an ¢ X k matrix containing estimates of the left singular vectors of R
corresponding to estimated singular values in S. Upon success, r = £ — k + 1 is the
estimated numerical rank of R and U(:,2: k) is an orthonormal basis for the
numerical null space of RT.
e S: a k x k diagonal matrix whose diagonal entries s; > s2 > ... > s are the
estimated smallest k singular values of R, with k as described above.
e VV: an ¢ x k matrix containing estimates of the right singular vectors of R
corresponding to estimated singular values in S. Upon success, V (:,2: k) is an
orthonormal basis for the numerical null space of R.
e stats: a structure containing additional information including the estimated
numerical rank, r, of R; e;,j = 1,...,k, which are estimates for bounds on the errors
in approximating singular value o¢_; 1, (R) with s;; and a flag indicating if the
method is successful. If successful, the numerical rank appears to be correct, s; > 7,
and s < 7.
Initialize:
e b = the current block size = init_block_size
e U = a random ¢ X b matrix with orthonormal columns
repeat
e Solve the triangular system RV; = U to calculate V1 = RU.
e Determine the compact SVD of Vi: VDleT = Vi, where V is £ x b,

Dy is a b x b diagonal matrix, and X7 is b x b
e Solve the triangular system RTU, =V to calculate U; = R7TV.
e Determine the compact SVD of U;: UDQXQT = Uy, where U is £ X b,

Ds is a b x b diagonal matrix, and X2 is b x b
e let $;,7i=1,2,...,b, be diagonal entries of Ds
if 3, > 1/7 then

e Y = orthonormal basis for a block_size_increment dimensional subspace
orthogonal to the column space of U
e Redefine U = [U, Y] and increase b

end
until until stopping criteria is met, see the previous page ;
if stopping criteria for success is met then
e Let k be the smallest ¢ with $; < 1/7andlet r=¢—k+1
e Redefine V: let V = V X3 and reorder, in reverse order, columns 1 to k of V'
e Redefine U: reorder, in reverse order, columns 1 to k& of U
® S5 = 1/557,«,j+2, ] = 1,2,...,]{,‘
e For j =1,2,...,k let e; = ||Rv; — u;s;||/v/2 where v; is the j'" column of V/

and u; is the %" column of U
e Report success
else

| e Report failure

end
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8 . L. V. Foster and T. A. Davis

the singular values of R~! are the reciprocals of the singular values of R, the results
of [Vogel and Wade 1994] can be adapted to inverse iteration. The convergence rates
of the approximate singular values in Algorithm SPQR._SSI are described by the
adapted results. Let o;, j = 1,...,¢, be the singular values of R and note that
upon termination of Algorithm SPQR_SSI, s;_,11 is an approximation to o; for
j=rr+1,...,0 Assume the algorithm is successful, terminating with b > ¢ — r.
In addition, assume that o¢_p > o¢_py1. Let p be the number of iterations in the
algorithm. Then the relative errors for the singular value approximations obtained
by Algorithm SPQR_SSI converge to zero at the asymptotic rate

M:0<(Jﬂ> )7]':7"77"—1—1,...,3. (11)
0j 0¢—b

Note that o /0¢—p < opq1 /0y for j =r+1,...,¢. It follows that when the numerical
rank is well defined, in the sense that 0,41 << o0, convergence will be rapid to
singular values o,41,0,42,...,0.

2.3 Basic Solution to a Rank Deficient Least Squares Problem

To determine a basic solution (3), we initially apply SPQR to A and use SPQR_SSI
to determine if the estimated numerical rank returned by SPQR is correct, and then
correct it if necessary. See the following page for the SPQR_BASIC pseudocode.

As discussed in the proof of Theorem 5, no perturbations are made to the columns
of A that are used in the construction of Rqi. From this fact and Theorem 2, it
follows that o;(R11) < o;(A) for ¢ = 1,2,...,¢. This is the justification for the
estimated lower bounds calculated in the first part of step (5). It follows from (6),
Theorem 5, the singular value perturbation bound (Theorem 1), and the singular
value minimax property (Theorem 3), that the values returned in the second part
of step (5) are upper bounds for singular values r,7 + 1,...,min(m,n) of A. This
is the justification of the upper bound in step (5) when the null space of A7 is
not requested. By the singular value minimax property (Theorem 3) the largest
singular value of ATN is an upper bound on singular value » + 1 of A. This is
the justification for estimated upper bound on singular value r + 1 of A in step
(5) when the null space of AT is requested. In step (5) the cost of calculating the
singular values of UT Ry is usually relatively small since k is usually small: the
default parameter choice restricts k < 10.

Since our codes use finite precision arithmetic, the numerical rank returned by
SPQR_BASIC corresponds to exact calculation applied to A+E where E is O(¢|| 4]|)
and e relative machine precision. Thus, the tolerance used to define the numerical
rank should be larger than €||A||. The default choice in our code is the MATLAB
expression max(m,n) *eps (normest (A,0.01)) where eps(x) is the spacing in the
floating point number system near x and normest(A,0.01) estimates ||A||. This
choice is essentially the same as the choice in the MATLAB rank command and it
works well in the numerical experiments described in Section 3. Since SPQR_BASIC
uses estimates of bounds on the singular values to determine if it is successful, the
algorithm does not guarantee that the calculated numerical rank is correct when it
reports success. However, the numerical experiments in Section 3 indicate that in
practice the method provides a very reliable indicator of its success or failure.
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SPQR_BASIC: approximate basic solution to min ||b — Ax||

Input:

e an m X n matrix A and an m X p right hand side B

e the tolerance 7 defining the numerical rank of A

e other user selectable parameters with default values supplied by the routine
Output:

e an n x p matrix x. The j** column of = contains a basic solution to (3) with b =
the j*" column of of B

e a structure stats that contains the calculated numerical rank and estimates of
upper and lower bounds for singular values of A.

e optionally, SPQR_BASIC can return an orthonormal basis for the null space of A
Calculations:

(1) Apply SPQR, with tolerance set to 7, to A, returning Pi, R1, Ri11 and Riz in (6)
and ||w|| where w is the vector of perturbations described in Theorem 5. If an
orthonormal basis for AT is requested, also return Q. Let £ be the estimated
numerical rank returned by SPQR so that Ri1 is £ x £.

(2) Apply SPQR_SSI to Ri11 with tolerance set to 7.

(3) Let ¢ = QTb and &= the first £ components of ¢. If 7 = £, let Z be the solution to
Ruz=c Ifr<{let Us=U(;2:k), Vo=V (:;,2: k), and calculate Z using
deflation [Stewart 1981], [Chan and Hansen 1990]: 2= (I — VaV5 )R™Y(I — U=U{ ).
Let z = [z;0] with zeros added so that z has n components and let z = P z.

(4) Calculate a null space basis, ]/\\7, of AT if requested:

if r = ¢ then
N= Q1 * [0; I] where, here and below, I is an n — £ by n — ¢ identity matrix.

else if r < / then
N = Q1 % [Us,0;0,1].

(5) Check that the calculated numerical rank, r, is correct:

e Lower bounds: Estimated lower bounds for o;(A),i = 7,7+ 1,...,¢, are

s; —ej,j =1,2,... k, respectively. Zero is a lower bound to o;(A),

i=L0+1,£42,...,min(m,n).

e Upper bounds:

if the nullspace of AT is not requested then
For upper bounds for singular values r,r + 1,...,¢ of A, return ||w|| plus the
singular values 1,2, ...,k of UTR; (the latter computed by svd in MATLAB).
For upper bounds on o;(A), it =€+ 1,£+ 2,...,min(m,n), return ||w||.

else
For singular value r + 1 of A return the minimum of the above upper bound
for this singular value and an estimated upper bound calculating using
SPQR-SSP (see the Appendix). The sum of the estimated largest singular
value of AN and the error bound on this estimate, as calculated by
SPQR_SSP, is an estimate of an upper bound on singular r + 1 of A.

e Check the numerical rank: If the estimated lower bound for o,(A) > 7 and if the
estimated upper bound for o,41(A) < 7, then the routine is successful. If the
estimated lower bound for o,.(A) is greater than the estimated upper bound for
or+1(A) > 7, then raise a warning and return 74+, an alternate tolerance value, set
equal to the estimated upper bound for o,41(A). The calculated numerical rank
with tolerance equal to 74: appears to be correct. Otherwise, report an error.
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2.4 Null Space Calculation using SPQR_NULL

SPQR_NULL calculates an orthonormal basis for the null space of A. It applies
SPQR_BASIC to AT, rather than A, using the option to return a null space basis to
A and skipping the computation of the solution vector (step (2) of SPQR_-BASIC).

Our calculation of a null space basis requires storage of (J1. The default option for
SPQR_-NULL is to represent the null space basis in an implicit form using a feature
of SPQR that represents )1 in terms of sparse Householder transformations. The
null space is then represented implicitly by storing the orthogonal matrix @ and

the matrix
_(U(G2:k)0
xo (V20 2

The matrix X is stored as a sparse matrix. This is usually a good storage mode since
the number of columns of U(:, 2 : k) is usually small. A routine SPQR_-NULL_MULT
is supplied to multiply an implicit null space basis by another matrix. The implicit
storage mode makes it practical to calculate and represent null spaces of matrices
with high dimensional null spaces.

2.5 Pseudoinverse solution using SPQR_PINV

The routine SPQR_PINV calculates an approximate pseudoinverse solution to (3)
by calling SPQR_-BASIC and SPQR_NULL. Step 3 of SPQR_PINV can, in some
cases, lead to loss of precision in the calculated x, for example if ||z || is significantly
larger than ||«||. This potential problem is discussed further in Section 3.2.4.

SPQR_PINV: pseudoinverse solution to min ||b — Az||

Input: same input as algorithm SPQR_BASIC

Output:

e an n X p matrix z. The j** column of = contains the pseudoinverse solution to (3)
with b = the %" column of of B

e the structure stats described in SPQR_-BASIC

e optionally, return an orthonormal basis for the null space of A and of AT
Calculations:

(1) Apply SPQR_BASIC with tolerance set to 7 to A producing basic solution =g

(2) Apply SPQR-NULL with tolerance T to A producing an orthonormal basis N for
the numerical null space of A.

(3) The pseudoinverse solution is z = g — N(N”xg). This can be calculated using the
routine SPQR_NULL_MULT mentioned following equation (12).

(4) Optionally, if the user requests, return N, an orthonormal basis for the numerical
null space of A calculated by SPQR_NULL, and N , an orthonormal basis for the
numerical null space of AT calculated by SPQR_BASIC.

(5) Report success if both SPQR_BASIC and SPQR_-NULL report success. Return
estimates of upper bounds for singular values of A by choosing the maximum of the
estimated upper bounds returned by SPQR_-BASIC and SPQR_NULL and return
estimates of lower bounds for singular values of A by choosing the minimum of the
estimated lower bounds returned by SPQR_-BASIC and SPQR_-NULL.
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2.6 Calculations using a Complete Orthogonal Decomposition and SPQR_COD

The routines SPQR_BASIC, SQPR_NULL, and SPQR_PINV often work well in
practice, but occasionally they fail or they return upper and lower singular value
bounds that are significantly different. In these cases an algorithm using the com-
plete orthogonal decomposition can be useful. For an m x n matrix A, consider the
decomposition

00

where U is an m x m orthogonal matrix; V is an n X n orthogonal matrix; T is an
r X r nonsingular, triangular matrix; and F is a small error matrix. If E is zero,
then (13) is the complete orthogonal decomposition (COD) [Golub and Van Loan
1996, p. 250], [Bjorck 1996, p. 23] and r is the rank of A. If E is small but not
zero, we call (13) the approximate complete orthogonal decomposition. The COD is
potent since it can be used to determine the rank of A, the fundamental subspaces
of A, and the pseudoinverse solution to (4) [Golub and Van Loan 1996, p. 256],
[Bjorck 1996, pp. 110-111]. The approximate COD can determine the numerical
rank, numerical fundamental subspaces, and an approximate pseudoinverse solution
to (3). Pseudocode for SPQR-COD is given on the following page.

Applying Theorem 5 to equation (15), it follows that ||Ea||r = ||w]| and || E2]|] <
||w||. Therefore, by the singular value perturbation property, Theorem 1, |o;(A) —
oi(T)] < ||w|| for i =1,...,¢. Also, s; —ej,j =1,2,...,k, are estimated lower
bounds for ¢;(T),i = r,r + 1,...,¢, respectively. These comments provide justifi-
cation for the estimated lower bounds returned by SPQR_COD. Justification of the
upper bounds follow from similar arguments.

A:U(TO)VT+E (13)

2.7 Comparison of Algorithms

Table I compares the routines SPQR_BASIC, SPQR_NULL, SPQR_PINV, and
SPQR_COD. The last column reflects the results of the experiments in Section 3.2.

The memory requirements and computational work listed in Table I are approxi-
mate. For example, in the computation work column the work to calculate the error
estimates is not included and the memory requirements column does not include
the memory needed for storing permutation matrices (which are stored as vectors
in the code). The orthogonal matrices are stored in terms of sparse Householder
factors which can be a significant savings in memory.

The table suggests that SPQR_BASIC requires the least memory and computa-
tion work. SPQR_NULL requires approximately the same work but more memory.
SPQR_PINV calls both of these algorithms and requires more memory and work.
SPQR_COD begins with a sparse QR factorization of A which results in fill-in while
calculating R;. The algorithm follows this with a sparse QR factorization of RY.
These sequential factorizations can compound the fill-in, leading to larger memory
requirements and work than is required by SPQR_PINV, which factors A and AT
separately.

2.8 Other Algorithms

There are many algorithms [Davis 2011, p. 2] that solve the least squares problem
(3) using sparse QR factorizations. However, only SPQR [Davis 2011] and the
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SPQR_COD: approximate pseudoinverse solution to min||b — Az||
Input: same input as algorithm SPQR_PINV

Output: same output as algorithm SPQR_PINV

Calculations:

(1) Apply SPQR, with tolerance set to 7, to A, producing Pi, R1, Ri1 and Ri2 in (6)
and ||w||, where w is the vector of perturbations described in Theorem 5. Let £ be
the estimated numerical rank returned by SPQR so that R; is ¢ X n.

(2) Apply SPQR with tolerance set to zero to RY, constructing an £ x £ permutation
matrix 132, an n X n orthogonal matrix @2, and an £ X £ right triangular matrix T

such that
= T
RIP,=Q: < 0 ) . (14)
Let the m X m permutation matrix P, = ( 1;2 (;) It follows from (6) and (14) that
T" 0\ A1 pr
A=@iP2 () ) QP + B (15)

Here E> = ElPlT. Since Q1 P> and P1Q2 are orthogonal then (15) is an approximate
complete orthogonal decomposition of A.
(3) Apply SPQR_SSI to T with tolerance set to 7.
(4) Let ¢ = P QTb and ¢ = the first £ components of ¢. If = £, let 2 be the solution to
TTZ2=0C Ifr <t let Uy =U(:,2: k), Va = V(;,2: k), and calculate Z using
deflation [Stewart 1981], [Chan and Hansen 1990]: 2= (I — U2U3)T~ T (I — VaV5h e
Let z = [z;0] adding zeros so that z has n components. Finally, let z = P1Q2z.
(5) Calculate a null space basis, N, of A, if requested:
if r = ¢ then
N = P % Q2 % [0; I] where I is an n — £ by n — £ identity matrix
else if r < ¢ then
N = Py % Q2 % [Us,0;0, I]
Calculate a null space basis for AT, if requested, in a similar manner.
(6) Check if the calculated numerical rank, r, is correct:
e Lower bounds: Return s; —e; — ||w||,j =1,2,...,k, for estimated lower bounds
for o;(A),i =r,r+1,...,£, respectively. Return zero for an lower bound to singular
values 0;(A), i =L+ 1,0+ 2,...,min(m,n).
e Upper bounds: Return s; +e; + ||wl||,5 =1,2,...,k, for estimated upper bounds
for o;(A),i =r,r+1,..., ¢, respectively. Return ||w|| for an upper bound to
singular values 0;(A), i =€+ 1,4+ 2,...,min(m,n). The basis N for the null space
of A can be used to improve the upper bound for o,11(A).
e Check the numerical rank with the same procedure used in SPQR_-BASIC.

algorithm discussed in [Pierce and Lewis 1997], which is based in part on ideas from
[Foster 1986], can handle rank deficient matrices and also implement the efficient
multifrontal approach [Davis 2011, p. 9]. [Pierce and Lewis 1997] use a dynamic
mixture of Householder and Givens rotations, which would make Q difficult to
keep. Thus, their method does not keep a representation of Q, but rather discards
the transformations as they are computed. Our methods presented in this paper,
except for SPQR_BASIC, require ). Least squares problems with rank deficient
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Primary Principal Principal
Algorithm Application Memory Computational Accuracy
Requirements Work
Basic Ry in (6), SPQR to A, usually
SPQR_BASIC Solution U,V from SPQR_SSI SPQR_SSI to Ri1 good
to (3) in (6)
Orthonormal R; and Q1 SPQR to AT, usually
SPQR_NULL Null Space in (6), SPQR_SSI to R11 good
Basis U,V from SPQR_SSI in (6),
SPQR_SSP to (AN)
Approximate maximum of sum of
SPQR_PINV pseudoinverse SPQR_BASIC, SPQR_BASIC, usually
solution SPQR-NULL SPQR_-NULL good
to (3) memory work
Approximate R1 in (6), SPQR to A,
SPQR-COD pseudoinverse Q2, T in (14), SPQR to RT in (6), good
solution U,V from SPQR_SSI SPQR_SSI to T,
to (3) SPQR_SSP to (AN)
Table I. Comparison of SPQR_BASIC, SPQR_NULL, SPQR_PINV, and SPQR_COD

matrices can also be solved using iterative techniques such as LSQR [Paige and
Saunders 1982] or LSMR [Fong and Saunders 2010]. Investigation of these iterative
techniques is beyond the scope of this paper.

There are other algorithms that can potentially construct an orthonormal null
space basis of a sparse matrix A. These include the algorithm discussed in [Gotsman
and Toledo 2008] and the MATLAB svds based on ARPACK [Lehoucq et al. 1998].
The algorithm of [Gotsman and Toledo 2008] uses symmetric inverse iteration with
an LU factorization of A. Symmetric inverse iteration is inverse iteration used with
solutions to AT Az = y. svds uses Arnoldi/Lanczos type algorithms on

0 AT
B= ( o4 ) |
To find a numerical null space basis svds uses the “shift and invert” technique
[Lehoucq et al. 1998] with a shift of zero.

The database described in Section 3 includes matrices whose nullity is very large
(hundreds of thousands). Gotsman and Toledo’s algorithm is practical only when
the nullity is small or moderate [Gotsman and Toledo 2008, p. 447]. This is also true
for Arnoldi/Lanczos based methods such as svds. In comparison, our algorithms
can successfully calculate null space bases of matrices with large nullity — larger than
100,000. svds often fails to produce an acceptable null space [Gotsman and Toledo
2008, p. 460]. Finally, for both svds and the algorithm of [Gotsman and Toledo
2008] it is not clear what to choose for the nullity or subspace dimensions in the
code. The algorithms presented in this paper automatically select the appropriate
numerical rank and nullity in most cases.

One goal of this paper is an algorithm that finds a sparse representation of an
orthonormal basis of the numerical null space of a matrix A. Other research inves-
tigates sparse matrix algorithms for construction of null space bases that are not
orthogonal [Berry et al. 1985], [Coleman and Pothen 1986], [Coleman and Pothen

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20XX.

(16)



14 . L. V. Foster and T. A. Davis

1987], [Gilbert and Heath 1987], [Heath 1982], [Gill et al. 2005]. If numerical con-
siderations are not included in the basis construction, the resulting basis has the
potential to be ill conditioned which may lead to error growth.

The optimization package SNOPT [Gill et al. 2005] uses rook pivoting [Saunders
2006] to construct, for sparse matrices, nonorthogonal null space bases that are
usually well conditioned. For some matrices a null space basis may be calculated
more quickly and be represented more compactly using an LU based algorithm
rather than a QR based algorithm such as that used in our code. However, this
is not always the case as illustrated by the matrix Mallya/lhr07c from [Davis and
Hu 2011],[Foster and Botev 2009]. In our tests SPQR-COD required 0.5 seconds
to construct a null space basis and the implicit representation of the basis required
0.2 MB. For the same matrix the LU based algorithm from LUSOL [Saunders 2006]
required 5 seconds and 6.5 MB were used in the implicit representation of the basis.
A systematic comparison of LUSOL with our routines is beyond the scope of this
research. Also, the LU algorithms based on rook pivoting (or on complete pivoting)
can fail to correctly determine the rank for some matrices. A classic example is a
triangular matrix with ones on the diagonal and negative ones above the diagonal
[Gill et al. 2005, p. 113]. Therefore, tests would be needed in an LU based algorithm
to warn the user when the estimated rank may be incorrect [Foster 2007].

There are many algorithms for constructing rank revealing factorizations of dense
matrices (see [Foster and Kommu 2006] and its references), but they are not efficient
when applied to large, sparse matrices.

3. NUMERICAL EXPERIMENTS

In this section we apply our four methods to a test set of 767 matrices and compare
these routines with from SuiteSparseQR, as well as svd and the dense qr in MAT-
LAB.! The MATLAB svd is designed for dense matrices and is an implementation
of LAPACK’s routine DGESVD [Anderson et al. 1999]. We have also compared
our codes with svds in MATLAB. Although in principle svds can be used to find
bases for null spaces, we found that it frequently fails to construct an acceptable
null space basis and that it is often slow. Thus, svds is not discussed further.

3.1 The Test Set

Our test set includes 699 matrices that are collected in the San Jose State University
(SJSU) Singular Matrix Database [Foster and Botev 2009] and 68 additional ma-
trices from the University of Florida Sparse Matrix Collection [Davis and Hu 2011].
The matrices in this set arise from applications or have characteristic features of
problems from practice. The online databases contain information about specific
applications for the matrices and for groups of matrices. The SJSU Singular Matrix
Database is a subset of the University of Florida Sparse Matrix Collection with the
exception that 40 additional matrices from Regularization Tools [Hansen 1994] are
also in the SJSU Singular Matrix Database. The 767 matrices in our test set have

1We wish to acknowledge the critical assistance of Nikolay Botev from San Jose State University in
developing our database of matrices and its interface. Also, Lars Johnson and Miranda Braselton
from San Jose State University made valuable contributions to the analysis and experiments
related to routines SPQR_SSP and SPQR_SSI.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20XX.



Reliable Rank Calculation using SuiteSparseQR . 15

%

matrix statistics singular value gaps

=
o

10 T
o
10°k o
&
e S 10°F
%] . 8 %
2 :
=}
.% 10*t odf <
Q0 =
] e 5 10t
L0 o 8 o
2 arer
10°k 7 5
& 10
y X ¢ number of columns of A
10 o numerical nullity
@ lower bound on numerical nullity|
10“ 100 p i i i i i i
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

matrix: ordered by numerical nullity matrix: ordered by gap

Fig. 1. Properties for matrices on our test set. The left hand plot pictures the numbers of columns
and the dimensions of the numerical null spaces. The right hand plot pictures the gaps (or/or41)
in the singular value spectrum at the calculated numerical rank, r.

been selected so that each matrix in the set is numerically singular in the sense
that, for an m x n matrix A, the numerical rank of A is smaller than min(m, n).
Some properties of the matrices in the test set are summarized in Figure 1. The
tolerance used to define the numerical rank is essentially the same as the default
tolerance in the MATLAB rank function: 7 = max(m,n)*eps (norm(4) ) for smaller
matrices and 7 = max (m,n) *eps (normest (A,0.01)) for larger matrices.

To determine the true numerical rank for 563 matrices in our test set, singular val-
ues were calculated using svd in MATLAB and for another 136 matrices the numeri-
cal rank was calculated using matrix inertia [Parlett 1980, pp. 46-47] as implemented
in SPNRANK [Foster 2009]. The remaining 68 matrices (see http://www.math.
sjsu.edu/singular/matrices/html/additional_matrices.html)are structurally
rank deficient and, therefore, are also numerically rank deficient [Davis 2006, p. 9].

3.2 Accuracy

We test the accuracy of our algorithms by examining the accuracy of the calcu-
lated numerical ranks, the quality of the calculated null space bases, the quality
of the calculated basic solutions, and the accuracy of the calculated pseudoinverse
solutions. In addition to these tests which are discussed in Sections 3.2.1 to 3.2.4
we also wrote testing routines that tested every line (essentially 100% coverage) of
our computational code and code that exhaustive tested the option choices in our
routines.

For some matrices the error bounds in the algorithms cannot confirm that the
numerical rank is correct for our tolerance 7, but the algorithms can confirm that
the numerical rank is correct with a larger tolerance. In this case the code returns
a warning and returns the value of the larger tolerance.

The computations for these experiments were done on a computer with 32 Gbytes
RAM with an Intel Xeon E5404 Quad Processor using 64 bit MATLAB 7.9b. The
SuiteSparse Package was used via its MATLAB interface, using mex with 64 bit
Visual Studio 2005 for the C++ compiler.
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Fig. 2. For each of SPQR-BASIC, SPQR_NULL, SPQR-PINV, SPQR_COD, and for SPQR the
plots summarize the percent of matrices where the calculated numerical rank is correct and the
percent of the matrices where the routine indicates calculated numerical rank is correct (with the
original or a modified tolerance) versus the singular value gap, o, /041, where r is the calculated
numerical rank.

Of the 767 matrices tested 729 successfully ran. In 38 cases memory limitations
prevented completion for one of our algorithms. The largest matrix for which
our code successfully calculated the numerical rank and constructed an implicit
representation of an orthonormal basis for the null space was a 321,671 x 321,671
matrix with nullity 222,481. The 38 matrices where memory was insufficient had
at least 171,395 rows or columns and up to 12,360,060 rows.

3.2.1  Numerical Rank Calculations. Figure 2 shows, for the 699 matrices with
known numerical ranks, that SPQR calculates the numerical rank correctly for
68% of the matrices and that the other routines do so for more than 80% of the
matrices. As the gap in the singular values increases, all the algorithms calculate
the numerical rank correctly more frequently. For example, for the 466 matrices
with a singular value gap of at least 1000, SPQR determines the correct numerical
rank for 95% of matrices and the other routines are correct for 98% to 99% of the
matrices. We feel that the inaccuracy of the algorithms for matrices with small
gaps in the singular values is not a serious concern since in the small gap case the
numerical rank is not well defined.

As seen in Figure 2, the number of cases where the algorithm is successful closely
tracks the number of cases where the calculated numerical rank is correct, especially
for matrices with a larger singular value gap. For one matrix (Sandia/osci-dcop_33
[Davis and Hu 2011],[Foster and Botev 2009]) SPQR_NULL calculates the wrong
numerical rank but reports success. For the other matrices in our experiments,
there are no “false positives,” that is no cases where the routines report success
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Fig. 3. ||AN]||, where N is a calculated orthonormal basis for the numerical null space, or, in the
case of SPQR_BASIC, ||AT N||, normalized by the tolerance defining the numerical rank, is plotted
for null space bases calculated by svd in MATLAB and by our four functions. SPQR-BASIC,
SPQR_NULL, SPQR_PINV, and SPQR_COD return a smaller ||AN]|| than svd for 58%, 66%,
68%, and 76% of the matrices, respectively.

while the calculated numerical rank is incorrect. The singular values spectrum for
Sandia/osci-dcop-33 decays gradually to zero and, for this reason, the potential
failure of SPQR_NULL for this matrix is not a significant problem. The routines’
indication of success or failure is thus reliable in practice.

3.2.2  Numerical Null Space Bases. To judge the quality of the calculated null
space bases, note that an orthonormal basis for the numerical null space X is stored
in N. The size of ||AN|| = maxzex 20 ||Az||/||z|| measures how well vectors in X
are annihilated by A and, therefore, is a measure of the quality of the numerical
null space. For the 446 m x n matrices in our test set with max(m,n) < 5000, we
also calculated null space bases of A and AT using svd in MATLAB. For each of
the 446 matrices, we can use the results to compare, relative to the quality of null
space basis calculated using svd in MATLAB, the quality of the null space basis
of AT which is an optional output parameter in SPQR_BASIC, and to test the
quality of the null space basis for A, which is an output parameter of SPQR_NULL
and an optional output parameter for SPQR_PINV and SPQR_COD.

Figure 3 summarizes these calculations. Except potentially for one matrix for
SPQR-NULL and one matrix for SPQR_PINV, svd in MATLAB and the other
routines produce excellent null space bases whenever they report success. The
tolerance used to normalize ||AN]|| in Figure 3 is 0(e||Al|), where € is relative
machine precision. Furthermore, the plots show that the null space bases pro-
duced by SPQR_BASIC and SPQR_COD are, for these matrices and choice of
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Fig. 4. The left plot pictures ||z||/||zprnv]|| where z is a basic solution to (3) calculated by the
dense qr in MATLAB, by SPQR_SOLVE, or by SPQR_BASIC and zp; Ny is computed using pinv
in MATLAB. In the left hand plot, the vectors b in (3) are random vectors. The right plot pictures
[I7[I/1|b]] = ||b — Az||/||b]| for the = vectors calculated using qr, SPQR_-SOLVE, or SPQR_BASIC.
In the right hand plot the vectors b in (3) are of the form b = Az where z is a random vector.
Both plots just show the 353 matrices for which SPQR_BASIC reported success.

tolerance, overall as good as those produced by svd in MATLAB. The one matrix
for SPQR_PINV and for SPQR.NULL where ||AN||/(tolerance) = 8.9 > 1 has
[|AN]|/]|A|| = 4.8 x 102 which is still small.

3.2.3 Basic Solutions. When solving a rank-deficient least squares problem (3),
it is often desirable to choose a solution where the residual norm ||r|] = ||b —
Az|| is small and the solution ||z|| is not large [Hansen 1998, pp. 90-94]. If A
is exactly rank deficient, then the pseudoinverse solution to (3) is an excellent
choice since the pseudoinverse solution minimizes ||z|| from the set of solutions that
minimize ||r||. A basic solution to (3) will not minimize ||z|| but often still produces
an acceptable solution vector. We compare the quality of the calculated basic
solutions by looking at the norm of the basic solutions produced by SPQR_-BASIC,
by SPQR_SOLVE, and by qr in MATLAB for dense matrices (calculated using
x = full(A)\b, if A is not square, or x = full([A,0*b])\b otherwise) with the
norm of the solution, zpryy, calculated using pinv in MATLAB. SPQR_SOLVE
is part of SuiteSparseQR and uses SPQR to return a basic solution. So that those
calculations that involve dense matrix algorithms are practical, the experiments
consist of the 446 matrices in our test set with max(m,n) < 5000.

The left hand plot in Figure 4 demonstrates that in most cases SPQR_BASIC
produces solutions as good as the solutions produced by the dense qr in MATLAB.
For some matrices, even when it reports success, SPQR_BASIC can calculate basic
solutions to (3) with ||z|| much larger (||zspor.Basic||/||zpinv]| is as large as
2.2 x 10%) than the solution calculated using pinv. In these cases, the numerical
rank determined by SPQR_BASIC is correct, but the estimated upper bound for
o.(A) is significantly larger than the estimated lower bound for o,.(A) where r is
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the estimated numerical rank. These bounds are returned to the user, who may
wish to consider use of SPQR_COD rather than SPQR_BASIC. The same plot also
demonstrates that for some matrices SPQR_SOLVE can calculate basic solutions
to (3) with ||z|| much larger (||zspor.sorvEell/||zpinv]| is as large as 1.5 x 10%%)
than the solution from pinv and also much larger than the solution calculated by
SPQR_BASIC. In practice such solutions may not be acceptable. SPQR_SOLVE
calculates such solutions when its estimate for the numerical rank is incorrect.

The right hand plot in Figure 4 demonstrates that, for consistent systems of
equations, usually the residual produced using SPQR_-BASIC is excellent and is
often smaller than the residual corresponding to a solution calculated using the
dense qr in MATLAB. However, occasionally in our experiments the residual using
SPQR_BASIC or SPQR_SOLVE, although small, is significantly larger than the
residual from a dense matrix algorithm. For SPQR_BASIC such cases arise when
the calculated solution vector z is large and, as mentioned above, this occurs when
the estimated upper bound for o,.(A) is significantly larger than the estimated lower
bound for o,.(A).

3.2.4  Approximate Pseudoinverse Solutions. The accuracy of the pseudoinverse
solution of by SPQR_PINV (xSPQR_p]Nv) and SPQR_COD (xspQR_COD) is com-
pared with solutions from pinv in MATLAB, (zp;yy = pinv(full(A))*b). Ac-
cording to the perturbation theory of pseudoinverse solutions [Stewart and Sun
1990, pp. 136-163], in general, we cannot expect that ||z —zprnv||/||zpinv]] is O(€)
where € is relative machine precision and where z is TspQr_PINV O TSPQR.COD-
To estimate a bound on accuracy we use

llz —zprnv]| a1(A)
zprnv] S (m(A)) max(10e, [[wl]|/[|A]]) (17)

where r is the numerical rank of A and ||w]|| (see Theorem 5) is the Frobenius norm
of the perturbation in (6). The term 10¢ in (17) is included since even if ||w]| is
zero there are O(e) relative errors in storing A. The right hand side in (17) is,
approximately, a bound on the first term on the right hand side of equation 5.3 in
[Stewart and Sun 1990, p. 157]. We do not include the additional terms from their
equation 5.3, since (17) provides a satisfactory description of our experiments.

Figure 5 indicates that SPQR_COD and SPQR_PINV (with one exception) do
as good a job in calculating approximate pseudoinverse solutions as expected by
the perturbation theory. In the one case where SPQR_PINV is significantly less
accurate than predicted by (17), SPQR-BASIC, which is called by SPQR-PINV,
produces a solution vector x that is much larger than x pyyy and this leads to a value
of ||z —xzprnv]|/||zpinv]| larger than predicted by (17). In this case the estimates
of upper and lower bounds for ¢,.(A4) from SPQR_-BASIC are orders of magnitude
different. Users of SPQR_PINV can check these bounds and use SPQR_-COD when
the bounds differ significantly.

3.3 Efficiency

Figure 6 compares the run times of our four methods with the run time of SPQR

for the 729 matrices in our data set that ran to completion. The average run time of
SPQR-BASIC, SPQR_NULL, SPQR-PINV, and SPQR-COD is 22%, 40%, 136%,
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Fig. 5. The left graph plots ||z — zprnv||/||lxprnv]| for  produced by SPQR-PINV for 345
matrices where SPQR_PINV reports success. The vectors b in (3) are random vectors. Also the
right hand side of the perturbation theory result (17) is plotted. The right graph is the same plot
for z produced by SPQR_COD for 362 matrices where SPQR_COD reports success.
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Fig. 7. Approximate memory requirements for our four methods and SPQR.

and 4.5x higher than SPQR, respectively (applied to A or AT as appropriate). On
individual matrices the relative run times for our routines can vary significantly
from these averages, especially for smaller matrices.

By extrapolating from the run times of matrices that are 5000 by 5000 or smaller,
we can estimate that svd in MATLAB would require more than fifteen years to find
pseudoinverse solutions for all 729 matrices in this data set, assuming that memory
limitations were not an issue. The sum total time of SPQR_COD for these problems
is more than 10,000 times smaller.

3.4 Memory use

Figure 7 compares the approximate memory requirement for our four methds with
the those of SPQR for the 729 matrices in our data set that ran to completion.
For our methods, the memory pictured in the figure includes memory for the ma-
trices listed in the Principal Memory Requirements column of Table I as well as
any permutation matrices (stored as vectors) used in the algorithms. The memory
pictured for SPQR is described beneath each plot. There is a potential for the rou-
tines to require additional memory as part of intermediate calculations. However,
for simplicity we focus our discussion on the memory described above.

Figure 7 indicates that, in almost all cases, our four methods, except for SPQR_-COD,
require little additional memory beyond the memory required by SPQR. On aver-
age SPQR_COD requires approximately 7.5 times the amount of memory needed
to store R returned by SPQR applied to A. The successive QR factorizations in
SPQR_-COD compound the fill-in and increases the memory required.
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3.5 Challenging Examples

We also tested our code on other challenging test matrices including examples from
[Gotsman and Toledo 2008, p. 457] and matrices such as the Kahan matrix [Ka-
han 1966] from Higham’s gallery set in MATLAB [Higham 1991; 2002]. With
the exception of a single matrix, our methods correctly warn the user of a poten-
tial problem when an algorithm did not return the correct numerical rank. For
the Sandia/oscii_-dcop-33 matrix [Davis and Hu 2011], [Foster and Botev 2009],
SPQR-NULL can return an incorrect numerical rank but report success. The
accuracy of the error bounds depends on randomly chosen starting vectors in
SPQR_SSI and in approximately one in a thousand runs of SPQR_NULL, which
calls SPQR_SSI, for this matrix the starting vector choice would lead to an incor-
rect rank but with no warning, i.e. “false convergence.” This matrix has singular
values that decay very gradually to zero and therefore the numerical rank is not
well defined.

Our singular value bounds are estimated bounds and for this reason the diffi-
culty illustrated with matrix Sandia/oscii-dcop-33 and SPQR_NULL could occur
for other matrices. However, based on our experiments, we feel that the probability
of the difficulty is exceedingly small. We have never observed it in extensive testing
for matrices with a well defined numerical rank. SPQR_SSI converges faster (see
(11)) and, in our testing, the risk of false convergence approaches zero as the gap
in the singular values increases. A theoretical probabilistic justification of this last
comment is beyond the scope of this paper. However, the theory in [Kuczynski and
Wozniakowski 1992] (e.g. Theorem 4.1c) is potentially relevant.

4. CONCLUSIONS

We have described a set of algorithms which can be used to calculate the numerical
rank, a basic solution to the least squares problem (3), an approximate pseudoin-
verse solution to this problem, and an orthonormal basis for the numerical null
space of a matrix or its transpose. Our implicit, sparse representation allows us to
find orthonormal null space bases for matrices with large nullity including examples
whose numerical null space dimensions are larger than 100,000 on a computer with
32 Gbytes of RAM. We have estimated that for large matrices the new code can be
faster than svd in MATLAB by a factor larger than 10,000.

The algorithms were tested on a database of 767 numerically singular matrices,
most of which are sparse and which have a wide variety of matrix properties (see
Figure 1). The matrices come from real world applications or have characteristic
features of real world problems. The algorithms were successful for most of the
matrices in the database and the success rate approached 100 percent when the gap
in the singular values at the numerical rank was large (see Figure 2). The routines
calculate and return estimates of upper and lower bounds for singular values of A
and the bounds are used to warn the user if the calculated numerical rank may be
incorrect. Our experiments indicate that this warning reliably indicates that the
estimated numerical rank is correct for matrices with a well defined numerical rank
and, indeed, for almost all the matrices in the entire data set.

For most of the matrices in our tests, when our methods report success our
basic solutions (see Figure 4), null space bases (see Figure 3), and approximate
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pseudoinverse solutions (see Figure 5) are as good as the corresponding results
calculated by a dense matrix routine. In a few cases, when the estimated upper
and lower bounds on the smallest non-trivial singular value are orders of magnitude
different, the solutions returned by SPQR_BASIC, SPQ_NULL, or SPQR_PINV
are inferior to the corresponding results calculated by dense matrix routines, even
when our methods report success. If the bounds differ significantly, the user can
use SPQR_COD instead, which does not have these difficulties. SPQR_COD can
be more accurate but requires more time and memory (see Figures 6 and 7) than
the other routines.

Our new routines extend SPQR from the SuiteSparseQR package [Davis 2011] by
providing reliable calculation of numerical rank, pseudoinverse solutions, orthonor-
mal bases for numerical null spaces, and basic solutions.
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Appendix: Estimating singular values of AN using SPQR_SSP

When one of our four primary routines returns an orthonormal basis N for the null
space of A or AT, they also return estimates of ||AN]|| or ||[ATN||. The routine
SPQR_SSP does this via subspace iteration to calculate estimates of the large sin-
gular values and corresponding singular vectors of a matrix A or AN where N is a
orthonormal basis for the null space of A as returned by our four primary routines.

Algorithm SPQR_SSP is similar to Algorithm ST in [Vogel and Wade 1994, p. 741]
and SISVD in [Berry 1994]. Therefore, we will not present the details of SPQR_SSP
except to describe our stopping criteria. Our stopping criteria is based estimates
for the accuracy of the calculated singular values and is different from the stopping
criteria in [Vogel and Wade 1994, p. 741] and in [Berry 1994].

The error bounds and the stopping criteria in SPQR_SSP are based on the eigen-
value error bound. If B = AN, it follows by Theorem 4 that for each i =1,...,k

0 B) such that

there exist an eigenvalue a of C' = ( BT 0

lsi —a| <||BTu; —visi||/V2=es, i=1,... k. (18)

Here u; is an estimate of a left singular vector of B and v; is an estimate of a right
singular vector of B. The singular values of B are also eigenvalues of C [Golub and
Van Loan 1996, p. 448]. SPQR_SSP uses e; in (18) as estimates of the errors in
using s; as an approximations for o;(A). Our stopping criteria is e < csp (where
¢ is a fixed convergence factor) or a maximum number of iterations have been
reached. The calculated e; is only an estimate of a bound in the error in using s;
to approximate ¢;(A) because the theory does not insure that « is the i*" singular
value of A. However, it is usually the case that |s; — 0,(A4)| < e; and, as discussed
in Section 3, our methods that use SPQR_SSP work well in practice.
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