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Abstract. Sparse matrix factorization algorithms for general problems are typically
characterized by irregular memory access patterns that limit their performance on parallel-vector
supercomputers. For symmetric problems, methods such as the multifrontal method avoid indirect
addressing in the innermost loops by using dense matrix kernels. However, no efficient LU
factorization algorithm based primarily on dense matrix kernels exists for matrices whose pattern is
very unsymmetric. We address this deficiency and present a new unsymmetric-pattern multifrontal
method based on dense matrix kernels. As in the classical multifrontal method, advantage is taken
of repetitive structure in the matrix by factorizing more than one pivot in each frontal matrix, thus
enabling the use of Level 2 and Level 3 BLAS. The performance is compared with the classical
multifrontal method and other unsymmetric solvers on a CRAY C-98.
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Notation.
A original matrix

Ak undeleted rows and columns of the original matrix at step k

A Struct(A)

A′ active submatrix

F current frontal matrix

C contribution block of F

L′, L′′ the |L′| columns of L computed in F

L̂ the portion of L′′ whose updates have yet to be applied to C

U′, U′′ the |U ′| rows of U computed in F

Û the portion of U′′ whose updates have yet to be applied to C

L sequence of row indices of F (union of pattern of pivotal columns in F)

L′ pivotal row indices in L
L′′ nonpivotal row indices in L (L = L′ ∪ L′′)
U sequence of column indices of F (union of pattern of pivotal rows in F)

U ′ pivotal column indices in U
U ′′ nonpivotal column indices in U (U = U ′ ∪ U ′′)
V a list of the first pivotal indices of the factorized frontal matrices

e an element e ∈ V
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UNSYMMETRIC-PATTERN MULTIFRONTAL METHOD 141

Ce remaining portions of a previous contribution block (e < k)

Le row indices of Ce

Ue column indices of Ce

Cj element list of column j of A′

Ri element list of row i of A′

dr(i) the true degree of row i

dr(i) upper bound of the degree of row i

dc(j) the true degree of column j

dc(j) upper bound of the degree of column j

w() a work array for computing external column degrees

| . . . | number of entries in a matrix or set, or absolute value of a scalar,

depending on the context

Struct(. . .) row indices of entries in a column, or column indices of entries in a row

1. Introduction. Conventional sparse matrix factorization algorithms for
general problems rely heavily on indirect addressing. This gives them an irregular
memory access pattern that limits their performance on typical parallel-vector
supercomputers and on cache-based RISC architectures. In contrast, the multifrontal
method of Duff [8], Duff, Erisman, and Reid [9], and Duff and Reid [13, 14] is designed
with regular memory access in the innermost loops and has been modified by Amestoy
and Duff to use standard kernels [2]. This multifrontal method assumes structural
symmetry and bases the factorization on an assembly tree generated from the original
matrix and an ordering such as minimum degree. The computational kernel, executed
at each node of the tree, is one or more steps of LU factorization within a square,
dense frontal matrix defined by the nonzero pattern of a pivot row and column. These
steps of LU factorization compute a contribution block (a Schur complement) that is
later assembled (added) into the frontal matrix of its parent in the assembly tree.
Henceforth we will call this approach the classical multifrontal method.

Although structural asymmetry can be accommodated in the classical multifrontal
method by holding the pattern of A+AT and storing explicit zeros, this can have poor
performance on matrices whose patterns are very unsymmetric. If we assume from the
outset that the matrix may be structurally asymmetric, the situation becomes more
complicated. For example, the frontal matrices are rectangular instead of square, and
some contribution blocks must be assembled into more than one subsequent frontal
matrix. As a consequence, it is no longer possible to represent the factorization by
an assembly tree and the more general structure of an assembly dag (directed acyclic
graph) [5] similar to that of Gilbert and Liu [20] and Eisenstat and Liu [16, 17, 18] is
required. In the current work we do not explicitly use this structure. Since we consider
an algorithm that combines the symbolic analysis and numerical factorization, our
algorithm for a subsequent numerical factorization (which uses a dag) is beyond the
scope of this paper.

We have developed a new unsymmetric-pattern multifrontal approach [4, 5]. As
in the symmetric multifrontal case, advantage is taken of repetitive structure in the
matrix by factorizing more than one pivot in each frontal matrix. Thus the algorithm
can use higher level dense matrix kernels in its innermost loops (Level 3 BLAS [6]).
We refer to the unsymmetric-pattern multifrontal method described in this paper as
UMFPACK Version 1.0 [4]. A parallel factorize-only version of UMFPACK, based on
the assembly dag, is discussed in Hadfield’s dissertation [23] and related work [24, 25].
The multifrontal method for symmetric positive definite matrices is reviewed in [27].

Section 2 presents an overview of the basic approach and a brief outline of
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142 TIMOTHY A. DAVIS AND IAIN S. DUFF

the algorithm. We introduce our data structures in the context of a small sparse
matrix in section 3, where we describe the factorization of the first frontal matrix.
In section 4 we develop the algorithm further by discussing how subsequent frontal
matrices are factorized. We have split the discussion of the algorithm into these two
sections so that we can define important terms in the earlier section while considering
a less complicated situation. Section 5 presents a full outline of the algorithm,
using the notation introduced in previous sections. In section 6, we compare the
performance of our algorithm with an algorithm based on the classical multifrontal
method (MUPS, [2]), and an algorithm based on conventional (compressed sparse
vector) data structures (MA48, [15]).

2. The basic approach. Our goal with the UMFPACK algorithm is to achieve
high performance in a general unsymmetric sparse factorization code by using the
Level 3 BLAS. We accomplish this by developing a multifrontal technique that uses
rectangular frontal matrices and chooses several pivots within each frontal matrix.
High performance is also achieved through an approximate degree update algorithm
that is much faster (asymptotically and in practice) than computing the true degrees.
A general sparse code must select pivots based on both numerical and symbolic
(fill-reducing) criteria. We therefore combine the analysis phase (pivot selection
and symbolic factorization) with the numerical factorization. We construct our
rectangular frontal matrices dynamically, since we do not know their structure prior
to factorization. An assembly dag is constructed during this analyze–factorize phase.
We use the assembly dag in the factorize-only phase, and Hadfield [23] and Hadfield
and Davis [24, 25] develop it further and use it in a parallel factorize-only algorithm.

The active matrix is the Schur complement of A that remains to be factorized.
At a particular stage, the frontal matrix is initialized through choosing a pivot from
anywhere in the active matrix (called a global pivot search) using a Zlatev-style pivot
search [29], except that we keep track of upper bounds on the degrees of rows and
columns in the active matrix, rather than the true degrees. (The degree of a row or
column is simply the number of entries in the row or column.) We call this first pivot
the seed pivot. Storage for the frontal matrix is allocated to contain the entries in the
pivot row and column plus some room for further expansion determined by an input
parameter. We denote the current frontal matrix by F and the submatrix comprising
the rows and columns not already pivotal by C, calling C the contribution block.

Subsequent pivots within this frontal matrix are found within the contribution
block C, as shown in Figure 2.1. The frontal matrix grows as more pivots are chosen,
as denoted by the arrows in the figure. We assemble contribution blocks from earlier
frontal matrices into this frontal matrix as needed. The selection of pivots within this
frontal matrix stops when our next choice for pivot would cause the frontal matrix to
become larger than the allocated working array. We then complete the factorization of
the frontal matrix using Level 3 BLAS, store the LU factors, and place the contribution
block C in a heap. The contribution block is deallocated when it is assembled into
a subsequent frontal matrix. We then continue the factorization by choosing another
seed pivot and generating and factorizing a new frontal matrix.

It is too expensive to compute the actual degrees of the rows and columns of
the active matrix. To do so would require at least as much work as the numerical
factorization itself. This would defeat the performance gained from using the dense
matrix kernels. Instead, we compute upper bounds for these degrees at a much lower
complexity than the true degrees, since they are obtained from the frontal matrix
data structures instead of conventional sparse vectors. We avoid forming the union of
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UNSYMMETRIC-PATTERN MULTIFRONTAL METHOD 143

empty

U’’

CL’’

L’

U’

Fig. 2.1. A rectangular frontal matrix within a larger working array.

sparse rows or columns which would have been needed were we to compute the filled
patterns of rows and columns in the active matrix. We have incorporated a symmetric
analogue of our approximate degree update algorithm into the approximate minimum
degree (AMD) ordering algorithm [1]. The algorithm produces the same quality of
ordering as prior minimum degree ordering algorithms and is typically faster.

The performance we achieve in the UMFPACK algorithm thus depends equally
on two crucial factors: this approximate degree update algorithm and the numerical
factorization within dense, rectangular frontal matrices. An outline of the UMFPACK
algorithm is shown in Algorithm 1. If A is permuted to block upper triangular form
[11], the algorithm is applied to each block on the diagonal. Algorithm 1 consists of
initializations followed by three steps, as follows:

Algorithm 1 (outline of the unsymmetric-pattern multifrontal algorithm).

0: initializations
while (factorizing A) do

1: global pivot search for seed pivot
form frontal matrix F
while (pivots found within frontal matrix) do

2: assemble prior contribution blocks and original rows into F
compute the degrees of rows and columns in C (the contribution
block of F)
numerically update part of C (Level 2 and Level 3 BLAS)
local pivot search within C

endwhile
3: complete the factorization of F using Level 3 BLAS

place C in heap
endwhile

The initialization phase of the algorithm (step 0) converts the original matrix
into two compressed sparse vector forms (row oriented and column oriented [9]) with
numerical values A and symbolic pattern A. Rows and columns are used and deleted
from A and A during factorization when they are assembled into frontal matrices.
At any given step, k say, we use Ak and Ak to refer to entries in the original matrix
that are not yet deleted. An entry is defined by a value in the matrix that is actually
stored. Thus all nonzeros are entries but some entries may have the value zero. We
use | . . . | both to denote the absolute value of a scalar and to signify the number of
entries in a set, sequence, or matrix. The meaning should always be quite clear from
the context.

The true degrees dr(i) and dc(j) are the number of entries in row i and column
j of the active matrix A′, respectively, but we do not store these. Because the cost
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144 TIMOTHY A. DAVIS AND IAIN S. DUFF

of updating these would be prohibitive, we instead use upper bounds dr(i) (where
dr(i) ≤ dr(i)) and dc(j) (where dc(j) ≤ dc(j)). However, when a true degree is
computed, as in the initialization phase or during the search for a seed pivot, its
corresponding upper bound is set equal to the true degree.

3. The first frontal matrix. We will label the frontal matrix generated at
stage e by the index e. We now describe the factorization of the first frontal matrix
(e = 1). This discussion is, however, also applicable for subsequent frontal matrices
(e > 1) which are discussed in full in section 4 where differences from the case e = 1
are detailed.

3.1. Step 1: Perform global pivot search and form frontal matrix. The
algorithm performs pivoting both to maintain numerical stability and to reduce fill
in. The first pivot in each frontal matrix is chosen using a global Zlatev-style search
[29]. A few candidate columns with the lowest upper bound degrees are searched.
The number searched is controlled by an input parameter (which we denote by nsrch
and whose default value is four). Among those nsrch columns, we select as pivot the
entry a′rc with the smallest approximate Markowitz cost [28], (dr(r) − 1)(dc(c) − 1),
such that a′rc also satisfies a threshold partial pivoting condition [9]

|a′rc| ≥ u ·max
i

|a′ic|, 0 < u ≤ 1.(3.1)

Note that we have the true column degree. The column entries are just the entries in
A since this is the first frontal matrix. When the pivot is chosen its row and column
structure define the frontal matrix. If Struct(. . .) denotes the row indices of entries in
a column or column indices of entries in a row, we define L and U by L = Struct(A′

∗c)
and U = Struct(A′

r∗), the row and column indices, respectively, of the current |L|-
by-|U| frontal matrix F. We partition the sets L and U into pivotal row and column
indices (L′ and U ′) and nonpivotal row and column indices (L′′ and U ′′).

We then assemble the pivot row (Ak
r∗) and column (Ak

∗c) from the original matrix
into F and delete them from Ak (which also deletes them from Ak, since Ak is defined
as Struct(Ak)).

We then try to find further pivot rows and columns with identical pattern in the
same frontal matrix. This process is called amalgamation. Relaxed amalgamation
does the same with pivots of similar but nonidentical pattern. To permit relaxed
amalgamation, F is placed in the upper left corner of a larger, newly allocated, s-
by-t work array. Relaxed amalgamation is controlled by choosing values for s and t
through the input parameter g, where s = bg|L|c, t = bg|U|c, and g ≥ 1. The default
value of this parameter in UMFPACK is g = 2.

A =



a11 0 0 a14 a15 0 0
a21 a22 a23 0 a25 0 0
a31 a32 a33 0 0 0 a37

a41 0 0 a44 a45 a46 0
0 a52 a53 0 a55 a56 0
0 0 0 0 0 a66 a67

a71 a72 0 0 a75 0 a77


.(3.2)

We use example (3.2) to illustrate our discussion in this section and in section 4.
Permutations would needlessly obscure the example, so we assume the pivots in the
example matrix are on the diagonal, in order. (Note that this assumption would not
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UNSYMMETRIC-PATTERN MULTIFRONTAL METHOD 145

Table 3.1

True degrees and degree bounds in example matrix.

i dr(i) dr(i) j dc(j) dc(j)
2 4 5 2 4 4
3 5 5 3 3 3
4 3 3 4 4 4
5 4 4 5 5 6
6 2 2 6 3 3
7 4 5 7 3 3

be true if we performed a global pivot search as in Step 1 since in our example the
pivots do not have the lowest possible Markowitz cost.) The first pivot is a′11. We
have L = L′ ∪ L′′ = {1, 2, 3, 4, 7} = {1} ∪ {2, 3, 4, 7} and U = U ′ ∪ U ′′ = {1, 4, 5} =
{1}∪{4, 5}. Let g be 1.25; then the 5-by-3 frontal matrix would be stored in a 6-by-3
array.

3.2. Step 2: Choose further pivots, perform assemblies, and partial
factorization. We continue our pivot search within the contribution block C of the
current frontal matrix F and repeat this for as long as there is sufficient space in the
working array.

We use the term assembly for the addition of contribution terms or original
entries via the extend-add (“ l↔”) operator [27]. This operator aligns the row and
column index sets of its two matrix or vector operands and then adds together values
referenced by the same indices. An implicit assembly is one that is mathematically
represented by the data structures but computationally postponed. An explicit
assembly is one that is actually computed. An entry in the active matrix A′ is
explicitly assembled if all its contribution terms have been added to it, but this is
usually not done and such entries are normally only held implicitly. Pivotal rows and
columns are always explicitly assembled.

We now describe the test to determine whether a column can be assembled into
F. We scan Ak

∗j for each column j in U ′′. The scan of Ak
∗j is stopped as soon as a

row i /∈ L is found. If the scan completes without such a row being found, then all
row indices in Ak

∗j are also in L, and we delete Ak
∗j from A and assemble it into F.

If this assembly is done, the true degree of column j is dc(j) = dc(j) = |L′′|. If the
scan stops early, we compute the upper bound degree of column j as

dc(j) = min

{
n− k (the size of A′)
|L′′|+ (|Ak

∗j | − αj) (the worst case fill-in)

}
,

where k is the current step of Gaussian elimination and αj is the number of entries
scanned in Ak

∗j before stopping. For each row i in L′′, we scan Ak
i∗ and compute dr(i)

in an analogous manner, where we define βi as the number of entries scanned in Ak
i∗

before stopping.

In the example, Ak
∗4 is assembled into C and entry a44 is deleted from A. The

uncomputed true degrees and the degree bounds are shown in Table 3.1. The values
of αj used in constructing the upper bounds were obtained on the assumption that
the rows and columns of Ak are stored in ascending order of row and column indices.
We make this assumption only to simplify the example. We have
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146 TIMOTHY A. DAVIS AND IAIN S. DUFF

F =


U ′ U ′′

L′
L′′

[
a′rc A′

r∗
A′
∗c C

]  =



1 4 5

1
2
3
4
7


a′11 a′14 a′15
a′21 0 0
a′31 0 0
a′41 a44 0
a′71 0 0




.

We divide the pivot column A′
∗c by the pivot a′rc to obtain the kth column of L,

the n-by-n lower triangular factor. The pivot row is the kth row of U, the n-by-n
upper triangular factor. Step k of Gaussian elimination is complete, except for the
updates from the kth pivot. The counter k is now incremented for the next step
of Gaussian elimination. The frontal matrix F is partitioned into four submatrices,
according to the partition of L and U . We have

F =


U ′ U ′′

L′
L′′

[
L′U′ U′′

L′′ C

]  =



1 4 5

1
2
3
4
7


u11 u14 u15

l21 0 0
l31 0 0
l41 a44 0
l71 0 0




.

The updates to C from the |U ′| pivots in F are not applied one at a time. Instead,
they are delayed until there are updates pending from b pivots to allow the efficient
use of Level 3 BLAS [6]. On a CRAY C-98, a good value for the parameter b is 16.

Let L̂ and Û denote the portions of L′′ and U′′, respectively, whose updates have
yet to be fully applied to C. If |U ′| mod b = 0 then the pending updates are applied

(C = C − L̂Û). If b were 16, no updates would be applied in our example since
|U ′| = 1.

We now search for the next pivot within the current frontal matrix. We search
the columns in U ′′ to find a candidate pivot column c that has minimum dc(c) among
the columns of U ′′. We then apply any pending updates to this candidate column
(C∗c = C∗c−L̂Û∗c) and compute the candidate column A′

∗c, its pattern Struct(A′
∗c),

and its true degree dc(c). (If the updated candidate column is not selected as a pivot, it
is not necessary to update it in Step 3 of the algorithm, discussed below in section 3.3.)
We select the candidate pivot row r in L′′ with the lowest dr(r) such that a′rc also
satisfies the threshold pivoting criterion (equation (3.1)). We compute the pattern
Struct(A′

r∗) of the candidate pivot row and its true degree dr(r).

If dc(c) > s − |U ′| or dr(r) > t − |U ′| the current work array is too small to
accommodate the candidate pivot and we stop the pivot search. Also, if the candidate
column has entries outside the current frontal matrix, the threshold pivoting criterion
might prevent us from finding an acceptable candidate pivot in L′′. In this case also
we stop the factorization of the current frontal matrix F. If the candidate pivot
a′rc is acceptable, then we let L = L ∪ Struct(A′

∗c) and U = U ∪ Struct(A′
r∗). We

repartition L and U into pivotal row and column indices (L′ and U ′) and nonpivotal
row and column indices (L′′ and U ′′) and apply any pending updates to the pivot row

(Cr∗ = Cr∗ − L̂r∗Û).

In the example, the candidate column (column 4) can fit in the 6-by-3 work array
(that is, dc(4) = 4 ≤ s− |U ′| = 6− 1 = 5). Suppose a′44 does not meet the threshold
criterion, and row 7 is selected as the candidate row. The candidate row is, however,
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UNSYMMETRIC-PATTERN MULTIFRONTAL METHOD 147

rejected when its true degree is computed (the work array is too small to accommodate
row 7, since dr(7) = 4 > t− |U ′| = 3− 1 = 2).

3.3. Step 3: Complete the factorization of F. After the last pivot has been
selected within the current frontal matrix F, we apply any pending updates to the
contribution block. (C = C− L̂Û, but we do not need to update the failed candidate
pivot column, if any.) The pivot rows and columns in F are then placed in storage
allocated for the LU factors.

The contribution block C and its pattern L′′ and U ′′ form what we call an element.
In particular, let Ce denote the contribution block of element e, and let the pattern
of Ce be Le and Ue (note that Le = L′′ and Ue = U ′′). The contribution block Ce is
placed in a heap for assembly into subsequent frontal matrices.

Initially, all row and column indices in Le and Ue are unmarked. When a row
(or column) of Ce is assembled into a subsequent frontal matrix, the corresponding
index is marked in Le (or Ue). Element e (which consists of the terms Ce, Le, and
Ue) will refer to unmarked portions only. Element e is deleted when all of its entries
are assembled into subsequent frontal matrices. For our example, element e is

4 5

2
3
4
7


c24 c25
c34 c35
c44 c45
c74 c75


 .

We associate with each row (column) in the active matrix an element list, which
is a list of the elements that hold pending updates to the row (column). We denote
the list of elements containing row i as Ri and the list of elements containing column
j as Cj . The element lists contain a local index which identifies which row or column
in the element matrix is equivalent to the row or column of the active matrix. This
facilitates the numerical assembly of individual rows and columns. For each row i in
Le, we place an element/local-index pair (e,m) in the element list Ri, where row i
is the mth entry of Le. Similarly, for each column j in Ue, we place (e,m) in the
element list Cj , where column j is the mth entry of Ue.

Let
∑ l↔

denote a summation using the l↔ operator. The active matrix A′ is
represented by an implicit assembly of Ak and the elements in the set V ,

A′ =

 l↔∑
e∈V

Ce

 l↔ Ak,(3.3)

where V ⊆ {1 . . . k−1} is the set of elements that remain after step k−1 of Gaussian
elimination. All l↔ operations in equation (3.3) are not explicitly performed and are
postponed, unless stated otherwise. As defined earlier, the notation Ak refers to
original entries in nonpivotal rows and columns of the original matrix that have not
yet been assembled into any frontal matrices.

The element lists allow equation (3.3) to be evaluated one row or column at a
time, as needed. Column j of A′ is

A′
∗j =

 l↔∑
(e,m)∈Cj

[Ce]∗m

 l↔ Ak
∗j(3.4)
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148 TIMOTHY A. DAVIS AND IAIN S. DUFF

Table 3.2

Element lists for example matrix after first frontal matrix.

i Ri j Cj
2 (1,1) 2 -
3 (1,2) 3 -
4 (1,3) 4 (1,1)
5 - 5 (1,2)
6 - 6 -
7 (1,4) 7 -

with pattern

Struct(A′
∗j) =

 ⋃
e∈Cj

Le

 ∪ Ak
∗j .(3.5)

Similarly, row i of A′ is

A′
i∗ =

 l↔∑
(e,m)∈Ri

[Ce]m∗

 l↔ Ak
i∗(3.6)

with pattern

Struct(A′
i∗) =

( ⋃
e∈Ri

Ue
)
∪ Ak

i∗.(3.7)

There is an interesting correspondence between our data structures and George
and Liu’s quotient graph representation of the factorization of a symmetric positive
definite matrix [19]. Suppose we factorize a symmetric positive definite matrix using
our algorithm and restrict the pivots to the diagonal. Then Ak

i∗ = Ak
∗i, Ri = Ci,

Le = Ue, and AdjGk(xi) = Ri ∪Ak
i∗, where xi is an uneliminated node in the quotient

graph Gk. The uneliminated node xi corresponds to a row i and column i in A′.
That is, the sets Ri and Ak

i∗ are the eliminated supernodes and uneliminated nodes,
respectively, that are adjacent to the uneliminated node xi. In our terminology,
the eliminated supernode xe corresponds to element e ∈ V . The set Le contains
the uneliminated nodes that are adjacent to the eliminated supernode xe. That is,
AdjGk(xe) = Le.

After the first frontal matrix on example (3.2), V = {1} and

A′ = C1 l↔ Ak =


4 5

2
3
4
7


c24 c25
c34 c35
c44 c45
c74 c75


 l↔



2 3 5 6 7

2
3
4
5
6
7


a22 a23 a25 0 0
a32 a33 0 0 a37

0 0 a45 a46 0
a52 a53 a55 a56 0
0 0 0 a66 a67

a72 0 a75 0 a77




.

Note that column four was deleted from Ak (refer to section 3.2). It also no
longer appears in Ak. The element lists are given in Table 3.2. Applying
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UNSYMMETRIC-PATTERN MULTIFRONTAL METHOD 149

equations (3.6) and (3.7) to obtain row two, for example, we obtain

A′
2∗ = [C1]1∗ l↔ Ak

2∗ =

{
4 5

2
[
c24 c25

] } l↔
{

2 3 5

2
[
a22 a23 a25

] }

=

{
4 5 2 3

2
[
c24 (c25 + a25) a22 a23

] } ,

Struct(A′
2∗) = U1 ∪ Ak

2∗ = {4, 5} ∪ {2, 3, 5} = {4, 5, 2, 3}.
4. Subsequent frontal matrices. We now describe how later steps differ when

the element lists are not empty by continuing the example with the second frontal
matrix.

4.1. Step 1: Perform global pivot search and form frontal matrix. We
compute the nsrch candidate pivot columns using equations (3.4) and (3.5). The
assembled forms of the unused nsrch− 1 candidate columns are discarded. Note that
this differs from how we treat an unused candidate column during the local pivot
search. Updates to a single unused local candidate column are kept, as discussed in
section 3.3. In the example, the next pivot is a′22, with L = L′ ∪ L′′ = {2, 3, 5, 7} =
{2} ∪ {3, 5, 7} and U = U ′ ∪ U ′′ = {2, 3, 4, 5} = {2} ∪ {3, 4, 5}. The 4-by-4 frontal
matrix is stored in a 5-by-5 array (g = 1.25).

4.2. Step 2: Choose further pivots, perform assemblies, and partial
factorization. In the example, a second pivot (a′33) is found in the second frontal
matrix and so we will repeat this step twice.

As we discussed earlier, computing the true degree, dc(j) = |Struct(A′
∗j)|, with

equation (3.5) would be very time consuming. A loose upper bound on dc(j) can be
derived if we assume no overlap between L and each Le, viz.,

dc(j) ≤ min


n− k,

|L′′|+ dc(j),

|L′′|+ (|Ak
∗j | − αj) +

(∑
e∈Cj |Le|

)
.

This bound is similar to the bound used in the minimum degree ordering algorithm
in Matlab [21], except that it is used in a symmetric context and thus the diagonal
entry is excluded from the summation. To compute this bound for all rows and
columns in C would take time

Θ

∑
i∈L′′

βi +
∑
j∈U ′′

αj


to scan Ak and time

Θ

∑
i∈L′′

|Ri|+
∑
j∈U ′′

|Cj |


to scan Ri and Cj . For a single column j, the total time is Θ(αj + |Cj |), or O(|Ak
∗j |+

|Cj |), since αj ≤ |Ak
∗j |. Similarly, the time to compute this loose degree bound for a

row i is Θ(βi + |Ri|), or O(|Ak
i∗|+ |Ri|).
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150 TIMOTHY A. DAVIS AND IAIN S. DUFF

However, a much tighter bound can be obtained in the same asymptotic time.
The set Le can be split into two disjoint subsets: the external subset Le \ L and the
internal subset Le ∩ L, where Le = (Le \ L) ∪ (Le ∩ L), and “\” is the standard set
difference operator. Define |Le \ L| as the external column degree of element e with
respect to F. Similarly, define |Ue \ U| as the external row degree of element e with
respect to F. We use the bound

dc(j) ≤ dc(j) = min


n− k,

|L′′|+ dc(j),

|L′′|+ (|Ak
∗j | − αj) +

(∑
e∈Cj |Le \ L|

)
,

(4.1)

which is tighter than before since |Le \ L| = |Le| − |Le ∩ L| ≤ |Le|. The equation for
dr(i) is analogous.

An efficient way of computing the external row and column degrees is given in
Algorithm 2. (The algorithm for external row degrees is analogous.) The array w is a
work array of size n that is used to compute the external column degrees |Le \L|. We
actually use a slight variation of Algorithm 2 that does not require the assumption
that w(e) = −1.

Algorithm 2 (computation of external column degrees).

assume w(e) = −1, for all e ∈ V
for each new row i ∈ L do

for each element e in the element list Ri of row i do
if (w(e) < 0) then w(e) = |Le|
w(e) = w(e)− 1

end for
end for

The cost of Algorithm 2 can be amortized over all subsequent degree updates
on the current front. We use the term “amortized time” to define how much of this
total work is ascribed to the computation of a single degree bound, dc(j) or dr(i).
Note that in computing these amortized time estimates we actually include the cost of
computing the external row degrees within the estimate for the column degree bounds
although it is actually the external column degrees that are used in computing this
bound. We can amortize the time in this way because we compute the external row
and column degrees, and the row and column degree bounds, for all rows and columns
in the current frontal matrix.

Relating our approximate degree algorithm to George and Liu’s quotient graph,
our algorithm takes an amortized time of O(|Ak

∗j |+ |Cj |) = O(|AdjGk(xj)|) to compute

dc(j). This correspondence holds only if A is symmetric and pivots are selected from
the diagonal. This is much less than the Ω(|AdjGk

(xj)|) time taken to compute the
true degree. The true degree dc(j) = |Struct(A′

∗j)| = |AdjGk
(xj)| is the degree of

node xj in the implicitly represented elimination graph, Gk [19]. If indistinguishable
uneliminated nodes are present in the quotient graph (as used in [26], for example),
both of these time complexity bounds are reduced, but computing the true degree
still takes much more time than computing our approximate degree.

We now describe how we compute our degree bound dc(j) in an amortized time
of O(|Ak

∗j |+ |Cj |). We compute the external column degrees by scanning each e in Ri

for each “new” row i in L, as shown in Algorithm 2. A row or column is new if it did
not appear in L or U prior to the current pivot. Since e ∈ Ri implies i ∈ Le, row i
must be internal (that is, i ∈ Le ∩ L). If Algorithm 2 scans element e, the term w(e)
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UNSYMMETRIC-PATTERN MULTIFRONTAL METHOD 151

is initialized to |Le| and then decremented once for each internal row i ∈ Le ∩ L. In
this case, at the end of Algorithm 2 three equivalent conditions hold:

1. e appears in the list Ri for some row i in L,
2. the internal subset Le ∩ L is not empty,
3. w(e) = |Le| − |Le ∩ L| = |Le \ L|.

If Algorithm 2 did not scan element e in any Ri, then the three following equivalent
conditions hold:

1. e does not appear in the list Ri for any row i in L,
2. the internal subset Le ∩ L is empty,
3. w(e) < 0.

Combining these two cases, we obtain

|Le \ L| =
{

w(e) if w(e) ≥ 0
|Le| otherwise

}
for all e ∈ V .(4.2)

To compute the external row degrees of all elements, we scan the element list Cj
for each new column j in U in an analogous manner (with a separate work array).
The total time to compute both the external column degrees (Algorithm 2) and the
external row degrees is Θ(

∑
i∈L′′ |Ri|+

∑
j∈U ′′ |Cj |).

We now describe our combined degree update and numerical assembly phase. This
phase uses the external row and column degrees for both the degree update and the
numerical assembly. We compute dc(j) and assemble elements by scanning the element
list Cj for each column j ∈ U ′′, evaluating dc(j) using equations (4.1) and (4.2). If
the external row and column degrees of element e are both zero, then we delete (e,m)
from Cj and assemble Ce into F. Element e no longer exists. This is identical to the
assembly from a child (element e) into a parent (the current frontal matrix F) in the
assembly tree of the classical multifrontal method. It is also referred to as element
absorption [13]. It is too costly at this point to delete all references to the deleted
element. If a reference to a deleted element is found later on, it is then discarded. If
the external column degree of element e is zero but its external row degree is not zero,
then (e,m) is deleted from Cj , column j is assembled from Ce into F, and column
j is deleted from element e. Finally, we scan the original entries (Ak

∗j) in column j
as discussed in section 3.2. If all remaining entries can be assembled into the current
frontal matrix, then we perform the assembly and delete column j of Ak. Thus, the
amortized time to compute dc(j) is O(|Ak

∗j | + |Cj |). This time complexity does not
include the time to perform the numerical assembly.

The scan of rows i ∈ L′′ is analogous. The amortized time to compute dr(i) is
O(|Ak

i∗|+ |Ri|).
We use the sets Le and Ue for all e ∈ V to represent the nonzero pattern of

the active matrix using equations (3.5) and (3.7). Our combined degree update and
numerical assembly phase reduces the storage required for this representation. These
reductions are summarized below:

1. If |Le\L| = 0 and |Ue\U| = 0 then all of Ce is assembled into F. Element e and
all entries in Le and Ue are deleted. This is the same as the complete element
absorption that occurs in the classical multifrontal method. Symbolically, this
is also the same as element absorption in a quotient graph-based minimum
degree ordering algorithm.

2. If |Le \ L| = 0 and |Ue \ U| 6= 0 then columns Ue ∩ U are assembled from Ce

into F. The entries Ue ∩ U are deleted from Ue.
3. If |Le \ L| 6= 0 and |Ue \ U| = 0 then rows Le ∩L are assembled from Ce into
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152 TIMOTHY A. DAVIS AND IAIN S. DUFF

F. The entries Le ∩ L are deleted from Le. An example of this assembly is
discussed below.

For pivot a′22 in the example, we only have one previous element, element 1. The
element lists are shown in Table 3.2. The external column degree of element 1 is one,
since |L1| = 4, and e = 1 appears in the element lists of three rows in L. The external
row degree of element 1 is zero, since |U1| = 2, and e = 1 appears in the element
lists of two columns in U . We have L1 = (L1 \ L) ∪ (L1 ∩ L) = {4} ∪ {2, 3, 7} and
U1 = (U1 \ U) ∪ (U1 ∩ U) = ∅ ∪ {4, 5}. Rows 2, 3, and 7 (but not 4) are assembled
from C1 into F and deleted. This reduction and assembly corresponds to case 3,
above. Row 2 and columns 2 and 3 of Ak are also assembled into F. No columns are
assembled from C1 into F during the column scan, since the external column degree
of element 1 is not zero.

We have

C1 =


4 5

4


− −
− −
c44 c45
− −


 , Ak =



5 6 7

3
4
5
6
7


0 0 a37

a45 a46 0
a55 a56 0
0 a66 a67

a75 0 a77




,

and

F =


U ′ U ′′

L′
L′′

[
a′rc A′

r∗
A′
∗c C

]  =


2 3 4 5

2
3
5
7


a′22 a′23 a′24 a′25
a′32 a33 c34 c35
a′52 a53 0 0
a′72 0 c74 c75


 ,

where we have marked already assembled parts of element 1 by −. The set L1 is now
only {4}, the other entries (2, 3, and 7) having been deleted. It would be possible
to recover this space during the computation but we have chosen not to do so in the
interest of avoiding the expense of updating the associated element lists. Note then
that these lists refer to positions within the original element.

The assembly and deletion of a row in an element does not affect the external
column degree of the element, which is why only new rows are scanned in Algorithm 2.
Similarly, the assembly and deletion of a column in an element does not affect the
external row degree of the element.

The local pivot search within F evaluates the candidate column c and row r using
equations (3.4), (3.5), and (3.7). In the example, the second pivot a′33 is found in the
local pivot search. The set L remains unchanged, but the set U is augmented with
the new column 7. Rows 3 and 7 are assembled from Ak into F in the subsequent
execution of step 2 for this pivot. No further assembly from C1 is made.

Step 2 is substantially reduced if there are no new rows or columns in F. No
assemblies from Ak or Ce can be done since all possible assemblies would have been
done for a previous pivot. It is only necessary to decrement dc(j) for all j ∈ L′′ and
dr(i) for all i ∈ U ′′.D
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4.3. Step 3: Complete the factorization of F. In the example, the final
factorized frontal matrix is

F =


U ′ U ′′

L′
L′′

[
L′U′ U′′

L′′ C

]  =


2 3 4 5 7

2
3
5
7


u22 u23 u24 u25 0
l32 u33 u34 u35 u37

l52 l53 c54 c55 c57
l72 l73 c74 c75 c77


 .

Note that u27 = 0, due to the relaxed amalgamation of two pivot rows with non-
identical patterns. Relaxed amalgamation can result in higher performance since
more of the Level 3 BLAS can be used. In the small example, the active matrix is
represented by the implicit assembly

A′ = C1 l↔ C2 l↔ Ak

=


4 5

4


− −
− −
c44 c45
− −


 l↔


4 5 7

5
7

[
c54 c55 c57
c74 c75 c77

] 

l↔


5 6 7

4
5
6

 a45 a46 0
a55 a56 0
0 a66 a67




=


4 5 6 7

4
5
6
7


a′44 a′45 a′46 0
a′54 a′55 a′56 a′57
0 0 a′66 a′67
a′74 a′75 0 a′77


 .

The element lists are shown in Table 4.1.

Table 4.1

Element lists for example matrix after second frontal matrix.

i Ri j Cj
4 (1,3) 4 (1,1) (2,1)
5 (2,1) 5 (1,2) (2,2)
6 - 6 -
7 (2,2) 7 (2,3)

5. Algorithm. Algorithm 3 is a full outline of the UMFPACK (Version 1.0)
algorithm.

Algorithm 3 (unsymmetric-pattern multifrontal algorithm).
0: initializations

k = 1
V = empty
while (k ≤ n) do

1: e = k
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154 TIMOTHY A. DAVIS AND IAIN S. DUFF

global search for kth pivot: a′rc
L = Struct(A′

∗c)
U = Struct(A′

r∗)
s = g|L|
t = g|U|
form rectangular frontal matrix F in an s-by-t work array
do until an exit condition (marked with **) is satisfied

2: assembly and degree update:
assemble kth pivot row and column into F
scan element lists and compute external degrees

assemble rows and columns from Ak into F
assemble contribution blocks into F
compute degree bounds
numerical update:
compute entries of L (F∗c = F∗c/a′rc)
k = k + 1

if (|U ′| mod b = 0) C = C− L̂Û
local pivot search and numerical update of candidates:

** if (|U ′′| = 0) exit this loop
find candidate pivot column c ∈ U ′′
C∗c = C∗c − L̂Û∗c
if (dc(c) 6= |L′′|) assemble column c and compute dc(c)

** if (dc(c) > s− |U ′|) exit this loop
find candidate pivot row r ∈ L′′

** if (r not found) exit this loop

if (dr(r) 6= |U ′′|) assemble row r and compute dr(r)
** if (dr(r) > t− |U ′|) exit this loop

L = L ∪ Struct(A′
∗c)

U = U ∪ Struct(A′
r∗)

Cr∗ = Cr∗ − L̂r∗Û
enddo

3: final numerical update and saving of contribution block, C:
save L′, L′′, L, U′, U′′, and U
C = C− L̂Û
Ce = C
place Ce in heap
Le = L′′
Ue = U ′′
delete F
V = V ∪ {e}
add e to element lists

endwhile

6. Performance results. In this section, we compare the performance of
UMFPACK Version 1.0 with MUPS [2] and MA48 [15] on a single processor of a
CRAY C-98 (although MUPS is a parallel code). Each method has a set of input
parameters that controls its behavior. We used the recommended defaults for most
of these, with a few exceptions that we indicate below. All methods can factorize
general unsymmetric matrices, and all use dense matrix kernels to some extent [6].
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Table 6.1

Test matrices.

name n |A| sym. discipline comments
gre 1107 1107 5664 0.000 discrete simul. computer system
gemat11 4929 33185 0.001 electric power linear programming basis
orani678 2529 90158 0.071 economics Australia
psmigr 1 3140 543162 0.479 demography US county-to-county migration
lns 3937 3937 25407 0.850 fluid flow linearized Navier–Stokes
hydr1 5308 23752 0.004 chemical eng. dynamic simulation
rdist1 4134 94408 0.059 chemical eng. reactive distillation
lhr04 4101 82682 0.015 chemical eng. light hydrocarbon recovery
lhr71 70304 1528092 0.002 chemical eng. light hydrocarbon recovery

MA48 [15] supersedes the MA28 code [12]. It first performs an ordering phase
that also computes most of the factors but discards them. It then performs the
numerical factorization to compute the entire LU factors. When the matrix becomes
dense enough near the end of factorization (default of 50% dense), MA48 switches to
a dense factorization code.

MUPS performs a minimum degree ordering and symbolic factorization on the
nonzero pattern of A + AT and constructs an assembly tree for the numerical
factorization phase [2, 8, 9, 14]. During numerical factorization, candidate pivot
entries must pass a threshold partial pivoting test similar to equation (3.1), except
that the test is by rows instead of by columns. Since the other methods we are
comparing perform this test by columns, we factorize AT with MUPS and then use
the factors of AT to solve the original system (Ax = b). MUPS optionally preorders
a matrix so that the diagonal is zero free using a maximum transversal algorithm
[7]. MUPS always attempts to preserve symmetry. It does not permute the matrix
to block upper triangular form. Note that we do not include symmetric-patterned
matrices in our test set, for which MUPS is nearly always faster than UMFPACK.

By default, both UMFPACK and MA48 preorder a matrix to block upper
triangular form (always preceded by finding a maximum transversal [7]) and then
factorize each block on the diagonal [11]. Off-diagonal blocks do not suffer fill in. This
can reduce the work for unsymmetric matrices. We did not perform this preordering,
since MUPS does not provide the option. UMFPACK has similar input parameters
to MA48, although it does not explicitly include a switch to dense factorization code
(each frontal matrix is dense, however). We selected the threshold partial pivoting
factor (u) to be 0.1 for all four methods.

The methods were tested on a single processor of a CRAY C-98, with 512
Megawords of memory (8-byte words). Version 6.0.4.1 of the Fortran compiler
(CFT77) was used. Each method was given 95Mw of memory to factorize the test
matrices, listed in Table 6.1. The table lists the name, order, number of entries (|A|),
symmetry, the discipline from which the matrix came, and additional comments. The
symmetry is the number of matched off-diagonal entries over the total number of off-
diagonal entries. An entry, aij (j 6= i), is matched if aji is also an entry. All matrices
are available via anonymous ftp. They include matrices from the Harwell–Boeing
Collection [10]. One matrix (lhr71) was so ill conditioned that it required scaling
prior to its factorization. The scale factors were computed by the Harwell Subroutine
Library routine MC19A [3]. Each row was then subsequently divided by the maximum
absolute value in the row (or column, depending on how the method implements
threshold partial pivoting). No scaling was performed on the other matrices.

The results are shown in Table 6.2. For each matrix, Table 6.2 lists the numerical
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Table 6.2

Results.

Matrix method factor total |L + U| memory op count
(sec) (sec) (106) (106) (106)

gre 1107 UMF. .07 0.30 .09 .3 9.7
MA48 .11 0.38 .07 .3 8.1
MUPS .13 0.38 .19 .4 26.6

gemat11 UMF. .18 .45 .08 .4 1.0
MA48 .18 .54 .05 .4 .7
MUPS .27 .57 .14 .4 2.8

orani678 UMF. .53 2.07 .12 1.1 7.4
MA48 .32 1.01 .15 .8 14.2
MUPS .61 218.69 .39 13.3 87.6

psmigr 1 UMF. 15.62 33.99 6.36 26.4 10194.8
MA48 14.92 28.86 6.40 20.9 10465.3
MUPS 14.04 323.15 6.21 26.9 9002.4

lns 3937 UMF. .45 1.89 .50 1.4 84.8
MA48 1.00 3.37 .69 2.2 280.4
MUPS .71 1.73 .92 1.2 185.8

hydr1 UMF. .24 1.05 .15 .6 4.5
MA48 .28 .81 .08 .4 .9
MUPS .57 1.21 .24 .5 10.7

rdist1 UMF. .47 1.53 .49 1.4 37.1
MA48 1.37 4.78 .41 1.6 27.2
MUPS .33 2.01 .28 .7 10.3

lhr04 UMF. .56 2.51 .39 1.5 30.6
MA48 1.27 4.25 .34 1.3 25.8
MUPS 1.03 9.89 1.10 2.3 300.3

lhr71 UMF. 12.26 53.80 10.49 30.2 1294.5
MA48 51.60 171.66 10.08 36.1 1338.4
MUPS - - - > 95.0 -

factorization time, total factorization time, number of nonzeros in L+U (in millions),
amount of memory used (in millions of words), and floating-point operation count (in
millions of operations) for each method. The total time includes preordering, symbolic
analysis and factorization, and numerical factorization. The time to compute the scale
factors for the lhr71 matrix is not included, since we used the same scaling algorithm
for all methods. For each matrix, the lowest time, memory usage, or operation count
is underlined. We compared the solution vectors, x, for each method. We found that
all four methods compute the solutions with comparable accuracy, in terms of the
norm of the residual. We do not give the residual in Table 6.2.

MUPS failed on the lhr71 matrix because of insufficient memory. This is a
very ill-conditioned problem that causes MUPS to be unable, on numerical grounds,
to choose pivots selected by the analysis. This leads to an increase in fill in and
subsequent failure.

We also compared UMFPACK with Gilbert and Peierls’ partial pivoting code,
GPLU [22], and with SSGETRF, a classical multifrontal method in the CRAY
Research Library. The peak performance of GPLU was low primarily because
its innermost loops do not readily vectorize (even with the appropriate compiler
directives). Since this is a limitation of the code and not a fundamental limitation of
the algorithm, we do not report the GPLU results. The results for SSGETRF were
roughly comparable with MUPS, except that SSGETRF tended to use slightly less
memory than MUPS (sometimes as little as 65% of that of MUPS) and was typically
slightly slower than MUPS (sometimes twice as slow as MUPS). We thus do not report
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the SSGETRF results since they do not change our overall comparison between the
classical multifrontal method (MUPS or SSGETRF) and our unsymmetric-pattern
multifrontal method (UMFPACK).

Overall, these results show that the unsymmetric-pattern multifrontal method
is a competitive algorithm when compared with the classical multifrontal approach
(MUPS) and an algorithm based on more conventional sparse matrix data structures
(MA48).

Acknowledgments. We thank Patrick Amestoy, Mario Arioli, Michel Daydé,
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