
Appears in the Proceedings of the 33
���

Annual International Symposium on Microarchitecture

The Impact of Delay on the Design of Branch Predictors

Daniel A. Jiménez Stephen W. Keckler Calvin Lin
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712�
djimenez,skeckler,lin � @cs.utexas.edu

Abstract
Modern microprocessors employ increasingly complicated
branch predictors to achieve instruction fetch bandwidth that
is sufficient for wide out-of-order execution cores. While ex-
isting predictors can still be accessed in a single clock cy-
cle, recent studies show that slower wires and faster clock
rates will require multi-cycle access times to large on-chip
structures, such as branch prediction tables. Thus, future
branch predictors must consider not only area and accu-
racy, but also delay. This paper explores these tradeoffs in
designing branch predictors and shows that increased accu-
racy alone cannot overcome the penalties in delay that arise
with larger predictor structures. We evaluate three schemes
for accommodating delay: a caching approach, an overrid-
ing approach, and a cascading lookahead approach. While
we use a common branch predictor, gshare, as the predic-
tion component, these schemes can be constructed using most
types of predictors.

1 Introduction

Accurate branch prediction is essential to sustaining high IPC
in pipelined microprocessors. Until now, the huge body of
branch prediction research has focused on only two dimen-
sions of the problem—area and accuracy—and has found
that larger hardware budgets yield higher accuracy for two
reasons: They allow longer history lengths, and they reduce
aliasing, which occurs when two unrelated branches destruc-
tively share the same hardware branch prediction resources.
Indeed, much of the recent work has focused on methods for
reducing aliasing [19, 13, 12, 21, 5]. With growing chip ca-
pacities, the focus of the research community on area and
accuracy has led to large elaborate predictors, some of which
require 16K to 64K byte structures [7].

Recent studies, however, have shown that as feature sizes
shrink, larger wire delays and smaller clock cycles will lead
to multi-cycle access to large on-chip structures [1]. Thus,
future branch predictors will need to consider a third dimen-
sion: delay. Figure 1 illustrates the problem of ignoring de-
lay. Using an idealized delay of one cycle to access the pat-
tern history table (PHT), the gshare predictor [13] sees im-
proved IPC—due to improved prediction accuracy—as the
size of the PHT is increased. By contrast, with an aggres-
sive clock frequency (2GHz) and a realistic delay model for

today’s 180 nanometer technology, the curve drops off at
1KB where the PHT requires two cycles to access, and IPC
drops significantly at 32KB where delay becomes three cy-
cles. This problem will be exacerbated by the smaller process
technologies of the future, as shown by the curve for 100nm
technology, which drops to 3 cycles 8KB.

0.125 0.25 0.5 1 2 4 8 16 32 64 128 256

Table Capacity (Kilobytes)

0.6

0.8

1.0

1.2

1.4

In
st

ru
ct

io
ns

 p
er

 C
yc

le
Single-Cycle Access
Access Time in 180nm
Access Time in 100nm

Figure 1: Instruction Throughput versus Capacity for the
gshare predictor. Using idealized single-cycle access, IPC
(and prediction accuracy) increases with increasing pattern
history table capacity. Using realistic delay models, IPC
drops when the delay is 2 cycles, and falls precipitously when
the delay is 3 cycles.

This paper explores the tradeoffs in delay, area, and ac-
curacy for the design of future branch predictors. We ex-
amine three approaches for dealing with delay in future pro-
cess technologies: a two level caching scheme, an overriding
scheme that allows a first prediction to be overturned by a
more accurate second prediction, and a cascading lookahead
scheme that exploits the time between branches to start read-
ing prediction tables.

Each approach can be implemented with almost any two-
level branch predictor as components. We use gshare as the
basic prediction component because it is well-understood and
often used as a standard for comparison. To calibrate our
results with existing technology, we also simulate a hybrid
predictor similar to that found in the Alpha 21264 [11] mi-

1

croprocessor, and we show how this hybrid predictor scales
to future technologies.

This paper makes the following contributions.

� We show that delay in the predictor significantly erodes
performance, so future branch prediction work must
consider delay in their designs.

� We show that increasing delay to improve accuracy is
never a good tradeoff.

� We show that there are approaches to branch prediction
that can effectively use large structures with multi-cycle
access times.

� We show that the overriding approach performs best
and can improve IPC by 10% over gshare in 35nm tech-
nology at an aggressive clock rate.

This paper is organized as follows. Section 2 describes
related work. Section 3 discusses the technological chal-
lenges that branch predictors face. Section 4 describes three
approaches to dealing with multi-cycle delay, and Section 5
presents experimental results.

2 Related Work

Most recent research in dynamic branch prediction focuses
on the two-level scheme of Yeh and Patt [23], which uses
two-bit saturating counters to record the history of particular
branches or branch patterns. As Sechrest, et al. showed [19],
aliasing can limit the accuracy of branch predictors. A variety
of techniques for reducing aliasing have been suggested [13,
12, 21, 5], and given sufficiently large predictor tables, many
of these two-level achieve similar performance [5].

Lookahead branch prediction, including predicting multi-
ple branches per cycle, has been suggested as a means for pre-
dicting branches that have not yet been presented to the pre-
dictor. One of the first lookahead branch predictors was pro-
posed by Yeh, et al. [22] as the Multiple Branch Two-Level
Adaptive Branch Predictor. This predictor uses the result of
the first branch prediction to speculatively update the history
register for a second branch prediction. No branch addresses
are required since only the global history register is used to
access the pattern history tables. Seznec, et al. improve on
this idea by enhancing the BTB to enable the predictor to use
the address of the current instruction block to perform predic-
tion for the next instruction block [20]. This scheme enables
the fetches to multiple blocks to be pipelined. Onder, Xu and
Gupta propose a similar scheme in which predictions for an
entire branch sequence are made all at once, and instruction
fetch can continue unimpeded through the last branch [14].

Driesen and Hölze propose a “cascaded” predictor that
dynamically filters easily predicted branches, relieving alias-
ing effects in the PHT [4]. Our work borrows the idea of
cascading, but uses it to alleviate delay. Similarly, Evers de-
scribes the use of two PHTs with different history lengths
and different access times, and suggests that the slower one
can override the other [6]. The Alpha 21264 branch predictor
uses the idea of overriding: the branch predictor can over-
ride the less accurate instruction cache line predictor, with

1 2 4 8 16 32 64 128

Table Capacity (Kilobytes)

85

90

95

100

P
re

di
ct

io
n

A
cc

ur
ac

y

Single-Issue Inorder Gshare
4-Way OoO Hybrid
4-Way OoO Gshare

Figure 2: Prediction Accuracy versus Pattern History Table
Capacity for our benchmarks. As the capacity increases, so
does the prediction accuracy. Accuracy is worse for a 4-way
out-of-order machine because the branch history is not al-
ways updated in time for the next prediction.

a penalty of a single cycle, as opposed to the seven-cycle
branch misprediction penalty [11].

Of course, the real goal in these strategies is to improve
instruction fetch bandwidth and preferably take branch pre-
diction off the critical path. Recent research has focused on
trace caches as a mechanism to capture a long stream of se-
quential instructions that can be easily fetched at peak band-
width [18, 15]. Branch prediction guides the trace selection
in the instruction fetch engine, at times predicting multiple
branches per cycle. A more radical approach is the Fetch Tar-
get Buffer (FTB) proposed by Reinman, et al. [16]. The FTB
stores the addresses of predicted blocks of instructions and
is designed as a two level cache for fast access and accurate
block prediction. Like our study, Reinman, et al. consider
technology constraints in the design of the FTB. Frameworks
like the FTB can benefit by using delay-sensitive branch pre-
diction strategies as their branch prediction components.

3 Challenges for Branch Prediction

This section discusses the near term technological trends in
fabrication technologies that branch predictor designers must
confront. We first discuss the tradeoffs between accuracy and
delay, explaining why delay is becoming increasingly signif-
icant. We then explain why large tables lead to large delays.
Together, these observations frame our search for the latency-
sensitive predictors that we discuss in the next section.

3.1 Predictor Delay vs. Accuracy

Branch prediction accuracy increases with the amount of
memory allocated to the branch prediction table. Figure 2
shows the accuracy of the gshare branch predictor on several
benchmarks (see Table 2 for a list of the benchmarks used in
this study) as the prediction table capacity is increased, both
in a sequential in-order machine and a 4-way out-of-order
machine simulated with SimpleScalar [2]. The graph also
shows the accuracy of a hybrid predictor similar to that in

2

0 5 10 15 20
Inter-Branch Distance (# Cycles)

0

10

20

30

40
P

er
ce

nt
 o

f B
ra

nc
he

s
E

xe
cu

te
d

Figure 3: Histogram of average inter-branch latencies, mea-
sured in cycles, between prediction requests, for the SPEC
2000 integer benchmarks. Over 60% of the prediction re-
quests occur at least one cycle after the previous request.

the Alpha 21264. We see that wide issue out-of-order execu-
tion has an important effect on prediction accuracy, increas-
ing the misprediction rate roughly 25% over the single-issue
in-order case because some predictions are demanded before
the global pattern history register can be updated with the
most recent branch outcomes. This effect also occurs with a
single-issue in-order machine, but is much less pronounced
since fewer branches can be in flight at the same time.

Similar graphs appear in most recent branch prediction
papers. These graphs tacitly imply that branch prediction ac-
curacy, and hence instructions-per-clock (IPC), can be im-
proved by increasing the size of the prediction table. How-
ever, larger structures lead to larger access delays; worse,
aggressively increasing clock rates (as the marketplace de-
mands) increases the structure access time as measured in
clock cycles.

Our studies show that it is almost never worth increasing
the delay of a branch predictor for the sake of improved ac-
curacy. For example, Figure 1 shows that as we increase the
capacity of the tables in gshare, we increase delay and de-
crease IPC. This effect can be explained with the following
equation which roughly approximates the cost � of executing
a branch instruction:

���
	�����������
where 	 is the delay of branch predictor, � is the mispredic-
tion rate, and � is the misprediction penalty. While the delay
	 may not always be on the critical path of the pipeline, in-
creasing 	 will reduce the instruction fetch bandwidth to the
execution cores. Because misprediction rates tend to be close
to 10%, changes in 	 have a larger impact than small changes
in � .

3.2 Branch Frequency

A program’s control behavior is based not only on the pre-
dictability of its branches, but also on the branch frequency.
If branch prediction is required on every clock cycle, any de-
lay in branch prediction will substantially slow the instruc-
tion fetch rate. However, if branches are widely spaced, then

Gate 16FO4 Clk 10FO4 Clk
(nm) ����� (GHz) ����� (GHz)
250 0.70 1.12
180 0.96 1.54
130 1.33 2.13
100 1.74 2.78
70 2.48 3.97
50 3.47 5.55
35 4.96 7.94

Table 1: Projected clock rates using FO4 Clock scaling.

branch prediction latency will have less impact on perfor-
mance. We use SimpleScalar to measure the average branch
frequency in ten SPEC 2000 integer benchmarks on a 4-way
out-of-order machine configuration. The results in Figure 3
show that 61% of the branches had at least one unused cycle
between predictions. The unused cycles provide additional
time to predict future branches.

3.3 Technology Scaling

Branch predictors, like other microarchitecture structures, are
affected by two technology scaling trends. At smaller fea-
ture sizes, wire delay grows in significance relative to tran-
sistor speeds and can affect the latency of the fetch engine
and the branch predictor. Furthermore, microprocessor de-
signers continue to aggressively increase the clock rates, out-
stripping the speed improvements achieved by transistors that
have smaller gate lengths in each successive technology [1].
These faster clocks exacerbate the tradeoff between capacity
and delay in microprocessor components.

To account for accelerating clock rates, we use a technol-
ogy independent metric, the fanout-of-four (FO4) delay met-
ric, to measure clock period [9]. One FO4 delay is the time
for an inverter to drive 4 copies of itself. Reasonable models
show that under typical conditions, the FO4 delay, measured
in picoseconds, is equal to ���! ��#" �$��%'&)(, where " �*�+%,&)(is
the minimum gate length for a technology, measured in mi-
crons. The number of FO4 delays in a clock period is an
indicator of the number of levels of logic in a pipeline stage.
In this paper, we examine two edges of the clock scaling en-
velope: - ��� , which corresponds to a clock period of 10 FO4
delays, and - ��� corresponding to 16 FO4 delays. Table 1 lists
the technologies that we consider in this paper and the clock
rates that result from aggressive (- ���) and conservative (- ���)
scaling.

We base our estimates of branch predictor delay on the
access time of the memory-oriented structures such as the
pattern history table (PHT). To model PHT delay, we use the
methodology described by Agarwal, et al. [1], which aug-
ments the ECacti cache delay modeling tool [17] with scaled
technology parameters. We convert the access time produced
by the augmented ECacti model into cycles, according to
both the - ��� and - ��� clock scaling strategies. As shown in
Figure 4, with the aggressive - ��� clock, only small tables of
1024 entries can be accessed in a single cycle, and at 35nm,
only 512 entries can be accessed in one cycle. Accepting
a 2 or 3 cycle delay increases the capacity to 16K and 64K
entries, respectively. Using the conservative - ��� clock rate,

3

250 180 130 100 70 50 35
Technology (nm)

0.5

1

2

4

8

16

32

64

128

256

P
H

T
 C

ap
ac

it
y

(K
-e

nt
ri

es
) 3 Cycles (f10)

2 Cycles (f10)
1 Cycle (f10)

250 180 130 100 70 50 35
Technology (nm)

8

16

32

64

128

256

512

1024

P
H

T
 C

ap
ac

it
y

(K
-e

nt
ri

es
) 3 Cycles (f16)

2 Cycles (f16)
1 Cycle (f16)

Figure 4: Pattern History Table capacity and access latency across technologies at agressive (- ���) and conservative (- ���) clock
frequencies .

much larger structures can be used, ranging from 16K to
512K, as the access latency grows from 1 to 3 cycles.

As a consequence of technology and clock scaling, the
challenge for the microarchitect is to achieve high accuracy in
branch predictors whose table sizes are limited. Thus, branch
predictors cannot be evaluated solely on prediction accuracy.
Latency must be taken into account as the branch predictor
will often reside on the critical path for the execution of the
program. However, some of the latency of branch prediction
can be hidden if spaces between branches can be found. The
remainder of this paper examines techniques for achieving
high prediction accuracy while minimizing prediction latency
for future process technologies.

4 Latency Sensitive Branch Predictors

In this section we describe three ways to configure branch
predictors to increase accuracy in the face of increasing la-
tency. These techniques all have a common theme: a small
table is used to provide quick prediction, and a large table is
used to provide higher accuracy. The techniques are appro-
priate when standard techniques for branch prediction might
exceed one cycle, and are general techniques that can be
applied to most prediction algorithms. We assume that the
branch target buffer (BTB) is kept at a constant capacity and
access time. While this is not realistic because of technol-
ogy and clock rate impact on BTB capacity, it allows us to
focus solely on the scaling of the branch predictor. Similar
strategies can be applied to the BTB.

4.1 Caching Prediction Tables

The first strategy to combat the long latency of large branch
prediction tables is to build a small cache of branch predic-
tion table entries. This allows us to realize the benefits of re-
duced aliasing and increased history length without the added
latency of the large table, since the cache will work in one
cycle. Figure 5 shows the organization of the gshare predic-
tor augmented by a cache. The branch history and branch
address are hashed using the XOR gate, and the resulting ad-
dress is sent to both the pattern history table cache (PHTC)
and the pattern history table (PHT). The PHT consists of
2-bit saturating counters, with the number of counters equal

PHT

Hit?

Prediction

Branch
Address

Branch
History Register ABP PHTC

Figure 5: Caching Branch Predictor

to the number of combinations of addresses produced by the
hash function. The PHTC caches a subset of those counters
in a smaller table that can be accessed more quickly than the
PHT. If the correct counter is found in the PHTC, then the
prediction can be made immediately. If a miss in the PHTC
occurs, then the PHT must be consulted to find the correct
saturating counter. Like traditional caches, an entry in the
PHTC is replaced with the correct counter from the PHT.
When the branch direction is determined during a later stage
of the execution pipeline, the counters in the PHT and PHTC
are updated to reflect the correct or incorrect prediction of
that branch.

If a PHTC miss occurs, the wait for the correct prediction
from the PHT will delay instruction fetch and will degrade
overall performance. Two alternatives can be used to prevent
this additional delay. The prediction produced by the PHTC,
albeit for the wrong branch, can be used. We instead build a
small auxiliary branch predictor (ABP) that can be accessed
at the same time as the PHTC. If the PHTC misses, then the
result from the ABP is used. The accuracy of this hybrid-
like predictor is a function of the capacities of the subsidiary
predictors and the ability of the PHTC to capture the locality
of branch instructions.

4.2 Cascading Lookahead Branch Prediction

Lookahead branch prediction has been proposed as a mecha-
nism to increase fetch bandwidth by generating addresses for
future branches [22, 20]. The same technique can be applied

4

PHT1

Branch History
 Register

PHT2

BTB Branch Address

Prediction

timer

Figure 6: Cascading Branch Predictor

to reduce the impact of longer latency branch predictors. If
the branch predictor is not needed on every cycle, then natu-
ral spacing between branches can be used to perform a pre-
diction for the next branch that is likely to arrive. Thus, if
branches are spaced so that the predictor is accessed only ev-
ery other cycle, the predictor can have a two cycle latency
without introducing additional delay.

The gshare predictor can be adapted to look one branch
ahead. While gshare uses the branch history register and
branch address to compute the PHT address, the lookahead
predictor uses the predicted history and predicted branch tar-
get address. The predicted history is computed by appending
the prediction of the most recent branch to the branch history
register. The predicted branch target address is taken directly
from the BTB as a result of the previous branch prediction.
As a consequence, this scheme relies on the accuracy of the
BTB. If the prediction can complete before the next branch
arrives at the predictor, prediction is instantaneous. However,
if the prediction requires multiple cycles (due to a large table)
and the next branch arrives before the prediction is complete,
the instruction fetch engine stalls.

Cascading lookahead branch prediction implements a se-
ries of tables of ascending size and latency. Figure 6 shows
a two-level cascading predictor. Like a lookahead predictor,
the next prediction is based on the last prediction and the last
predicted branch target. Prediction is begun simultaneously
on both levels of the cascading predictor. If the latency to the
next branch to be predicted is large, then the prediction from
the second level table is selected. If the next branch arrives
before the second level table can complete its access, then the
prediction from the first level table is used.

The combination of a small first level table and a larger
second level table can provide high aggregate accuracy with
low latency. However, the utility of the larger table depends
on its access time and the inter-branch latency. If branches
occur extremely frequently, the second level of the cascade
will not be used. The cascading design can be trivially ex-
tended to more than two levels. Furthermore, hybrid pre-
dictors of varying latencies can be incorporated into the cas-
cading strategy. In our description above, the logic to select
which prediction to use is based only on the arrival time of
the next branch. More complicated selectors could trade off

PHT1

Branch History
 Register

PHT2

Branch Address

Branch 1
Match

Branch 2

=?

Figure 7: Overriding Branch Predictor

Benchmark Description
164.gzip LZ77 compression
175.vpr Place and route for FPGAs
176.gcc C compiler
181.mcf Minimum cost network flow solver
197.parser Natural language processing
253.perlbmk Perl
254.gap Computational group theory
255.vortex Database
256.bzip2 Block-sorting compression
300.twolf Place and route

Table 2: Subset of the SPEC 2000 integer benchmark suite.

latency versus accuracy by predicting which of many predic-
tions is best for the subsequent branch.

4.3 Overriding Branch Predictor

An overriding branch predictor (Figure 7) provides two pre-
dictions. The first prediction comes from a fast PHT (PHT1),
and the second prediction comes from a slower, but more ac-
curate PHT (PHT2). When branch prediction is requested,
the first prediction is used and acted upon while the second
prediction is still being made. If the second prediction differs
from the first prediction, the actions taken based on the first
prediction are squashed and instructions are fetched using the
second prediction; thus, the second predictor overrides the
first predictor. For the overriding scheme, we assume that the
penalty of restarting an overridden fetch is equal to the delay
of PHT2. A similar technique is used in the Alpha 21264,
in which the branch predictor, whose results become known
only in the second stage of the pipeline, can override the less
accurate instruction cache line predictor [11] at the cost of a
single stall cycle. We assume the predictor is pipelined such
that no branch needs to wait for the completion of a PHT2
lookup for a previous branch.

5

Capacity
(bits) # entries Bits/entry Ports

BTB 48K 512 96 1
Reorder buffer 8K 64 128 8
Issue window 800/320 20 56 8
Integer RF 5K 80 64 10
FP RF 5.6K 72 80 10
L1 I-Cache 512K 1K 512 1
L1 D-Cache 512K 1K 512 2
L2 Cache 16M 16K 1024 2
I-TLB 14K 128 112 1
D-TLB 14K 128 112 2

Table 3: Parameters used for the simulations, similar to the
Alpha 21264.

5 Results and Evaluation

In this section we evaluate the three latency sensitive branch
predictors and compare them to gshare across a spectrum
of process technologies. As displayed in Table 2, we use
ten SPEC 2000 integer benchmarks for our simulation. We
simulate the different prediction strategies described above
using delay estimates at seven process technologies ranging
from 250nm to 35nm. We simulate the benchmarks using
the SimpleScalar out-of-order simulator and PISA instruction
set, configured with parameters similar to those for the Alpha
21264; the simulator is a modified version of the one used by
Agarwal et. al. [1]. Each simulation runs for 500 million
instructions or until the application terminates, whichever
comes first. In the simulations, the global pattern history reg-
ister is updated speculatively and backed up on a mispredict,
while updates to the PHTs are done when the updating branch
commits.

Since we are focusing solely on the branch predictor, we
keep the other structure sizes constant at values shown in Ta-
ble 3. Our main results use the aggressive - ��� clock rate,
which emphasizes the scaling difficulties of branch predictor
structures. We also report results for the more conservative
- ��� clock. Although -�. was used in the original technology
scaling work [1], we choose - ��� as our aggressive clock rate
because our hybrid predictor is unworkable at the -�. clock
rate.

For each process technology, we configure the simulator
with the largest branch prediction structures (predictor tables,
cache, etc.) reachable at the given number of cycles allocated
to branch prediction. The structure sizes are obtained using
the modified version of ECacti described in Section 3. For
each benchmark we measure IPC, aggregate branch predictor
accuracy, and other statistics related to the branch prediction
schemes. Aggregate branch prediction performance is com-
puted as the arithmetic mean over the benchmarks. Note that
the capacity of each structure is set by its access time, rather
than any chip area limitation. With smaller feature sizes, this
assumption is fair, as the amount of effective chip area is far
larger than is reachable in the number of cycles we consider.

2 3 4
Secondary Table Access Time (# cycles)

1.10

1.15

1.20

1.25

In
st

ru
ct

io
ns

 p
er

 C
yc

le Overriding
Cascading
Caching

Figure 8: IPC at 100nm for various configurations of primary
and secondary structures in the caching, overriding, and cas-
cading predictors at the - ��� clock rate.

5.1 Predictor Configuration

For each predictor, we consider several configurations of
structure capacity and latency in search of the best configura-
tion at each technology generation. Figure 8 shows the results
of these experiments for the caching and cascading predictors
at 100nm. In the caching predictor, the two structures are the
PHTC and the PHT, while in the overriding and cascading
predictor the two structures are the PHT1 and PHT2. As the
secondary structure access times increase, the resulting IPC
is slightly worse for the overriding predictor and slightly bet-
ter for the cascading predictor. The size of the secondary
structure for the caching predictor makes little difference in
performance. The rest of our results are reported using the
best configurations found for each prediction technique.

Each gshare component of the various predictors uses the
maximum history length, e.g., if a gshare predictor has 1024
entries, then the maximum history length is /10�243!5, 76�89�:5' .
Studies have shown that the using the maximum history
length does not always yield the best accuracy [13, 8], so
we empirically identify the best history length for gshare at
each hardware budget. We find that, for our PISA instruc-
tion set, branch predictor configurations, and benchmarks,
the best history length is always the maximum.

In the caching predictor, we varied the latency of the PHT
from 2 to 4 cycles, keeping the PHTC at a 1-cycle access
time. Note that increasing the latency of each table also in-
creases its capacity.

For the cascading and overriding predictors, we keep ac-
cess to the primary PHT at one cycle while varying access
to the secondary PHT from from 2 to 4 cycles. Increasing
the second level (PHT2) latency reduces IPC slightly for the
overriding predictor, but increases IPC slightly for the cas-
cading predictor.

The best configurations for the caching predictor at the
- ��� clock rate can be seen in Table 4. The PHTC has an
unusually small number of entries compared with the other
structures. Unlike a normal cache that has large cache lines,
our caching predictor requires many times more tag bits than
data bits. The extra wire length involved in accessing the tag

6

Technology ABP ABP PHTC PHT PHT
(nm) Delay Entries Entries Delay Entries
250 1 2K 512 2 64K
180 1 1K 256 2 32K
130 1 1K 256 3 128K
100 1 1K 256 4 256K
70 1 1K 256 2 32K
50 1 1K 256 2 16K
35 1 512 128 2 16K

Table 4: The best configurations of the ABP and PHT table
sizes, as well as number of PHTC for the caching predictor
at each technology for the - ��� clock rate.

Technology PHT1 PHT1 PHT2 PHT2
(nm) Delay Entries Delay Entries
250 1 2K 2 64K
180 1 1K 3 128K
130 1 1K 2 32K
100 1 1K 2 32K
70 1 1K 3 64K
50 1 1K 3 64K
35 1 512 2 16K

Table 5: The best configurations of the PHT1 and PHT2 for
the cascading and overriding predictors at each technology
for the - ��� clock rate.

bits severely restricts the number of cache entries, limiting
the effectiveness of this scheme. Other prediction compo-
nents in which the size of the basic prediction element is large
with respect to the number of tag bits, such as the perceptron
predictor [10], may be more amenable to a caching scheme.

The best configurations for the cascading predictor at the
- ��� clock rate are shown in Table 5. The best configura-
tions for the overriding predictor are identical to those of the
cascading predictor, since the two predictors have much the
same architecture and differ only in their policy of when and
whether to use the second-level PHT. Indeed, the stream of
updates to the PHT1 and PHT2 structures should be the same
in both overriding and cascading predictors; the only differ-
ence is that the overriding predictor always uses the PHT2
prediction, while the cascading predictor only uses the PHT2
prediction when it has enough time.

The best configurations for each predictor at the more
conservative - ��� clock rate (not shown) allow larger tables
and single-cycle access for the hybrid predictor at every tech-
nology.

5.2 Structure Usage Rates

The simulations keep statistics on the rate at which the var-
ious structures are accessed. To explain the relative perfor-
mance of each technique, Figure 9 shows the utility of each
predictor. These statistics explain the relative performance
of each technique. For the caching scheme, the the PHT is
accessed for 7.5% of all branches, and this access results in

0.00

0.05

0.10

0.15

0.20

Se
co

nd
ar

y
St

ru
ct

ur
e

U
ti

lit
y

cache
utility

cascade
utility

override
utility

Figure 9: The utility of the secondary structures is highest in
the overriding predictor and lowest in the caching predictor.

a prediction different from that of the ABP in 0.013% of all
branches. This explains why the performance of the caching
predictor is so similar to gshare by itself: it almost always
relys on the ABP, and when it doesn’t, the ABP and PHT
almost always agree.

For the cascading scheme, the PHT2 structure is used for
45.6% of all branches, and its prediction differs from that of
PHT1 for 5.5% of all branches, thus the second level table is
useful for only 5.5% of branches.

For the overriding scheme, the frequency with which the
predictions of PHT1 and PHT2 disagree, i.e., how often the
more accurate predictor is used, is 16.5%, so the overriding
scheme is the most useful of the predictors. These results
are for 100nm technology; the statistics are similar across all
technologies.

5.3 Hybrid Predictor

To demonstrate the effect of delay on predictors more com-
plex than gshare, and calibrate our clock estimates with a
real-world processor, we simulate a hybrid predictor simi-
lar to the branch predictor of the Alpha 21264. We report
IPC and accuracy figures for this predictor along with our
other results. This predictor maintains both global and local
branch history information. The global pattern history reg-
ister is used to index into a PHT while the branch address
is used to index into a table of local histories, which is then
used to index another PHT. A choice table is indexed by the
global pattern history register. The global branch history is
update speculatively, and all other tables are updated when
the branch commits. We assume the lookups in the global
PHT, local history table, and chooser table are all started at
the same time, and the lookup in the local PHT occurs imme-
diately after the local history register becomes available from
the local table. The global PHT and chooser table have four
times the capacity of the local PHT, and the local PHT and
local histories table have the same number of entries.

This predictor closely resembles the Alpha predictor [11]
with two exceptions: (1) on the Alpha, the prediction be-
comes available only in the second pipeline stage, and can
override the first-stage line predictor, while our predictor op-
erates in the first pipeline stage; and (2), we allow the capac-
ity of our predictor to vary depending on the access times at

7

Technology Delay Local Global
(nm) Entries Entries
250 1 128 512
180 2 4K 16K
130 2 4K 16K
100 2 4K 16K
70 2 4K 16K
50 2 2K 8K
35 2 2K 8K

Table 6: The best configurations for the hybrid predictor at
each technology for the - ��� clock rate. Beyond 250nm tech-
nology, the predictor simply can’t work in one cycle because
of sequential lookups into the local history table and local
PHT, so delay slips to two cycles, with a corresponding in-
crease in table capacities.

355070100130180250

Feature Size (nm)

85

90

95

100

P
re

di
ct

io
n

A
cc

ur
ac

y

Hybrid
Overriding
Cascading
Caching
Gshare

Figure 10: Accuracy vs. Technology for the five prediction
strategies at - ��� . The hybrid predictor is more accurate only
because its best configuration consumes two cycles, allowing
it to use large table.

the different clock rates and technologies.
The configurations for the hybrid predictor at the - ���

clock rate are seen in Table 6. Unlike the gshare, this hybrid
predictor requires two table accesses: first in the table of local
histories, and then in the local PHT. Consequently, this hy-
brid predictor is much more sensitive to delay that prediction
schemes that require only a single table access. In fact, at the
aggressive - ��� clock rates, we found that the table sizes are
prohibitively small for single cycle predictor access at 180nm
and smaller. Our original experiments used an -�. clock rate,
but that resulted in multi-cycle predictor latency at 250nm
as well. Finally, using the table sizes of the Alpha 21264 in
250nm technology results in an access time of 1.55 ns, which
corresponds to the published clock frequency of the Alpha of
approximately 600MHz [11].

5.4 Aggressive Clocking

Figure 10 shows the accuracies of the best configurations of
the various predictors at the - ��� clock rates. As shown in the
graph, accuracy tends to decrease with feature sizes, because
the prediction table capacities decrease. The accuracy of
the overriding predictor increases slightly from 100 to 70nm,
since the best configuration for 70nm technology allows the
PHT2 to take three cycles, while the best configuration in
100nm allows only two cycles. Likewise, the accuracy of
the hybrid predictor increases from 250 to 180nm as the best
configuration predicts in two cycles, allowing a larger area
to be used. Of the schemes that can provide a prediction in
a single cycle, the overriding predictor achieves the highest
accuracy because it always uses larger second-level predic-
tor, either because it agrees with or overrides the first-level
predictor. The cascading predictor performs worse because it
sometimes uses the less accurate first-level predictor, either
because there are not enough cycles to use the second-level
predictor, or because the branch target from the BTB is in-
correctly predicted. Thus this predictor faces the challenge
of branch misprediction as well as branch target mispredic-
tion. Finally, caching performs less well, not even exceeding
the accuracy of a single level gshare predictor.

Of course, accuracy is not necessarily indicative of perfor-
mance, particularly when prediction time is a variable. Fig-
ure 11 show the instruction throughput (IPC) for each of the
configuration described above. The hybrid predictor, while
achieving the best accuracy, reflects the lowest IPC at the
smaller technologies, due to the access time increasing to two
cycles. The rest of the predictors follow parallel trajectories
with performance reflecting the overall accuracy of the pre-
dictor. Clearly, the overriding predictor, with it higher accu-
racy, is best for every process technology at the aggressive
- ��� clock rate.

5.5 Conservative Clocking

Figures 12 and 13 show accuracy and IPC of the same predic-
tion schemes, but with different configurations for the more
conservative - ��� clock rate. At this clock rate, the accuracy
of the predictors are very similar, since the first-level PHTs
are larger. For instance, the cascading predictor can use a
first-level PHT with 64K entries; having a larger second-level
PHT2 does little to increase the accuracy of this predictor.
Again, overriding achieves the highest accuracy, but the ac-
curacy of hybrid decreases as feature size decreases. At the
- ��� clock rate, the hybrid scheme can be implemented in a
single cycle, but the table sizes drop somewhat at 180nm and
35nm, causing a reduction in accuracy. The overall instruc-
tion throughput is similar, again reflecting the comparable ac-
curacies of the different schemes.

That the IPC achieved by each scheme at - ��� is no sur-
prise. When the clock rate is set at a more conservative level,
more time is available to all predictors and technology scal-
ing is less critical. However, total performance is the product
of the clock rate and the IPC. Thus the question is whether
the IPC reduction at - ��� outweighs the benefits of the faster
clock rate. Note from Figures 11 and 13 that the IPC from
the overriding scheme at - ��� is only 3% less than that at the

8

355070100130180250

Feature Size (nm)

1.0

1.1

1.2

In
st

ru
ct

io
ns

 p
er

 C
yc

le
Overriding
Cascading
Caching
Gshare
Hybrid

Figure 11: IPC vs. Technology for the five prediction strate-
gies at - ��� .

355070 100130180250

Feature Size (nm)

85

90

95

100

P
re

di
ct

io
n

A
cc

ur
ac

y

Overriding
Cascading
Caching
Gshare
Hybrid

Figure 12: Accuracy vs. Technology for the five prediction
strategies at - ��� .

faster clock rate. Combined with a 1.6 times improvement
in clock rate, overall performance will improve by using an
aggressive clocking strategy. The benefits also exist with the
other predictor schemes, but the benefits are somewhat less,
due to larger degradation in IPC.

6 Conclusions

Until now, branch prediction design has focused on accuracy
while ignoring delay. We have shown that as wire delays
and clock rates increase, branch predictor designs that opti-
mize for accuracy can have a negative impact on overall IPC.
Thus, future branch predictor efficacy depends on both ac-
curacy and delay, and researchers should account for both
when reporting branch prediction results. According to our
scalable models for branch predictor access time, today’s pre-
dictors will not be accessible in a single cycle in sub-100nm
technologies with aggressive clocking. In deep sub-micron
technologies that are latency rather than capacity dominated,
a branch predictor’s area will become less important than its

355070100130180250

Feature Size (nm)

1.0

1.1

1.2

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Overriding
Cascading
Caching
Gshare
Hybrid

Figure 13: IPC vs. Technology for the five prediction strate-
gies at - ��� .

latency in the critical path.
In this paper we have examined a number of alternative

branch predictor architectures and evaluated them in the con-
text of future process technologies. We found that a hybrid
predictor is adequate until its latency exceeds one cycle, caus-
ing IPC to plummet. The predictor that caches a pattern his-
tory table (PHT) for gshare performs no better than gshare
by itself. The tags needed to implement a caching scheme
requires more bits than the cache itself, and limits both cache
capacity and utility. The cascading lookahead predictor that
uses the time in between branches to make predictions per-
forms reasonably well at aggressive clock rates. The overrid-
ing predictor that allows a slow predictor to cancel the pre-
diction of a faster, but less accurate predictor performs the
best in our experiments.

To continue supplying a sufficient number of instruc-
tions to the execution core, future microarchitectures must
move branch prediction latency off of the critical path. The
schemes we present, particularly the cascading and overrid-
ing predictors, can be augmented by using something other
than gshare as the primary or secondary predictor. We be-
lieve that the secondary predictor is the ideal place for a more
complex and longer latency predictor, as it can be kept off
of the critical path. Architectures such as the Fetch Target
Buffer [16] are promising because they decouple the fetch
engine from the execution engine. Other hardware alterna-
tives include a more efficient branch predictor encoding such
as that suggested by Jiménez and Lin [10], or multiple levels
of cascaded predictors. The ideas of a cascading predictor
and an overriding predictor can be combined, so that a late
prediction from a second (or even third) PHT can override an
earlier prediction; we believe this idea would outperform the
overriding predictor by itself. Finally software may be able
to assist further though branch classification [3] or through
scheduling that increases the spacing of branches in the in-
struction stream.

7 Acknowledgements

We thank Vikas Agarwal for providing and modifying ECacti
to enable better modeling of predictor structures, and Ra-
jagopalan Desikan for his assistance in modeling predictors

9

in SimpleScalar. We also thank the anonymous referees for
their valuable suggestions. This research is supported by an
IBM University Partnership Program award, NSF CAREER
Grant ACI-9984660, DARPA Contract #F30602-97-1-0150,
and ONR grant N00014-99-1-0402.

References

[1] V. Agarwal, M. Hrishikesh, S. W. Keckler, and
D. Burger. Clock rate versus IPC: The end of the road
for conventional microarchitectures. In The 27th An-
nual International Symposium on Computer Architec-
ture, pages 248–259, June 2000.

[2] D. Burger and T. M. Austin. The simplescalar tool set
version 2.0. Technical Report 1342, Computer Sciences
Department, University of Wisconsin, June 1997.

[3] P.-Y. Chang and U. Banerjee. Branch classification: a
new mechanism for improving branch predictor perfor-
mance. In Proceedings of the 27th International Sym-
posium on Microarchitecture, November 1994.

[4] K. Driesen and U. Hölze. The cascaded predictor: Eco-
nomical and adaptive branch target prediction. In Pro-
ceedings of the 31th International Symposium on Mi-
croarchitecture, December 1998.

[5] A. Eden and T. Mudge. The YAGS branch pre-
diction scheme. In Proceedings of the 31st Annual
ACM/IEEE International Symposium on Microarchi-
tecture, November 1998.

[6] M. Evers. Improving Branch Prediction by Understand-
ing Branch Behavior. PhD thesis, University of Michi-
gan, Department of Computer Science and Engineer-
ing, 2000.

[7] M. Evers, P.-Y. Chang, and Y. N. Patt. Using hybrid
branch predictors to improve branch prediction accu-
racy in the presence of context switches. In Proceed-
ings of the 23rd International Symposium on Computer
Architecture, May 1996.

[8] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt. An
analysis of correlation and predictability: What makes
two-level branch predictors work. In Proceedings of
the 25th Annual International Symposium on Computer
Architecture, July 1998.

[9] M. Horowitz, R. Ho, and K. Mai. The future of wires.
In Semiconductor Research Corporation Workshop on
Interconnects for Systems on a Chip, May 1999.

[10] D. A. Jiménez and C. Lin. Dynamic branch predic-
tion with perceptrons. In Proceedings of the Seventh
International Symposium on High Performance Com-
puter Architecture, January 2001.

[11] R. Kessler. The Alpha 21264 microprocessor. IEEE
Micro, 19(2):24–36, March/April 1999.

[12] C.-C. Lee, C. Chen, and T. Mudge. The bi-mode branch
predictor. In Proceedings of the 30th Annual Inter-
national Symposium on Microarchitecture, November
1997.

[13] S. McFarling. Combining branch predictors. Technical
Report TN-36m, Digital Western Research Laboratory,
June 1993.

[14] S. Onder, J. Xu, and R. Gupta. Caching and predicting
branch sequences for improved fetch effectiveness. In
International Conference on Parallel Architectures and
Compilation Techniques, October 1999.

[15] S. J. Patel, D. H. Friendly, and Y. N. Patt. Critical is-
sues regarding the trace cache fetch mechanism. Tech-
nical Report CSE-TR-335-97, Department of Electrical
Engineering and Computer Science, The University of
Michigan, May 1997.

[16] G. Reinman, T. Austin, and B. Calder. A scalable front-
end architecture for fast instruction delivery. In Pro-
ceedings of the 26th International Symposium on Com-
puter Architecture, May 1999.

[17] G. Reinman and N. Jouppi. Extensions to cacti, 1999.
Unpublished document.

[18] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache:
A low latency approach to high bandwidth instruction
fetching. In Proceedings of the 29th International Sym-
posium on Microarchitecture, December 1996.

[19] S. Sechrest, C.-C. Lee, and T. Mudge. Correlation and
aliasing in dynamic branch predictors. In Proceedings
of the 23rd International Symposium on Computer Ar-
chitecture, May 1999.

[20] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud.
Multiple-block ahead branch predictors. In Proceed-
ings of the 7th International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, pages 116–127, October 1996.

[21] E. Sprangle, R. Chappell, M. Alsup, and Y. N. Patt.
The Agree predictor: A mechanism for reducing neg-
ative branch history interference. In Proceedings of the
24th International Symposium on Computer Architec-
ture, June 1997.

[22] T.-Y. Yeh, D. T. Marr, and Y. N. Patt. Increasing
the instruction fetch rate via multiple branch predic-
tion and a branch address cache. In Proceedings of the
7th ACM Conference on Supercomputing, pages 67–76,
July 1993.

[23] T.-Y. Yeh and Y. N. Patt. Two-level adaptive branch
prediction. In Proceedings of the 24 ;=< ACM/IEEE In-
ternational Symposium on Microarchitecture, Novem-
ber 1991.

10

