METHODS FOR SATISFYING HARD BOOLEAN
FORMULAS

APPROVED:

Supervising Professor

RECOMMENDED FOR ACCEPTANCE:

Graduate Advisor

ACCEPTED:

Dean

METHODS FOR SATISFYING HARD BOOLEAN
FORMULAS

by

DANIEL ANGEL JIMENEZ, B.S.

THESIS
Presented to the Graduate Faculty of
The University of Texas at San Antonio
in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
May, 1994

Acknowledgements

I would like to thank my thesis advisor, Hugh B. Maynard, for making me pay
attention to details. I would also like to thank Neal R. Wagner for getting me interested

in the Boolean formula satisfiability problem.

DANIEL ANGEL JIMENEZ

The Unwersity of Texas at San Antonio
May 1994

Contents

1 Introduction
2 The Boolean Formula Satisfiability Problem (SAT)

3 The Theory of NP-completeness

3.1 Decision Problems

4 Instances of CNF-SAT Used
4.1 Difficulty of Random Formulas.
4.1.1 An Easy Distribution of Random Formulas .
4.1.2 Hard Distributions of Random Formulas . .
4.2 Random Formulas Used
4.3 CNF Formulations of Hard and NP-Hard Problems
43.1 n-queens

4.3.2 Subgraph-Isomorphism

12
12
13
13
13
14
15

433 Clique

4.3.4 Graph Isomorphism

5 BS: A Consensus Method

5.1 Some Definitions and Conventions
5.2 The BS Algorithm

5.3 The Implementation

6 The Davis-Putnam procedure

6.1 The Implementation

7 The Davis-Putnam Variants

7.1 DI1: Davis-Putnam Variant One
7.2 D2: Davis-Putnam Variant Two
7.3 D3: Davis-Putnam Variant Three

8 The GSAT Method

8.1 The Method
8.2 The Implementation

9 Computational Results

9.1 Performance on Random 3-CNF-SAT Instances

9.2 Performance on the n-queens problem . .

9.3 Performance on the Graph-Isomorphism Formulations

9.4 Performance on the Subgraph-Isomorphism Formulations

9.5 Performance on the Clique Formulations
10 Conclusions

A The BS and DP program

26
27

29
29
31
33

35
37

38
38
39
39

41
41
42

44
45
46
48
49
51

54

56

B The GSAT program
C The Clause and Timing libraries

D Tables of Computational Results

D.1 Times for Random Formulas

D.2 Times for Large Random Formulas (DP and BSonly)

D.3 Times for the n-queens Problem

D.4 Times for the Subgraph-Isomorphism Problem

D.5 Times for the Clique Problem

D.6 Times for the Graph-Isomorphism Problem
Bibliography

Vita

81

89

101
101
103
103
104
105
106

108

110

List of Figures

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Median Times for Instances of Random 3-CNF-SAT 45
Median Times of GSAT and DP for Large Instances of Random 3-CNF-SAT 47

Median Times for n-queens Formulations 48
Median Times for n-queens Formulations, DP Variants 49
Median Times for Graph-Isomorphism Formulations 50
Median Times of DP variants for Graph-Isomorphism Formulations . . . 51
Median Times for Subgraph-Isomorphism Formulations 52
Median Times for Clique Formulations 52
Median Times for Clique Formulations, DP Variants. 53

Chapter 1

Introduction

The satisfiability problem for formulas in the propositional calculus (SAT) is well known
to be NP-complete [4], so an efficient general-purpose algorithm is unlikely. There are,
however, many procedures that seem to do well in practice, at least on “random” formu-

las.

The research presented here explores their applicability, in terms of the median time
required, to “hard” (in a well-defined sense) random formulas and formulas representing
formulations of hard problems. Some of the problems chosen are conjectured not to be

in P.

The methods discussed here are

1. The Davis-Putnam procedure, or DP [3]. DP was one of the first good methods for

solving SAT, and is the standard to which new methods are often compared.

2. An enhancement of the Davis-Putnam procedure called BS, described in [1].

10

3. The GSAT procedure [9], a simple but efficient method that tries to build a satis-

fying assignment from a random one.
4. Several modifications to the Davis-Putnam procedure.

All of the methods will be applied to solving the restricted instance of SAT where the
formulas are in conjunctive normal form. A restricted instance of the satisfiability prob-
lem in which clauses may have at most three variables is explored by generating random

formulas of this kind. This restricted problem, which is also NP-complete, is called 3-
CNF-SAT [4].

Each of the methods is discussed, and implementation details are given where appro-

priate.

Chapter 2

The Boolean Formula Satisfiability
Problem (SAT)

A Boolean variable can take on one of two possible values, say, 0 and 1. A Boolean
formula consists of Boolean variables connected by logical operations such as A (AND),

V (OR), and = (NOT, also denoted as an overline, e.g. @), with the following semantics:

a|a

011

110
alblaANb|laVbd
00 0 0
011 0 1
110 0 1
111 1 1

Other operations can be derived from these. Parentheses can be used to group subex-

pressions where appropriate. For example, consider the following Boolean formula:

($1 V .172) N X3

11

12

This formula is satisfiable, that is, we can find an assignment to the variables z; such

that the formula evaluates to 1. One such assignment is (z1, 9, 23) = (0,1, 1).

Not every Boolean formula has a satisfying assignment; such an unsatisfiable formula

is called a contradiction. For example,
($1 A _‘$1) V (fCQ A T3 N _‘$2)

is a contradiction.

The Boolean formula satisfiability problem or SAT is the problem of determining whether
a given formula is satisfiable. This problem was the first problem to be shown “NP-
complete” [4]. NP-complete problems are conjectured to have no polynomial time solu-
tions; however, there are many NP-complete problems that come up in computer science,
such as graph-coloring in register allocation and the travelling salesman problem. The
next chapter discusses in more detail the properties and implications of this concept of

hardness.

We can restrict SAT instances to those where the formula is in conjunctive normal form
or CNF, i.e., it is an and of ors of literals (a literal is either a variable or its complement,
so a CNF would look like e.g. (a VbV e) A (—a VeV d)). There is an efficient (i.e.,
polynomial-time) algorithm by which we can obtain from any Boolean formula f a CNF
f" such that f’ is satisfiable iff f is satisfiable, and the size of f’ is linear in the size of
f [2]. (Note: It follows immediately that SAT for CNF formulas, or CNF-SAT), is also
NP-complete.)

We can further restrict the problem to instances where each disjunction (or clause) has

three literals. (It happens that the above mentioned algorithm yields clauses of this

13

form.) This restricted version of SAT is called 3-CNF-SAT [2] or just 3SAT [4]. The
random SAT instances used for this thesis are in 3-CNF-SAT.

Chapter 3

The Theory of NP-completeness

The Boolean formula satisfiability problem is NP-complete. It is important to under-
stand exactly what this means, and why we would like to find efficient algorithms for

SAT and why we must settle for algorithms with worst-case exponential running times.

3.1 Decision Problems

A decision problem can be thought of as a problem where we are asking a question
about something and expect a “yes” or “no” answer. More formally, a decision problem
II = (Dn, Yn) is a set Dy of instances and a subset Y C Dy of instances for which the
answer is “yes.” We can think of this Yyj as a language, and the problem is, “is a specific
instance [€ Dy in Y7 [4]7 Usually, decision problems are talked about even more
formally in terms of formal languages, but this can be avoided in a general discussion by
understanding that, by a set of instances, we really mean a set of computer encodings of

instances.

14

15

3.2 Polynomial Time

The concepts of a polynomial time algorithm and polynomial time proof system are
essential to the theory of NP-completeness. Indeed, the “P” in NP-complete stands for

“polynomial.”

3.2.1 Polynomial-Time Algorithms

The time complexity function fa(n) of an algorithm A gives the largest time requirement
for the algorithm to work on any instance of size n, for all n (we can think of the time
requirement as being the number of steps thru an algorithm where a single step is a
fundamental operation like addition of two fixed-sized numbers). An algorithm A is said
to be a polynomial time algorithm if it has a time complexity function in O(p(n)) for
some polynomial p. If the time complexity function of an algorithm isn’t bounded by
any polynomial, then it is said to be an ezponential time algorithm[4]. Time complexity
is a statement about the worst case behavior of algorithms, since it is only a tight upper

bound on the amount of time taken.

3.22 P

The set P is defined as the set of decision problems Il = (D, Y1) such that there exists

a polynomial-time algorithm Ay that decides if an an element of Dy is in Y.

Many decision problems are in P, such as the problem of deciding, for a given CNF
formula f over a set of n variables z;...x, and an assignment ¢ : {z;...x,} — {0,1},
whether the assignment satisfies the formula. P is thought of as corresponding to our
100

notion of tractable problems, problems we know we can solve efficiently (although O(n

isn’t exactly efficient, most problems that we know are in P and we care about have small

16

exponents).

3.2.3 NP

The set NP is the set of decision problems Il = (D, Y1) such that there exists a poly-

nomial time proof system for verifying that an element of Dy is in Yfg.

A proof system for Yy is an ordered triple (f, A, C) defined as follows: C is a set such
that:

1. fisa function : Dy x €' — {0,1} such that

(a) VIGDILCGC? (f(lvc) = 1) =l e YHa and

(b) VIEDIU EICEC such that f(lv C) =1
2. A is an algorithm that computes f.

An element ¢ € C is called a “certificate” for I € Dy if f(I,¢) = 1.

A proof system (f, A,C) for a decision problem II is called a polynomial time proof
system if A has a polynomial worst-case time complexity and the size! of a certificate
is always polynomial in the size of the corresponding element of Y (i.e., for some fixed

polynomial) [4].

The set NP gets its name from “nondeterministic polynomial time;” basically, a problem
in NP can be solved in polynomial time by a “nondeterministic” computer. A nonde-
terministic computer is allowed to randomly guess a certificate that shows a particular

instance [€ Dy of a decision Il problem is in Yy, It then checks the certificate with

1Size is usually discussed in terms of the length of an “efficient” encoding as a string from an alphabet

with finitely many symbols

17

the polynomial time proof system. Such a a computer can decide instances of decision
problems, instead of just proving a certificate is valid for an instance. Unfortunately,

nondeterministic computers don’t (seem to) exist. Note: P C NP.

3.3 Polynomial Transformations

A polynomial transformation for a problem II; to a problem 1l is a function f : Dy, —

Dy, such that

2

1. There is a polynomial time algorithm computing f.
2. Forall I € Dy, , 1 € Yy, iff f(I) € Y.

If there is a polynomial transformation from II; to Il;, we write this as II; o 1I; and

read this as “Il; transforms to 1I,.”

It is immediate that if II; o« II, then II; € P implies II; € P (and hence II; ¢ P
implies Il € P) [4].

This means we can decide II; in polynomial time if we can decide II; in polynomial

time.
So we can say Il is at least as hard as II; if II; o< 1I5.

We say two problems are polynomially equivalent if 11; o« Il and II; o< Iy (note: this is

an equivalence relation).

A problem II is N P-complete if:

18

1. I € NP and
2. For all other II' ¢ NP, 11" 1I.

(The second condition above is called “NP-hardness” of II.) So if II is NP-complete, then
it is, in a sense, “harder” than all the problems in NP. The problem is “complete” for
NP; one can use it to solve any NP problem. A polynomial time algorithm for such a
II would lead to a polynomial time algorithm (via a polynomial time transformation) for
any other problem in NP, and would show P = NP. On the other hand, a proof that an
NP-complete problem has no polynomial time solution would show that all NP-complete

problems have no polynomial time solutions, and that P # NP.

No polynomial time algorithms have ever been found for any NP-complete problems,
although in practice some good heuristics and algorithms with polynomial average case
running times (i.e., it “usually” works in polynomial time in some well-defined sense)

have been found for NP-complete problems.

In 1971, S.A. Cook showed that the Boolean formula satisfiability problem is NP-complete.
This thesis deals with some of the algorithms that have been used to deal with this seem-
ingly intractable problem.

Chapter 4

Instances of CNF-SAT Used

The programs were timed on two classes of CNF-SAT formulas: random 3-CNF formulas
and CNF-SAT formulations of other hard problems, such as n-queens and the clique
problem. Since the GSAT procedure is not complete, i.e., it can’t tell anything if a
formula is unsatisfiable and may not find a satisfying assignment even for instances of

SAT, we timed the algorithms only on satisfiable formulas.

4.1 Difficulty of Random Formulas

All of the random formulas used in timing the programs were instances of 3-CNF-SAT. In
the past, researchers have not been very careful when choosing the distributions of SAT
when testing new algorithms. The authors of [6] cite some instances where researchers
have given algorithms which seem to solve SAT in time O(n?) (where n is the size of the
instance). However, as the authors point out, these instances are so satisfiable that an
algorithm that guessed random truth assignments was just as effective as the algorithm
under consideration [6]. They suggest that special attention should be paid to the number

of variables versus the number of clauses in a random formula, and that the “hardest” in-

19

20

stances of 3-CNF-SAT (for a given number of variables) occur at the point where 50% of
formulas are satisfiable. Their results concern only the performance of the Davis-Putnam
algorithm, but is a more thorough study of the topic than the typical hand-waving one

finds elsewhere. (The work in [1] does use the same criteria for “hardness”.)

4.1.1 An Easy Distribution of Random Formulas

Let us consider an example of a distribution of SAT instances which may at first seem

like a very reasonable space from which to choose instances in testing a new algorithm.

We’ll increase the difficulty of the instances by increasing the number of variables. That
is, we'll test a new algorithm on instances randomly chosen from the set of 3-CNF formu-
las with n variables, as n increases. This certainly seems like a hard test for an algorithm;
the naive algorithm for finding satisfying assignment is to try every combination of assign-
ments to variables until a satisfying assignment is found. The number of combinations of
assignments for n variables is 2", which grows very large as n increases. We’ll construct
the clauses randomly, so that any literal has an equal probability of appearing in a clause.

To make sure that the algorithm has to work hard, we’ll have 100 clauses in each formula.

Now, one might expect the performance of the algorithm to be good at first, where
there are fewer variables, and then become worse as n increases. Actually, the opposite
happens (for most algorithms, including random guessing). This is because the percent-
age of satisfying assignments to formulas with n variables and m clauses increases as n
increases. For example, if we allow only 100 clauses but, say, 400 variables, at least 100

of the variables can never be included in any clause since there are only 300 literals in

21

the formula. So these 100 extra variables can be assigned any values without affecting

the chance of finding satisfying assignments for the rest of the variables.

What prevents an assignment from satisfying a formula is that it assigns to at least
three literals [y, [;, and [3 zero values, where [y V I, V I3 is a clause of the formula. As
n increases the probability that the unlucky combination of these three appears in the

formula decreases, since there is only a fixed number of clauses.

Similarly, choosing a distribution where the n is fixed and m grows leads to a large
number of unsatisfiable formulas. We can regard these as “very” unsatisfiable because
certain algorithms (like Davis-Putnam, which we shall see later) can easily detect con-

tradictions when there are so many.

The point is, as a random formula with a fixed number of variables grows in the number
of clauses, the number of satisfying assignments (and indeed, the probability that it will
be satisfiable) decreases. As the number of variables increases, the opposite happens. So
we need to take both of these parameters into consideration when constructing random

formulas.

4.1.2 Hard Distributions of Random Formulas

The authors of [6] did extensive testing of the Davis-Putnam algorithm on many distri-
butions of SAT, and came to some conclusions about how to choose difficult distributions

for testing new SAT algorithms.

For 3-SAT formulas, they concluded that the hardest area for SAT is where 50% of

the formulas are satisfiable. They found experimentally that this point occurs when the

22

ratio of clauses to variables is between 4 and 5.

4.2 Random Formulas Used

The random formulas used were generated by a program called random that accepts two
arguments: the number of clauses m and the number of variables n. The output is a
formula in 3-CNF in n variables and m clauses where each of the 2n literals is equally

likely to occur in any of the clauses.

For our instances, we have chosen the more common definition of 3-CNF as the lan-
guage of (encodings of) Boolean conjunctive normal form formulas with ezactly three
literals, as opposed to up to three literals. Both problems are NP-complete; using the
former definition just makes it harder for consensus-based algorithms (like BS and DP)

to seem to have an initial advantage because of unit propagation [6].

It is important to note that, although formulas in 3-CNF are used, our results con-
cern only formulas in 3-CNF-SAT, that is, we are interested only in the time it takes to

find a satisfying assignment, not to determine that a formula is unsatisfiable.

4.3 CNF Formulations of Hard and NP-Hard Prob-
lems

One fascinating aspect of the theory of NP-completeness is the completeness part; there
exists a polynomial time transformation from any problem in NP to any NP-complete
problem. That is, if we can solve an NP-complete problem efficiently, then we can use

this solution to solve any problem in NP efficiently.

23

We have chosen four “hard” problems to use the SAT algorithms on:

4.3.1 n-queens

The n-queens problem is the problem of placing n queens on an n X n chessboard so
that no queen threatens any other queen. We represent the chessboard by a matrix C of

th th

Boolean variables. If C;; is true, then there is a queen in the ¢** column on the j w.
A matrix is a solution to the n-queens problem if there are zero or one queens on each
row, column, and diagonal. We can represent this in conjunctive normal form by having a
rule for each pair of queens that the queens may not oppose each other. If two queens are
on the same row or column, i.e., if 3; ; k. ;21 : Ci; ACip is true, or 3; ;1,21 : Ci; ACyj 1s true,
then the matrix C' is not a solution. Similarly, if two queens are on the same diagonal,
C is not a solution (two queens C;; and Cy; are on the same diagonal if |i — k| = |7 —1]).
We must also state that there have to be n queens on the chessboard. It is sufficient to
state that there is at least one queen on each row (or column). So the following CNF
formula is satisfiable only by an n-queens solution:

A (C5VC)

6 k<, ki

/\ (C” V Czl)

64, l<n,l#]

A (€5 v Tw)

Aves)

Clearly, one can stretch this into a formula in conjunctive normal form for a given n.

This formulation was used to test the satisfiability algorithms for values of n from 5

24

to 11; note, however, that the size of the formula grows as O(n®) and there exist linear
time algorithms for finding n-queens solutions, so this test shows more the ability of the
algorithms to deal with large numbers of clauses than their ability to find n-queens so-
lutions. CNF-SAT in general has proven to be harder as the ratio of clauses to variables
increases [6]. The n-queens problem is a good test for the algorithms, since the number

of clauses is O(n) times the number of variables.

4.3.2 Subgraph-Isomorphism

The subgraph-isomorphism problem asks, for two graphs G and H, whether G contains
a subgraph isomorphic to H. From [4]:

SUBGRAPH ISOMORPHISM

INSTANCE: Two graphs, G = (Vi, Fy1) and H = (V3, Es).

QUESTION: Does G contain a subgraph isomorphic to H, that is, does there exist a
subset V' C V; and a subset £ C E; such that |V| = |V3]|, |E| = |E:]|, and there exists a
1-1 function f : Vo — V satisfying {u,v} € Ey iff {f(u), f(v)} € E?

Garey and Johnson go on to prove the problem NP-complete. A SAT formulation for
this problem appears in [11] in a language under development for programming in propo-
sitional logic (H. Stamm-Wilbrandt, posted an article describing this formulation to the
Usenet comp.theory newsgroup almost the same day this author was looking for such
formulation). Given two graphs (as Boolean adjacency matrices), we can use this formu-
lation and techniques for converting from this language into pure propositional logic [10],
i.e., an instance of SAT. We can do some more algebraic manipulations to get the formula

into conjunctive normal form and use our CNF-SAT algorithms to solve the problem.

25

Before the formula, some explanation of Stamm-Wilbrandt’s (also the author of [10])
language is in order. He uses the notation at_most_one and at_least_one to mean that at
most (or at least, respectively) one of the supplied Boolean variables is true. For example,
at-most_one(a,b,c) is true iff zero or one of a,b, and ¢ is true. The notation exactly_one
means at_most_one N\ at_least_one. He gives the the following “naive” versions of these
before going into detail about special cases and efficient implementation:
at_most_one{ly,... 1.} = /\ (L; V1)
1<i<j<z

atleastone{ly,....,l.} =1 ViV ...VI)

Here is Stamm-Wilbrandt’s formulation in his language pipl of the subgraph-isomorphism

problem:

// [GT48] Subgraph Isomorphism (subgraph_isomorphism.pipl)
//
// Instance: Graphs G=(V_G,E_G), H=(V_H,E_H)

// Question: Does G contain a subgraph isomorphic to H, i.e.,

// a subset V of V_G and a subset E of E_G such that
// [VI=IV_H| and |E|=|E_H|, and there exists a

// one-to-one function f:V_H-->V satisfying {u,v}

// in E_H if and only if {f(u),f(v)} in E ?

//

input

ugraph G;

ugraph H;

conditions

26

V(@) | >= [V(H) |
IE(G) | >= [E(H) |

variables

{ (v,x) | v in V(G), x in V(H) }

output

{ (v,x) | v in V(G), x in V(H), #(v,x) }

formula

{ exactly_one{ (v,x) | v in V(G) } | x in V(H) }

{ at_most_one{ (v,x) | x in V(H) } | v in V(G) }

{ at_most_one{ (v,x), (w,y) } |

{v,w} in E(G®), {x,y} in ((VH)*V(H))-E(H)) }
{ at_most_one{ (v,x), (w,y) } |

{v,w} in ((V(G)*V(G))-E(G)), {x,y} in E(H) }

Here is a “compilation” of the program into conjunctive normal form (using
Garey and Johnson’s slightly different notation for the graphs):

N\ ezactly_one{(v,z)|v € Vi}

z€EVs

/\ at-most_one{(v,z) |z € Va}

’UEVl

27

A at_most_one{(v,z) |z € Va}
{U7’LU}EE1,{I,y}EE_2
A at_most_one{(v,z) |z € Va}

{vw}eE {z,y}€E,

A [(\/(w))/\(A (<vi,x>v<vj,x>))]

z€Vs veEV] vi,v EVY

which yields

A [A ((‘Uafﬁz‘)\/('va%‘))]

veVL |zi,z;€V2

A (v, 2) v (w,y)]

{vw}eE {zy}€E,

/\ (v, 2) v (w,y)]

{vwleE {zy}€E,

which finally yields

/\ \/ (v,)

zeVe veVr
/\ [/\ (('Uivx) Vv ('Ujvx))]
z€Vy |viw;€EVY

A [A ((‘Uafﬁz‘)\/('va%‘))]

veVL |zi,z;€V2

A (v, 2) v (w,y)]

{va}eEl ,{a:,y}EE_z
A {(‘U,I) Y (w,y)}
{’U,’LU}GE_l,{QZ,y}EEQ

The resulting formula has a size in O(|Ey||Ez| + |Vi||V2]?).

To generate random instances of subgraph-isomorphism, we wrote a program called
SUBGRAPH-ISOMORPHISM. This program accepts four parameters: the numbers of ver-

tices G, and H, and numbers of edges (G, and H, in both graphs. It prints an adjacency

28

list representation for two random graphs with the given number of edges. The out-
put is piped through another program called subgraph that generates the CNF formula
that is satisfiable only by an isomorphism function between a subgraph of G and H.
The SUBGRAPH-ISOMORPHISM program makes sure that there is a subgraph-isomorphism
by choosing the second graph to be a random re-labelling of the first H, vertices and
edges in the first graph. This in no way diminishes the hardness of actually finding the
subgraph-isomorphism, since the satisfiability programs don’t have access to the random

permutation.

4.3.3 Clique

The clique problem is another NP-complete problem from [4]. The problem asks, for a
given graph G and integer J > 0, whether the complete J-vertex graph is a subgraph of
G. From Garey and Johnson:

CLIQUE
INSTANCE: A graph G = (V, E) and a positive integer J < |V].
QUESTION: Does GG contain a clique of size J or more, that is, a subset V' C V such

that |V'| > J and every two vertices in V' are joined by an edge in £?

This problem is also NP-complete; Garey and Johnson prove this with a polynomial

transformation from the vertex-cover problem; another proof using CNF-SAT is given in

2].

The formulation of the clique problem in CNF-SAT is clear; we simply use the formula for

subgraph-isomorphism on GG and the complete graph with J vertices. The completeness

29

of the second graph simplifies the formula, so we get:

/\ \/ (v,)

z<J veV

Al A (wiz)v(v,2)

z<J |vi,v; €V

A A ((’U,.ﬂi) V (v, x]))

veV |xix;<J

A w2V (wy)

{vw}eE z,y<J

We use a program called CLIQUE that accepts three parameters: the number of vertices
and edges in the graph and J. CLIQUE generates an edge list for a corresponding random
graph, and an edge list for the J-vertex complete graph. The output of CLIQUE is fed into
the subgraph program to get an instance of CNF-SAT satisfiable only by an isomorphism
function mapping a subgraph of V onto the complete J-vertex graph (the simplification

of the formula is done automatically).

4.3.4 Graph Isomorphism

The graph isomorphism problem asks, for graphs G and G’, whether they are isomorphic
in the sense of the subgraph-isomorphism problem. Graph-isomorphism is conjectured
to be in NPI, the “NP-incomplete” languages in NP that are neither NP-complete nor
in P [4] (note: the existence of any element of NP/ is still a conjecture). From Garey

and Johnson:

GRAPH ISOMORPHISM
INSTANCE: Graphs G = (V, E), G' = (V, E).

QUESTION: Are G and G’ isomorphic, that is, is there a 1-1 function f : V — V such
that {u,v} € E iff {f(u), f(v)} € E"?

30

Clearly, graph isomorphism is a special case of subgraph isomorphism where |V;| = |V5].
The subgraph isomorphism formulation for this problem was used. This problem is nicer
than the more general subgraph-isomorphism problem because it reduces the dimensions
of the problem; the only parameters are the graph size and number of edges. The graphs,
as before, are guaranteed to have an isomorphism function; it is up to the algorithms to

find it.

Chapter 5

BS: A Consensus Method

The BS method solves SAT by a combination of replacing the formula with an equivalent
but smaller formula and an implicit search for a satisfying assignment. Along the way, a
contradiction may be found that immediately implies the formula is not satisfiable. We

present the algorithm given in [1].

5.1 Some Definitions and Conventions

It is important to note that the problem of Boolean formula satisfiability has two incar-
nations, the more common is that of trying to determine the satisfiability of an equation
f(z) = 1 where f is given in CNF. The work in [1] uses the dual definition of SAT as
the problem of determining the satisfiability of an equation f(x) = 0 where f is given in

disjunctive normal form (DNF), i.e., as a disjunction of conjunctions of literals.
It’s easy to see that the two are polynomially equivalent; given an equation f(z) = 1

with f in CNF, we can transform the problem by applying DeMorgan’s laws (that is,
pAg<epVGand pVg< pA7g) and then look at the problem as an equation f/'(z) =0

31

32

with f’ being the new formula in DNF. This type of SAT problem is the problem of de-
termining whether a formula in DNF is a tautology (i.e., equal to the constant 1), instead

of a contradiction.

Here are some definitions we need for the algorithm:

First, we define the consensus of two clauses: Let p = afy; and v = v37y; be two clauses
in the Boolean formula f such that only one variable x; of f can be substituted for either
y; or U;, i.e., y; has the unique property that it is complemented in g but not in v. Note:
not all pairs of clauses of f may have this property. a denotes a set of literals that are in
i but not in v, v is the set of literals in v but not p, and 3 is the set of literals common
to both. We define the consensus of p and v as a3, and write this consensus operation

as u * v. Note: z; * T; is the empty clause: a tautology.

Let us also define the partial order < on Boolean functions. Given two Boolean functions

f(z) and g(z), f(z) < g(z) iff Yeeqoaym, f(2) =1 = g(x) = 1. So f(z) is less than g(x)
if the set of satisfying assignments to f is a subset of the satisfying assignments to ¢ go

to 1. Let’s look at some properties of this partial order:
1. If f<gand f =1 then g = 1.
2. If f <gthen fVg=yg.
3. Forall f, f < 1.
4. We can have two functions f and g such that f £ g and g £ f.

5. If @ and 3 are clauses in f and {a} < {8}, then f is equivalent to f — {a}, i.e., &

is redundant and can be thrown out.

A clause p is called prime for a function f if p < f and there is no v < f such that

@ < wv. So a prime clause of f is in a sense a maximal clause, corresponding to a largest

33

group of 1’s in a Karnaugh map (a device for deriving minimal Boolean DNF’s from
truth tables[5]). A set of clauses is a basis for f if their logical OR equal to f; such a
set is a prime basis if it contains only prime clauses. Note that f is unsatisfiable (in the

sense of [1], i.e., a tautology) iff {1} is the prime basis for f.

5.2 The BS Algorithm

The algorithm in [1] called BS strikes a balance between computing the entire prime basis
of f (an inefficient approach) and a pure implicit binary tree search of the formula for
satisfying assignments. This technique is used in the Davis-Putnam algorithm, but DP
uses only unit consensus, that is, consensus in which p is a literal. The BS algorithm

uses a different criterion for choosing which consensuses to take, as we shall see:

procedure BS
Input: a Boolean function f(z) as a DNF formula.
Output: “unsatisfiable” or an assignment x such that f(z) = 0.
begin
call algorithm _one;
if 1 is a monomial of f then return “unsatisfiable”.
call algorithm _two;
if 1 is a monomial of f then return “unsatisfiable”.
if f=y1VyV...Vy, is a disjunction of literals
then return an assignment setting each literal to whatever value will
cause it to evaluate to 0.
choose a variable z; (according to a method described later)

call BS recursively on fV {z;}

and fV {7;}.
if either returns a satisfying assignment, return it with the
appropriate value of x; else return “unsatisfiable.”

end

Algorithm one
Input: f as a DNF formula.
Output: f as another DNF formula.
begin
while there exist two clauses y and v of f
such that a = p * v is not less than a
clause of f and the degree (number of literals) of
a is less than d(u,v) =
max(degree of p, degree of v),
do
supress from f all the clauses less than «;
let f:=fVa.
end while

end

Algorithm _two
Input: f as a DNF formula.
Output: f as another DNF formula.
begin
while 1 is not a clause in f and there exists a

literal that is not (by itself) a clause of f,

34

35

do choose the literal y; that is not a clause of f
and that appears in the fewest terms of f;
f=1Vy;
apply algorithm_one to f, fixing d(p,v) = 2
for all p,v.

end while

end [1]

The recursive branching done in the BS procedure is made on a variable xj such that
M - min(vg, wy) 4+ v + wg

= max,_; [M - min(v;, w;) + v; + w;]

where v; (resp. w;) is the number of three-literal clauses of f that contain x; (resp. 7)

and M is a large constant that can be adjusted.

5.3 The Implementation

The C implementation of the BS algorithm is given in Appendix A. The main issues
involved were choosing compact and easily accessed representations for clauses and for-
mulas. We chose clauses to be linked lists of literals, ordered by index. Formulas are
represented as arrays of clauses. The function exist mono (), implementing the “while
there exists a monomial...” part of algorithm one, uses a special data structure for in-
dexing formulas by literals, so it only considers possible consensuses (the authors of [1]
mention a similar technique used for their implementation, but with very few details).

For the instances of SAT considered, the implementation of BS is efficient.

36

It is important to note that the implementation differs slightly from the algorithms given
above. Specifically, the authors of [1] fix the d function to 2 for all but the first iteration
of algorithm one. Their reason is that many three variable monomials are produced in
the later iterations that don’t contribute to the algorithm. Note also that their imple-
mentation of the BS algorithm uses a more elaborate data structure than the one given
here: they use linked lists for the cubic monomials and arrays for the quadratic and linear
terms, while the implementation here uses linked lists for everything. We chose to do it
this way so that there would be no articifial improvement of BS over DP (or vice-versa);

indeed, they both use exactly the same C code modulo a few #ifdef’s.

Chapter 6

The Davis-Putnam procedure

Long before the theory of NP-completeness was introduced, people still had a need to
find satisfying assignments to formulas in propositional logic. The standard algorithm
against which most other methods are judged is the Davis-Putnam procedure, introduced
in [3] in 1960. Davis-Putnam, or DP, is a general-purpose method for solving SAT?. If
a formula is satisfiable, DP will find a satisfying assignment, and if a formula is not
satisfiable, DP will report the formula is a contradiction. DP does well on many classes
of clauses, but can show exponential behavior in terms of both time and storage on the

harder instances of SAT.

We will use the version of DP given in [1]. Their algorithm is an “enhancement” to
DP, but can be modified to only do the Davis-Putnam procedure. This fact led to an
easy job coding up both the algorithm from [1] and DP in the same C program using

#ifdef statements.

'For this chapter, we will continue using the DNF version of SAT, since the DP implementation

comes from the BS implementation

37

38
Basically, DP consists of four rules [6]:
o If the formula f is empty, return “satisfiable.”

o If the formula f contains an empty clause, return “unsatisfiable.”

e (Unit-Clause rule) If f contains a unit clause, i.e., a clause that is a single literal,

assign to the corresponding variable the value that will satisfy that literal.

e (Splitting Rule) Select a variable v that hasn’t been assignned a truth value. Give
it a value and call DP on the resulting formula. If this call returns “satisfiable,”
then return “satisfiable” else set the variable to the other value and return the

result of calling DP on the resulting formula.

We will present more explicitly the DP algorithm using the same terminology as the BS

algorithm (e.g., consensus, less than, etc). The DP algorithm follows:

procedure DP
Input: a Boolean function f(z) as a DNF formula.
Output: “unsatisfiable” or an assignment x such that f(z) = 0.
begin
while there exists a unit clause p and a clause v in f
such that a = p * v is not less than a
clause of f and the degree (number of literals) of
« is less than the degree of v,
do
supress from f all the clauses less than «;
let f:=fVa.

end while

39

if 1 is a monomial of f then return “unsatisfiable”.

if f=y1VyaV...Vy, isa disjunction of literals

then return an assignment setting each literal to whatever value will
cause it to evaluate to 0.

choose a variable z;;

call DP recursively on fV {z;}

and fV {7;}.

if either returns a satisfying assignment, return it with the
appropriate value of z; else return “unsatisfiable.”

end

6.1 The Implementation

As noted, the DP algorithm is very similar to the BS algorithm; the same C program with
#ifdef statements was used for both. The main difference is that consensus operations

are restricted to considering monomials o of degree one.

Chapter 7

The Davis-Putnam Variants

Three original enhancements to the Davis-Putnam algorithm were also considered and

coded. They and their implementations are discussed in this chapter.

7.1 D1: Davis-Putnam Variant One

The first and second variants deal with the splitting rule of Davis-Putnam. When the DP
algorithm splits, it assigns 0 to a variable, calls itself recursively on the resulting formula,
then, if unsuccessful, does the same thing for 1. The D1 and D2 algorithms try to make
an “educated guess” whether to assign 0 or 1 first. Clearly, if we could ask an NP ora-

cle which way to go, we could find a satisfying assignment or contradiction in linear time.

The D1 variant uses a heuristic method to choose the first value to assign variable v
in an n-clause formula f before invoking D1 recursively. It chooses whichever value of v
will maximize the number of satisfied clauses in f. For example, if the clause 1 A zy A x3
is in f and we need to decide what value to assign z; first, we will notice that assigning 0

to x; satisfies this clause (satisfiaction still in the sense of [1]). If it satisfies more clauses

40

41

than assigning 1 to x;, we choose it; otherwise we choose 1.

7.2 D2: Davis-Putnam Variant Two

The D2 variant tries to “learn” what works best with a particular formula f. The search
tree generated by splitting is often very wide, and the decision whether to choose 0 or
1 is usually made many times for the same variable. D2 keeps two arrays of integers
(initially zeroes) right[n] and wrongl[nl, where n is the number of variables in the
formula. When the choosing zero is “right” for the variable v, i.e., choosing it leads to
finding a satisfying assignment to some sub-formula, we increment right [v]. If it leads

to finding a contradiction (something we don’t want in general), we increment wrong[v].

When it is time to choose a value for a variable v, we look at the arrays. If wrongl[v]
> right[v], then we choose 1, since in the past 0 has led to more “wrong” subformulas

than 1. Otherwise, we choose 0.

7.3 D3: Davis-Putnam Variant Three

This is the version of Davis-Putnam that is found in [8]. The D3 variant tries to simplify
subformulas before they are considered by the rest of the Davis-Putnam algorithm. It
uses the “pure-literal” rule mentioned also in [7] on page 433 as an exercise. A literal / in
a formula f is said to be pure if it is either a positive or negative literal. A positive literal
is one that appears only uncomplemented in the formula, e.g., x;. A negative literal is

one that appears only complemented in the formula, e.g., —x;.

It can be shown that pure literals can be immediately replaced by the values that satisfy

them, i.e., 0 for negative and 1 for positive literals.

42

Algorithm D3 inserts all pure literals of a formula as unit clauses before each recursive
call of Davis-Putnam (unless the literal was already there as a unit clause). This imme-
diately procduces (hopefully) many new unit literals that the rest of the Davis-Putnam

procedure can use for consensus and unit propagation.

Chapter 8

The GSAT Method

8.1 The Method

The GSAT procedure [9] is a randomized method for finding satisfying assignments to
Boolean CNFs. It uses a greedy strategy to satisfy as many as possible of the clauses in
the formula. If all are satisfied, then the formula is satisfied and the resulting assignment
is returned. The GSAT procedure is not complete, because it may fail to find a satisfying
assignment to a satisfiable formula. It will also give no information in the case that the
formula is not satisfiable. However, for the situations in which testing for satisfiability is
the main problem, we are often presented two formulas representing two different possi-
ble models in a larger problem. We can use GSAT on both, knowing that exactly one
of them is satisfiable. Only if GSAT fails on both do we need to resort to other, slower
methods.

The GSAT procedure is quite simple:

procedure GSAT

43

44

Input: a set of clauses o, MAX-FLIPS, and MAX-TRIES
Output: a satisfying truth assignment of «, if found
begin
for : := 1 to MAX-TRIES
T := a randomly generated truth assignment
for 5 := 1 to MAX-FLIPS

if T' satisfies o then return 7'

p := a propositional variable such that a change
in its truth assignment gives the largest
increase in the total number of clauses
of a that are satisfied by T’

T := T with the truth assignment of p reversed

end for
end for

return “no satisfying assignment found”

end [9]

8.2 The Implementation

The author’s C implementation of GSAT can be found in Appendix B. The implemen-
tation is straigtforward; an array of C integers is used to hold T'. Note that the same
library is used to do standard clause operations as in the other programs. The GSAT
program in Appendix B can be compiled using a #define statement to implement a
completely random strategy for guessing satisfying assignments; this program was used
along with the other three methods to make sure the algorithms were an improvement

over completely random guessing. This may seem extreme, but it is important to make

45

sure the instances of SAT chosen are “really” hard, that they can’t be satisfied simply
by guessing.

Chapter 9

Computational Results

The algorithms were timed on several instances of CNF-SAT using a Sun-4 running So-
laris 2.2 with two SuperSPARC 50 MHz processors. The computer had 256 MB of main
memory. Several scripts and programs were used to facilitate the timing of the programs.
The Unix clock(2) system call was initially used; however, under Solaris 2.2 the system
call is not reliable after 36 minutes because of an overflow in the 32-bit arithmetic. When
the programs started exceeding this bound, the scripts were switched to use the time (1)

command.

In many cases, multiple instances of the same size were tried to get more information
about the performance of the algorithms. Since GSAT is a randomized algorithm, the
performance may vary from one run to another even for the same instance. Also, all of
the randomly generated instances (the graph and random 3-CNF-SAT problems) were
tried several times. In each case, the median sample is used to measure the performance
in this chapter. Appendix D contains a summary of all the information gathered in the
experiments; for each problem and algorithm, the performance of the implementation is

given in terms of the median, mean, and mode of the time taken for each set of instances

46

47

considered.

Note: Originally, the BS algorithm was coded in a way that made it seem to perform
horribly. When we saw how the authors of [1] suggested they coded theirs, a new version
was written. However, we had to discard many of the data that were gathered before
then in order to test BS on the same (random) instances of problems as for DP and
GSAT. This recoding also affected the coding of DP, but the performance was neither

improved or degraded.

9.1 Performance on Random 3-CNF-SAT Instances

Figure 9.1 shows a graph of the performance of DP, GSAT, and the BS algorithm on

Figure 9.1: Median Times for Instances of Random 3-CNF-SAT

12

Time (Seconds)

50 60 70 80 90 100 110 120 130 140
Number of Clauses/Variables

instances of 3-CNF-SAT where the number of clauses equals the number of variables.

48

These results were obtained by taking the median time for each algorithm on sixteen
different random formulas for each number of clauses/variables in the range 50 to 140,
in increments of 10. All of the algorithms were tested on the same sets of clauses. Note:
since GSAT can’t determine unsatisfiability, the only times reported are those for which
the random formulas were found to be satisfiable by DP or BS. If a formula was found to
be unsatisfiable at any point, the script simply deleted it so the other programs wouldn’t
have to deal with it.

In this range, DP seems to do the best, although the somewhat erratic growth of the
GSAT curves suggests that it could go either way. The BS algorithm does poorly in this

here.

Figure 9.2 shows a graph of just DP versus GSAT for very large instances of random
3-CNF-SAT. Although the performance of DP has a much more predictable performance,
DP and GSAT seem to perform comparably in this range, separated by an additive con-

stant we can attribute to differences in implementations.

Performance measures for the DP variants are in Appendix D; a graph reveals only

that D3 does poorly here.

9.2 Performance on the n-queens problem

The programs were run on SAT formulations of the n-queens problem for n = 4 up to 10.
These formulations, if we use the ratio of clauses to variables as a measure of difficulty,
are quite formidable. The 10-queens formulation, for instance, has 1480 clauses and only
100 variables. Figure 9.3 shows a plot of the performance of GSAT, DP, and BS on these
instances. The DP algorithm far outperforms GSAT and BS. Data where n = 12 is not

49

Figure 9.2: Median Times of GSAT and DP for Large Instances of Random 3-CNF-SAT

25 T

DP —o—
GS + 1

20 * 4

Time (Seconds)

O 1 1 1 1 1 1 1

200 220 240 260 280 300 320 340 360
Number of Clauses/Variables

available for GSAT or BS because the programs simply ran too long.

Note: at this point, the reader may notice that the figures in this thesis show a spike at
the last few data points; this is the point at which we stopped gathering data, because
after this point, the programs began to take far too long. GSAT, remember, is a random-
ized algorithm and thus requires several runs to get a good median. This spike appears in
the other formulations as well; it should be kept in mind that the number of clauses and
variables for these problems grow as > 1 degree polynomials. For the n-queens problem,
the number of clauses grows as O(n?), while there are only O(n?) variables. Remember,
satisfiability (in general) has been experimentally shown to be harder as ratio of the

number of clauses to the number of variables increases [6].

Figure 9.4 shows the performance of the DP variants on the n-queens problem. In the

50

Figure 9.3: Median Times for n-queens Formulations

35000 : . : . : .
,’D BS —<—
DP —+-
, GS 8-
30000 - _
25000 |
al
m
T 20000 |- i
S
Q
o}
2
©
E 15000 |- |
’_
10000 [|
5000)
0 & = A . PR 4
5 6 7 10 11 12

9
Number of Queens

whole graph D1 and DP seem to do equally well while D2 and D3 perform a little worse.
At the “spike” point of twelve queens, D2 and D3 do a lot worse, while D1 and DP deal
well with the difficulty.

9.3 Performance on the Graph-Isomorphism Formu-

lations

For the graph isomorphism problem, we generated random graphs with equal numbers of
vertices and edges. The GRAPH-ISOMORPHISM program made sure that there was actually
an isomorphism simply by having the second graph be a random relabelling of the first
graph. Figure 9.5 shows the performance of the three programs on this formulation, with
numbers of vertices in the range 5 to 9. Before 7 vertices, all the algorithms found satisfy-

ing isomorphisms very easily; after this points, each algorithm spiked in the time needed.

51

Figure 9.4: Median Times for n-queens Formulations, DP Variants
35000 T T T T T T

D1 -— §
D2 -+ |
D3 8-/
30000 |- DP -

25000 o

20000

Time (Seconds)

15000

10000

5000

O e o <

8 9
Number of Queens

Some data points are missing; this is where the programs could not finish because they
were taking too much time. Again, DP performs the best. GSAT seems hopeful, until

one sees that we couldn’t get data for nine vertices because of the time needed.

Figure 9.6 shows the performance of the DP variants on the graph- isomorphism problem.
In this case, algorithm D1 performs the best by far, working much more quickly than the

others.

9.4 Performance on the Subgraph-Isomorphism For-

mulations

The programs were run on subgraph-isomorphism instances where the larger graph had

ten vertices and the smaller graph had from two to ten vertices and the same number of

52

Figure 9.5: Median Times for Graph-Isomorphism Formulations
3000 T T T T T T

BS =— 1
DP -/
GS —Ei—r//

2500 a

2000 .

1500 .

Time (Seconds)

1000 / .

500 |- S .

6.5 7 7.5 8 8.5 9
Number of Vertices in Graphs

edges. Again, an isomorphism was guaranteed, this time by having the smaller graph be
just a relabelling of a subset of the vertices from the larger graph, with the appropriate
edges included.

Figure 9.7 shows the performance of GSAT, DP, and BS on these problems. The BS
algorithm does the best for this problem, although this conclusion is only strongly sub-
stantiated by the last data point. GSAT and DP do about the same. For these data,
CPU time was a major consideration, so only a few samples were taken for each point

(see Appendix D for the exact numbers).

We did not test the DP variants on this problem due to time constraints, both human

and computer.

53

Figure 9.6: Median Times of DP variants for Graph-Isomorphism Formulations

3500 T T T T T
Dl -— f
D2 -+
D3 8-/
3000 | DP e
/ "3
2500 | Ea
@ lS
S 2000 | g
o ;s
[S]
[
2
) ks
£ 1500 | /7 g
F I
1000 |- .
500 |-
0 A
5 5.5 6 6.5 7 7.5 8 8.5 9

Number of Vertices in Graphs
9.5 Performance on the Clique Formulations

The programs were run on instances of the clique problem where the graphs went from
five to twelve vertices. In each case, the formulation specified a clique of a size half the
number of vertices. Figure 9.8 shows a graph of the performance of GSAT, DP, and
BS on these formulations. Clearly, GSAT performs the best, followed (surprisingly not
closely) by DP and BS.

Figure 9.9 shows the performance the the DP variants on the clique formulations. In

this case, the D1 variant performs much better, while the others do about the same.

Time (Seconds)

Time (Seconds)

2000

1800

1600

1400

1200

1000

800

600

400

200

900

800

700

600

500

400

300

200

100

Figure 9.7: Median Times for Subgraph-Isomorphism Formulations

&5

BS —<—

DP —+- |
GS -8 ;

w B

Figure 9.8: Median Times for Clique Formulations

5
Number of Vertices in Subgraph

BS -o—
DP -
GS ‘B

o B

8 9
Number of Vertices in Graph

54

Time (Seconds)

800

700

600

500

400

300

200

100

Figure 9.9: Median Times for Clique Formulations, DP Variants

DL o—
D2 -+~ |
D3 B/
DP -]

8 9
Number of Vertices in Graph

99

Chapter 10

Conclusions

From the computational results, the D1 variant of DP seems to perform the best, fol-
lowed by DP (and sometimes the other variants), then GSAT and BS. Although only
limited instances of SAT were chosen, we feel that the D1 variant is the best choice for
most satisfiability problems except perhaps in special cases where the others might fare
better (for example, if one knew that a problem has an optimal greedy algorithm, one
might suspect that GSAT would be a good candidate for solving a SAT formulation of
this problem; in this case, one is probably better off using the optimal algorithm). The
GSAT algorithm did perform very well on the clique problem, while BS worked well on

the subgraph-isomorphism problem.

From the code in the appendices, we can see that the implementation of GSAT is ef-
ficient and does not rely too heavily on the clause library routines (which performs linear
searches, for example). One might expect BS to outperform DP since the program for
both is constructed in the context of the BS algorithm (from the first description of DP,
it’s clear that it can be implemented in many different ways). However, this is clearly

not the case. It is this author’s opinion that BS spends too much time finding consen-

26

57

suses between clauses that don’t really contribute to finding a satisfying assignment. DP
only performs the consensuses (unit consensus) where it is profitable and is thus a more

efficient algorithm.

Although the D2 and D3 variant usually did about the same and in some cases worse
than the DP algorithm the D1 variant did very well on the graph-isomorphism and clique
problems, and worked equally as well as DP (as opposed to the other two) for the n-
queens problem. We feel D1 is a significant improvement to the Davis-Putnam procedure,

and deserves further research.

Appendix A

The BS and DP program

This is the program that implements the BS and DP algorithms. It was written by the
author of the thesis

bsdp.c:
/*
* bsdp.c
*
* This program is an implementation of the Davis-Putnam (DP)
* algorithm first described in Davis. M., and Putnam, H.,
* (1960) A Computing Procedure for Quantification Theory,
* Journal of the ACM, 1960, Vol 7, 201-215, and the consensus-
* based algorithm (an enhancement to DP) given in Billionnet,
* A. and Sutter, A. (1992). An efficient algorithm for the
* 3-satisfiability problem, Operations Research Letters vol.
* 12, July 1992, 29-36.
*
* Each algorithm ends up searching the formula as an implicit
* binary tree for satisfing assignments.
*
* DP uses the following rules before embarking
* on the search:
* 1. If the formula is empty, return "satisfiable."
* 2. 1If the formula contains an empty clause, return
* "unsatisfiable."

a8

L CHE R K B B R R EE R R R R R K R RN R R R R K B T N R BN R BN RN CEEE I B B B CHEEE R

99

3. (Unit-Clause rule) If the formula contains a unit
clause, i.e., a clause that is a single literal, assign
to the corresponding variable the value that will
satisfy that literal.

The consensus-based algorithm generalizes the Unit-Clause
rule to clauses of a certain length that can be combined
with other clauses to reduce the number of clauses in the
formula and hopefully the size of the search tree.

If the macro DAVIS_PUTNAM is defined, the program will
use DP, otherwise it will use the consensus algorithm.

Usage: dp [-q | -ck | -sg | -gi] [file-name]

If given a command-line switch, the program will print the
satisfying assignment it finds (if any) in a form appropriate
to the formulation given:

-q for n-queens problem

-ck for clique problem

-sg for subgraph isomporphism problem

-gi for graph isomorphism problem

The file-name parameter is the name of the file from which
input is

coming (ignored if not given). If the formula is not
satisfiable, then the file is removed to prevent any other
program from wasting time on it.

The program will print "SAT" or "NOT" followed by the CPU
time consumed exitting. "SAT" means the formula was found
to be satisfiable; "NOT" means a contradiction was found, so
the formula is unsatisfiable.

The file contains the following functions:

void demorgan (f, n):
f is a formula in an array of clauses; complement each
literal in each clause as if applying DeMorgan’s law
("(p or q) = "p or “q)

int find_opposite (a, b):
a and b are clauses; return the number of a variable

L CHE R K B B R R EE R R R R R K R RN R R R R K B T N R BN R BN RN CEEE I B B B CHEEE R

60

that ’s complemented in one clause but not the other
(-1 if none is found).

int less_than (a, b):
return 1 iff the clause a is "less than'" the clause b.
this partial order is defined "a < b iff a(x) => b(x)
for all assignments x"

int 4 (a, b, default_d):
return the maximum of the degrees of a and b if
default_d is -1, or just return default_d otherwise.

int exist_mono (f, n, alpha, default_d):
The following is part of the consensus (and DP)
algorithm: while there exist two clauses mu and nu of f
such that alpha = consensus (mu, nu) is not "less than"
a clause of f and the degree of alpha is less than
d(mu, nu) ... this function finds (if possible) such
an alpha and returns 1. if it can’t find an alpha, it
returns O.

int do_algorithm_1 (f, n, default_d):
do "algorithm one" from Billionett et. al.

int count_literal (f, n, y, y_comp):
return the number of times the literal with variable
‘y’ complemented if y_comp == 1 appears in the n-clause
formula f

int nonlinear (f, n, y, comp):
returns 1 if the literal (y, comp) appears in a clause
of degree greater than 1 in the n-clause formula f

int do_algorithm_2 (f, n):
do "algorithm two" from Billionett et. al.

int do_new_sat (f, n, var, value, success, new_f):
call sat(), setting the variable ‘var’ to value.

int find_nonlinear_var (f, n):
return the variable number of a literal in the n-clause
formula f that has degree > 1 in some clause of f.

L CHE R K B B R R EE R R R R R K R RN R R R R K B T N R BN R BN RN CEEE I B B B CHEEE R

int branch_function (f, n, var):
this is the function described in Billionett et. al. as
the branch criterion; if ‘var’ maximizes this function,
it will be chosen as the variable (in e.g. do_new_sat())
to branch on.

int choose_branch_var (f, n):
call branch_function() on all the variables, returning
the number of the one that maximizes the
branch_function()

int choose_branch_value (f, n, var):
choose the value for variable var in function f that
"looks like" it has the best chance for satisfying all
the clauses in f. we do this by looking at the increase
in the number of satisfied and unit clauses created by
putting either a 0 or 1 in var

int do_algorithm_3 (f, n, success):
do the implicit tree search of the formula after
tweaking the formula with algorithms one and two

int sat (clauses, n, success):
determine the satisfiabiliy of the formula in the array
clauses using DP or the consensus algorithm; calls
the different algorithms involved.

int cmp (a, b):
compare two clauses lexically; used as an argument to
gsort(3) to aid in eliminating duplicate clauses

int elim_dups (f, n):
after the array of clauses f has been gsort()ed, go
through the array eliminating duplicate clauses (which
will be bunched together because of the sort - good old
O(n log n) algorithms)

int #*get_assignment (f, n):
after the formula in f has been determined to be
satisfiable, a satisfying assignment is returned in an
integer array

61

62

clause *consensusl (a, b):
do the consensus operation on clauses a and b

clause *consensus (a, b):
wrapper for the consensus operation (for debugging)

clause *get_nonlinear_minimum (f, n):
algorithm two contains the following:
while 1 is not a clause in f and there exists a
nonlinear literal of f, choose the literal y_i that is
nonlinear in f and that appears in the fewest terms of
f. get_nonlinear_minimum() finds and returns such a

y_i.

EOBE I R B . R R B R R

*
~

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/types.h>
#include <unistd.h>

#define MAX_VARIABLES 10000
#define MAX_CLAUSE 10000
#define MAX_OPS 20000
#define NO_GC

#define QUIET

#define M 100

int num_clauses, /* number of clauses and variables;
set by */
num_variables, /* the clauselib.c functions when formula
is read in */

calls = 0, /* number of recursive calls made to sat() */
algl = 0,
cons = 0,

not_cons = 0,
ncons = 0,
suggested_one = 0,
suggested_zero = 0,
was_wrong = O;

int wrong[2] [MAX_VARIABLES],

right [2] [MAX_VARIABLES];

/* get the time reporting and clause libraries */

#include "../lib/report.c"
#include "../lib/clauselib.c"

int find_opposite (a, b)
clause *a, *b;

{

/* find a variable that’s complemented in one but not
the other */

clause *p;

while (a) {
p = in (a->var, b);
if (p) if (a->comp !'= p->comp) return a->var;
a = a->next;

}

return -1;

clause *consensusl (a, b)
clause *a, *b;

{

int v;
clause *con, *p, *q;

v = find_opposite (a, b);
if (v == -1) return none;
con = NULL;
for (p=a; p; p=p->next) {

if (p->var !'= v) insert_literal (&con, p->var, p->comp);
}
for (p=b; p; p=p->next) {

if (p->var !'= v) {

insert_literal (&con, p->var, p->comp);

/* if at *this#* point con is null, then we *know* that
* inserting something into it annhilated it, so we can
* safely say that these two clauses don’t have a

63

* consensus.

*/
if (con == NULL) return none;

}

return con;

clause *consensus (a, b)
clause *a, *b;

clause *p;

cons++;

ncons++;

p = consensusl (a, b);

if (p == none) not_cons++;
return p;

int less_than (a, b)
clause *a, *b;

{

clause *p, *q;
int ret;

p = NULL;
for (q=a; q; gq=q->next)
insert_literal (&p, gq->var, q->comp);
for (q=b; q; gq=q->next) {
insert_literal (&p, gq->var, q->comp);
if (p == NULL) {
free_clauses (p);
return O;

}

if (equal (a, p)) ret = 1; else ret = 0;
free_clauses (p);

return ret;

64

int d (a, b, default_d)
clause *a, *b;
int default_d;
{
int r, da, db;

da = degree (a);

db = degree (b);

if (da > db) r = da; else r = db;

if ((default_d == -1) || (default_d > r)) return r;
return default_d;

/* a typedef and some functions to handle quick building of a
* table
* of possible consensus operations

*/
typedef struct _op {
clause *c;
struct _op *next;
} op;

op ops[MAX_OPS];
int num_op;
op *new_op () {
if (num_op >= MAX_OPS) {
fprintf (stderr, "need more ops.\n");

exit (1);

}

return &ops[num_op++];
}
void insert_op (L, c)
op **L;
clause *c;
{

op *p;

p = new_op (O);
p->c = c;

65

p—>next = *L;
*L=p;

op *cns[MAX_VARIABLES] [2];

int exist_mono (f, n, alpha, default_d)

clause *f[];

int n, default_d;

clause **alpha;

{
int i, j, k, flag, dd, other, max_elim= O, count, tries = O;
clause *mu, *nu, *a, *best_clause;
op *p;

if (default_d == -1) default_d = 3;

num_op = O;

for (i=0; i<num_variables; i++) for (j=0; j<2; j++)
cns[i] [j] = NULL;

best_clause = none;

for (i=0; i<n; i++) {

mu = f[i];
for (a=mu; a; a=a->next) {
other = !(a->comp);

/* try to get a consensus between mu and all the
* current members of the ‘other’ list
*/
#ifdef DAVIS_PUTNAM
if (degree (mu) == 1)
#else
if (mu &% (degree (mu) <= default_d))
#endif
for (p=cmnsl[a->var] [other]; p; p=p->next) {
*alpha = consensus (mu, p->c);

if (*alpha !'= none)
if (degree (*alpha) <= d (mu, p->c, default_d)) {
flag = 1;
count = 0;

for (i=0; flag && (i<n); i++) {
if (less_than (*alpha, f[i])) flag = 0; else
if (less_than (f[i], *alpha)) count++;

66

67

if (flag) {
if (count > max_elim) {
max_elim = count;
best_clause = *alpha;
}
if (best_clause != none) tries++;
if (tries > 10) {
*alpha = best_clause;
if (best_clause != none) return 1;

/* no good consensus? oh well, let’s insert this
clause */

if (degree (mu) <= default_d)
insert_op (&(cns[a->var][a->comp]), mu);

}

}

if (best_clause != none) {
*alpha = best_clause;
return 1;

}

return O;

/* some functions to help sort a formula by the size of clauses;
helpful in both DP and BS since unit consensuses will be found
first; these are usually the most profitable, since they cause
immediate promotion of other clauses to units. this is done
really for the sake of the BS algorithm, which performs

even more abysmally if we don’t do this.

/

* K K K K

*

int size_cmp (a, b)
clause **a, *x*xb;

{

int c, d;

c = degree (*a);

d = degree (*b);

if (c < d) return -1;
if (c > d) return 1;
return O;

int sort_by_size (f, n)
clause *f[];
int n;
{
static clause *one[MAX_CLAUSE],
*two [MAX_CLAUSE],
*other [MAX_CLAUSE] ;
int i, d, i1=0, i2=0, io=0;

for (i=0; i<n; i++) {
d = degree (f[il);
switch (d) {
case 1: onel[il++] f[i]; break;
case 2: twol[i2++] f[i]; break;
default: other[io++] = f[i];

}
}
d = 0;
for (i=0; i<il; i++) f[d++] = oneli];
for (i=0; i<i2; i++) f[d++] = twoli];
for (i=0; i<io; i++) f[d++] = other[i];

if (d !'= n) printf ("Hmm'\n"), exit (1);
return iil;

int do_algorithm_1 (f, n, default_d)
clause *f[];
int n, default_d;
{
clause *alpha;
int i, i1, j, flag, count = O;

i1 = sort_by_size (f, n);

if (i1) default_d = 1;

flag = exist_mono (f, n, &alpha, default_d);
while (flag) {

if (alpha == NULL) {

f[0] = NULL;
return 1;

}

j=0;

for (i=0; i<n; i++)
if (!less_than (£[i], alpha))
insert_clause (f, &j, f[il);
insert_clause (f, &j, alpha);
n=j;
i1 = sort_by_size (f, n);
if (i1) default_d = 1;
flag = exist_mono (f, n, &alpha, default_d);
count++;

}

return n;

int count_literal (f, n, y, y_comp)
clause *f[];
int n, y, y_comp;

{
int i, count = 0;
clause *p;
for (i=0; i<n; i++) {
p = in (y, £[i]);
if (p) if (p->comp == y_comp) count++;
}
return count;
}

int nonlinear (f, n, y, comp)
clause *f[];
int n, y, comp;
{
int i, linear;
clause *p;

for (i=0; i<n; i++) {
p = £[il;
if (degree (p) == 1) if (p->var == y) return O;

69

}

return 1;

clause *get_nonlinear_minimum (f, n)

clause *f[];

int n;

{
int i, y, comp, count, min, least_y, least_y_comp;
static clause foo;

for (i=0; i<n; i++) if (f[i] == NULL) return NULL;
min = MAX_CLAUSE + MAX_VARIABLES + 1;
least_y = -1;
for (y=0; y<num_variables; y++) {
for (comp=0; comp<2; comp++) {
if (nonlinear (f, n, y, comp)) {
count = count_literal (f, n, y, comp);
if (count) if (count <= min) {
min = count;

least_y = y;
least_y_comp = comp;
+
}
+
}
if (least_y == -1) return none;

foo.var = least_y;
foo.comp = least_y_comp;
return &foo;

/*
* do "algorithm two" from Billionett et. al.

*/

int do_algorithm_2 (f, n)

clause *f[];

int n;

{
clause *y, *z, *new_f [MAX_CLAUSE];
int i, old_n;

70

old_n = n;
for (i=0; i<n; i++) new_f[i] = f[i];
y = get_nonlinear_minimum (new_f, n);
while (y && (y != nomne)) {
z = new_clause (y->var, !y->comp);
insert_clause (new_f, &n, z);
n = do_algorithm_1 (new_f, n, 2);
y = get_nonlinear_minimum (new_f, n);

}

if (y == NULL) {
£[0] = NULL;
return 1;

}

/* at this point, if all terms are linear, we have a
solution! */

for (i=0; i<n; i++) {
if (degree (new_f[i]) > 1) return old_n;

b
for (i=0; i<n; i++) f[i] = new_f[i];
return n;
b
int sat ();
/*
* call sat(), setting the variable ‘var’ to value.
*/

int do_new_sat (f, n, var, value, success, new_f)
clause *f[], /* the old function */
new_f[]; / the new function after the assignment
of the value */

int n, var, value,

success; / set to 1 if we satisfied f */
{

clause *p, *q, *r;

int 1, j, new_n;

j=0;

71

72

for (i=0; i<n; i++) {
/* if the variable is in this clause... */

if (r = in (var, £[il)) {

/* ...and if the literal evaluates to one,
* then delete it from the clause
*/

/* (here, we’re saying "if the variable is not
* complemented and is equal to 1, or if the variable

* 1s complemented and is equal to O, then it evaluates
* to 1.")
*/
if ((value && !'(r->comp)) || (!value && (r->comp))) {
p = NULL;
for (gq=f[il; q; g=q->next)
if (q->var != var)

insert_literal (&p, gq->var, gq->comp);
insert_clause (new_f, &j, p);
} /* else we don’t include this clause;
* it is annhilated by the zero
*/
} else {
insert_clause (new_f, &j, f[il);

/* make sure we don’t delete this one in the future */
f[il->copies++;

}
new_n = sat (new_f, j, success);
if (*success) {
/* yeal! x/
for (i=0; i<new_n; i++) f[i] = new_f[i];

/* put in the single literal the way it will help

* satisfy the formula

*/

insert_clause (f, &new_n, new_clause (var, value));
return new_n;

}

return n;

int find_nonlinear_var (f, n)
clause *f[];

int n;
int i;
clause *p;

for (i=0; i<n; i++)
if (degree (£f[il) > 1) return f[i]->var;
return -1;

int branch_function (f, n, var)
clause *f[];
int n, var;

int i, v, w, sum;

clause *p;

v=0, w=0;
for (i=0; i<n; i++) {
if (degree (£[i]) == 3) {
p = in (var, £[i]);
if (p) {
if (p->comp) w++; else v++;

}
}
/* this is stupid ... */
if (v < w) sum = v; else sum = w;
sum *= M;

sum += v; sum += w;
return sum;

int choose_branch_var (f, n)

73

clause *f[];
int n;
{

int i, k, b, max, save;

save = find_nonlinear_var (f, n);

if (save == -1) return -1;
k= -1;
max = 0;

for (i=0; i<m; i++) {
b = branch_function (f, n, 1i);
if (b > max) max = b, k = i;

}

if (k == -1) return save; else return k;

int choose_branch_value (f, n, var)
clause *f[];
int n, var;
{
#ifndef DAN_BRANCH1

return O;
#else

int i, j, d, suggestion,

satisfied[2]; /* number of clauses satisfied by letting
var = index */

clause *c;
satisfied[0] = 0O;
satisfied[1] = 0;

for (i=0; i<n; i++) {
/* look for the variable in this clause */
c = in (var, f[il);
if (o) Ao
d = degree (f[i]);
for (j=0; j<2; j++) {
/* if we let var = j, then do we get a satisfied
(0) clause? #*/
if (j == c->comp) satisfied[j]++;

74

if ((satisfied[0]) > (satisfied[1]))
suggestion = 1;
else
suggestion = O;
if (suggestion) suggested_one++; else suggested_zero++;
return suggestion;
#endif
b

int do_algorithm_3 (f, n, success)
clause *f[];
int n, *success;
{
clause *new_f[MAX_CLAUSE];
int hmm, i, var, m, value, wO, wil, r0, ri,
vote_for_1, vote_for_0;

var = choose_branch_var (f, n);
if (var == -1) {

*¥success = 1;

return n;

value = choose_branch_value (f, n, var);

#ifdef DAN_BRANCH2
vote_for_1 = 0;
vote_for_0 = 0;
w0 = wrong[0] [var];

wl = wrong[1] [var];
r0 = right[0] [var];
rl = right[1] [var];

/* this rule gets us 10 seconds on 8-queens */
if (w0 > r0) vote_for_1++;
if (vote_for_1 > vote_for_0) value = 1;
#endif
/* try the formula with what looks like a good value */

m = do_new_sat (f, n, var, value, success, new_f);
if (*success) {
#ifdef DAN_BRANCH2
/* we were right about this value. #*/

75

right[value] [var]++;
#endif
return m;
}
was_wrong++;
/* we were wrong about this value */
#ifdef DAN_BRANCH2
wrong[value] [var]++;
#endif

/* didn’t work? try it with the other value, then */

m = do_new_sat (f, n, var, 'value, success, new_f);
if (*success) {
/* ok, we were right about *this* value! #*/
#ifdef DAN_BRANCH2
right[!value] [var]++;
#endif
return m;

/* still didn’t work? ok, f is not satisfiable.
* make it obvious by putting in a NULL.
*/
f[0] = NULL;
#ifdef DAN_BRANCH2
wrong[!value] [var]++;
#endif
return 1;

int do_pure_literals (f, n)

clause *f[];

int n;

{
int i, new_n;
static int pure[MAX_VARIABLES];
clause *c;

new_n = n;
for (i=0; i<num_variables; i++) purel[i] = -1;
for (i=0; i<m; i++) {

77

/* if this is already a literal of the formula, don’t
* insert it at all; it’s already there. if it isn’t
*¥ in 2-CNF, insert the variables.

*/
c = f£[il;
if (degree (c) !'= 2)
for (; c; c=c->next) purel[c->var] = -2;

else for (; c; c=c->next) {

/* if this is the first time we’ve seen this variable,
* put whether or not it’s complicated in the ‘pure’

* array

*/

if (purelc->var] == -1) purel[c->var] = c->comp; else

/* maybe we’ve seen this before; if so and it had a

* different attitude (i.e., was or was not complemented
* where now it’s the opposite) put a -2 in the ‘pure’

* array

*/

if (c->comp != purel[c->var]) purel[i] = -2;

/* we could be linear in the number of variables, but this
* seems faster?
*/
for (i=0; i<n; i++) {
for (c = f[i]; c; c=c->next) {
if (purelc->var] >= 0)
insert_clause (f, &new_n,
new_clause (c->var, purel[c->var]));
purel[c->var] = -2;

}

return new_n;

int sat (clauses, n, success)
clause *clauses[];
int n, *success;

78

int i;

calls++;
#ifdef DAN_LITERAL
n = do_pure_literals (clauses, n);
#endif
if (calls == 1) n = do_algorithm_1 (clauses, n, 3);
else n = do_algorithm_1 (clauses, n, 2);
/* at this point, check to see if 1 is a monomial of clauses.
* if so, we can’t satisfy it so return O.
* otherwise, we don’t know anything so go on to algorithm 2
*/
for (i=0; i<n; i++) if (clauses[i] == NULL) {
clauses[0] = NULL;
return 1;
}
#ifndef QUIET
printf ("oh, well.\n");
#endif
#ifndef DAVIS_PUTNAM
if (calls == 1) n = do_algorithm_2 (clauses, n);
/* at this point, either clauses is 1 (not satisfiable) or
* is a disjunction of *literals* which describe a satisfying
* assignment to the variables
*/
#endif
n = do_algorithm_3 (clauses, n, success);
return n;

int cmp (a, b)
clause **a, *x*xb;

{
if ((*a)->var < (*b)->var) return -1;
if ((*a)->var > (*b)->var) return 1;
return O;

}

int elim_dups (f, n)
clause *f[];
int n;

int i, j;
clause *new_f[MAX_CLAUSE];

j =0
new_f[j++] = £[0];
for (i=1; i<n; i++) {
if (£[i-1]->var !'= f[i]->var) new_f[j++] = f[i];
}
for (i=0; i<j; i++) f[i] = new_f[i];
return j;

int *get_assignment (f, n)
clause *f[];
int n;
{
int i, T[MAX_VARIABLES];

/* find the assignment that will satisfy f(x) = 0 */

for (i=0; i<MAX_VARIABLES; i++) T[i] = 0;
for (i=0; i<n; i++)

if (f[i]->comp) T[f[i]->var] = 1;
return T;

void demorgan (f, n)
clause *f[];

int n;
int i;
clause *p;

for (i=0; i<n; i++)
for (p=f[il; p; p=p->next) p->comp = !p->comp;

main (argc, argv)
int argc;
char *argv[];

{

char s[1000];

int i, *t, success, queens = 0, subgraphs = 0, graph_iso
clique = 0, graph_n, graph_m, delete = O;

clause *p;

clause *clauses[MAX_CLAUSE];

FILE *f;

if (arge >= 2) {
if (strcmp (argv[i], "-q") == 0) queens = 1; else
if (strcmp (argv[1], "-sg") 0) subgraphs = 1; else
if (strcmp (argv[1], "-gi") 0) graph_iso = 1; else
if (strcmp (argv[1], "-cl") 0) clique = 1; else
if (strcmp (argv[i], "-d") == 0) delete = 1;

}

initialize_time ();

num_clauses = 0;

num_variables = 0;

for (i=0; i<MAX_VARIABLES; i++) {

wrong[0] [i] = O;
wrong[1] [i] = O;
right[0] [i] = 0;
right[1][i] = 0;

}
none = new_clause (1, 1);
none->next = NULL;
srand (time (NULL));
while (!feof (stdin)) {
gets (s);
if ('feof (stdin)) if (s[0] != ’#’) {
p = make_clause (s);
if (p) clauses[num_clauses++] = p;
}
if (s[0] == "#°) {
switch (s[1]) {
case ’1’: graph_n = atoi (&s[3]); break;
case ’2’: graph_m = atoi (&s[3]); break;
default: break;

}

num_variables++;

0,

80

for (i=0; i<num_clauses; i++) if (clauses[i] == NULL) {
num_clauses = i;
break;

/* convert this CNF formula into DNF because this algorithm
* tries to do the dual thing of CND-SAT, i.e., DNF-TAUT
*/

demorgan (clauses, num_clauses);

#ifndef QUIET

printf ("%d clauses in %d variables\n",
num_clauses, num_variables);

ifdef ECHO_FORMULA

for (i=0; i<num_clauses; i++) print_clause_ln (clauses[i]);

endif
#endif

success = 0;

num_clauses = sat (clauses, num_clauses, &success);

if (clauses[0] == NULL) {
if (delete) unlink (argv[2]);
report_time ("NOT");
} else {
report_time ("SAT");
if (queens) {
t = get_assignment (clauses, num_clauses);
print_queens (t, num_variables);
} else if (subgraphs &% graph_n) {
t = get_assignment (clauses, num_clauses);
print_subgraph (t, graph_n, graph_m, 1);
} else if (graph_iso &% graph_n) {
t = get_assignment (clauses, num_clauses);
print_subgraph (t, graph_n, graph_m, 2);
} else if (clique && graph_n) {
t = get_assignment (clauses, num_clauses);
print_subgraph (t, graph_n, graph_m, 3);

gsort ((void *) clauses, (size_t) num_clauses,
(size_t) sizeof (clause *),

(int (%)

num_clauses

(const void *, const void *)) cmp);

= elim_dups (clauses, num_clauses);

#ifdef DAVIS_PUTNAM
if defined(DAN_BRANCH1) || defined(DAN_BRANCH2)
f = fopen ("./dandp.stats", "a");

fprintf (£,
else

"dandp: ");

f = fopen ("./dp.stats", "a");

fprintf (£,
endif
#telse

Ildp: II);

f = fopen ("./consensus.stats", "a");

fprintf (£,
#endif
fprintf (£,

"consensus: ");

"%d calls to sat()\n", calls);

#if defined(DAN_BRANCH1) || defined(DAN_BRANCH2)

fprintf (£,
fprintf (£,
#endif
fprintf (£,
fprintf (£,
fprintf (£,
fprintf (£,
fclose (f);
#ifndef QUIET

"suggested 0 %d times\n", suggested_zero);
"suggested 1 /d times\n", suggested_one);

"took the wrong branch %d times\n", was_wrong) ;
"algl = %d\n", algl);

"cons = %d\n", cons);

"not_cons = %d\n", not_cons);

printf ("output from sat:\n");
for (i=0; i<num_clauses; i++) print_clause_ln (clauses[i]);

#endif
}

end of bsdp.c

82

Appendix B

The GSAT program

This is the program that implements the GSAT procedure. It was written by the author
of the thesis.

gsat.c:

~
*

gsat.c

This program is an implementation of the algorithm GSAT i
described in Selman, B., and Levesque, H.J., and Mitchell, D.
G. (1992), A New Method for Solving Hard Satisfiability
Problems. Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAI-92), San Jose, CA, July 1992,
440-446.

The algorithm uses a greedy strategy to satisfy as many
clauses as possible, hopefully satisfying them all.

If the macro GUESSING is #define’d, the program uses a
completely random strategy (i.e., independent guessing),
otherwise GSAT is used.

O K K K K K K K K K X K K K X X

Usage: gsat [-q | -ck | -sg | -gi]

83

L CHE R K B B R R EE R R R R R K R RN R R R R K B T N R BN R BN RN CEEE I B B B CHEEE R

If given a command-line switch, gsat will print the
satisfying assignment it finds (if any) in a form
appropriate to the formulation given:

-q for n-queens problem

-ck for clique problem

-sg for subgraph isomporphism problem

-gi for graph isomorphism problem

gsat will print "SAT" or "?77" followed by the CPU time
consumed on exitting. "SAT" means the formula was found
to be satisfiable; "777" means GSAT couldn’t find a
satisfying assignment.

The file contains the following functions:

int get_max_increase (t, c, n):
return the variable that, if toggled, will produce the
largest increased in the number of clauses satisfied.
note: even if no variable increases the clauses, we will
still return something since we have to change something
for any hope of satisfying the formula.

int #*guessing (clauses, n, max_tries):
try to guess a satisfying assignment to the formula in
the clause array clauses max_tries times, then give up.
returns an array of int’s that is a satisfying
assignment, or NULL if none is found.

int #gsat (clauses, n, max_flips, max_tries):
do the GSAT procedure on the n-clause formula in
clauses. max_flips is the number of times to ‘‘flip,’’
or toggle a variable. max_tries is the number of times
to try max_flips flipps before giving up.

void get_random (t):
put a random sequence of bits in the int array t.
we put num_variables (a global set when reading in the
clauses) random bits in t.

main(argc, argv):
the main program; handles the command line and reads in
the formula.

84

*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/types.h>
#include <unistd.h>

#define MAX_VARIABLES 10000
#define MAX_CLAUSE 10000
#define MAX_FLIPS 100
#ifdef GUESSING

define MAX_TRIES 50000
#else

define MAX_TRIES 5000
#endif

/* supress debug output */
#define QUIET

int num_clauses, /* number of clauses and variables; */
num_variables; /* set by clauselib.c */

/* include the libraries needed (I know, I know) */

#include "../lib/report.c"

#include "../1lib/clauselib.c"

/* the set of clauses we will read in */

clause *clauses[MAX_CLAUSE];

void get_random (t)

int *t;

{
int i;

for (i=0; i<num_variables; i++) t[i] = rand () % 2;

int get_max_increase (t, c, n)

int *t;
clause *c[];
int n;
{
int i, k, max, maxi;
max = 0;
maxi = 0;
for (i=0; i<n; i++) {
t[i] = !'¢[i];
k = satisfies (t, c, n);
t[i] = 't[i];

if (k > max) max = k, maxi = i;
}

return maxi;

int *guessing (clauses, n, max_tries)
clause *clauses[];
int n, max_tries;

/* just guess randomly */

static int T[MAX_VARIABLES];
FILE *f;
int i;

for (i=0; i<max_tries; i++) {
get_random (T);
if (satisfies (T, clauses, n) == n) {

/* print out some statistics before we have to leave...

f = fopen ("./guessing.stats", "a");

fprintf (f, "guessing: %d tries before success\n",
i+ 1);

fclose (f);

return T;

86

/* couldn’t figure it out; print out how hard we tried */

f = fopen ("./guessing.stats", "a");

fprintf (f, "guessing: %d tries before failure\n", max_tries);
fclose (f);

return NULL;

int *gsat (clauses, n, max_flips, max_tries)
clause *clauses[];
int n, max_flips, max_tries;
{
int 1, j, p;
static int T[MAX_VARIABLES];
FILE *f;

for (i=0; i<max_tries; i++) {

#ifndef QUIET

printf (".");fflush(stdout);
#endif

get_random (T);

for (j=0; j<max_flips; j++) {
#ifndef QUIET

printf ("-");fflush (stdout);

#endif
if (satisfies (T, clauses, n) == n) {
/* print out some statistics about how long it took
* to find an assignment; this is useful for tuning
¥ MAX_FLIPS and MAX_TRIES.
*/
f = fopen ("./gsat.stats", "a");
fprintf (£,
"gsat: d flips, %d tries before success\n",
j+1, i+1);
fclose (f);
return T;
}
p = get_max_increase (T, clauses, n);
Tlpl = 'Tlpl;
}

87

f = fopen ("./gsat.stats", "a");
fprintf (f, "gsat: /id flips, %d tries before failure\n",

max_flips, max_tries
fclose (f);
return NULL;

main (argc, argv)
int argc;
char *argv[];
{
char s[10000];
int i, *t,
queens = O, /*
subgraphs =

0, /*
graph_iso = 0, /%
clique = O, /*
graph_n, /*
graph_m; /*

clause *p;

if (argec == 2) {
if (strcmp (argv[i],
if (strcmp (argv[i],
if (strcmp (argv[i],
if (strcmp (argv[i],
}
initialize_time ();
num_clauses = 0;
num_variables = 0;

)

set to
set to
set to
set to
number
number

Il_qll)

II_SgII)
n-git)
H-c1h)

if -q option */

if -sg option #*/

if -gi option #*/

if -ck option */

of nodes in the first graph */
of nodes in the second graph */

1
1
1
1

== 0) queens = 1; else
1;
1; else

0) subgraphs
0) graph_iso
0) clique = 1;

srand (time (NULL) + getpid ());

/* read the formula from stding */

while (!feof (stdin)) {

gets (s);

if (!feof (stdin)) if (s[0]
p = make_clause (s);
if (p) clauses[num_clauses++] = p;

1= 1) {

88

/* comments (preceded by ‘#’) in the input will tell us,
* for a graph problem, the sizes of the graphs
*/
if (s[0] == "#’) {
switch (s[1]) {
case ’1’: graph_n = atoi (&s[3]); break;
atoi (&s[3]); break;

case ’2’: graph_m
default: break;

}

num_variables++;

/* get rid of NULL clauses that pop up occasionally */

for (i=0; i<num_clauses; i++) if (clauses[i] == NULL) {
num_clauses = i;
break;

}

#ifndef QUIET

for (i=0; i<num_clauses; i++) print_clause_ln (clauses[i]);
#endif
#ifdef GUESSING

t = guessing (clauses, num_clauses, MAX_TRIES);
#else

t = gsat (clauses, num_clauses, MAX_FLIPS, MAX_TRIES);
#endif

/* if t isn’t NULL, gsat (or guessing) returned with a
* satisfying assignment to the formula; report a SAT
*/
if () |
#ifdef QUIET
report_time ("SAT");
#else
printf ("satisfying assignment:\n");
for (i=0; i<num_variables; i++)
printf ("%4d %d\n", i, t[i]);
#endif

/* of one of the formulations was specified, print out the
* satisfying assignment in the appropriate format

89

*/
if (queens) {
print_queens (t, num_variables);
} else if (subgraphs &% graph_n) {
print_subgraph (t, graph_n, graph_m, 1);
} else if (graph_iso &% graph_n) {
print_subgraph (t, graph_n, graph_m, 2);
} else if (clique && graph_n) {
print_subgraph (t, graph_n, graph_m, 3);
+
} else
#ifdef QUIET

/* we didn’t find a satisfying assignment; report 777 */

report_time ("777");
#else

printf ("no satisfying assignment found.\n");
#endif
}

end of gsat.c

90

Appendix C

The Clause and Timing libraries

These are libraries of functions important in the two other programs. The first one,
clauselib.c, contains code for manipulating clauses and formulas, and also for printing
satisfying assignments as n-queens chessboards and graph isomorphism functions. The
second has a two functions that facilitate and standardize gathering timing information
on the two programs.

clauselib.c:

/*

* clauselib.c

*

* This file contains C code to handle ‘‘clauses’’ of boolean
* variables.

*

* A clause is a set of literals, which are complemented or
* uncomplemented boolean variables.

*

* The file also contains two routines for printing output
* related to the n-queens and graph SAT formulations.

*

* The following functions are in this file:

*

* void free_clauses (p):

* free memory malloc’ed for a clause p

*

* void insert_clause (f, n, p):

91

L CHE R K B B R R EE R R R R R K R RN R R R R K B T N R BN R BN RN CEEE I B B B CHEEE R

insert a clause p into an array f of n clauses

void insert_literal (p, var, comp):
insert a literal variable var into clause p,
complemented iff comp

void print_clause (p):
print a clause in a human-readable form (for debugging)

void insert_unique_clause (f, n, p):
insert a clause p into an array f, eliminating duplicates

void print_ugly_clause (p):
print a clause p in a form readable by the SAT algorithms

void print_queens (t, n):
print the variable assignment t as an n-queens chessboard

void print_subgraph (t, n, m, hmm):
print the assignment t as a graph isomorphism
(hmm is a flag telling which kind of isomorphism:
clique, graph, or subgraph

int satisfies (t, ¢, n):
returns the number of clauses of the formula c (an array
of n clauses) satisfied by the variable assignment in t.
note: t satisfies c iff satisfies() returns n.

int equal (a, b):
returns 1 iff the clause a is equal to the clause b

int degree (a):
returns the number of literals in the clause a

int isqrt (n):
returns integer square root of n iff n is a perfect
square < 5072

clause *new_clause (var, comp):
returns a pointer to a new clause with variable var,
complemented if comp ==

92

93

clause *make_clause (s):
convert the machine-readable clause format (output by
the formulation programs or print_ugly_clause()) into a
linked list clause, and return the new clause

clause *in (v, p)
returns a pointer to the element of a clause p

o R G I R

containing a variable v, or NULL if no such element

*
~

/* types and variables */
/* a clause is a triple with the variable number and a boolean
* 0 if not comp, 1 if comp
*/
typedef struct _clause {
int var, /* the variable number */
comp, /* 1 iff the literal is complemented */
copies; /#* number of aliases to this pointer
* (for garbage collection)
*/
struct _clause *next; /#* next literal in this linked list */
} clause;

‘‘not a clause,’’ returned

clause *none; /* a special value for
* by the consensus operation when there is no
* consensus
*/

clause *new_clause (var, comp)

int var, comp;

{

clause *p;

p = (clause #*) malloc (sizeof (clause));

it ('p) {
fprintf (stderr, "malloc: returned NULL :-(\n");
exit (1);

}

p->next = NULL;
p->var = var;
p—>comp = comp;
p—>copies = 0;
return p;

void free_clauses (p)
clause *p;

{

clause *q;

if

q=

(p == NULL) return;
p->next;

free (p);
free_clauses (q);

void insert_clause (f, n, p)
clause *f[];
int *n;

clause *p;

{

/*

* K K * ¥

*/

if

b
if

make sure the size of the clause doesn’t exceed the maximum
number in an array of clauses. this can happen for
exponential space runs of the DP algorithm; the fix is to
recompile with a larger size since we don’t want to give up
the speed afforded by an array rather than a list
implementation of formulas

(*n >= MAX_CLAUSE) {

fprintf (stderr, "MAX_CLAUSE exceeded.\n");
report_time ("ERR");

exit (0);

(p == NULL) {
f[0] = NULL;
*n = 1;

} else f[(#n)++] = p;

void insert_literal (p, var, comp)
clause **p;
int var, comp;

{

clause *q, *r, **P;

94

95

P =p;
loop:
if (*p == NULL) {

/* base case: inserting into an empty clause */

*p = new_clause (var, comp);
return;

/* case 1: we’re trying to insert a duplicate. ignore it.
* (note: if it’s the same literal, but not the same

* complement, we have a contradiction so we can blow away
* the whole set of clauses.)

*/
if ((*#p)->var == var) {
if ((*p)->comp == comp) return;
else {
free_clauses (*P);
*P = NULL;
return;
}

/* case 2: the current var is too big.
* insert our var before it and link pointers

*/

if ((#p)->var > var) {
q = *p;
*p = new_clause (var, comp);
(*p)->next = q;
return;

/* case 3: do the whole procedure on the next literal in the
clause since we didn’t insert the new literal yet.

this was originally recursive, hence the goto (gcc
probably would have noticed that, but we’re just making
sure here).

* ¥ X *

*/
p = &((*p)->next);
goto loop;
}
clause *make_clause (s)
char *s;
{
int i, c;

clause *p, *q;
char *t;

#define max(c) if (c > num_variables) num_variables = c;

p = NULL;
s[strlen(s)+1] = 0;
t = 8;

/* while there are more literals in the string...*/
while (*t) {
/* get rid of the space at the end of the digits */
t[6] = 0;
/* insert the value and complement into the new clause */
insert_literal (&p, atoi (&t[1]), t[0] == ~?);
/* move ‘t’ to the next literal */
t +=7;
b
qQ = P;
/* quick check to set the global ‘num_variables’ to the maximum
* variable number we encounter
*/

while (q) { max (q->var); g=q->next; }
return p;

96

97

void print_clause (p)
clause *p;

{

if (p == none) {
printf ("(none)");
return;
}
printf ("(");
while (p) {
printf ("%s/d ", p->comp ? " “": " " p->var);
P = p—>next;
}
printf (")");

#define print_clause_ln(p) (print_clause((p)),printf("\n"))

int satisfies (t, c, n)
int *t;

clause *c[];

int n;

{

int i, o, count = 0;
clause *p;

for (i=0; i<n; i++) {

/* we will find the ‘sum’ of the values of the literals;
* start out at O.
*/
o = 0;
for (p=clil; p && 'o; p=p->next) {
if (p->comp) {
/* if the literal is complemented and the variable
¥ is 0, the clause is satisfied
*/
if (tlp->var] == 0) o = 1;
+

/* otherwise if the literal isn’t complemented and the

* variable is assigned 1, the clause is satisfied
*/
else if (t[p->var] == 1) o = 1;

/* otherwise nothing; we’re still at 0 */

/* increment count if this clause was satisfied */

count += o;
}

return count;

clause *in (v, p)
int v;
clause *p;

{

while (p) {
if (p->var == v) return p;
P = p->next;

}

return NULL;

int equal (a, b)
clause *a, *b;

{

/* compare a and b for equality */

while (a &% b) {
if (a->comp != b->comp) return 0;
if (a->var != b->var) return O;
a = a->next;
b = b->next;
}
if (a == b) return 1;
return O;

int degree (a)

98

99

clause *a;

{
int ¢ = 0;
while (a) c++, a=a->next;
return c;
}
int isqrt (m)
int n;
{
int i;
for (i=0; i<50; i++) if (i*i == n) return i;

fprintf (stderr, "isqrt: n (%d) must be a square\n", n);

void insert_unique_clause (f, n, p)
clause *f[];

int *n;

clause *p;

{

int i;

for (i=0; i<*n; i++) if (equal (p, f[il)) return;
if (*n > MAX_CLAUSE) {
fprintf (stderr, "too many clauses\n");

exit (1);
}
f[(*n)++] = p;
}
void print_ugly_clause (p)
clause *p;
{
while (p) {
printf ("%c}0.5d", p->comp 7 ’~’ : ’_’, p->var);

if (p->next) printf (" "); else printf ("\n");
P = p->next;

100

void print_queens (t, n)
int *t;

int n;

{

int 1, j, s;

s = isqrt (n);

for (i=0; i<s; i++) {
for (j=0; j<s; j++) printf ("/d ", tls*i+j]l);
printf ("\n");

}
}
void print_subgraph (t, n, m, hmm)
int *t;
int n, m, hmm;
{

int 1, j, N;

if (hmm == 1) printf ("Ok, here’s a subgraph isomorphism:\n");
if (hmm == 2) printf ("Ok, here’s a graph isomorphism:\n");
if (hmm == 3) printf ("Ok, here’s a clique:\n{ ");
N =n *x m;
for (i=0; i<N; i++)
if e[|
if (hmm == 3) printf ("/d ", i / m); else
printf ("%4d <--> Jd\n", i / m, i 4 m);
+
if (hmm == 3) printf ("}\n");
}

end of clauselib.c

101

report.c:
/*
* report.c
*
* This file contains C code to print the amount of CPU time
* used by a SAT procedure; the SAT program calls
* report_time() with a string (usually SAT or NOT) describing
* what it found.
*/

/* solaris needs this */

#ifndef CLOCKS_PER_SEC
define CLOCKS_PER_SEC 1000000.0
#tendif

/* solaris also needs us to call clock() once at the beginning
* of the program (7)
*/
void initialize_time ()
{
#ifdef sun
(void) clock ();
#endif
}

/* print out the value of clock() with the string to stderr */
void report_time (s)
char *s;
{

fprintf (stderr, "%s\n", s);

fprintf (stderr, "%0.31f\n",

(double) clock () / (double) CLOCKS_PER_SEC);
fflush (stderr);
fclose (stderr);

end of report.c

102

Appendix D

Tables of Computational Results

Here, we present the results of the experiments in a tabular form. For each problem, the

instance size is given, followed by the number of instances used (n), the median time,

the mean time (x), and the standard deviation (o) of the times.

D.1
BS

Size | n | Median 7 o

50 | 7 0.6s 0.61s | 0.08s
60 | 7 0.9s 1.01s | 0.28s
70 | 7 1.5s 1.47s | 0.16s
80 |7 2.2s 2.17s | 0.10s
90 | 7 3.1s 3.13s | 0.12s
100 | 7 4.1s 14.21s | 24.65s
110 | 7 5.6s 5.57s | 0.14s
120 | 5 6.9s 6.96s | 0.24s
130 | 6 10.3s | 41.03s | 69.63s
140 | 5 11.7s | 11.74s | 0.41s

Times for Random Formulas

DP Variant 1
Size | n | Median 7 o
50 | 3 0.0s 0.03s | 0.05s
60 | 3 0.1s 0.73s | 0.90s
70 | 3 0.3s 0.93s | 1.04s
80 | 3 0.3s 0.30s | 0.08s
90 | 2 0.6s 0.45s | 0.15s
100 | 2 1.9s 1.15s | 0.75s
110 | 1 0.6s 0.60s -
120 | 1 0.8s 0.80s -
130 | 1 1.1s 1.10s -
140 | 1 1.5s 1.50s -

103

DP Variant 3

DP Variant 2

Size | n | Median 7 o

50 | 3 0.0s 0.07s | 0.09s

60 | 3 0.0s 0.03s | 0.05s

70 | 3 0.1s 0.10s | 0.00s

80 | 3 0.2s 0.20s | 0.00s

90 | 3 0.2s 0.23s | 0.05s
100 | 3 0.4s 0.40s | 0.00s
110 | 2 0.5s 0.45s | 0.05s
120 | 2 0.7s 0.65s | 0.05s
130 | 2 0.9s 0.90s -

140 | 2 4.6s 2.85s | 1.75s

DP

Size | n | Median 7 o
50 | 13 0.1s 0.16s 0.24s
60 | 14 0.1s 0.09s 0.03s
70 | 14 0.1s 0.14s 0.05s
80 | 14 0.2s 0.24s 0.10s
90 | 14 0.3s 0.26s 0.05s
100 | 14 0.4s 6.10s | 20.44s
110 | 13 0.4s 0.45s 0.08s
120 | 11 0.6s 0.62s 0.08s
130 | 12 0.7s 0.85s 0.42s
140 | 12 1.1s 53.47s | 109.92s

Size | n | Median 7 o
50 | 3 2.3s 2.17s 1.64s
60 | 3 0.4s 4.77s | 6.32s
70 | 3 0.2s 0.40s | 0.28s
80 | 2 21.5s | 10.85s | 10.65s
90 | 3 0.5s 5.27s | 6.88s
110 | 2 50.6s | 38.30s | 12.30s
120 | 1 1.0s 1.00s -
130 | 2 13.5s 9.35s | 4.15s
140 | 1 3.6s 3.60s -
GSAT

Size | n | Median 7 o

50 | 3 0.0s 0.17s | 0.24s
60 | 3 0.0s 0.00s -

70 |3 0.0s 0.20s | 0.28s
80 | 3 0.0s 0.27s | 0.38s
90 | 3 0.1s 0.07s | 0.05s
100 | 2 1.2s 0.65s | 0.55s
110 | 2 0.2s 0.15s | 0.05s
120 | 1 1.9s 1.90s -
130 | 2 2.3s 1.25s | 1.05s
140 | 2 2.7s 2.60s | 0.10s

104

105

D.2 Times for Large Random Formulas (DP and BS

only)
DP GSAT
Size | n | Median T o Size | n | Median 7 o
200 | 12 2.8s 28.09s 83.28s 200 | 12 1.3s 7.58s | 9.36s
220 | 12 3.8s 1098.22s | 3612.62s 220 | 12 7.3s 7.78s | 8.01s
240 | 11 5.1s 5.31s 1.07s 240 | 11 8.7s 7.54s | 6.69s
260 | 12 6.6s 6.48s 0.38s 260 | 12 | 10.6s | 14.31s | 16.79s
280 | 6 7.9s 7.98s 0.43s 280 | 6 12.9s | 15.83s | 15.69s
300 | 9 9.7s 1609.00s | 4497.72s 300 | 9 14.7s | 12.38s | 7.33s
320 | 7 12.0s 422.81s | 1004.49s 320 | 7 18.5s | 26.09s | 17.93s
340 | 8 15.2s | 2683.53s | 7059.76s 340 | 8 20.2s | 22.94s | 19.13s
360 | 7 17.2s 224.80s | 507.49s 360 | 7 23.1s | 48.10s | 44.44s
D.3 Times for the n-queens Problem
BS - DNI[’ (;/'arlant 1
Size | n | Median 7 o 1526 711 g 31an 5 gO 7
5 | 1| 84s 840s | - -0 DG I
6 1 6.6s 6.60s -
6 1 58.2s 58.20s -
7 1 6.7s 6.70s -
7 1] 226.9s 226.90s | -
8 1| 304.5s 304.50s | -
8 1| 1535.2s | 1535.20s | -
9 1] 320.6s 320.60s | -
9 1] 2216.5s | 2216.50s | -
10 | 1| 1611.2s | 1611.20s | -
10 | 1 | 10354.3s | 10354.30s | - 1 11| 182245 | 189940
11 | 1| 12548.2s | 12548.20s | - 12 111 230197 | 23019.70s | -

DP Variant 2

DP Variant 3
Size | n | Median 7 o
5 1 0.2s 0.20s -
6 1 3.2s8 3.20s -
7 1 5.0s 5.00s -
8 1 31.0s 31.00s -
9 1 40.0s 40.00s -
10 | 1| 803.1s 803.10s | -
11 | 1| 2554.28 | 2554.20s | -
12 | 1| 33701.2s | 33701.20s | -
GSAT
Size | n | Median 7 o
5 2 3.3s 1.75s 1.55s
6 2 68.5s 39.60s 28.90s
7 2 33.2s 19.90s 13.30s
8 2 | 854.7s 537.35s 317.35s
9 2| 1812.2s 932.05s 880.15s
10 | 2 | 23823.8s | 13020.70s | 10803.10s
11 | 1] 34030.3s | 34030.30s -

106

Times for the Subgraph-Isomorphism Problem

Size | n | Median 7 o
5 1 0.2s 0.20s -
6 1 5.1s 5.10s -
7 1 2.8s 2.80s -
8 1| 41.3s 41.30s | -
9 1] 103.8s | 103.80s | -
10 | 1] 426.1s | 426.10s | -
11 | 1| 542.2s | 542.20s | -
12 | 1| 4943.8s | 4943.80s | -
DP
Size | n | Median 7 o
5 1 0.1s 0.10s -
6 1 2.6s 2.60s -
7 1 2.8s 2.80s -
8 1 50.4s 50.40s | -
9 1 56.6s 56.60s | -
10 | 1| 457.2s | 457.20s | -
11 | 1] 606.1s | 606.10s | -
12 | 1| 5141.3s | 5141.30s | -
D.4
BS
Size | n | Median 7 o
2 5 0.2s 28.68s | 35.63s
3 3 0.7s 1.57s 1.23s
4 3 6.2s 5.63s 2.36s
5 3 8.2s 9.57s 2.22s
6 3| 67.0s 62.27s 6.69s
7 3| 98.5s | 454.37s | 546.46s
8 3| 351.6s | 422.80s | 216.51s

DP
Size | n | Median 7 o
2 5 0.1s 0.08s 0.04s
3 3 0.2s 0.27s 0.09s
4 3 0.7s 1.03s 0.47s
5 3 2.1s 2.47s 0.52s
6 3 17.4s 29.33s 22.24s
7 3 86.9s 119.33s 51.19s
8 3 | 1411.5s | 2401.40s | 1594.88s

Times for the Clique Problem

GSAT

Size | n | Median 7 o
2 5 0.1s 0.12s 0.04s
3 3 1.0s 0.80s 0.28s
4 3 1.9s 21.57s 27.81s
5 3 35.3s 42.30s 9.90s
6 3| 192.0s | 142.40s 84.68s
7 3| 236.1s | 366.63s | 190.14s
8 3 | 1884.8s | 4229.90s | 3384.94s

D.5
BS

Size | n | Median 7 o
5 7 0.3s 0.30s 0.09s
6 7 0.7s 0.76s 0.18s
7 7 6.6s 6.56s 0.73s
8 7 14.0s 14.43s | 1.35s
9 7| 72.0s 70.17s | 8.94s
10 | 7] 127.3s | 130.90s | 8.67s
11 | 7| 502.1s | 524.31s | 55.95s
12 | 7| 835.0s | 821.96s | 46.27s

DP Variant 2

Size | n | Median 7 o
5 7 0.1s 0.06s 0.05s
6 7 0.1s 0.14s 0.12s
7 6 1.8s 1.33s 0.90s
8) 5.0s 5.16s 0.81s
9 5 33.0s 36.24s 9.60s
10 | 6 72.9s 78.48s | 23.87s
11 | 5| 274.8s | 237.50s | 126.81s
12 | 7| 560.6s | 589.50s | 340.63s

DP Variant 1
Size | n | Median 7 o
5 7 0.0s 0.03s | 0.05s
6 7 0.1s 0.11s | 0.06s
7 7 0.9s 0.77s | 0.32s
8 7 2.4s 2.27s | 0.24s
9 7 9.2s 10.04s | 1.23s
10 | 7 19.9s | 19.69s | 1.66s
11 | 7] 75.1s | 64.80s | 26.58s
12 | 7] 112.3s | 97.74s | 40.06s
DP Variant 3
Size | n | Median 7 o
5 7 0.1s 0.09s 0.03s
6 7 0.1s 0.16s 0.10s
7 7 1.3s 1.53s 1.03s
8 7 5.8s 5.94s 0.86s
9 7T 34.2s 39.54s | 10.76s
10 | 7| 83.1s 89.39s | 20.68s
11 | 7] 294.2s | 277.53s | 139.42s
12 | 7| 759.2s | 761.51s | 390.95s

107

Times for the Graph-Isomorphism Problem

GSAT
Size | n | Median 7 o
5 7 0.0s 1.13s 2.28s
6 6 1.6s 2.77s 3.36s
7 5 0.7s 0.68s 0.13s
8) 2.0s 8.72s 8.59s
9 5 12.7s 12.50s 1.57s
10 | 5 23.5s 42.14s | 39.36s
11 |5 80.4s 66.58s | 33.44s
12 | 5| 117.2s | 342.76s | 511.88s

DP

Size | n | Median 7 o

5 7 0.1s 0.07s 0.05s

6 7 0.1s 0.14s 0.12s

7 6 2.3s 1.57s 1.11s

8 5 6.0s 6.06s 0.83s

9 5 34.8s 41.96s | 12.15s
10 | 5 82.4s 91.44s | 24.58s
11 | 5| 293.5s | 284.70s | 165.85s
12 | 5| 661.9s | 691.28s | 430.42s

D.6
BS
Size | n | Median 7 o
5 2 18.1s 16.60s 1.50s
6 2| 201.5s | 191.15s 10.35s
7 2 | 658.6s | 540.20s | 118.40s
8 2 | 2956.7s | 1753.30s | 1203.40s
DP Variant 2
Size | n | Median 7 o
5 2 1.4s 0.80s 0.60s
6 2 12.5s 12.05s 0.45s
7 2 35.8s 19.80s 16.00s
8 2| 627.3s | 326.20s | 301.10s
9 1| 3373.6s | 3373.60s -
DP

Size | n | Median 7 o
5 2 1.4s 0.80s 0.60s
6 2 15.7s 15.60s 0.10s
7 2| 46.2s 25.10s 21.10s
8 2| 631.9s | 329.15s | 302.75s
9 1| 2879.4s | 2879.40s -

DP Variant 1

Size | n | Median 7 o
5 2 1.0s 0.85s 0.15s
6 2 26.3s 15.06s | 11.25s
7 2| 136.1s | 98.90s | 37.20s
8 2| 124.8s | 84.25s | 40.55s
9 1| 662.8s | 662.80s -

DP Variant 3

Size | n | Median 7 o
5 2 1.3s 0.80s 0.50s
6 2 15.7s 14.50s 1.20s
7 2| 459s 24.95s 20.95s
8 2| 620.1s | 323.20s | 296.90s
9 1| 2900.4s | 2900.40s -

GSAT

Size | n | Median 7 o
5 2 5.1s 4.85s 0.25s
6 2 86.8s 62.95s | 23.85s
7 2 | 732.1s | 680.85s | 51.25s
8 2 | 767.7s | 607.85s | 159.85s

108

109

Bibliography

[1]

Billionnet, A. and Sutter, A. (1992). An efficient algorithm for the 3-satisfiability
problem, Operations Research Letters vol. 12, July 1992, 29-36.

Cormen, T. C., Leiserson, C.E., and Rivest, R.L., (1990) Introduction to Algo-
rithms, The MIT Press, 1990.

Davis. M., and Putnam, H., (1960) A Computing Procedure for Quantification
Theory, Journal of the ACM, 1960, Vol 7, 201-215.

Garey, M.R. and Johnson (1979), D.S., Computers and Intractibility: A Guide to
the Theory of NP-completeness, W.H. Freeman and Company, 1979.

Grimwald, R.P. (1989) Discrete and Combinatorial Mathematics, Addison-Wesley
Publishing Company, 1989.

Mitchell, D., Selman, B., and Levesque, H.J. (1992).
Hard and easy distributions of SAT problems. Proceedings of the Tenth National
Conference on Artificial Intelligence (AAAI-92), San Jose, CA, July 1992, 459-465.

Purdom, P.W. and Brown, C.A. (1985).
The Analysis of Algorithms, Holt, Rinehart, and Winston, 1985.

Sahni, S. (1985), Concepts in Discrete Mathematics, The Camelot Publishing Com-

pany, 1985.

110

[9]

[10]

[11]

111

Selman, B., and Levesque, H.J., and Mitchell, D.G. (1992).

A New Method for Solving Hard Satisfiability Problems. Proceedings of the Tenth
National Conference on Artificial Intelligence (AAAI-92), San Jose, CA, July 1992,
440-446.

Stamm-Wilbrandt, H. (1993), Programming in Propositional Logic or Reductions:
Back to the Roots (Satisfiability), technical reports of Department of Computer
Science I1II, University of Bonn, Germany, March 1993.

Stamm-Wilbrandt, H. (1994), Usenet article in comp.theory, with Subject: Re:
Reduction from Subgraph Isomorphism to Satisfiability,
Date: 24 Jan 1994 11:28:28 GMT,

Message-ID: <2i0bcs$4rlQolymp.informatik.uni-bonn.de>.

Vita

Daniel Angel Jiménez was born in Fort Hood, Texas to Dr. and Mrs. Angel R. Jiménez
on September 1, 1969. After attending Tom C. Clark High School in San Antonio, Texas,
he entered the University of Texas at San Antonio. He received his Bachelor of Science in
Computer Science in August of 1992. He entered UTSA’s graduate program in Computer

Science that September.

Permanent address: 3600 Falls Creek
San Antonio, TX 78230

This thesis was typeset by Daniel A. Jiménez

112

