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Abstract— We report a method for the detection and recog-
nition of a large planar mirror based on the images captured
by a monocular camera. We start with deriving a mirror trans-
formation matrix in a homogeneous coordinate and geometric
constraints for corresponding real and virtual feature points
in the image. We �nd that existing feature detection methods
are not re�ection invariant. We introduce a secondary arti�cial
re�ection to virtual features to generate secondary features
which are proven to share a rigid body motion relationship
with the original feature set. We propose an iterative strategy
to adjust the secondary mirror con�guration so that existing
feature matching methods can be used. The combined method
yields a robust mirror detection algorithm which has been
veri�ed in physical experiments.

I. I NTRODUCTION

Mirrors are common objects in indoor environments and
challenge robots in navigation. Cameras or light detection
and ranging (LIDAR) cannot recognize mirrors because light
simply bounces off the mirror surface. As service robots
perform more and more tasks in indoor environments, the
ability to recognize mirrors is necessary.

The ability of detecting a mirror or its own re�ection
in a mirror is a widely adopted test for intelligence levels
[1]. Gallup �rst studies the self-directed behavior of animals
using mirror-introduced tests [2]. A mirror and mark test
is the frequently used method with the following setup: A
subject has a mark that cannot be directly seen but is visible
in the mirror. If there is increased exploration of the subject's
own body and self-directed actions towards the mark, it
implies that the subject recognizes the mirror image as self.
Testing results from psychologists and biologists show that
chimpanzees [2], dolphins [3], and magpies [4] have evident
self-recognition in front of mirrors while gorillas do not.

If mirror or re�ection detection is a challenging problem
for mammals, there is no doubt that it is also a challeng-
ing recognition problem in robotic systems and computer
vision. Oren and Nayar [5] analyze the characteristic and
governing geometry of specular surfaces. However, their
proposed method is limited to surfaces with high curvature
and does not address detecting and modeling planar specular
surfaces. Active lighting is also used in assisting the detection
of specular surfaces. For example, Reiner and Donnaer
[6] utilize stereo vision and a two dimensional array of
light sources for constructing specular surfaces. Recently,
Kutulakos and Steger [7] introduce a light-path triangulation
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method for constructing refractive and specular 3D objects,
in which the light source must move along the light ray while
the camera captures two consecutive images of the re�ected
light. Polarization imaging [8]–[11] is often used in mirror
or re�ective surface detection.

Following a minimalist's design, our robot only carries a
single monocular camera and needs to recognize planes of
large mirrored walls. We �rst derive a geometric constraint
that relates the feature points of real objects to their re�ec-
tions in the image, which are named as real-virtual pairs. We
also �nd that existing advanced feature detection methods
such as scale invariant feature transformation (SIFT) are
not re�ection invariant which leads to a high false negative
rate in matching real-virtual pairs. To address the problem,
we introduce a secondary arti�cial mirror re�ection which
converts virtual features into secondary features that share a
rigid body motion relationship with the original features.The
proposed method has been veri�ed in physical experiments.

II. PROBLEM DEFINITION

We start with elaborating assumptions below:
1) The image taken by the robot contains a part of the

planar mirror, some objects and their re�ections.
2) All camera parameters are known.

There exist two coordinate frames in our system. Camera co-
ordinate framef Cg is a 3D right hand Cartesian coordinate
system af�xed to the camera with itsZ -axis pointing out
of the camera along the camera optical axis and itsY -axis
pointing downward and being perpendicular to itsZ axis.
The origin of f Cg is the camera centereC = 03� 1. Frame
f I g is the 2D image coordinate, whose origin is the image
of eC, called principal point and is denoted byec.

The 3D points inf Cg and the 2D points inf I g are denoted
by a bold large-sizedX and small-sizedx, respectively.
eX and X are the inhomogeneous and the homogeneous
forms of points, respectively. Moreover, if the homogeneous
X = ( �X; �Y; �Z; � )T , the relation betweeneX and X can
be written aseX = ( X; Y; Z )T for � 6= 0 .

Feature points are used for mirror detection:
1) Real feature points are the feature points corresponding

to real objects in the environment.
2) Virtual feature points are the re�ections of real feature

points in the mirror.
If a real feature point inf Cg is X , then the corresponding
virtual feature point is denoted asX 0. Superscripts0 denotes
the corresponding virtual feature points. The convention also
applies to non-homogeneous points and 2D points.

With the above notions and assumptions de�ned, our
planar mirror detection problem becomes



De�nition 1: Given images containing stationary objects
and their re�ections, recognize corresponding real-virtual
pairsf x i ; x0

i g in the image framef I g and estimate the mirror
plane� m in f Cg.

To address this problem, we use a two-stage approach.
First, we model the mirror re�ection under camera perspec-
tive projection and derive the geometric constraints from
known 2D real-virtual feature point pairs inf I g. Second,
we present a robust estimation scheme to recognize 2D pairs
from raw features. We begin with the �rst stage.

III. M ODELING M IRROR REFLECTION IN THE IMAGE

To derive the geometric constraints for real-virtual feature
pairs in f I g, we �rst analyze mirror re�ection for a single
real-virtual feature point pair and derive mirror normal.

A. Deriving a Minimal Solution for the Mirror Normal

De�ne the i -th real-virtual feature point pair asf eX i ; eX 0
i g.

The mirror plane must be the perpendicular bisector of
the line segment connectingeX i and eX 0

i . Three distinctive
points, eX i , eX 0

i , and the camera centereC de�ne a plane
� i . Therefore, the mirror plane has to be perpendicular
to � i . Back-projecting the corresponding 2D homogeneous
real feature point,x i = ( exT

i ; 1)T 2 f I g, leads to a line
parameterized by� [12], which contains all possible 3D
points associated withx i ,

X i (� ) = P + x i + � C ) eX i (� ) =
1
� i

K � 1x i ; (1)

where P+ is the pseudo inverse of the camera perspective
projection matrix,P = K[I 3j03� 1], K is the intrinsic camera
parameter matrix,I3 is a 3 � 3 identity matrix, andC =
( eCT ; 1)T is the homogeneous form of the camera center.
Similarly, we can obtaineX 0

i (�
0) from the corresponding

virtual feature point.
It is apparent that botheX i (� ) and eX 0

i (�
0) are on � i

regardless of� and � 0. Therefore, we can calculaten � i ,
which is the normal of� i ,

n � i = eX i � eX 0
i ; (2)

where �̀ ' is the cross product operator. With another pair
of feature points, saying thej -th pair, we can de�ne the
plane � j in a similar way. Since the mirror also has to be
perpendicular to� j , its normal can be computed as follows:

n ij = n � i � n � j =
�

eX i � eX 0
i

�
�

�
eX j � eX 0

j

�
: (3)

Note thatn̂ ij , the normalized version ofn ij , does not depend
on � and� 0 values. As a convention, a hat above any vector
refers to the normalized form of that vector. For example,
n̂ = n

kn k for vector n. The �rst two entries of a vector is
denoted by subscript1 : 2. For example, ifn = [ n1; n2; n3]T ,
thenn1:2 = [ n1; n2]T .

Thus, (1-3) allow us to obtain mirror normal,n̂ ij , based
on the i -th and thej -th feature point pairs. Note that the
mirror normal vector̂n is always pointing inside the mirror
as shown in Fig. 1 in this paper.

( , )c kdd

{C}

kX��

k�cX��

n
kd

Z

X

3n

1n

Fig. 1. A 2D view of the camera, the mirror, and thek-th pair of feature
points. The view perspective is chosen so that the mirror degenerates to a
line. The mirror is the perpendicular bisector of the line connecting theeX k
and eX 0

k . Two green dashed lines are parallel to the mirror plane.

B. Mirror Re�ection Transformation

With the mirror normal ready, we can compute the trans-
formation corresponding to the mirror re�ection. Actually,
the re�ection transformation maps the real feature pointex k

to the corresponding virtual featureex0
k . The transformation

is a function of mirror plane parameters. De�ned as the
distance from the camera center to the mirror. Denoting the
distance fromeX k to the mirror bydk and the distance from
the camera center toeX k along the mirror's normal byd(c;k ) ,
we can write down the following equations based on Fig. 1,

eX 0
k = eX k + 2dk n̂ ij ;

dk = d � d(c;k ) = d � eX T
k n̂ ij : (4)

Thus, we can write,

eX 0
k = eX k +2( d� eX T

k n̂ ij )n̂ ij = (I 3 � 2n̂ ij n̂ ij T
) eX k +2dn̂ ij :

(5)
Letting X k = ( eX T

k ; 1)T and X 0
k = ( eX 0T

k ; 1)T , we can
write the af�ne transformation in (5) in the matrix form,

X 0
k = H ij X k ; (6)

where H ij is the re�ection transformation matrix inf Cg
which is determined by thei -th and j -th pairs of feature
points,

H ij =
�

I3 � 2n̂ ij n̂ ij T
2dn̂ ij

01� 3 1

�
: (7)

Substituting (1) into (6) leads to,

X 0
k = H ij P+ x k + � H ij C: (8)

ProjectingX 0
k to the image plane results in the re�ection

transformation inf I g,

x0
k = P H ij P+ x k + � PH ij C: (9)

Note that depthd cannot be determined in a single view.

C. Constraints on Real-Virtual Feature Pairs

Eq. (9) provides a basis for �nding the geometric con-
straint for real-virtual feature point pairs from a large number
of noisy feature points in one image.



Lemma 1: If the feature points ini -th, j -th, andk-th pairs
are matched correctly, then the following must be true,

x0T
k Cij x k = 0 ; (10)

where Cij = [K n̂ ij ]� (K(I 3 � 2n̂ ij n̂ ij T
)K � 1) and matrix-

vector multiplication format[a]� b is used to represent the
cross product of two vectorsa � b, where[a]� is a 3 � 3
skew-symmetric matrix composed by elements from vector
a = ( a1; a2; a3)T according to conventions in [12].

Proof: Eq. (9) introduces a line parameterized by� ,
which contains two pointsPH ij P+ x k and PH ij C on the
image plane. From the 2D projective geometry [12], the
de�ned line by these two points can be written as follows:

l0
k = (P H ij C) � (PH ij P+ x k ): (11)

Denoting (I3 � 2n̂ ij n̂ ij T
) by Gij , we expand the above

equation to,

l0
k = (2K n̂ ij d)� (KG ij K � 1x k ) = 2 d[Kn̂ ij ]� (KG ij K � 1)x k :

(12)
De�ning Cij as [Kn̂ ij ]� (KG ij K � 1) and exploiting the fact
that x0

k lies on l0
k , we can write x0T

k l0
k = 0 and thus

x0T
k Cij x k = 0 .
The deviation of (10) from zero is often caused by the

mismatch between feature points in thei -th, j -th, andk-th
pairs. We denote this deviation by,

eij
k = x0T

k Cij x k = x0T
k l0

k = lk xT
k : (13)

where lk = x0T
k Cij . This inspires a metric to measure the

correspondence. We introduceD ij
k , which depends on the

distance fromx0
k to l0

k and the distance fromx k to lk ,

(D ij
k )2 =

� 1
l2
(k; 1) + l2

(k; 2)

+
1

l02
(k; 1) + l02

(k; 2)

�
(eij

k )2; (14)

wherel (k;q ) and l0
(k;q ) are theq-th component of vectorslk

and l0
k , respectively.D ij

k can be viewed as a standardized
version ofeij

k with a clear geometric meaning.

IV. ROBUST EXTRACTION OF FEATURE PAIRS

We now know that correctly-matched real-virtual pairs
have to satisfy (10) which can be measured byD ij

k in (14).
With a set of raw feature points, we can revise random
sample consensus (RANSAC) [13] framework to �nd the
largest set of inliers which refer to pairs that conform to (10)
and estimate mirror parameters. The remaining question is to
choose the most appropriate feature extraction and matching
methods for the mirror detection problem.

A. Limitations of Existing Feature Detection Methods

One natural choice is to apply the popular feature trans-
formations such as scale invariant feature transformation
(SIFT) [14] or its variations [15] to extract feature points
from original pixel intensity data. Those feature points
have been proven to be very robust in many applications.
However, an immediate limitation appears when applying
them to the mirror detection problem:although SIFT features
are purposefully designed to be scale invariant and even

insensitive to some rotations, they are not re�ection invariant.
The SIFT feature point vectors of a real-virtual pair do not
necessarily match each other. This is true because a re�ection
mathematically cannot be represented as a combination of
proper rotation and scaling operations.

One quick remedy to the problem is to reduce SIFT feature
vectors from 128 dimensions to 2D position only to avoid the
mismatch in part of SIFT vectors that describe neighboring
characteristics with orientation information. We then apply
RANSAC to see if we can �nd an inlier set that satis�es
(10). We name this approach as the raw-SIFT approach.
Unfortunately, this approach is very inef�cient due to the
small inlier ratio. Assume that there are a total number ofm
features which containq � m real-virtual potential feature
pairs. Hence there areq2 correct pairs needed to be found.

We have a total of
� m

2
�

= m (m � 1)
2 pairs. Therefore, the

inlier ratio is q
m (m � 1) . Apparently, increasing the number

of extracted featuresm actually decreases the ratio. A low
inlier ratio means low signal to noise ratio and often leads to
failure. This also explains why light weighted features such
as Harris Corners [16] would not work well for this problem.

B. Converting Re�ection to Rigid Body Motion

Therefore, we need to �nd a way to utilize the high dimen-
sional SIFT feature vector to reduce the number of possible
pairs to increase the inlier ratio. The intuition comes from
a special case: Recall thatX and X 0 refer to a real-virtual
feature pair inf Cg. Assume there exists a secondary mirror
� s sharing the same position and the opposite orientation of
the unknown mirror� m . Virtual feature pointX 0 will have
a secondary re�ection point about� s, which is de�ned as
X 00. As a convention, we use00 to indicate feature points
created by the secondary re�ection. It is clear thatX 00= X .
Therefore, SIFT feature vectors ofX andX 00should match
each other because their relationship is no longer a re�ection.
In fact, � s does not need to be perfectly overlapped with� m

as we will show later. Introducing the arti�cial secondary
re�ection is the key to the problem. Even for an arbitrary
� s, we have the following observations:

Lemma 2:For any mirror pair� m and� s, the secondary
feature pointX 00 created from the re�ection ofX 0 about
� s can be obtained from the original feature pointX by
performing a rigid body motion (i.e. a combination of proper
rotations and pure translations).

Proof: A rigid body motion can be represented by a
rotation about and a translation along a screw axis [17]. The
screw axis is de�ned by a unit vectors representing the
screw direction. Points0 lies on the screw axis and de�nes its
original position. Therefore, the tuple(s; s0; �; t ) describes
a rigid body motion where� is the rotation angle about
the screw axis andt is the length of translation along the
screw axis. The homogeneous transformation of the rigid
body motion can be represented as:

A (s; s0; �; t ) =
�

R s
� qs;s0

�
01� 3 1

�
: (15)



Based on [17] and simplifying the equation, we have,

R s
� = ( ssT � I3)(1 � cos� ) + [ s]� sin � + I 3

qs;s0
� = ts � (R s

� � I3)diag(s0): (16)

R s
� is a rotation matrix corresponding to a rotation of angle

� about the screw axis with directions that goes through
the origin, qs;s0

2� is a translation vector, and diag(s0) refers
to a diagonal matrix with its diagonal vector equal tos0. To
prove Lemma 2, we need to show that

X 00= A (s; s0; �; t ) X : (17)

De�ne H andH 00as homography matrices for the re�ec-
tions with respect to� m and � s, respectively. Hence,

X 00= H 00X 0 = H 00HX : (18)

Now we need to show ifH 00H can be represented as
A (s; s0; �; t ).

De�ne n as the normal of� m and d as the depth which
is the distance from the origin off Cg to � m . Similarly, we
de�ne normaln00and depthd00for � s. Based on (7),(n; d)
and(n00; d00) determineH andH 00, respectively.

H =
�

G D
01� 3 1

�
and H 00=

�
G 00 D 00

01� 3 1

�
; (19)

where G = I � 2n̂n̂T , D = 2 �d n̂, G 00 = I � 2n̂00̂n00T ,
andD 00= 2 � 00d00̂n00. Sign variable� equals to+1 or � 1 if
the camera projection center is in front of or behind mirror
� m , respectively. Similarly, sign variable� 00equals to+1 or
� 1 if the camera projection center is in front of or behind
the secondary mirror� s, respectively. Multiplying these two
homography matrices, we have:

H 00H =
�

R q
01� 3 1

�
; (20)

whereR = G 00G andq = G 00D + D 00.
SinceG = I � 2n̂n̂T and G 00 = I � 2n̂00̂n00T , matrices

G andG 00are symmetric with determinants of� 1. Conse-
quently, we have

RR T = ( G 00G) (G 00G)T = G 00GG T G 00T = I ; (21)

det(R ) = det( G 00) det(G) = ( � 1)(� 1) = 1 : (22)

Since R is an orthogonal matrix with a determinant of 1,
R must be a proper rotation matrix. According to [17] and
plugging inH 00H from (20), � , s, andt can be obtained,

� = 2 �; s =
(n̂ � n̂00)

sin(� )
; t = 0 : (23)

The result in (23) is true for non-parallel mirrors. If the mir-
rors are parallel, matrixA degenerates to a pure translation
andn̂00= n̂, the results are� = 0 , s = n̂, t = 2( � 00d00� �d ).
The same conclusion holds for the lemma.

Lemma 2 shows that two consecutive re�ections are
equivalent to a rigid body motion. We are one step closer to
utilize SIFT feature vectors. However, performing such a 3D
re�ection is not straightforward because we do not have 3D
positions of features. Fortunately, we can adjust the position
and orientation of� s to transfer the secondary 3D re�ection
to a 2D re�ection inf I g about a line.

C. Reducing Secondary Re�ection from 3D to 2D
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Fig. 2. (a) The con�guration of� I , � s , and � m . � s is perpendicular to
� I and goes througheC . (b) The ideal con�guration when� s k � m and
� = 0 .

Denoting the image plane as� I , the key of the re�ection
reduction is to force the secondary re�ection plane� s to be
perpendicular to� I and to pass through camera projection
center eC. Fig. 2(a) illustrates the plane relationship. Recall
that n00 is the normal of� s. � s is not unique because a
differentn00

1:2 would result in a different� s. The intersection
between� s and� I projects itself to a liner Is on � I which
goes through the principal point. Also, the normal ofr Is

equals ton00
1:2 . SinceeC lies on� s, D 00= 03� 1 must be true

according to (19). The conditions of� s? � I andD 00= 03� 1

lead to the fact that the 3D re�ection about� s is equivalent
to a 2D re�ection aboutr Is in � I based on (9). Recall that
x00

k is the imaging point ofX 00
k , we know

x00
k = H 00

2D x0
k ; where H 00

2D =
�

I2 � 2bn00
1:2 bn00T

1:2 02� 1

01� 2 1

�
;

(24)
and

x00
k = H 00

2D PH P+ x k + � H 00
2D PHC : (25)

To �nd the matching features, we re�ect the whole im-
age I about r Is . Then applying SIFT, we extract features
from original imageI and the re�ected imageI 00. Denote
these two sets of features byI = f xsgm

s=1 and I 00 =
f x00

s gm 00

s=1 , respectively. Performing matching between two
sets of featuresI and I 00 results in a set ofw matched
pairs M 00= f (xs; x00

s )gw
s=1 . SinceH 00

2D and d00are known,
(24) introduces a known one-to-one mapping and we can
retrieve ex0

k 's from ex00
k 's that make a setI 0 = f x0

sgw
s=1 .

Substituting correspondingex00
k 's and ex0

k 's in M 00, we end
up with M = f (xs; x0

s)gw
s=1 .

D. Adjusting Image Plane to Reduce Perspective Changes

According to [14], SIFT is designed to be scale invariant
and also works very well if the perspective change caused
by a rotation is no more than 40 degrees. An arbitrary rigid
body motion may include a rotation over the 40-degree limit
and decrease the effectiveness of SIFT feature matching. To



ensure the quality of SIFT matching, it is desirable if the
angle between� s and � m , � = ] (� s; � m ) � 20� since the
re�ection doubles the angle. To achieve this, we design an
iterative procedure.

Initially, r Is is chosen randomly and does not change
during the computation. Hence the relative position and
orientation between� s and � I is �xed at all time. Any
rotation applied to� I is also applied to� s. Knowing that the
matching error will be ignorable when the condition� < 20�

is satis�ed, we rotate� I to search for this con�guration. The
ideal case happens when� = 0 (Fig. 2(b)). This means that
feature vectors corresponding toX andX 00only have scale
difference, which is perfect for SIFT matching.

The initial run with the randomly selectedr Is and the
corresponding� s might not satisfy the condition� � 20� .
To re�ne the solution, we rotate� I to repeat the whole
procedure to re�ne the solution. Each rotation of� I is done
by applying a homographyHR that is created from a two-
step rotation. First, we rotate the� I about the cameraY axis
by angle� to make it perpendicular to� m . � is the angle
between� m and the optical axis measured on theX � Z
plane of camera coordinates. Note that this rotation is a
standardY-axis rotation that can be represented by matrix
Ry

� . Then rotated mirror normal isnR = Ry
� n. Second, we

rotate� I usingRz
� aboutz axis by angle� to make� m and

� s parallel. The normal of intersecting line of the rotated
mirror plane with image plane isnR 1:2 . Thus,� is the angle
betweenn1:2 and nR 1:2 on � I . � and � are computed as
follows:

� = tan � 1
�

n1

n3

�
; � = cos� 1

 
nT

R 1:2
n00

1:2

knR 1:2 kkn00
1:2k

!

: (26)

All above procedure is projectively equivalent to applying
the following homography to the image,

HR = K
�
Rz

� Ry
�

�
K � 1: (27)

After each rotation, we remove self-matching pairs and
reject outliers fromM using RANSAC framework. De�ne
C � as the largest inlier pair set. Finally, Maximum Likeli-
hood Estimator (MLE) is used to compute the best mirror
normal from the matches inC � . The overall robust mirror
detection algorithm (RMDA) is recapped in Algorithm 1, in
which th is a threshold for distinguishing inlier and outlier
pairs. Iteration numberN can be determined by choosing
95% probability of �nding the solution in RANSAC. Note
that since we only need� � 20� instead of� = 0 , the outer
loop should converge within 3 iterations with each iteration
to re�ne the solution. If the loop cannot converge, it usually
means the assumptions in Section II are violated and the
method fails.

V. EXPERIMENTS

We have implemented our mirror detection algorithm
using Matlab on a PC laptop with a Windows XP operating
system. For the SIFT algorithm, we have used an open
source implementation of SIFT in [18]. The images have a

Algorithm 1: Robust Mirror Detection Algorithm
input : Original captured imageI
output : Mirror normal n and the inlier feature setC �

Choose a randomr Is passing the principal point off I g;
for counter = 1 to 3 do

Re�ect I aboutr Is using (24) to getI 00;
Extract SIFT feature setsI = f xs gm

s=1 from I and
I 00= f x00

s gm 00

s=1 from I 00;
Perform SIFT descriptor matching using [14] betweenI and
I 00 to obtainM 00= f (xs ; x00

s )gw
s=1 ;

ComputeM = f (xs ; x0
s )gw

s=1 using inverse of (24);
for u = 1 to N do

Randomly sample 2 pairs fromM and denote them by
Su = f (xi ; x0

i ); (xj ; x0
j )g;

Computen ij based on (3);
Cu = Su ; k = 2 ;
for a = 1 to w do

pair k = M [a];
ComputeD ij

k using (14);
if jD ij

k j < t h then
Cu = Cu [ f pair kg;
k = k + 1;

umax = arg max u jCu j;
C � = Cu max;
Apply MLE on C � to obtainn ;
Compute� and � using (26);
RotateI usingH R from (27);
if arccos(bn T bn 00) � 20� then

return n ;

return failure;

resolution of640� 480 pixels. The testing images are taken
using a pre-calibrated Canon A1000 digital camera.

In the �rst experiment, we illustrate the geometric con-
straint in Lemma 1 using a sample case (Fig. 3(a)). The
geometric constraint in Lemma 1 can be visualized as a
point-line relationship as shown in (13). For a real feature
point x k , we can obtain a linel0

k using (12). According to
Lemma 1, the corresponding virtual feature pointx0

k must
lie on l0

k . Fig. 3(a) shows this is true for correctly matched
pairs. To avoid a cluttered �gure, we only show 10 matched
pairs (totally 20 feature points) in Fig. 3(a).

It is worth noting that the seventh pair is not a true pair
because it is not resulted from matching a real-virtual feature
pair. The false matching is due to the existing symmetry
in scene. Most of such false detections have been removed
using RANSAC. This particular spurious match could not be
removed because the direction of symmetry happens to be
the same as mirror normal. However, such case can be easily
handled using depth information.

In the second experiment, we compare the raw-SIFT
approach to our RMDA. We have tested both approaches
on 51 images taken from large mirrors in gymnasiums,
shopping malls, showrooms, and etc. These photos contain
different mirror normal directions and different mirror sizes
with different scenes. Fig. 3(b) shows some of these scenes.
For each image, we manually select correctly matched real-
virtual pairs to compute mirror normal as a ground truth.
If RMDA �nishes successfully, and the angle between the
mirror normal from RMDA and ground truth mirror normal
is less than 5 degrees, the method succeeds in recognizing
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Fig. 3. (a) An illustration of feature points (small yellow dots) and geometric constraints (pink lines). Units are pixels. The number on each feature point
shows that to which pair it belongs. (b) Sample test images. (c)A comparison of successful rates of RMDA (shown in the solid line) and the raw-SIFT
method (shown in the dashed line).

the mirror. The performance of the algorithms depends on
the number of correctly-matched features. Adjusting the
SIFT strength threshold changes the number of features and
affect the inlier ratio. A smaller strength threshold yields
a larger number of feature points. Fig. 3(c) shows average
success rates over all testing images for different values
of the strength threshold. To help understanding how the
strength threshold affects the number of feature points, the
top horizontal axis of Fig. 3(c) provides the number of
features for the corresponding threshold for a sample image,
which is the bottom-left image in Fig. 3(b). As shown in Fig.
3(c), success rates of RMDA steadily increases as the number
of features increases while the raw-SIFT cannot utilize the
increased features. For failure cases, we �nd that lack of
features is the primary reason.

VI. CONCLUSION AND FUTURE WORK

We proposed a mirror detection method for recognizing a
large planar mirror using an image captured by a monocular
camera mounted on a mobile robot. We derived a closed
form solution for computing the mirror normal and a ge-
ometric constraint between feature point pairs. We found
that existing advanced feature detection methods are not
re�ection invariant. We introduced an arti�cial secondary
mirror into the system to transform the re�ection relationship
to an orientation preserving transformation. We also design
an iterative method to adjust the con�guration of the second
mirror to enable SIFT descriptor matching. Combining the
results, we proposed a robust mirror detection algorithm and
the experimental results con�rmed our analysis. In the future,
we will work on depth assisted mirror detection and mirror
boundary segmentation problems.
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