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Abstract—We report a method for the detection and recog- method for constructing refractive and specular 3D objects
nition of a large planar mirror based on the images captured  jn which the light source must move along the light ray while
by a monocular camera. We start with deriving a mirror trans-  {ho camera captures two consecutive images of the re ected

formation matrix in a homogeneous coordinate and geometric liaht. Polarization i . 81-[11] is oft di -
constraints for corresponding real and virtual feature points ight. Polarization imaging [8]-{11] is often used in mirro

in the image. We nd that existing feature detection methods Of re ective surface detection.

are not re ection invariant. We introduce a secondary arti cial Following a minimalist's design, our robot only carries a
re ection to virtual features to generate secondary features single monocular camera and needs to recognize planes of
which are proven to share a rigid body motion relationship  |5rqe mirrored walls. We rst derive a geometric constraint

with the original feature set. We propose an iterative strategy . . .
to adjust the secondary mirror con guration so that existing that relates the feature points of real objects to theirce e

feature matching methods can be used. The combined method tions in the image, which are named as real-virtual pairs. We
yields a robust mirror detection algorithm which has been also nd that existing advanced feature detection methods

veri ed in physical experiments. such as scale invariant feature transformation (SIFT) are
not re ection invariant which leads to a high false negative
. INTRODUCTION rate in matching real-virtual pairs. To address the problem

Mirrors are common objects in indoor environments an#/e introduce a secondary arti cial mirror re ection which
challenge robots in navigation. Cameras or light detectioponverts virtual features into secondary features thatesha
and ranging (LIDAR) cannot recognize mirrors because ligHigid body motion relationship with the original featurd@e
simply bounces off the mirror surface. As service robot®roposed method has been veri ed in physical experiments.
perform more and more tasks in indoor environments, the Il. PROBLEM DEFINITION
ability to recognize mirrors is necessary.

The ability of detecting a mirror or its own re ection
in a mirror is a widely adopted test for intelligence levels - . . !
[1]. Gallup rst studies the self-directed behavior of amils planar mirror, some objects and their re ections.
using mirror-introduced tests [2]. A mirror and mark test 2) Al .camera parameters are k.nown.
is the frequently used method with the following setup: AThere exist two coordinate frames in our system. Camera co-
subject has a mark that cannot be directly seen but is visipftdinate framef Cg is a 3D right hand Cartesian coordinate
in the mirror. If there is increased exploration of the sotge  SYStem afxed to the camera with it&-axis pointing out
own body and self-directed actions towards the mark, Rf the camera along the camera optical axis andYiaxis
implies that the subject recognizes the mirror image as seR0inting downward and being perpendicular to Zisaxis.
Testing results from psychologists and biologists show tha’he.ongln offgg is the camera centeg = ,0_3 1 Frame
chimpanzees [2], dolphins [3], and magpies [4] have evide{ 9 i the 2D image coordinate, whose origin is the image
self-recognition in front of mirrors while gorillas do not.  ©f €, called principal point and is denoted by

If mirror or re ection detection is a challenging problem The 3D points |rf_Cgand the 2D p0|r_1ts ihl g are der_10ted
for mammals, there is no doubt that it is also a challendy @ Pold large-sizedX “and small-sizedx, respectively.
ing recognition problem in robotic systems and comput and X are the mho_mogeneous anq the homogeneous
vision. Oren and Nayar [5] analyze the characteristic an rms of points, respT)ectlver. Mpreover, if the homogerou
governing geometry of specular surfaces. However, theft = (_ X, Y. Z, )7, the ;eIann betwee® andX can
proposed method is limited to surfaces with high curvatur® Written ask = (X;Y;Z)! for 60.

and does not address detecting and modeling planar specuIaFealture points are used for mirror detection:

surfaces. Active lighting is also used in assisting thectizie 1) Realfeature points are the feature points corresponding
of specular surfaces. For example, Reiner and Donnaer O real objects in the environment.

[6] utilize stereo vision and a two dimensional array of 2) Virtual feature points are the re ections of real feature
light sources for constructing specular surfaces. Regentl points in the mirror.

Kutulakos and Steger [7] introduce a light-path triangotat If @ real feature point irf Cg is X, then the corresponding
virtual feature point is denoted & . Superscript§ denotes
This work was supported in part by the National Science Fatiod the corresponding virtual feature points. The conventisn a
under CAREER grant 15-0643298 and MRI-0923203. applies to non-homogeneous points and 2D points.
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We start with elaborating assumptions below:
1) The image taken by the robot contains a part of the



De nition 1: Given images containing stationary objects
and their re ections, recognize corresponding real-vltu
pairsf x;; x% in the image framé| g and estimate the mirror
plane , infCg.

To address this problem, we use a two-stage approach.
First, we model the mirror re ection under camera perspec-
tive projection and derive the geometric constraints from
known 2D real-virtual feature point pairs il g. Second,
we present a robust estimation scheme to recognize 2D pairs
from raw features. We begin with the rst stage.

Fig. 1. A 2D view of the camera, the mirror, and tketh pair of feature
points. The view perspective is chosen so that the mirror riEgges to a
I1l. M ODELING MIRRORREFLECTION IN THE IMAGE line. The mirror is the perpendicular bisector of the line mecting theX

To derive the geometric constraints for real-virtual featu andX . Two green dashed lines are parallel to the mirror plane.
pairs infl g, we rst analyze mirror re ection for a single

real-virtual feature point pair and derive mirror normal. ) ) )
B. Mirror Re ection Transformation

A. Deriving a Minimal Solution for the Mirror Normal With the mirror normal ready, we can compute the trans-

De ne thei-th real-virtual feature point pair &%;%°3.  formation corresponding to the mirror re ection. Actually
The mirror plane must be the perpendicular bisector ahe re ection transformation maps the real feature paipt
the line segment connecting; and X. Three distinctive to the corresponding virtual featur. The transformation
points, X;, X, and the camera cent® dene a plane s a function of mirror plane parameters. De nkas the

i. Therefore, the mirror plane has to be perpendiculafistance from the camera center to the mirror. Denoting the
to ;. Back-projecting the corresponding 2D homogeneougistance from&  to the mirror byd, and the distance from
real feature pointx; = (®/;1)" 2 flg, leads to a line the camera center 8 along the mirror's normal by ),
parameterized by [12], which contains all possible 3D we can write down the following equations based on Fig. 1,
points associated witR;, .

1 2E=kk+2dkﬁ“;
Xi()=P"xj+ C) 2i()=*iK i (@) de=d degy=d Rinl: (4)

where P* is the pseudo inverse of the camera perspectivEhus, we can write,
projection matrix,P = K[l 3j03 1], K is the intrinsic camera

parameter matrix]z is a3 3 identity matrix, andC = )‘%E = Ry+2(d ﬁln” =z 20 al )R +2dnd
(€T;1)T is the homogeneous form of the camera center. ] T . ®)
Similarly, we can obtainR%( 9 from the corresponding  Letting Xi = (X;:1)T and X{ = (XT;1)T, we can
virtual feature point. write the af ne transformation in (5) in the matrix form,
It is apparent that botiR;( ) and X% 9 are on | X0 = Hi X, ©6)
regardless of and © Therefore, we can calculate ,, k ko
which is the normal of ;, where H'l is the re ection transformation matrix ifiCg
n =% RO @ which is determined by thé-th andj-th pairs of feature
i : " points,
where " ' is the cross product operator. With another pair bi = s 2ni Al T 2dnl %
of feature points, saying thg-th pair, we can de ne the 0; 3 1
plane ; in a similar way. Since the mirror also has to be i .
perpendicular to j, its normal can be computed as follows:SlJbstItthIng (1) into (6) leads to,
ni=n, n = % X X R @ Xi=HIP i+ HYC ®)

i i

) ) ) " Projecting X ? to the image plane results in the re ection
Note thatt! , the normalized version af! , does not depend transformation irf 1 g

on and Cvalues. As a convention, a hat above any vector
refers to the normalized form of that vector. For example, xP=PHIP"x, + PHUC: 9)
n = o for vectorn. The rst two entries of a vector is
denoted by subscrift : 2. For example, ih = [ny;n,;n3]",
thennyz = [ny;na]".

Thus, (1-3) allow us to obtain mirror normai! , based
on thei-th and thej-th feature point pairs. Note that the Ed. (9) provides a basis for nding the geometric con-
mirror normal vectom is always pointing inside the mirror Straint for real-virtual feature point pairs from a largenher
as shown in Fig. 1 in this paper. of noisy feature points in one image.

Note that depthd cannot be determined in a single view.

C. Constraints on Real-Virtual Feature Pairs



Lemma 1:If the feature points in-th, j -th, andk-th pairs insensitive to some rotations, they are not re ection inaat.
are matched correctly, then the following must be true, The SIFT feature point vectors of a real-virtual pair do not
WOl g, =0 (10) necessarily match each other. This is true because a renlacti
k k ’ mathematically cannot be represented as a combination of
wheredl = [KAT] (K(13 2AT Al T )K 1) and matrix- Proper rotation and scaling operations.
vector multiplication formafa] b is used to represent the One quick remedy to the problem is to reduce SIFT feature
cross product of two vectora b, where[a] isa3 3 vectors from 128 dimensions to 2D position only to avoid the
skew-symmetric matrix composed by elements from vectdnismatch in part of SIFT vectors that describe neighboring
a=(a1;ap;a3)T according to conventions in [12]. characteristics with orientation information. We then lgipp
Proof: Eq. (9) introduces a line parameterized by RANSAC to see if we can nd an inlier set that satis es
which contains two point®HU P* x, and PH C on the (10). We name this approach as the raw-SIFT approach.
image plane. From the 2D projective geometry [12], th&nfortunately, this approach is very inefcient due to the
de ned line by these two points can be written as follows: small inlier ratio. Assume that there are a total numbemof
features which contaiq  m real-virtual potential feature

o " . _
lk=(PHIC) (PHYP"xy): 1) pairs. Hence there arg correct pairs needed to be found.

Denoting (s 207 Al ") by GV, we expand the above we have a total of rg = MM D pairs. Therefore, the

equation to, o - : :

g inlier ratio is m(m% Apparently, increasing the number

12 =@2Knald) (KGYK xx)=2dKn"] (KGY K )xx: of extracted featurem actually decreases the ratio. A low

(12) inlier ratio means low signal to noise ratio and often leaxs t
Dening C' as[Kn] (KG' K 1) and exploiting the fact failure. This also explains why light weighted featurestsuc
that x? lies on 1, we can writexT1? = 0 and thus as Harris Corners [16] would not work well for this problem.

xg & xi = 0. u . . - .

The deviation of (10) from zero is often caused by thd3. Converting Re ection to Rigid Body Motion
mismaich between feature points in thén, j -th, andk-th Therefore, we need to nd a way to utilize the high dimen-
pairs. We denote this deviation by, sional SIFT feature vector to reduce the number of possible

(13) pairs to increase the inlier ratio. The intuition comes from
a special case: Recall thxt and X ° refer to a real-virtual

wherel, = xI CI'. This inspires a metric to measure thefeature pair inf Cg. Assume there exists a secondary mirror

correspondence. We introdud , which depends on the ¢ sharing the same position and the opposite orientation of

i O ~j — 0o — T.
e = Xp C xg = x@ 1P = lexg:

distance fronx{ to I and the distance fromy to Iy, the unknown mirror . Virtual feature pointX © will have
) 1 1 ) a secondary re ection point abouts, which is de ned as
(Dy)? = IR @ (e))% (14) X% As a convention, we us®to indicate feature points
(k1 -~ (k2 (k1) (k2 created by the secondary re ection. It is clear the®= X .
wherelq) andl,.,, are theq-th component of vectorl ~ Therefore, SIFT feature vectors ¥f and X ®should match
and 12, respectively.DE can be viewed as a standardized@ch other because their relationship is no longer a re).ecu
version ofel with a clear geometric meaning. In fact, s does not need to be perfectly overlapped wigh
as we will show later. Introducing the arti cial secondary
IV. ROBUST EXTRACTION OF FEATURE PAIRS re ection is the key to the problem. Even for an arbitrary
We now know that correctly-matched real-virtual pairs s, We have the following observations:
have to satisfy (10) which can be measureddgy in (14). Lemma 2:For any mirror pair , and s, the secondary

With a set of raw feature points, we can revise randorfeature pointX % created from the re ection o © about

sample consensus (RANSAC) [13] framework to nd the s can be obtained from the original feature pokt by

largest set of inliers which refer to pairs that conform t6)(1 performing a rigid body motion (i.e. a combination of proper

and estimate mirror parameters. The remaining questian is fotations and pure translations).

choose the most appropriate feature extraction and magchin ~ Proof: A rigid body motion can be represented by a

methods for the mirror detection problem. rotation about and a translation along a screw axis [17]. The

o . ) screw axis is de ned by a unit vect® representing the

A. Limitations of Existing Feature Detection Methods screw direction. Poirg, lies on the screw axis and de nes its
One natural choice is to apply the popular feature trangriginal position. Therefore, the tupl; so; ;t ) describes

formations such as scale invariant feature transformatiam rigid body motion where is the rotation angle about

(SIFT) [14] or its variations [15] to extract feature pointsthe screw axis and is the length of translation along the

from original pixel intensity data. Those feature pointsscrew axis. The homogeneous transformation of the rigid

have been proven to be very robust in many applicationpody motion can be represented as:

However, an immediate limitation appears when applying RS S50

them to the mirror detection problemithough SIFT features A (s;so; ;t) = q : (15)

are purposefully designed to be scale invariant and even 01 3 1



Based on [17] and simplifying the equation, we have, C. Reducing Secondary Re ection from 3D to 2D
RS =(ss'" I3)(1 cos )+[s] sin +I3

g>* =ts (RS I3)diagSp): (16)

RS is a rotation matrix corresponding to a rotation of angle
about the screw axis with directios that goes through

the origin, g5* is a translation vector, and digsg) refers
to a diagonal matrix with its diagonal vector equalsto To
prove Lemma 2, we need to show that

X 0= A (s;s50; ;t)X: (17)

De ne H andH ®as homography matrices for the re ec-
tions with respect to , and g, respectively. Hence,

Translation
Trangformation

X %= HOK %= HOoHX : (18)

Now we need to show ifH'H can be represented as @ ®)
A (s;s0; ;).

De ne n as the normal of ,, andd as the depth which Fig. 2. (a) The con guration of |, s, and m. s is perpendicular to
is the distance from the origin dfCgto . Similarly, we '_%”d goes througi€. (b) The ideal con guration whens k  m and
de ne normaln®and depthd®for . Based on (7)(n;d) o
and (n% d° determineH andH ) respectively. Denoting the image plane as, the key of the re ection

Y = G D and %= G% po (19) reduction is to force the secondary re ection plangto be

T 013 1 T 013 1 ' perpendicular to ; and to pass through camera projection

whereG =1 2AAT. D = 2 dA. G%= |  2/0R0C center€. Fig. 2(a) illustrates the plane relationship. Recall

that n®is the normal of s. ¢ is not unique because a
Eifferentn‘i’?2 would result in a different . The intersection
etween ¢ and | projects itself to a ling;s on | which

Jooes through the principal point. Also, the normal ref
equals ton9%. Since€ lies on s, D%= 03 ; must be true
according to (19). The conditions o? | andD %= 03 ;
lead to the fact that the 3D re ection aboug is equivalent

andD =2 9YOR0 Sjgn variable equals to+l or 1 if
the camera projection center is in front of or behind mirro
m, respectively. Similarly, sign variablé®equals to+1 or
1 if the camera projection center is in front of or behin
the secondary mirror g, respectively. Multiplying these two
homography matrices, we have:

HY = R ¢ : (20) to a 2D re ection abouts in | based on (9). Recall that
015 1 xis the imaging point oX Y% we know
whereR = GG andq= G°D + D% L 2b%p% O
SinceG =1 2AnT andG®=1  2A%%T matrices xP= H® x?; whereHY = 2 0 12512 211 :
G andG®are symmetric with determinants ofl. Conse- 12 (24)
guently, we have and
RRT =(G%6)(G"6)" = GGG TG =1; (21) xP= HO PHP* x, + HY PHC : (25)

det(R) = det( G9det(G) = ( 1)( 1)=1: (22) To nd the matching features, we re ect the whole im-
agel aboutr;s. Then applying SIFT, we extract features

SinceR is an orthogonal matrix with a determinant of 1, rom original imagel and the re ected imagé® Denote

R must be a proper rotation matrix. According to [17] an

o . hese two sets of features by = fxsgl, and| =
0 SYs=1
plugging inHH from (20)(’{1 ' sr;%ndt can be obtained, fxg‘bg";f, respectively. Performing matching between two

=2 g= - t=0: (23) sets of feature and | ®results in a set ofv matched
sin( ) pairsM 9= f (xs;x3gl., . SinceHJ? and d®are known,
The result in (23) is true for non-parallel mirrors. If thermi (24) introduces a known one-to-one mapping and we can
rors are parallel, matriA degenerates to a pure translatiorretrieve g2's from g% that make a set ° = fxIg¥, .
andn®= n, the results are =0,s= N, t=2( Y% d). Substituting corresponding?® and g0's in M % we end
The same conclusion holds for the lemma. B up withM = f(xs;x%)gl; .
Lemma 2 shows that two consecutive re ections are o )

equivalent to a rigid body motion. We are one step closer g+ Adjusting Image Plane to Reduce Perspective Changes
utilize SIFT feature vectors. However, performing such a 3D According to [14], SIFT is designed to be scale invariant
re ection is not straightforward because we do not have 3@&nd also works very well if the perspective change caused
positions of features. Fortunately, we can adjust the jposit by a rotation is no more than 40 degrees. An arbitrary rigid
and orientation of ¢ to transfer the secondary 3D re ection body motion may include a rotation over the 40-degree limit
to a 2D re ection infl g about a line. and decrease the effectiveness of SIFT feature matching. To



ensure the quality of SIFT matching, it is desirable if the Algorithm 1: Robust Mirror Detection Algorithm
angle betweens and n, =] (s m) 20 since the input : Original captured imagé

re ection doubles the angle. To achieve this, we design an Cél;]tput : Mirrordnormaln and t?‘e inl?er_feallture segﬂ

; ; oose a randoms passing the principal point dfl g;
iterative proced_ure. for _counter =1 1o 3 do

Initially, ris is chosen randomly and does not change Re ect | aboutr;s using (24) to get %

during the computation. Hence the relative position and Extract SIFT feature sets = fxsgfl; from| and

. ; . : | 00= fxg%m:‘f’ from 190
orientation between s and , is xed at all time. Any Perform SIFST descriptor matching using [14] betwéenand

rotation applied to | is also applied to s. Knowing that the | 915 obtainM 9= f (xs:x29gi, ;
matching error will be ignorable when the condition 20 ComputeM = f(xs;x2)gl; using inverse of (24);
is satis ed, we rotate | to search for this con guration. The for g: 1toN do .
. . . andomly sample 2 pairs frodd and denote them by
ideal case happens when= 0 (Fig. 2(b)). This means that Su = F(xi1x0); (%1 x0)g;
feature vectors corresponding Xo and X ®only have scale Computeni based on (3);
difference, which is perfect for SIFT matching. f%; :a§u1; 'iozwz ao
The initial run with the randomly selecteds and the pairk = M [a];
corresponding s might not satisfy the condition 20 . ComputeD| using (14);
To re ne the solution, we rotate, to repeat the whole if Dy j<tp then
procedure to re ne the solution. Each rotation of is done E“zzk(j“l_[ f pairkg;
by applying a homographiflg that is created from a two- L '
step rotation. First, we rotate the about the camer® axis Umax = @arg max y jCuj;

by angle to make it perpendicular to,,. is the angle i |= fAuLmEax: C 1o oba

. . pply on 0 obtainn;
between ., and the opqcal axis measured on tKe_ 4 . Compute and  using (26):
plane of camera coordinates. Note that this rotation is a Rotatel usingHg from (27);

standardy -axis rotation that can be represented by matrix ifLafﬁg&SrgbLPo‘) 20 then
RY . Then rotated mirror normal isg = RYn. Second, we L ‘ '
rotate | usingR? aboutz axis by angle to make , and __return failure;

s parallel. The normal of intersecting line of the rotated
mirror plane with image plane isg,, . Thus, is the angle

betweenni, andng,, on ;. and are computed as resolution of640 480 pixels. The testing images are taken
follows: using a pre-calibrated Canon A1000 digital camera.
oo In the rst experiment, we illustrate the geometric con-
—tan ! M - =cos ! MRy, N12 . (26) straint in Lemma 1 using a sample case (Fig. 3(a)). The

N3 kng.,, kkn%k geometric constraint in Lemma 1 can be visualized as a
oint-line relationship as shown in (13). For a real feature
oint Xk, we can obtain a IindzE using (12). According to
Lemma 1, the corresponding virtual feature paokt must

Hg = K R?RY K 1 (27) lie on IE. Fig. 3(a) shows this is true for correctly matched

pairs. To avoid a cluttered gure, we only show 10 matched
After each rotation, we remove self-matching pairs an@airs (totally 20 feature points) in Fig. 3(a).

reject outliers fromM using RANSAC framework. De ne |t js worth noting that the seventh pair is not a true pair
C as the largest inlier pair set. Finally, Maximum Likeli- pecause it is not resulted from matching a real-virtualfieat
hood Estimator (MLE) is used to compute the best mirropajr. The false matching is due to the existing symmetry
normal from the matches i€ . The overall robust mirror in scene. Most of such false detections have been removed
detection algorithm (RMDA) is recapped in Algorithm 1, inysing RANSAC. This particular spurious match could not be
which t, is a threshold for distinguishing inlier and outlier removed because the direction of symmetry happens to be
pairs. Iteration numbeN can be determined by choosingthe same as mirror normal. However, such case can be easily
95% probability of nding the solution in RANSAC. Note handled using depth information.
that since we only need 20 instead of =0, the outer  |n the second experiment, we compare the raw-SIFT
loop should converge within 3 iterations with each itenatio approach to our RMDA. We have tested both approaches
to re ne the solution. If the loop cannot converge, it usyall on 51 images taken from large mirrors in gymnasiums,
means the assumptions in Section Il are violated and ﬂ@,ﬁopping malls, showrooms, and etc. These photos contain
method fails. different mirror normal directions and different mirrozes
with different scenes. Fig. 3(b) shows some of these scenes.
For each image, we manually select correctly matched real-
We have implemented our mirror detection algorithrvirtual pairs to compute mirror normal as a ground truth.
using Matlab on a PC laptop with a Windows XP operatindf RMDA nishes successfully, and the angle between the
system. For the SIFT algorithm, we have used an opemirror normal from RMDA and ground truth mirror normal
source implementation of SIFT in [18]. The images have & less than 5 degrees, the method succeeds in recognizing

All above procedure is projectively equivalent to applyind;
the following homography to the image,

V. EXPERIMENTS
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(a) An illustration of feature points (small yellowtdpand geometric constraints (pink lines). Units are pixéle number on each feature point

shows that to which pair it belongs. (b) Sample test imagesA (cpmparison of successful rates of RMDA (shown in the sol)iand the raw-SIFT

method (shown in the dashed line).

the mirror. The performance of the algorithms depends or2]
the number of correctly-matched features. Adjusting the
SIFT strength threshold changes the number of features ar%]
affect the inlier ratio. A smaller strength threshold y&ld

a larger number of feature points. Fig. 3(c) shows averagé!
success rates over all testing images for different values
of the strength threshold. To help understanding how thgs]
strength threshold affects the number of feature points, th
top horizontal axis of Fig. 3(c) provides the number of [6
features for the corresponding threshold for a sample image
which is the bottom-left image in Fig. 3(b). As shown in Fig.
3(c), success rates of RMDA steadily increases as the numbgll
of features increases while the raw-SIFT cannot utilize the
increased features. For failure cases, we nd that lack of®l
features is the primary reason.

VI. CONCLUSION AND FUTURE WORK 9]

We proposed a mirror detection method for recognizing a
large planar mirror using an image captured by a monocular
camera mounted on a mobile robot. We derived a closdiP]
form solution for computing the mirror normal and a ge-
ometric constraint between feature point pairs. We foungdij
that existing advanced feature detection methods are not
re ection invariant. We introduced an arti cial secondary[lz]
mirror into the system to transform the re ection relatibis
to an orientation preserving transformation. We also desig13]
an iterative method to adjust the con guration of the second
mirror to enable SIFT descriptor matching. Combining the
results, we proposed a robust mirror detection algorithch ari14]
the experimental results con rmed our analysis. In the feitu
we will work on depth assisted mirror detection and mirrofis)

boundary segmentation problems.
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