
Exact and Distributed Algorithms for
Collaborative Camera Control ?

Dezhen Song1, A. Frank van der Stappen2, and Ken Goldberg3

1 IEOR Department, UC Berkeley, USA
2 ICS Department, Utrecht University, Netherlands
3 IEOR and EECS Department, UC Berkeley, USA

Abstract. We propose the ShareCam Problem: controlling a single robotic pan,
tilt, zoom camera based on simultaneous frame requests from n online users. To
solve it, we propose a new piecewise linear metric, Intersection Over Maximum
(IOM), for the degree of satisfaction for each users. To maximize overall satisfaction,
we present several algorithms. For a discrete set of m distinct zoom levels, we give
an exact algorithm that runs in O(n2m) time. The algorithm can be distributed to
run in O(nm) time at each client and in O(n log n + mn) time at the server.

1 Introduction

Consider a robotic camera at a compelling location such as the Sydney boat
harbor, United Nations, Academy Awards, or inside the International Space
Station. There are n >> 1 viewers, and one camera. The camera frame is
determined by pan, tilt, and zoom parameters that can be changed to observe
details of the scene. The existing control method is based on queueing, where
users have to wait patiently for their turn to operate the camera [20]. Can
we eliminate the queue and allow many users to share control of the camera
simultaneously?

We are developing network-based applications for education, journalism
and entertainment where many users share control of a single physical re-
source. “Sharecam”, is an example of Collaborative Telerobotics, where the
camera is a telerobot with 3 degrees of freedom. In the taxonomy proposed
by Chong et al. [9], this is a Multiple Operator Single Robot (MOSR) sys-
tem. Our research is motivated by applications where groups of users desire
simultaneous access to a single robotic resource. Inputs from each user are
combined to generate a single control stream for the robot. There can be
benefits to such collaboration: teamwork is a key element in education at all
levels [10,36] and an ensemble of users may be more reliable than a single
(possibly malicious) user.

As illustrated in Figure 1, the user views two windows, one for user input
with a fixed image and the other with a variable image based on collective
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Fig. 1. Sharecam interface. Each Internet-based user views two image windows.
The lower window is a fixed image of the camera’s reachable range of view. Each
user requests a camera frame by positioning a dashed rectangle in the lower window.
Based on these requests, the algorithm computes an optimal camera frame (shown
with solid rectangle), moves the camera accordingly, and displays the resulting live
image in the upper window.

output. The input is a set of requested camera frames specified as desired
fixed aspect-ratio iso-oriented rectangles from n users. The output is a single
camera frame based on all inputs. We propose a new metric for user “satis-
faction” based on how a user’s requested frame compares with a candidate
camera frame.

The metric for user satisfaction is proportional to the common area of
the candidate frame and the requested frame. In addition, it is inversely
proportional to the ratio of the sizes of the candidate and the request, to
discourage excessively large candidates, such as an enclosing rectangle of all
requests.

Finding the camera frame that maximizes total satisfaction is a non-linear
optimization problem. We define a notion of “virtual corners” and prove that
a global maximum must coincide with one of the virtual corners. We then
present algorithms and complexity analysis. For n users and m zoom levels,
the virtual corner search algorithm runs in time O(n2m). We then present
distributed versions of the virtual corner search algorithm which run in time
O(n log n + mn) on the server and O(mn) on each client without loss of
accuracy.

2 Related Work

The Internet provides a low-cost and widely-available interface that can make
physical resources accessible to a broad range of participants. Online robots,
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controllable over the Internet, are an active research area. In addition to
the challenges associated with time delay, supervisory control, and stability,
online robots must be designed to be operated by non-specialists through
intuitive user interfaces and to be accessible 24 hours a day; see [21,37,23,14]
for examples of recent projects.

Chong et al. [9] proposed the following taxonomy for teleoperation sys-
tems: Single Operator Single Robot (SOSR), Single Operator Multiple Robot
(SOMR), Multiple Operator Multiple Robot (MOMR). and Multiple Oper-
ator Single Robot (MOSR). Most online robots are SOSR, where control is
limited to one operator at a time. One precedent of an online MOSR system
is described by McDonald, Cannon, and colleagues [7,29]. In their work, sev-
eral users assist in waste cleanup using Point-and-Direct (PAD) commands.
Users point to cleanup locations in a shared image and a robot excavates
each location in turn.

In [13,12], Goldberg and Chen described an Internet-based MOSR system
that averaged multiple human inputs to simultaneously control a single indus-
trial robot arm. In [15] Goldberg, Song, et al. propose the “Spatial Dynamic
Voting” (SDV) interface. The SDV collects, displays, and analyzes a sequence
of spatial votes from multiple online operators at their Internet browsers. The
votes drive the motion of a single mobile robot or human “Tele-Actor”.

We formulate the collaborative control problem as a nonlinear optimiza-
tion problem with a non-differentiable objective function. The structure of
the problem is closely related to the planar p−center problem, which has
been proved to be NP-complete by Megiddo and Supowit [30]. Using a ge-
ometric approach, Eppstein [11] found an algorithm for the the planar 2-
Center problem in O(n log2 n). Halperin et al. [18] gave an algorithm for the
2-center problem with m obstacles that runs in randomized expected time
O(m log2(mn) + mn log2 n log(mn)).

In almost all nonlinear mathematical programming approaches, a con-
strained optimization problem is converted to a series of unconstrained prob-
lems using barrier or penalty methods. Line search is then used to solve
the unconstrained optimization problems. Although there are many different
ways of guiding search direction and step size, most of these methods are
based on derivatives [34].

Rectangle-related problems in computational geometry include range
searching and rectangle intersection. Agarwal and Erickson [1] provide a re-
view of geometric range searching and its related topics. Grossi and Italiano
[16,17] proposed the cross-tree data structure, a generalized version of bal-
anced tree, to speed up range searching in high-dimensional space.

Kapelios et al. [25] developed an algorithm that reports the set of iso-
oriented rectangles that intersect a query rectangle but do not enclose it and
do not have one of their vertices inside it. They give solutions for unrestricted
and restricted universe (grid) for Rd. Mount et al. [32] study, for a given pair
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of polygons P and Q, how to get the area of overlap of P and Q + t as a
function of the translation vector t.

It is also possible to view camera frame selection as a clustering problem
[22,24]. The user satisfaction metric function we defined later in the paper
is based on the resemblance and containment relationship between users’
requested camera frames and real camera frame. The Symmetric Difference
(SD) and “Intersection Over Union”(IOU) are well-known similarity metrics
[3,5,39]. The comparison of these metrics and our metric will be discussed
later in the paper.

There is also a connection with distributed manipulation. One branch of
distributed manipulation uses potential fields defined as “potential-per-unit-
area” acting on an object [4,31]. It is possible to interpret the satisfaction
function as a special “lifted” potential field with some modifications.

Distributed computation has been used for sensor processing [33], multi-
actuator control, and multi-robot systems. Sagawa et al. [38] developed a
parallel algorithm to merge a set of range images into a volumetric implicit
surface image representation, which is converted to a surface mesh. Safaric
et al. [27] designed a distributed control system for an active surface device.
The active surface device is a massive parallel micro-actuator array that can
generate a pressure field on a planar surface. Applications of distributed algo-
rithms include motion planing [6,35], localization [19,33], and task allocation
[2,8].

In independent work, Kimber, Liu, Foote et al describe a multi-user robot
camera in [26,28]. As we do in Sharecam, they formulate the frame selection
for multiple simultaneous requests as an optimization problem based on po-
sition and area of overlap. To solve it, they propose an approximation based
on comparing the bounding box of all combinations of user frames. This al-
gorithm requires exponential time and does not provide formal bounds on
approximation error.

3 Problem definition

In this section we formulate the optimization problem: finding the camera
frame that maximizes total user satisfaction.

3.1 Input and assumptions

Let φ be a vector of system parameters. In the Sharecam system, φ =
[x, y, z]T , where x, y specify the center point of the input rectangle corre-
sponding to pan and tilt, and z specifies size of the rectangle, which can be
used to control zoom. Since the camera has a fixed aspect ratio of 4:3, the
length of the rectangle is 4z and width of the rectangle is 3z. At each time
increment, user i requests a desired frame, φi. Given requests from n users,
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the system computes a single global frame φ∗ that will best satisfy the set of
requests.

Let Θ be the set of all admissible [x, y] pairs. Let Z be a small set of
attainable discrete zoom levels. Hence the solution space is:

Φ = Θ × Z = {[x, y, z]|[x, y] ∈ Θ, z ∈ Z}.

3.2 Definition of a metric for user satisfaction

Recall that φi is the frame requested by user i, and let φ = [x, y, z]T be a
candidate camera frame. We define a scalar si ∈ [0, 1] as the level of “satis-
faction” that user i receives. User i should get no satisfaction if the candidate
frame does not intersect φi, so si = 0 when φ ∩ φi = ∅. User i should be
perfectly satisfied when the candidate frame is identical to φi, so si = 1
when φ = φi. We define the satisfaction of user i provided by the candidate
frame φ to be Intersection Over Maximum (IOM),

si(φi, φ) = pi/ max(a, ai)

where a is the area of the candidate φ (a = 12z2), frame ai is the area of frame
φi (ai = 12z2

i ), and pi is the area of overlap between φi and φ. Furthermore,

si(φi, φ) = pi/ max(a, ai) = (pi/ai)min((zi/z)2, 1)

is a special case of Generalized Intersection Over Maximum metric (GIOM)
for b = 2,

si(φi, φ) = (pi/ai) min((zi/z)b, 1)

where b is a small positive number.
If z is bigger, the candidate frame will be bigger. A sufficiently large z can

define a candidate frame that covers all requested frames: pi/ai = 1 for i =
1, ..., n. However, user satisfaction is not necessarily high because a user wants
to see the requested frame at a desired zoom level. The term min((zi/z)b, 1)
characterizes this wish: it reaches its maximum of 1 if the candidate frame is
the same or smaller than the requested frame. The si ∈ [0, 1] is normalized.

During experiments, we found that if b is large, we have to pay more
for increasing the size of the candidate frame in the objective function value.
Therefore, the optimal frame tends to be small. We want to avoid cases where
the optimal frame is too small such that it can only cover the intersected area
among the requested frames. We thus set b = 1 in our settings to encourage
the optimal frame to be a trade-off between the small intersected area of the
requested frames and the big union area of the requested frames. Figure 2
shows five examples of requested frames and the corresponding satisfaction,
for b = 1.

The total satisfaction for n users is

s(φ) =
n∑

i=1

si(φi, φ). (1)
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Fig. 2. Examples of the satisfaction metric for user i and candidate frame φ.

We want to find φ∗ = arg maxφ s(φ), the frame that maximizes total satis-
faction. To describe the objective function with respect to x, y, and z,

s(x, y, z) = s(φ).

Equation 1 can be extended to a weighted sum format at time t:

s(φ, t) =
n∑

i=1

αi(t)si(φi(t), φ(t)) (2)

where the weight αi(t) for user i is a function of the user’s previous unsatis-
faction levels: ui(t) = 1− si(φi(t), φ(t)). An example of αi(t) is,

αi(t) =
t−1∑

k=0

ui(k)
2t−1−k

and its recursive formulation is very simple,

αi(t) = ui(t− 1) + αi(t− 1)/2

If user i is not satisfied in previous runs, his/her αi(t) will increase in the
objective function. This formulation can avoid the situation that some user
may not be satisfied all the time. From algorithm point of view, the difference
between equation 1 and equation 2 is little. To simplify the discussion, we will
use the objective function described by equation 1 in the rest of the paper.

3.3 Properties of the satisfaction metric

We show that the objective function s is nonsmooth and piecewise linear in
both x and y. In addition we compare it to the intersection-over-union metric.
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Fig. 3. Satisfaction function, si(x, y), for a given candidate frame and b = 1. Since
z ≤ zi is given, we can move the candidate frame (gray rectangle) around the
user i’s requested frame to observe how si(x, y) changes. The function is a plateau-
like shape with a maximum height of pi/ai = 12z2/12z2

i = (z/zi)
2. The function

consists of 5 planes and 4 quadratic surfaces at the corners.

Nonsmoothness. Recall that the objective function is

s(φ) =
n∑

i=1

(pi/ai)min((zi/z)b, 1).

Since we solve this problem for each attainable zoom level z, we treat z as
a constant. The objective function becomes a function of the center point of
the candidate frame,

s(x, y) =
n∑

i=1

ωipi(x, y) (3)

where ωi = (1/ai)min((zi/z)b, 1) is a constant for each user. We know that
pi(x, y) is the area of the intersection of the requested frame of user i and
the candidate frame (x, y, z). Therefore, the maximum value of pi(x, y) is
min{ai, a}. This property determines that the shape of user i’s satisfaction
function is plateau-like. Figure 3 shows the shape of si(x, y) given z ≤ zi, i.e.
the candidate frame is smaller than the requested frame of user i. Note that si

is non-differentiable with respect to x and y so we cannot use derivative-based
approaches to solve this problem.
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Fig. 4. Satisfaction function si(y) for two-users. Ordered sets {ỹk} and {x̃k}, k =
1, ..., 8 are corresponding to horizontal and vertical edges of plateaus. Note that ỹ4

and ỹ5 overlap in this case.

Piecewise linearity in x and y. Since all requested frames and the candi-
date frame are iso-oriented rectangles, the shape of any intersection between
them is also a rectangle with its edges parallel to either x axis or y axis. Thus
the term pi(x, y) in equation 3 is either 0 or the area of the rectangle formed
by intersection between φi and φ = (x, y, z). This yields a nice property: the
pi(x, y) is piecewise linear with respect to x if we fix y, and piecewise linear
with respect to y if we fix x. Since the total satisfaction metric s(x, y) is a
linear combination of pi(x, y), i = 1, ..., n, it has the same property. Figure 4
shows an example for a case with two requested frames.

Comparison to other metrics. In pattern recognition and computational
geometry standard similarity metrics are Symmetric Difference (SD) and In-
tersection Over Union (IOU)[3,5,39]. For a requested frame φi and a candi-
date frame φ, the SD metric is

SD =
Area(φi ∪ φ)−Area(φi ∩ φ)

Area(φi ∪ φ)
.
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The intersection-over-union metric is

IOU =
Area(φi ∩ φ)
Area(φi ∪ φ)

= 1− SD.

Compared with IOU, our satisfaction metric has similar properties: (i) both
attain their minimum value of 0 if and only if φ ∩ φi = ∅, (ii) both attain
their maximum value of 1 if and only if φ = φi, (iii) both are proportional to
the area of φ ∩ φi, and (iv) both depend—albeit differently—on the sizes of
φ and φi. However, the intersection-over-union metric is not piecewise linear
in x or y.

4 Algorithms

In this section we present algorithms for two versions of the problem of find-
ing the frame that maximizes total satisfaction. We start with a version in
which the pan (x) as well as the tilt (y) are restricted to a discrete set of
equally-spaced values. Subsection 4.1 describes a brute-force algorithm for
this discrete version of the problem. In Subsection 4.2 we allow the pan and
tilt to vary continuously. This more general continuous version allows for an
efficient exact algorithm. The algorithm exploits a geometric characteristic
of the optimal solution (captured in the notion of a “virtual corner”). The
exact algorithm can also be distributed across the client machines and the
server. The distributed algorithm is given in Subsection 4.3.

4.1 Algorithms for discrete pan and tilt

Theorem 1 Let w be the width (in pixels) of the camera’s total pan range,
and h be the height (in pixels) of the camera’s total tilt range. We can solve
the discrete pan and tilt problem in O(whmn).

Proof. A brute force search for finding φ∗ = arg maxφ s(φ) evaluates all whm
candidate points. According to Equation 1, it takes O(n) computing time to
determine the satisfaction for a single candidate frame φ. The total amount
of computation of the algorithm is O(whmn).

Although this is linear in n, the constants are large (typically w = 600, h =
200).

4.2 An algorithm for continuous pan and tilt

We now focus on the more general problem where the camera’s pan and tilt
may vary continuously.
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Fig. 5. Virtual corners and a geometric interpretation for two requested frames. A
virtual corner corresponds to a candidate frame that has one corner at the intersec-
tion of one extended vertical edge of a requested frame and one horizontal extended
edge of a requested frame.

Virtual corners. As shown in Figure 3, the si(x, y) is a plateau-like func-
tion. For n users, there are n plateaus. Each plateau consists of 9 facets: 1
top plane, 4 side planes, and 4 quadratic surface at corners. There are two
vertical boundaries and two horizontal boundaries at the bottom (bounding
the entire plateau), the same numbers of similar edges at the top (bound-
ing the plateau’s flat top), and eight boundaries separating side planes and
corner quadratic surfaces (see Figure 5a).

A virtual corner is an intersection between any two boundaries, which
includes both intersections of facet boundaries induced by a single plateau
or by two distinct plateaus. Since all plateaus are iso-oriented, one of the ex-
tensions has to be horizonal and the other has to be vertical. For n requested
frames, there are O(n2) virtual corners. Figure 5b shows the geometric inter-
pretation of virtual corner in the input space. If we map the virtual corner
in the objective space back to input space, we see that the virtual corner
corresponds to a candidate frame that has one corner overlapping with the
intersection of two extensions of edges of requested frames. What makes a
virtual corner important is the following theorem.

Lemma 1 At least one optimal frame is centered at a virtual corner.

Proof. Let φ∗ = [x∗, y∗, z∗] be an optimal solution. As discussed earlier, for a
fixed z and x, the objective function s(y) is piecewise linear. So the optimum
must be at a vertex y = ỹ such that s(x∗, ỹ, z∗) = s(x∗, y∗, z∗). We also know
that line y = ỹ in (x, y) plane is one of the horizontal facet boundaries of the
plateaus. Similarly, we can find another optimal frame [x̃, ỹ, z∗], where line
x = x̃ is one of the vertical facet boundaries of the plateaus. Therefore, the
optimal frame [x̃, ỹ, z∗] is centered at a virtual corner (x̃, ỹ).
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Brute force approach. Based on the theorem 1, we can solve the opti-
mization problem by simply checking all combinations of zoom levels and
corresponding virtual corners. We need to evaluate the objective function for
each of the O(n2) virtual corners and repeat this for each of the m zoom
levels. It takes O(n) time to evaluate a candidate frame φ. Therefore, the
brute force algorithm runs in O(n3m). However, we can do better if (for a
fixed zoom level) we handle all virtual corners with the same x-coordinate
consecutively in order of increasing y-coordinate, and take advantage of the
fact that the objective function only changes slightly between two consecutive
virtual corners.

Efficient traversal of virtual corners. For n requested frames, we have 4n
horizontal plateau facet boundaries {ỹ1, ỹ2, ..., ỹ4n} and 4n vertical plateau
facet boundaries {x̃1, x̃2, ..., x̃4n} for plateaus. We can reduce the computation
complexity from O(n3m) to O(n2m). Recall that φi = [xi, yi, zi], i = 1, ..., n
are the requested frames.

s∗ = 0, O(1)
Sort {yi + 1.5zi}, i = 1, ...n O(n log n)
Sort {yi − 1.5zi}, i = 1, ...n O(n log n)
For each zoom level z (m in total)

i) Compute vertical extended plateau edges {x̃1, x̃2, ..., x̃4n} O(n)
For each user i, i = 1, ..., n,

x̃4i−3 = xi − 2(zi + z),
x̃4i−2 = xi − 2(zi − z),
x̃4i−1 = xi + 2(zi − z),
x̃4i = xi + 2(zi + z),

ii) Compute the sorted sequence {ỹ1, ỹ2, ..., ỹ4n}, O(n)
For each i, i = 1, ..., n

ỹ4i−3 = (yi − 1.5zi) + 1.5z,
ỹ4i−2 = (yi − 1.5zi)− 1.5z,
ỹ4i−1 = (yi + 1.5zi)− 1.5z,
ỹ4i = (yi + 1.5zi) + 1.5z,

Merge the 4 ordered sequences:
{ỹ4i−3}, {ỹ4i−2}, {ỹ4i−1}, and {ỹ4i}, i = 1, ..., n

to get the ordered sequence {ỹ1, ỹ2..., ỹ4n},
where ỹ1 is the smallest.

iii) For x = x̃i, i = 1, ..., 4n,
s = maxy s(x̃i, y, z),

if s > s∗ then s∗ = s, x∗ = x̃i, y
∗ = y, z∗ = z.

Output s∗ as optimal objective function value and (x∗, y∗, z∗) as optimal
frame.

In step iii, we traverse the vertical facet boundaries of the plateaus one by
one. For each vertical edge, we find the maximum by forcing the candidate
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frame to center at it. Using Theorem 1, we know that this procedure will find
an optimal solution. It remains to show how much time is required to solve
the resulting problem of finding

max
y

s(x, y, z)

for given x and z. This special optimization problem can be solved in O(n)
with a sorted sequence {ỹ1, ỹ2..., ỹ4n}. The objective function is a “summa-
tion” of n plateaus, which is shown in Figure 4. For fixed x and z, this
piecewise linear function only changes slope at {ỹi}, i = 1, ..., 4n. For each
vertex ỹi, we know how much the slope will change after crossing the vertex.
We can find the maximum objective value by walking over all ordered vertices
{ỹi} from the one side to the other side on the line x = x̃i . This process
only takes O(n). Therefore, step iii) of the algorithm will take O(n2) and the
following theorem is true.

Theorem 2 We can solve the Sharecam problem in time O(n2m) for n users
and m zoom levels.

4.3 A distributed algorithm

In the system, n is the number of users online, which is also the number
of computers connecting to our server. The larger the value of n, the more
computation power we have in our system. This suggests that a distributed
computing strategy can further improve computational speed. The algorithm
described in the previous section can be divided into client and server com-
ponents.

Server algorithm. The server should do the following.

i). Send all requested frames φi, i = 1, ..., n to all clients,
ii). Sort sequence {yi +1.5zi} and sequence {yi−1.5zi}, i = 1, ...n and send

them to all clients, O(n log n)
iii). Wait until all clients send their solutions {s∗1, ..., s∗n} back.

Pick the largest. O(n)

Client Algorithm Let us assume that φi = (xi, yi, zi) is client i’s requested
frame. After client i receives the data from the server, it executes the following
algorithm.

s∗i = 0
For each zoom level z

i) Compute the sorted sequence {ỹ1, ỹ2, ..., ỹ4n}, O(n)
(Same as the centralized version.)
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ii)a. s1 = maxy s(xi − 2(zi + z), y, z), O(n)
if s1 > s∗i then s∗i = s1, x

∗
i = xi − 2(zi + z), y∗i = y, z∗i = z.

ii)b. s2 = maxy s(xi − 2(zi − z), y, z), O(n)
if s2 > s∗i then s∗i = s2, x

∗
i = xi − 2(zi − z), y∗i = y, z∗i = z.

ii)c. s3 = maxy s(xi + 2(zi − z), y, z), O(n)
if s3 > s∗i then s∗i = s3, x

∗
i = xi + 2(zi − z), y∗i = y, z∗i = z.

ii)d. s4 = maxy s(xi + 2(zi + z), y, z), O(n)
if s4 > s∗i then s∗i = s4, x

∗
i = xi + 2(zi + z), y∗i = y, z∗i = z.

iii) Send s∗i and (x∗i , y
∗
i , z∗i ) to server.

As we can see from the algorithm, the server runs at O(n log n+mn) and
each client runs at O(nm). The following theorem holds,

Theorem 3 We can distribute the Sharecam algorithm among the server and
clients resulting in a running time of O(n log n + mn).

One can also see from the algorithm that the speed of computation is limited
by the slowest client. One idea is to set a timeout for clients and have the
server run the computation for clients that do not respond in time.

5 Results

We have implemented the algorithms on a PC with 950Mhz AMD Athlon
CPU and 1GB memory. The machine runs under Redhat Linux 7.1. The
algorithm is programmed in both matlab and Java.

Figure 6 shows the results for four different scenarios. As we can see from
Figure 6(a) and (b), the optimal frame does not necessarily have one corner
overlapping with a corner of a requested frame. However, one corner of the
optimal frame does overlap with one of the virtual corners. Figure 6(b) has
three requested frames exactly the same as those in (a) and one more big
requested frame. It is interesting to see how the optimal frame changes after
the big requested frame joined in the system. Figure 6(c) shows that if all
input rectangles fall far way from each other, the algorithm functions as a
chooser, which selects one input rectangle as the output. Since the algorithm
searches optimum bottom-up, it picks the lowest requested frame as the so-
lution. Figure 6(d) shows that a large requested frame does not necessarily
yield a large optimal frame.

Figure 7 shows the relationship between the optimal frame size and the
choice of the b value in GIOM satisfaction metric. It confirms that our analysis
in Subsection 3.2: the bigger the b is, the smaller the optimal camera frame
is. If b → 0+, then the optimal camera frame becomes the smallest frame
that contains all request frame: pi = ai ∀i. If b →∞, then the optimal frame
will converge to the rectangle area that most of requested frame insect each
other. The parameter b allows us to find the best tradeoff between union and
intersection.
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Fig. 6. Sample outputs of algorithm.

Fig. 7. Relationship between the optimal frame size and the choice of the b value
in GIOM satisfaction metric in Subsection 3.2.
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6 Conclusions and Future Work

This paper considers a new problem allowing multiple users to share control
of a single remote robotic camera. Each user requests a desired camera frame
by drawing a rectangle over a static global image. The problem is to find a
camera frame that maximizes the overall user satisfaction. We define a new
metric for user satisfaction and study algorithms for solving the nonlinear
optimization problem.

We reviewed related work and studied properties of the objective func-
tion and inherent constraints on the location of extremal points. We defined
“virtual corners” and proved that a global maximum must coincide with one
of the virtual corners. We then presented algorithms and complexity anal-
ysis. For n users and m zoom levels, we described an efficient algorithm
based on grouping and sorting of virtual corners running in time O(n2m).
Finally we presented a distributed version of this algorithm that runs in time
O(n log n + mn) on the server and O(mn) on each client.

Unlike computing with multiple processors in a single supercomputer,
distributed computing over the Internet requires input from a variety of het-
erogenous processors, each with different and varying communication delays.
We are interested in distributed algorithms that optimize performance under
such uncertainties.

In future work, we will also consider versions of the problem with con-
tinuous zoom levels (m = ∞). Preliminary results suggest that we can solve
this in O(n3 log n) time. We are also working on an non-uniform grid-based
approximation algorithm. It employs a Branch and Bound-like approach and
can solve the problems with continuous pan, tilt, and zoom in linear time.
We will also consider extensions to p frames, with i) p sequential views from
one camera or ii) from p different cameras. Scenario i) is also a scheduling
problem. Scenario ii) is related to the p-center problem.

A preliminary version of the Sharecam system went online in Sep. 2002
at http://tele-actor.net/sharecam.
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