CPSC614: Computer Architecture

Texas A&M University

Computer Science Department

	E.J. Kim

TA: Manhee Lee

 Minseon Ahn
	Assignment 2, Due

10/3/06 Midnight
	Fall 2006

Objective: This assignment is designed to make you familiar with Simplescalar through compiling some simple C programs and comparing their performance.

Install Simplescalar 3.0

Download simplesim-3v0d.tgz from http://www.simplescalar.com/. Untar the file in your account at linux.cs.tamu.edu and compile the simulator. After you get the simulator, execute 'sim-outorder' without any options, and you will get all the configurable parameters in the out-of-order simulator and their default values.

How to compile your code and run on Simplescalar

Log in linux.cs.tamu.edu.

#generating binary code. Compiler is stored in /tmp/msahn/gcc-ss/bin/

$ /tmp/msahn/gcc-ss/bin/sslittle-na-sstrix-gcc –o program program.c
#run the binary code using sim-outorder

$ simplescalar/sim-outorder program

#assembly code, program.s, will be generated with -S options

$ /tmp/msahn/gcc-ss/bin/sslittle-na-sstrix-gcc –S program.c

Part A. Type in the following simple programs (loop1.c, loop2.c, and loop3.c) and compile them with four different compile optimization options (-O, -O2, -O3, -O3 -funroll-loops) using PISA gcc compiler located in /tmp/msahn/gcc-ss/bin/ and run them using Simplescalar sim-outorder. Please analyze the performance difference among compiler options including no optimization for each program. To do so, you need to show your assembly codes generated by the compiler and make graphs with discussion. Turn in the report with the source codes, your assembly codes, simulation results in csnet.cs.tamu.edu.

#generating the binary code

$ /tmp/msahn/gcc-ss/bin/sslittle-na-sstrix-gcc (options) –o program program.c

#generating the assembly code.

$ /tmp/msahn/gcc-ss/bin/sslittle-na-sstrix-gcc (options) –S program.c

// loop1.c

#include <stdio.h>

int main() {

 int s=0, i=1;

 while (s < 100) { s = i+i; }

 printf("%d", s);

}

// loop2.c

#include <stdio.h>

int main() {

 long s=0, i=1;

 while (s < 100000) { s = s+i; }

 printf("%ld", s);

}

*For loop3.c, please use “-bpred perfect” option when running on sim-outorder.

*e.g.> $ simplescalar/sim-outorder –bpred perfect program

// loop3.c

#include <stdio.h>

static long functionInt(long n) { return 3 * n + 1;}

int main() {

int i = 0, nEven = 0, nOdd = 0;

long s;

while (i < 0x20000) {

s = functionInt(i);

 if (s % 2 == 0) { nEven++; }

 else { nOdd++; }

 i++;

}

printf("Even: %d / %d\n", nEven, i);

printf("Odd: %d / %d\n", nOdd, i);

}

Part B. In this part, you are supposed to compare the performance of some branch predictors with branch target buffer (BTB). In order to compare them, you need to modify the source code of Simplescalar.

(1) Simplescalar Modification

In Simplescalar, each branch predictor includes these statistics:

bpred.dir_hits
total number of direction-predicted hits (includes addr-hits)

bpred.misses
total number of misses

bpred.addr_hits
total number of address-predicted hits (in BTB)

The values of “dir_hits” and “misses” show the number of correct and incorrect predictions, respectively. After the branch predictors predict the directions of the branch instructions, the target addresses are looked up in BTB. If they are found, “addr_hits” is increased by one. Thus, the output “addr_hits” shows the number of cases when the predictor predicts the results of the branch instruction correctly and BTB has the correct target address of the branch instruction.

Your first task is to add one more statistic in Simplescalar, called “addr_misses”. While “misses” is the number of incorrect predictions on direction only, the new statistic “addr_misses” is a sum of “misses” and the number of correct direction predictions, whose target addresses are not found in BTB.

bpred.addr_misses # total number of direction-predicted misses + address-predicted misses

After modifying Simplescalar, compile it again.

(2) PISA Compilation and Simplescalar Execution

Copy ~/msahn/cpsc614/wavelet-gen.c and ~/msahn/cpsc614/mgrid.flt.wav1.txt and compile the source code with -O3 -funroll-loops options. Run the binary file using “sim-bpred” as following.

$./sim-bpred (simplescalar options) your_binary_file_name 10 < mgrid.flt.wav1.txt

(2.1) Compare the performance of different options in the branch predictors. Compare it by “dir_hits” and “misses”. Run “sim-bpred” with the following branch prediction options and compare the results with graphs. Every graph must have detail discussion. Use default options if not explicitly shown.

a. Bimodal Predictor with different table sizes

-bpred bimod -bpred:bimod 512

-bpred bimod -bpred:bimod 1024

-bpred bimod -bpred:bimod 2048

b. 2-level Predictor with different widths of shift register

-bpred 2lev -bpred:2lev 1 1024 4 0

-bpred 2lev -bpred:2lev 1 1024 6 0

-bpred 2lev -bpred:2lev 1 1024 8 0

-bpred 2lev -bpred:2lev 1 1024 10 0

c. 2-level Predictor with different number of entries in the 2nd level

-bpred 2lev -bpred:2lev 1 64 4 0

-bpred 2lev -bpred:2lev 1 64 6 0

-bpred 2lev -bpred:2lev 1 256 4 0

-bpred 2lev -bpred:2lev 1 256 6 0

-bpred 2lev -bpred:2lev 1 1024 4 0

-bpred 2lev -bpred:2lev 1 1024 6 0

d. Combination Predictor of 2-level and bimodal

-bpred comb -bpred:comb
 512 -bpred:bimod
 512 -bpred:2lev 1 1024 6 0

-bpred comb -bpred:comb
1024 -bpred:bimod
 512 -bpred:2lev 1 1024 6 0

-bpred comb -bpred:comb
 512 -bpred:bimod
1024 -bpred:2lev 1 1024 6 0

-bpred comb -bpred:comb
1024 -bpred:bimod
1024 -bpred:2lev 1 1024 6 0

(2.2) Compare the performance of BTB with different options. Comparison should be made by “addr_hits” and “addr_misses”. Run “sim-bpred” with the following BTB options and compare the performance with graphs. Every graph must have detail discussion. Use default options if not explicitly shown.

a. The effect of the number of sets in BTB

-bpred:btb 16 4 -bpred:bimod 512

-bpred:btb 32 4 -bpred:bimod 512

-bpred:btb 64 4 -bpred:bimod 512

b. The effect of the number of associativity in BTB

-bpred:btb 64 1 -bpred:bimod 512

-bpred:btb 64 2 -bpred:bimod 512

-bpred:btb 64 4 -bpred:bimod 512

c. Comparison when the total size of BTB is fixed

-bpred:btb 64 4 -bpred:bimod 512

-bpred:btb 128 2 -bpred:bimod 512

-bpred:btb 256 1 -bpred:bimod 512

Turn in your modified simplescalar source codes, the assembly listing of the source code generated by the compiler, simulation results and your report.

Turning Instruction

Make your files including the reports (doc or pdf) into one zipped file. Log on “http://csnet.cs.tamu.edu/” to turn in the file. Please read detail instructions on how to turn in at helpdesk.cs.tamu.edu.

Reading

The SimpleScalar Tool Set 2.0, Doug Burger and Todd Austins

