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ABSTRACT
Among the leading reference implementations of the Software De-
fined Networking (SDN) paradigm is the OpenFlow framework,
which decouples the control plane into a centralized application. In
this paper, we consider two aspects of OpenFlow that pose secu-
rity challenges, and we propose two solutions that could address
these concerns. The first challenge is the inherent communication
bottleneck that arises between the data plane and the control plane,
which an adversary could exploit by mounting a control plane sat-
uration attack that disrupts network operations. Indeed, even well-
mined adversarial models, such as scanning or denial-of-service
(DoS) activity, can produce more potent impacts on OpenFlow net-
works than traditional networks. To address this challenge, we in-
troduce an extension to the OpenFlow data plane called connec-
tion migration, which dramatically reduces the amount of data-
to-control-plane interactions that arise during such attacks. The
second challenge is that of enabling the control plane to expedite
both detection of, and responses to, the changing flow dynamics
within the data plane. For this, we introduce actuating triggers
over the data plane’s existing statistics collection services. These
triggers are inserted by control layer applications to both register
for asynchronous call backs, and insert conditional flow rules that
are only activated when a trigger condition is detected within the
data plane’s statistics module. We present AVANT-GUARD, an im-
plementation of our two data plane extensions, evaluate the perfor-
mance impact, and examine its use for developing more scalable
and resilient SDN security services.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security and Pro-
tection

Keywords
Software-defined network (SDN); OpenFlow; control plane satura-
tion attack; security and resilience

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516684 .

As enterprise networks and data centers expand in size and com-
plexity, they pose greater administrative challenges and demand
enhanced automation in orchestrating their computer and network
resources. The network research community postulates that one ap-
proach to meeting these challenges lies within the tenet of software-
defined networking (SDN) [19]. By decoupling the control logic
from the closed and proprietary implementations of traditional net-
work devices, SDN enables researchers and practitioners to design
new innovative network functions and protocols in a much easier,
flexible, and more powerful way. The OpenFlow framework [20]
is an embodiment of the SDN concept. In recent years, OpenFlow
(OF) has steadily matured from a research idea explored in aca-
demic milieus [8, 4, 5] to the current SDN standard-bearing refer-
ence implementation with considerable momentum in industry.

We believe that OpenFlow provides new research opportunities
for the network security community [26, 3, 10]. For example, OF
could offer a dramatic simplification in the design and integration
of complex network security applications into large networks. Un-
fortunately, the potential for OpenFlow to provide meaningful ad-
vancements to the state of network defense must be tempered by the
recognition that OpenFlow itself introduces serious security chal-
lenges. In this paper, we explore potential solutions to two such
security challenges. First, OpenFlow networks lack scalability be-
tween the data and control planes. This enables targeted attacks by
an external entity who crafts an inbound stream of flow requests
to inundate communications between the controller and switch in
an adversary model that we refer to as the control plane satura-
tion attack. Second, OpenFlow offers very limited support for net-
work monitoring applications that seek a fine-grained tracking of
operations at the data plane, thus making difficult the support of
many security applications that require expeditious access to criti-
cal changes in network-traffic patterns.

Scalability Challenge. The root cause of the first challenge, scal-
ability, lies in the operation of the OpenFlow “southbound” proto-
col, which separates the control plane from the data plane to enable
centralized and fine-grained control of network flows. When an
OpenFlow switch receives a packet belonging to a new flow for
which it has no matching handling rules, it forwards the packet to
its OpenFlow controller. The controller responds with one or more
flow rules that indicate how the switch should process this flow and
future flows that satisfy the rule’s match criteria. Here, the central-
ized controller, designed to mediate these flow requests, quickly
becomes a scaling bottleneck, i.e., a potential Achilles heel of the
network during anomalous traffic bursts such as flash crowds and
denial-of-service attacks. Even worse, because an external input
stream ultimately drives the data-to-control plane interactions, an
adversary can produce a series of unique flow requests (e.g., us-
ing a set of distributed botclients) to quickly saturate the control



plane with new flow requests. At the same time, the data plane
also suffers from saturation attacks because switches have limited
resources to buffer (TCP/UDP) flow-initiation until the controller
issues a flow rule that states how the flow shall be handled. Hence,
control plane saturation also has direct implications for the data
plane’s operational ability. Adversary models such as DDoS and
network scanning, which have been thoroughly dealt with by the
security community, pose potential new threats to the scalability of
the centralized control layer model of OpenFlow (and more broadly
to the general SDN paradigm).

Responsiveness Challenge. The second challenge (i.e., respon-
siveness) stems from the need for expeditious access to critical
data plane activity patterns. Network-monitoring applications of-
ten need to collect network statistics for tasks such as tracking flow-
and network-wide packet statistics or to measure the activity of var-
ious entities communicating through the switch (e.g., to identify
DoS attacks, which impact the data plane). Current SDN tech-
nologies such as OpenFlow only allow applications to explicitly
pull/poll such information from each switch. Unfortunately, such
interfaces are not sufficient for monitoring applications that require
the data plane statistics in order to track and respond to malicious or
degenerate operating conditions. Aggressive polling degrades data
plane performance and may still not provide the latency reduction
desired by security services to react to detected attacks. In addition,
though security applications often require an inspection of packet
contents that match some criteria, OpenFlow offers no mechanism
to facilitate such policies.

We investigate the viability of our security specific extensions to
OpenFlow in the context of a new system framework that we call
AVANT-GUARD (AG). There are several critical issues that we ad-
dress through the development of this framework. The first issue is
determining the type of intelligence to be added to the data plane,
i.e., what sort of statistics should we capture at the switch layer?
Second, we need to develop effective techniques to report network
statistics to the control plane. Third, we need to develop new mech-
anisms that quickly react to identified attacks. Finally, our im-
plementation should strive to minimize changes to the OpenFlow
protocol and have negligible performance impact. In essence, we
recognize the design objective to keep the OpenFlow data plane as
simple as possible, but the current tradeoff imposed by this design
is a serious adversary model in which remote entities can halt op-
erations of the entire network with relatively minimal traffic flows.

To this end, this paper makes the following contributions:

• We propose a strategic and focused extension to the data
plane called connection migration that we argue yields the
significant benefit of halting the threats of the saturation at-
tack. To the best of our knowledge, connection migration is
the first attempt in this direction to be embedded into an SDN
network.

• We propose a new technique called an actuating trigger that
addresses the responsiveness challenge by providing condition-
triggered push capability in SDN devices.

• We design and implement AVANT-GUARD to integrate both
connection migration and actuating triggers in a reference
SDN (OpenFlow) software switch. We implement several
exemplar OpenFlow security applications that demonstrate
how AVANT-GUARD enhances the flexibility and robustness
with which these applications can be implemented. Our per-
formance evaluation also indicates that AVANT-GUARD in-
curs a very small overhead.
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Figure 1: Conceptual architecture of AVANT-GUARD

2. PROBLEM STATEMENT
In this paper, we plan to investigate and answer the following

research questions:

• Can we add (hopefully minimal) intelligence to the data plane
to increase the resilience of the data-plane-to-control-plane
interaction to anomalous control-plane floods?

• Is there an alternative to the existing polling strategy that may
enable the control plane to acquire lower-latency knowledge
of the traffic dynamics flowing through the data plane?

• Can OpenFlow applications leverage this information to de-
tect and react more efficiently to anomalous traffic patterns?

Specifically, the key design objectives of our AVANT-GUARD
(AG) framework include the following:

• Scalability and Resilience: AG must improve resilience of
the OF network with minimal impact on overall scalability.

• Transparency: AG must require no changes to software run-
ning on end hosts.

• Incremental Deployment: AG must minimize changes to the
OpenFlow network and enable incremental deployment. Though
AG switches would require an AG-aware controller, both
should be able to interoperate with other OF switches in the
network.

• Minimal Collateral Impact: AG should introduce minimal
additional delay to legitimate connections on the network.

3. SYSTEM DESIGN
To address the problems discussed in the previous section, we

present AVANT-GUARD as a security extension to the OpenFlow
data plane. In this section, we present the AVANT-GUARD design.

3.1 Overall Architecture
AVANT-GUARD extends the existing OpenFlow data plane with

the addition of two new modules: 1) a connection migration module
and 2) an actuating trigger module. AVANT-GUARD also slightly
modifies existing data plane modules to support our target features.
The conceptual diagram for AVANT-GUARD in the data plane is
shown in Figure 1.

Inspired by the SYN proxy, which handles TCP connections in
a middle box, we propose connection migration to sift failed TCP



sessions at the data plane prior to any notification to the control
plane. It collaborates with an access table and maintains TCP ses-
sion information at the data plane to provide session details to the
control plane. The actuating trigger enables collection of network
status information and packet payload information more efficiently
than existing data planes. Additionally, it offers conditional flow
rule activation, i.e., the ability to activate flow rules (or actions)
when some events happen.

3.2 Connection Migration
The objective of connection migration is to add intelligence to

the data plane to differentiate those sources that will complete TCP
connections from sources that will not. To do this, we extend the
data plane to proxy the TCP handshake, and we only expose those
flow requests to the control plane that complete the handshake. We
present the operation of connection migrations in a stage diagram
consisting of four stages: (i) classification, (ii) report, (iii) migra-
tion, and (iv) relay. Each stage and transitions between them are
shown in Figure 2. When a source initiates a connection, the con-
nection migration (CM) module engages the source in the stateless
TCP handshake using SYN cookies [2]. The connection is assigned
the classification stage. On handshake completion, CM notifies the
control plane of the flow request, transitioning the connection to
the report stage. If the control plane allows migration, CM initi-
ates the real target host with the TCP handshake, which transitions
the connection to the migration stage. Then, if the target accepts
the handshake, CM notifies the control plane, and the connection
enters the report stage. Finally, if the control plane allows the data
plane to relay packets, CM completes the connection between the
source and target, and the connection is migrated to the relay stage.
Next, we examine the details of each stage.
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Figure 2: Stage diagram of connection migration

Classification Stage: In this stage, connection migration classi-
fies useful TCP sessions (i.e., established TCP sessions) from con-
nections that would result in client-side timeout (i.e., failed TCP
sessions). Inspired by the SYN cookie algorithm, connection mi-
gration shields the control plan from client-side failed connection
floods (e.g., which arise from DoS and reconnaissance activities),
as shown in Figure 3 and 4. When the data plane receives a TCP
SYN/RST/FIN packet (Figure 3), the data plane first checks if a
matched flow rule exists in a flow table. If so, the data plane imme-
diately forwards the packet. Otherwise, the data plane first updates
the access table that contains information on all TCP connection at-
tempts, by increasing the connection attempt counter for an IP ad-
dress (i.e., the access table collects TCP session information). The
data plane then checks whether this packet is a TCP SYN packet,
and if so generates a sequence number for this packet with a hash

function1 (i.e., SYN cookie) and returns a TCP SYN/ACK packet
to a peer who sends the TCP SYN packet with the generated se-
quence number. If the packet is not a TCP SYN packet (i.e., TCP
FIN or TCP RST), it is rejected and the data plane can optionally
return a TCP RST package or simply ignore the source.
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Figure 3: Flowchart for handling TCP SYN/RST/FIN packets

If the peer sends a TCP ACK packet to the data plane (Figure
4), the data plane follows the handling method shown in Figure
3. In this case, the data plane first checks the flow table to de-
termine whether there exists a matched flow corresponding to the
ACK packet. If so, the device forwards the packet. Otherwise, it
validates the SYN cookie to determine whether this packet com-
pletes a TCP session or was sent unsolicited. If this ACK packet
contains an appropriate SYN cookie, the TCP handshake is estab-
lished. Upon completion of the handshake, the data plane reports
the flow request to the control plane (i.e., step 4 in Figure 5). Oth-
erwise, the connection request is considered an incomplete probe;
a RST is sent, and the access table counters are adjusted.
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Figure 4: Flowchart for handling TCP ACK packets

Report Stage: For each connection validated by the classifica-
tion stage, the report stage first determines if there is an existing
flow rule to handle the session. If not, the data plane reports this
flow request to the control plane. The data plane extracts the header
information of a flow representing the TCP session, and sends this

1We use 4-tuple information as inputs for this hash function.



information to the control plane with a specific command. The con-
trol plane then decides whether to allow migration of this session.
If so, the connection is transitioned to the migration stage.

Migration Stage: During the migration stage, the CM module
initiates a TCP connection handshake with the connection’s desti-
nation host. If the host responds with a TCP SYN/ACK packet,
the data plane finalizes this session by sending a TCP ACK packet
to the host. The data plane also reports this information (i.e., es-
tablishment of a TCP session with a real target host) to the control
plane. If the data plane fails to establish the TCP session with des-
tination hosts (due to an unavailable host or closed port), this result
will also be reported to the control plane.

Relay Stage: After the data plane successfully establishes a TCP
session with a real target host, it enters the relay stage where it re-
lays all TCP data packets between a connection source and desti-
nation as occurs during normal TCP sessions.

Example Connection Migration Scenario: To illustrate con-
nection migration, consider the interaction shown in Figure 5. If
the data plane receives a TCP SYN packet from the host A (1) and
this packet does not match an existing flow rule in the device, it au-
tomatically responds with a TCP SYN/ACK packet to host A (2).
Then, if host A sends a TCP ACK packet to complete this TCP
session (3), the switch knows that a TCP session is successfully es-
tablished, and it reports this event to the control plane. Then, the
control plane decides whether to allow the connection to migrate
on to the real destination host (i.e., host B). Assuming the connec-
tion is allowed, the control plane activates a flow rule with what we
propose as the Migrate action. When a migrate action rule is re-
ceived by the data plane it initiates a TCP connection to host B (6)
and completes the connection (7, 8). If the migration is successful,
the device notifies the control plane of this event (9). Finally, the
control plane inserts a Relay action into the data plane, causing it
to relay all packets between host A and B. At this time, the device
need not add a new rule; rather, it only needs to change the action
field of the existing flow rule. Hence, the rule will be changed from
(A-1) to (A-2). Operations 1-3 represent the classification stage;
4-5 and 9-10 denote the reporting stages, 6-8 refer to the migration
stage, and 11-12 refer to the relay stage.

(1) TCP SYN
(2) TCP SYN/ACK

(3) TCP ACK

(6) TCP SYN
(7) TCP SYN/ACK

(8) TCP ACK

(4) (5) (9) (10)

(11) TCP ACK
TCP DATA

(12) TCP ACK
TCP DATA

A-1: A --> B: Migrate 

A-2: A --> B: Relay 

Data Plane

Classification Stage

Relay Stage Relay Stage

Migration Stage

Report StageReport Stage

Control Plane

A B

Figure 5: Example connection migration scenario

Impact on Control Plane Saturation: Connection migration
offers an immediate benefit for maintaining control operations in
the presence of well-known adversarial models that engage in both
spoofed and non-spoofed attacks against an OpenFlow network. In
the context of spoofed flooding attacks (e.g., spoofed TCP SYN
floods that may saturate the control plane with bogus connection
requests), all such flow requests are nullified at the classification
stage. For non-spoofed connection floods (e.g., those that may
arise from an aggressive scanner), connection migration converts

the OpenFlow network into a whitehole network [9]. From the
source’s perspective, all probes to the ports and IP address ranges
of the OpenFlow network appear to produce a TCP handshake re-
sponse, hindering the source from knowing which IP and port com-
binations are actually alive.

In the case of the flow-rule-flooding problem in the data plane,
connection migration addresses this concern through its adoption of
stateless TCP handshaking with SYN cookies. Because the SYN
cookie algorithm does not require any state management, a device
does not need to store any flow rules for failed or malicious TCP
connection attempts. It can reduce the effect of flow-rule-flooding
problem. Because of this, connection migration enhances an Open-
Flow network’s resilience and scalability to network flooding at-
tacks.

Collecting TCP Session Information: Based on information
from access tables in the data plane, the control plane acquires two
important attributes from each source that contacts the network:
(i) the number of all connection attempts, captured in the access
table (defined as A1) and (ii) the number of established connections
recorded within the connection migration report (defined as A2).
Analysis of the ratio of failed TCP connections of a peer (A1 - A2)
and the number of established TCP connections (A2) can often be
used to detect various flooding and probing behavior.

3.2.1 Delayed Connection Migration
Knowledgeable adversaries may infer the use of connection mi-

gration and attempt to produce flooding packets by establishing
many real TCP sessions. They can use multiple processes, threads,
or many zombie PCs to generate fake TCP connections. However,
for some protocols, such as HTTP, in which the client is expected
to send the first data packet, we can extend connection migration to
incorporate delayed connection migration. Here, we operate a vari-
ant of connection migration in which the key difference is that the
classifying stage will delay the transition to the reporting stage un-
til it receives the client’s TCP data packet. This scenario is shown
in Figure 6. As shown in Figure 6, the data plane delays the report-
ing time (5) until it receives more evidence (i.e., data packet) from
a TCP session initiator (4).

(1) TCP SYN
(2) TCP SYN/ACK

(3) TCP ACK

(7) TCP SYN
(8) TCP SYN/ACK

(9) TCP ACK

(5) (6) (10)(11)

(4) TCP ACK
TCP DATA (12) TCP ACK

TCP DATA

A-1: A --> B: Migrate 

A-2: A --> B: Relay 

Data Plane

Report Stage Report Stage

Classification Stage Migration Stage

Relay Stage

A B

Control Plane

Figure 6: Example delayed connection migration scenario

3.3 Actuating Triggers
We propose to extend OpenFlow with actuating triggers which

enable the data plane to asynchronously report network status and
payload information to the control plane. In addition, actuating
triggers can be used to activate a flow rule under some predefined
conditions to help the control plane manage network flows with-
out delays. The actuating trigger consists of four main operations.
First, the control plane needs to define a traffic statistic condition
under which notification is warranted. Second, the control plane



registers this condition to the data plane. Third, the data plane
checks the condition against its current locally collected packet and
flow statistics to determine if the condition is satisfied. Fourth,
when the data plane determines that the condition is satisfied by
its current statistics, it may 1) trigger a call-back event to the con-
trol plane to indicate that the condition is met, or 2) insert a flow
rule into a specified flow table.

Next, we discuss this operation in detail. The conceptual dia-
gram of event triggering and its operation sequence are shown in
Figure 7.

Control Plane
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Flow rule Condition

(2) Register a condition

(1) Define a condition

match

(3) Check a condition

(4-1) Notify an event

Predefined flow rule

(4-2) Activate a flow rule

Host A

Figure 7: Example event triggering scenario

Defining a Condition: AVANT-GUARD supports three types of
actuating trigger conditions: (i) payload-based, (ii) traffic-rate-based,
and (iii) rule-activation. Conditions can be extended in the future.
To define each type of condition, the control plane uses the follow-
ing format.

{type: condition: pointer}

The type field is a 2-bit data structure representing three condi-
tion types: 00 = payload, 01 = traffic rate, and 10 = rule activation.
The condition field varies for each type. For payload, the condi-
tion field is a 1-bit Boolean, indicating 1 for payload investigation
required and 0 for no investigation required. For both traffic-rate
and rule-activation conditions, the control plane uses a 22-bit data
structure, which consists of a 2-bit, 4-bit, and 16-bit field. The 2-
bit field specifies whether the control plane wishes to register for
time-related metrics (e.g., packets per second (PPS) and bytes per
seconds (BPS)), where 10 represents PPS, and 01 represents the
BPS. 00 indicates the control plane has registered for raw counts.
8. The 4-bit data structure represents comparator options and cov-
ers five different cases. The first three are simple: (i) 0001 for
equal, (ii) 0010 for greater than, and (iii) 0100 for less than. If the
control plane wants to define compound comparators, it can simply
combine (i) and (ii) (i.e., 0011) for greater than or equal to, and
(i) and (iii) for less than or equal to. If the control plane sets the
highest bit as 1 (i.e., 1000), the data plane needs to check PPS or
BPS. The latter 16-bit structure represents the trigger value to be
matched by the current statistics and enables the control plane to
employ trigger ranges from 0 and 65,535.

The pointer part is used when the control plane wants to activate
a predefined flow rule in which the pointer indicates where the flow
rule is stored. If the data plane finds that a condition defined by the
control plane is satisfied and there is a pointer attached to the con-
dition, the data plane follows the pointer and activates the flow rule
into the flow table. We extend the data plane to support a function
that installs the predefined flow rules, which we can implement via
an extension to the dpctl command.

To clarify this idea, we provide an example scenario. We assume
that the control plane wants to define a conditional flow-rule inser-
tion that will activate when a flow exceeds 32 bytes per second. To
do this, the type field is set to 10 to indicate this is a network-status-
based trigger. The 22-bit condition field is set as follows: the 2-bit
field is set to 10 to indicate a time metric, the 4-bit comparator field
is 0010 (for equality), and the 16-bit trigger value field is 32.

Condition Registration: When the control plane creates a con-
ditional flow rule, it will be delivered to the data plane through
an existing communication channel (e.g., the OpenFlow network
interface). When the data plane receives this condition, it gets in-
stalled into its flow table.

Traffic Rate Monitoring: Whenever the data plane receives
a packet, it updates statistical information for related fields (e.g.,
packet count of a flow rule). This is standard functionality in the
implementation of existing OpenFlow switches which we utilized
for our trigger implementation. We augment the data plane logic
by adding a trigger-evaluation function which incorporates its own
counter management logic within the data plane. This counter is
mainly used for our network-status trigger evaluation.

In addition, we add a 16-bit data structure to store time informa-
tion, which we use in our PPS and BPS calculations. These triggers
are particularly useful in security applications for monitoring traffic
and flow rate anomalies. PPS, BPS, and counts, can be computed
on packet arrival or calculated independently based on the internal
clock. The advantage of a clocked-based calculation strategy is that
one can define less-than-based trigger evaluates (e.g., trigger when
a rate falls below 10 packets per second). Packet-based calculations
support equality and greater-than triggers and are computed when
a trigger interval has been exceeded. For AVANT-GUARD we have
implemented traffic-based rate computation.

Event Notification: When the data plane detects a signal satis-
fying a pre-defined condition, it notifies the control plane using a
new “trigger” message extension that we added to OpenFlow.

Selective Packet Payload Delivery to the Control Plane: Packet
delivery to the control plane is controlled by a flag bit (i.e., 1 bit)
in the flow table of the data plane. A set flag bit implies that the
control plane wants to receive packet payloads that match this flow
rule condition.

The running scenario for this function is described in Figure 8. In
this scenario, we assume that the control plane wants to investigate
packet payloads being delivered from a host at 10.0.0.1. First, the
control plane simply asks the data plane to deliver packet payloads
when the source IP address of packets is 10.0.0.1 (1). Second, the
data plane sets the condition field for payload of a matched flow
rule (i.e., flow rule whose source IP address field is 10.0.0.1) (2).
If the data plane receives a packet from a host whose IP address
is 10.0.0.1 (3), it forwards the packet (with payload) to the control
plane (4). In this case, we just need to add a 1-bit flag to each flow
rule entry in the data plane.

Conditional Flow Rule Activation: In addition to asynchronous
event notifications, we also employ triggers to introduce condi-
tional flow rule activation. This is a powerful feature that enables
a security application to predefine a course of action strategy for
handling flows when the network encounters certain operating con-
ditions that can be expressed through switch statistics. For exam-
ple, when a DDoS targets a server, the control plane can find this
based on the event delivered by the data plane. Then, the data plane
will enforce a flow rule to stop the attack. However, this process
will delay the reaction to the attack because it requires a transaction
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10.0.0.1 -> * 1
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Data Plane

condition field
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Figure 8: Scenario illustrating packet payload delivery to the
control plane

between the data plane and the control plane. If the control plane
already installed a flow rule for stopping this attack, the data plane
need not notify the control plane to get a flow rule; instead it simply
activates the installed rule.

To efficiently implement this function, we add new entries to
store flow rules into the data plane. The format of these new en-
tries is the same as a normal flow-rule entry in the data plane. The
only difference is that the rules stored in these entries can only be
activated by the condition field for the flow rule. The condition for
activating a flow rule is the same as the condition field for status,
which we explain below.

This idea is realized by adding two components to the data plane:
(i) memory to store flow rules, and (ii) pointers to find installed
flow rules. The pointer is an 8-bit data structure attached to a con-
dition (i.e., the data plane manages up to 256 predefined flow rules).

Control Plane

10.0.0.1 -> *: 
Forward 10

(1)

(2)

10.0.0.1
(3)

(match with this rule)

(4)

Data Plane
condition field for status

17 00:01 010:0X10

16 bit 16 bit 19 bit (3 + 16)

Figure 9: Scenario illustrating trigger-based notification to the
control-plane

To illustrate how a flow rule is activated, we show an operational
scenario in Figure 10. The condition in this Figure is the same as
the condition presented in Figure 9. In this scenario, we assume
that the control plane wants to block a flow if the flow generates
more than 16 packets per second. In this case, the control plane can
define this condition as we do above (1-3), and request that the data
plane notify the control plane of this event (4). In addition, it will
install a predefined flow rule (5) to BLOCK this traffic.

4. SYSTEM IMPLEMENTATION
We implemented AVANT-GUARD into the software-based Open-

Flow reference switch (we call this the software OF switch) [21].
This reference implementation covers OpenFlow specification 1.0.0
[20], and it functions as the data plane. We modified the source
code of this implementation to support connection migration and
actuating triggers.

Specifically, we modified the packet_receive routine in the soft-
ware OF switch to respond to new connection attempts with SYN/ACKs.
The SYN cookie algorithm generates the SEQ number of this packet.

10.0.0.1 -> *: 
Forward 10

(1)

(2)

(3)
(match with this rule)

(4)

Data Plane

condition field for status

17 00:01 10:1010:0X10

16 bit 16 bit 22 bit (2+4+16)

20.0.0.1 -> *: 
Block flow rule: Block

2
8 bit

(5)

(B)(A)

10.0.0.1

Control Plane

Figure 10: Scenario illustrating trigger-based activation of flow
rules

If the packet-receiving routine subsequently receives a TCP ACK
(i.e., matching the previously generated SYN cookie), it requests
permission from the control plane to migrate the connection. Upon
receiving permission, the modified OF switch will initiate a TCP
connection to the real target host. To relay subsequent TCP pack-
ets through a migrated channel, we also add functions to care-
fully modify the corresponding ACK or SEQ numbers of each TCP
packet.

We added three new data structures into the software OF switch
to support actuating triggers. We modified the switch to check
whenever it updates the counter for each flow (or other variables).
If a counter value satisfies a condition that is defined by the con-
trol plane, the switch generates a signal back to the control plane.
To implement flow rule activations, we created a data structure that
can hold predefined flow rules. The data structure’s format is the
same as the existing flow-rule data structure (i.e., hash table and
linked list) in the software OF switch.

Although most of the implementation involves extensions to the
data plane (i.e., the software OF switch), minimal modification is
also required to the control plane to support the aforementioned
new features. Hence, we extended the source code of the POX
controller [23] to support these capabilities. To support the novel
functionality of AVANT-GUARD, we have added ten new OpenFlow
commands as listed in Table 1. These commands are implemented
in both the software OF switch and the POX controller.

4.1 Hardware Implementation Strategies
Below, we consider how our proposed OpenFlow switch exten-

sions can be realized in a hardware-based implementation.

Traditional SDN Data Plane: First, we review the traditional
SDN data plane architecture, which is illustrated in Figure 11 (A).
This architecture is based on the NetFPGA implementation of the
OpenFlow switch by the OpenFlow inventors [18]. Our focus here
is the ASIC implementation used to conduct packet handling oper-
ations inside the switch. This implementation consists of six main
modules: (i) the input arbiter, which forwards a packet to following
logic; (ii) header parse, which parses a packet header; (iii) exact
match lookup, which finds a flow rule (w/o wildcards) for a packet;
(iv) wildcard lookup, which finds a flow rule (with wildcard) for a
packet; (v) the arbiter, which decides operations of a packet (for-
ward or drop); and (vi) the packet editor, which forwards or mod-
ifies a packet. In addition, flow rules are stored in a TCAM or
SRAM (outside of the ASIC), and a counter storing statistical val-
ues for each flow rule is attached to the TCAM or SRAM.

We illustrate the operation of this hardware switch implementa-
tion using the following scenario. First, if the data plane receives



Command Direction Explanation
OFPFC_MIGRATE C → D allow connection migration
OFPFC_RELAY C → D allow data relay
OFPFC_REG_PAYLOAD C → D register payload condition
OFPFC_REG_STATUS C → D register network status condition
OFPFC_REG_RULE C → D register a new flow rule
OFPR_NEWFLOW D → C report a new flow
OFPR_MIGRATE_SUCCESS D → C report a migration result (SUCCESS)
OFPR_MIGRATE_FAIL D → C report a migration result (FAIL)
OFPR_PAYLOAD D → C deliver payload
OFPR_STATUS D → C report a detected event

Table 1: New OpenFlow commands implemented by AVANT-GUARD (C denotes control plane, and D denotes data plane)

a packet, the lookup component checks the TCAM or SRAM to
see if a flow rule handling this packet exists. If so, it forwards the
packet to the arbiter. Otherwise, it asks the control plane through
an interface running on the CPU.

Implementation of Connection Migration: To implement con-
nection migration in hardware, we need to modify three compo-
nents in the data plane and add two new data structures into the data
plane. The new data-plane architecture with connection migration
is presented in Figure 11(B). The header parser is modified to ex-
tract TCP flags, and the arbiter is modified to force the packet editor
to initiate connection migration or to reply with a TCP SYN/ACK
packet. We add a connection-handler module to the packet editor.
This module can initiate connection migration or answer a connec-
tion request by sending the SYN/ACK.

We also add two new data structures to support the relay stage
of connection migration. Because our data plane needs to manage
two TCP connections as a single connection, it should change the
ACK or SEQ number of each packet. We only need to track the
difference between the SEQ number of SYN packets (SYN from
a connection initiator to the data plane) and the inside connection
(SYN from the data plane to the destination of our migration). This
difference value will be stored in an ACK/SEQ delta structure, and
the number of this value is the same as the number of migrated
connections.

TCP connections also come with certain TCP options, such as
timestamp, and our data plane should handle this value as we do for
ACK or SEQ change. To support this, we have added an optional
structure into the data plane to track the TCP timestamps between
external and internal connections. However, this is optional, be-
cause the data plane could also simply discard such options during
TCP negotiation.

Implementation of Actuating Triggers: To implement our ac-
tuating trigger in hardware, we add two data structures for storage
into the data plane. This architecture is shown in Figure 11(B).
All condition fields for the actuating trigger are collectively labeled
as Condition in this Figure, and they are attached to counters in
the data plane. Also, predefined flow rules can be implemented by
adding the same components for flow rules (TCAM and SRAM).
For implementations that are cost sensitive, we may share existing
TCAM or SRAM storage for these flow rules (not denoted in the
Figure).

Off-ASIC Implementation of AVANT-GUARD: The architec-
ture described above involves adding new components to the ASIC
in the data plane which is both costly and complex. Here, we are
inspired by Mogul’s research [11], which suggests we may move
some components out of the ASIC, and could potentially lever-
age the switch CPU and DRAM to implement certain functionality.
In this case, we cannot avoid modifying existing components (i.e.,

DDoS 
Attacker SYN flooding

HTTP request
Normal 
Client POX Controller

S/W OF Switch
(Avant-Guard)

Web Server

Figure 12: Environment for network saturation attack scenario

modified header parser), but we can offload some storage require-
ments from the ASIC by moving data structures into DRAM. This
architecture is presented in Figure 11(C). As shown in this figure,
we place all storage into DRAM. Logic that resides in the ASIC
could access DRAM content through the CPU (e.g., via a PCI in-
terface). This approach trades off some performance for simplified
development cost.

5. EVALUATION
In this section, we present how SDN security researchers and

practitioners can leverage the benefit of AVANT-GUARD to develop
simpler and stronger network security applications.

5.1 AVANT-GUARD Use Cases
We first describe an example use case for a security application

and then compare two scenarios: (i) implementing the security ap-
plication with existing OpenFlow technology and (ii) implement-
ing the same function with AVANT-GUARD. We select three com-
mon network threats for comparison: (i) network saturation attack,
(ii) network scanning attack, and (iii) network intrusion attack.
For each case, we employ the software OF reference switch imple-
mentation [21] for our data plane, and AVANT-GUARD has been
implemented into this reference implementation. We turn on or
off the functions of AVANT-GUARD to compare the functions of
each case. For the control plane, we use a modified POX controller
[23] for both switches. The host running this S/W OF switch (w
AVANT-GUARD or w/o AVANT-GUARD) was configured with an
Intel Core-i5 CPU and 8 GB of memory.

5.1.1 Network Saturation Attack
Example Scenario: The test environment for this experiment is

shown in Figure 12. It includes an OpenFlow switch (i.e., the data
plane) in which AVANT-GUARD has been implemented; a POX net-
work controller; a server that hosts a web service; a normal client
that contacts the server with HTTP requests; and an attacker who
performs a TCP SYN flood attack.

In this scenario, we measure the response time (i.e., the time
it takes a normal client to fetch a page of data from the remote
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Item Case Response Time Overhead

Original w/o DDoS 0.3917 s -
w/ DDoS ∞ ∞

AVANT-GUARD
w/o DDoS 0.3990 s 1.86 %
w/ DDoS 0.4001 s 2.1 %

Table 2: Average response time of each test case (Overhead
means the percentage of additional response time compared
with the Original - w/o DDoS case)

server under two situations: with and without background TCP
SYN floods in this OpenFlow network). The attacker generates
1,000 connection attempts per second to the server, and we repeat
this over 500 seconds to measure the average response time.

The test result showing the average response time is summarized
in Table 2. The normal client can retrieve the web page in 0.4 sec-
onds, but it does not get any response during a background TCP
SYN flood attack due to the effect of control/data plane saturation
mentioned earlier. However, AVANT-GUARD can effectively de-
fend the network from this attack, enabling the normal client to re-
trieve the webpage without any problem, because our data plane au-
tomatically and transparently classifies and removes the malicious
TCP connection attempts. Our system introduces only a negligible
delay overhead (around 2.1%) for the normal client, even during
severe saturation attacks.

We also measure the overhead of connection migration on nor-
mal TCP connections during normal network operations (i.e., with-
out attacks) using the same experimental setup shown in Figure 12.
From Table 2, we can see that the overhead caused by connection
migration on normal TCP connections is minimal (1.86 %).

To further show the effect of saturation attacks on normal traffic
in detail, we vary the packet-sending rate of the network saturation
attack from 0 to 800 per second, and we send the requests from
10 benign clients to a target web server at the same time. The test
results are shown in Figure 13, and we can easily observe that re-
quests from benign clients are hardly delivered to the web server
when the network saturation attack happens using the unmodified
OpenFlow switch (nearly 0% when the flooding attack sends more
than 100 packets per second). However, with AVANT-GUARD, all
requests from benign clients are delivered to the web server, even
while the network is under a severe network saturation attack.

Implementation Comparison: To detect TCP SYN flood at-
tacks with an OpenFlow application, the application typically must
be aware of the TCP session information (e.g., whether or not a
TCP connection is successful). However, this session management
will cause control flow saturation issues that we discussed earlier.
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Figure 13: Percentage of successfully delivered packets to the
web server from benign clients

That is the data plane will receive many TCP SYN packets that
it will report to the control plane, which also receives the same
number of requests from the attack. Currently, OpenFlow does not
provide any way to reduce this effect.

With an AVANT-GUARD application, because the data plane au-
tomatically responds to all TCP SYN packets without high over-
head, the data plane need not handle (i.e., forward or drop packets)
all attack packets. In addition, the control plane only receives the
requests for a successfully established TCP connection. Thus, the
control plane does not suffer from network saturation attacks, and
the application can easily detect such attacks. In this case, AVANT-
GUARD makes the control plane and the SDN network more re-
silient and scalable.

5.1.2 Network Scanning Attack
Example Scenario: We test how our system defends a network

from a network scan attack, and the test environment is shown in
Figure 14. In this test, we use Nmap [24] to vertically scans all
network ports of a file server (10.0.0.2) that only opens network
port 10000.

Scan 
attacker

File server
open: 10000

Scan whole ports
with Nmap

10.0.0.1 10.0.0.2

POX Controller

S/W OF Switch
(Avant-Guard)

Figure 14: Environment for network scan attack scenario



If we employ AVANT-GUARD, the data plane automatically main-
tains the information on the TCP connection attempts in the access
table and reports session information to the control plane, which
can easily detect scan attempts by applying a simple threshold-
based scan-detection algorithm. Here, we write a simple security
application for detection of a network scan attack that regards a re-
mote host as a scanner if it initiates five failed TCP connection at-
tempts. This application only needs to ask the data plane to report
the information on the TCP connection attempts; it does not itself
need to maintain TCP sessions. The detection result is marked with
a red rectangle in Figure 15.

Figure 15: Network scan-detection result

Implementation Comparison: To detect a TCP scanning attack
with an OpenFlow application, we need to check whether each TCP
session is successful at the application layer. However, this check
requires that the application manages each TCP flow making it vul-
nerable to control flow saturation attacks. If we implement the same
application with AVANT-GUARD, it only needs to periodically read
the access table to collect TCP session information.

In addition to this, we can implement the whitehole function with
AVANT-GUARD easily. The whitehole function provided by our
system can be easily observed by looking at Nmap scan results. In
the absence of our approach, Nmap can successfully scan the file
server, and finds that network port 10000 is open, as shown in Fig-
ure 16. Figure 17 shows the scan results of Nmap when applying
our system (the network environment is the same as in Figure 14).
Although the file server only opens port 10000, Nmap thinks that
all network ports are open.

Figure 16: Nmap scan result without AVANT-GUARD

5.1.3 Network Intrusion Attack
Example Scenario: We set up an attack scenario as shown in

Figure 18, and in this case, an attacker (10.0.0.1) sends an RPC
buffer overflow attack to another host in the network (10.0.0.2).
Here we assume two things: (i) the control plane already requested
the data plane to deliver packet payloads delivered to 10.0.0.2 and
(ii) a security application has a signature for the attack. In this
test scenario, the application uses snort rules to detect malicious
payloads. The result is shown in Figure 19, where we find that the
security application accurately detects the attack (red rectangle in
Figure).

Figure 17: Nmap scan result with AVANT-GUARD - Whitehole

network 
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File server

send 
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POX Controller
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Figure 18: Network intrusion attack scenario

Implementation Comparison: An attacker can send malicious
contents (e.g., exploits) to infect a target victim. To date, many
approaches for detecting network intrusions have been proposed,
and most of them rely on deep packet inspection to identify known
attack patterns. However, an OpenFlow control plane (and appli-
cations) cannot see all network packet payloads. This is because
OpenFlow was originally designed to handle mostly layer 2/3 net-
work traffic. The data plane only reports network header informa-
tion to the control plane, and if there is a matching flow rule in the
flow table, the data plane does not even report header information
to the control plane.

The actuating trigger module of AVANT-GUARD provides a new
capability that can deliver a packet payload to the control plane
(i.e., condition for packet payload). In this case, the AVANT-GUARD
application simply defines a condition involving header fields (e.g.,
source or destination IP) that it wants to investigate and then for-
wards these criteria to the switch. The switch will report every
packet payload that matches the condition to the application.

5.2 Overhead Measurement
When we measure the performance overhead of AVANT-GUARD,

we use the same test environment as in Figure 12.

Figure 19: Network intrusion detection based on simple pay-
load inspection
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5.2.1 Connection Migration
To understand the overhead of connection migration at the micro

level, we analyze the internal operations for establishing a TCP ses-
sion in two cases: (i) using the software OF switch reference imple-
mentation and (ii) using the AVANT-GUARD extension. Figures 20
and 21 illustrate the breakdown of connection-establishment de-
lays in the two systems, respectively.

In the case of a typical OF switch, the delay in establishing a new
TCP session for which there is no flow rule can be broken down into
seven components that start with the switch receiving a TCP SYN
packets and end with the transmission of the ACK packet to the
target server: (i) lookup a flow table and forward (TL1); (ii) ask the
control plane for a flow rule and receive the rule (PD2) - (processing
time in the control plane (PR1) is not included); (iii) insert a flow
rule and forward (FO1); (iv) receive a SYN/ACK packet (PD3);
(v) forward a packet based on the flow rule (FO1); (vi) receive an
ACK packet (PD1); and (vii) lookup a table and forward (TL1).

In the case of AVANT-GUARD, the breakdown is a little differ-
ent because the data plane automatically responds with SYN/ACK
packet. With AVANT-GUARD the eight operations include: (i)
lookup a flow table and forward (TL1); (ii) generate a SYN/ACK
packet (TR1); (iii) receive an ACK packet (PD1); (iv) lookup the
flow table (TL1); (v) ask the control plane to get a permission for
migration and receive the rule for migration (PD2) - (processing
time in the control plane (PR1) is not included); (vi) forward a SYN
packet to a target host (FO1); (vii) receive a SYN/ACK packet
(PD3); and (viii) generate an ACK packet and send it (TR2).

We summarize the delay breakdown in the two cases as follows:
• OpenFlow case = TL1 + PD2 + FO1 + PD3 + FO1 + PD1 +

TL1
• AVANT-GUARD case = TL1 + TR1 + PD1 + TL1 + PD2 +

FO1 + PD3 + TR2
We instrumented the software switch to measure the respective

delay of each component and illustrate them in Figures 22 and 23.
To get these results, we initiated many TCP connection attempts
to a switch and then used the average values from our measure-
ments. The average connection establishment delay in the OF soft-
ware switch case is 1608.6 us; for AVANT-GUARD the average is
1618.74 us. Thus, the overhead of connection migration is 0.626%,
which is very small.

However, the delays here are dominated by the propagation de-
lay. If we remove PD1, PD2, and PD3 from the above measure-
ments, the original S/W OF switch incurs a composite delay of 32.4
us, and AVANT-GUARD incurs a delay of 42.54 us. In this case, the
overhead is 23.84%, which is somewhat more substantial, but still
not prohibitive.

5.2.2 Actuating Triggers
To estimate the overhead of actuating triggers, we measure the

time to check each condition (e.g., traffic-rate based condition) and
to activate a flow rule. Our results are summarized in Table 3.
For the traffic-rate based condition, we simply define a condition
that checks if the PPS of a flow is greater than 100. We see that
the overhead for each condition is relatively small (even nearly 0
in the case of payload-based condition). In comparison with the
elapsed time for connection migration, condition checks only in-
volve around 1.6% of overhead.

Item time
Traffic-rate based condition 0.322 us
Payload-based condition ≈ 0 us
Rule activation 1.697 us

Table 3: Time for checking each condition

The time for activating a flow rule based on a condition includes
the time for checking the traffic-rate based condition and the time
for looking up a flow table. In our measurement, it is 1.697 us. This
time is significantly less than typical propagation delay between the
data plane and the control plane (i.e., PD2). In our setup, the time
for PD2 is 459.81 us, and the time for activating a flow rule is just
0.36% of PD2. Thus, we can say that our approach significantly
reduces the time for threat reaction/mitigation. For example, if a
network is subject to SYN flood attacks at a rate of 1,000,000 per
second (1 packet per us), then this network will receive at least 460
packets before stopping the attack. However, with AVANT-GUARD,
only two additional packets would be received after the data plane
reacts to the attack.

6. RELATED WORK
Our work is inspired by several parallel studies that explore se-

curity threats in SDNs [1, 14, 28] and attempt to deliver innovative
security applications with SDN technology. Mehdi et al. developed
SDN applications for detecting network scan attacks [17]. Jafar-
ian et al. suggested a random host mutation approach to protecting
a network from scanning attacks[10]. Popa et al. designed a new
security application for a cloud network [22]. Braga et al. created
a DDoS detection application using SDN [3]. Shin et al. proposed
a new security-monitoring-as-a-service framework for a cloud net-
work [25]. Unlike our approach which fundamentally alters flow
management at SDN switch level, these studies focus on creat-
ing specific high-level SDN applications to provide improved se-
curity services. We believe that all these applications can benefit
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from AVANT-GUARD. For example, the applications for detecting
scan attacks in [17, 10] no longer need to manage TCP session
by themselves because they can simply leverage AVANT-GUARD.
FRESCO [26] is a a new framework designed to help accelerate
the development of SDN security applications. We believe such
frameworks can benefit from the resilience and trigger capabilities
provided by AVANT-GUARD.

AVANT-GUARD’s connection migration function is inspired by
the SYN cookie, and there are many commercial products employ-
ing the SYN cookie idea to defeat TCP SYN flooding attacks (e.g.,
Cisco Guard [6] and Juniper Junos [12]). In addition, Mahimka
et al. proposed a middle-box solution that can defeat network flood-
ing attacks [16]. To our knowledge, we are the first to apply SYN
cookies and connection migration in an SDN network.

Researchers have also proposed new architectures to improve
SDN performance by reducing the communication between the switch
and controller. Onix [13], Maestro [30], and Hyperflow [27] at-
tempt to build more scalable SDN networks using distributed con-
trol planes. While we share a common goal in improving the scala-
bility of SDN networks, we differ in the specific techniques that we
propose to achieve this goal and in our emphasis on security. Mogul
et al. proposed a new data plane architecture to reduce memory
space by moving counters to the control plane [11]. Lu et al. [15]
devised a new SDN architecture that handles a part of packet pro-
cessing in the CPU. DIFANE [29] proposed a new solution that
seeks to reduce switch-to-controller traffic by keeping all traffic in
the data plane by selectively directing packets through intermedi-
ate switches that store the necessary rules. DevoFlow [7] seeks to
improve the visibility and statistics gathering capabilities of Open-
Flow and suggests a new data plane architecture to manage flow
rules efficiently. However, the goals and main approach of De-
voFlow and DIFANE are very different from our work in that these
studies are focused on improving performance under normal net-
work conditions. In contrast to AVANT-GUARD introduces new
techniques to improve network resilience under attacks. The con-
cept of actuating triggers is similar to event-triggers described in
DevoFlow, with the key difference that our triggers result in the dy-
namic insertion of a flow rule. In contrast, DevoFlow event-triggers
simply result in a call back to the controller.

7. LIMITATIONS AND DISCUSSION
We now discuss some limitations in our work. First, the connec-

tion migration component of AVANT-GUARD primarily improves
resilience against TCP SYN flood and network scanning attacks.
Thus, it might not help application developers who want to defend

against application layer DoS attacks or attacks based on UDP or
ICMP protocols. However, delayed connection migration and ac-
tuating triggers could be selectively used to mitigate the impact of
such attacks. Further, most well-known network services are based
on TCP and most common network attacks are against TCP-based
services. Thus, AVANT-GUARD would benefit the majority of net-
work systems and applications. Extending AVANT-GUARD to bet-
ter support more sophisticated attacks and non-TCP flows is future
work.

Second, the use of connection migration imposes a small but
measurable delay to normal network connections. This represents a
very reasonable trade-off between security and performance. To re-
duce unnecessary overhead, we envision that certain networks may
turn off connection migration by default and initiate it only under
duress. This policy could be expressed as an actuating trigger. In
addition, it could be combined with whitelists or dynamic reputa-
tion schemes to improve the quality of service to legitimate users
during attacks. In our future work, we hope to more thoroughly
investigate such trade-offs that occur when using connection mi-
gration and design better guidelines for different scenarios.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we propose AVANT-GUARD, a new framework to

advance the security and resilience of OpenFlow networks with
greater involvement from the data-plane layer. The goal of AVANT-
GUARD is to make SDN security applications more scalable and
responsive to dynamic network threats. A key challenge, which we
address, is the inherent bottleneck introduced by the interface be-
tween the control plane and the data plane that knowledgeable ad-
versaries can exploit. Connection migration enables the data plane
to shield the control plane from such saturation attacks. The sec-
ond challenge is the issue of responsiveness. SDN security appli-
cations need expeditious access to network statistics from the data
plane as a method for quickly responding to network threats. To
address this, we introduce actuating triggers that automatically in-
sert flow rules when the network is under duress. We present a
software implementation of AVANT-GUARD, and demonstrate that
the overhead imposed by the AVANT-GUARD security extensions
is minimal, with connection delay increases of much less than a
1% overhead, while providing resilience to an important adversar-
ial model that may hinder SDN adoption.
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