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Abstract. In this paper, we propose a novel system, named BridgeScope,
for precise and scalable vetting of JavaScript Bridge security issues in
Android hybrid apps. BridgeScope is flexible and can be leveraged to
analyze a diverse set of WebView implementations, such as Android’s
default WebView, and Mozilla’s Rhino-based WebView. Furthermore,
BridgeScope can automatically generate test exploit code to further
confirm any discovered JavaScript Bridge vulnerability.
We evaluated BridgeScope to demonstrate that it is precise and effective
in finding JavaScript Bridge vulnerabilities. On average, it can vet an app
within seven seconds with a low false positive rate. A large scale evaluation
identified hundreds of potentially vulnerable real-world popular apps that
could lead to critical exploitation. Furthermore, we also demonstrate
that BridgeScope can discover malicious functionalities that leverage
JavaScript Bridge in real-world malicious apps, even when the associated
malicious severs were unavailable.
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1 Introduction

Android apps (i.e., hybrid apps) increasingly integrate the embedded web browser
component, “WebView”, to render web pages and run JavaScript code within
the app for seamless user experience. App developers can select from a variety
of WebView implementations, such as Android’s default WebView1, Mozilla’s
rhino-based WebView2, Intel’s XWalkView3, and Chromeview4.

The power of WebView extends beyond the basic browser-like functionality
by enabling rich interactions between web (e.g., JavaScript) and native (e.g.,
Java for Android) code within an app through a special interface known as a
“JavaScript Bridge” [8, 14, 22, 23, 26, 27, 31, 32]. The JavaScript Bridge feature
eases the development of hybrid apps. However, it also introduces critical security
risks, such as sensitive information leakage, and local resource access (Section

1 https://developer.android.com/reference/android/webkit/WebView.html
2 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
3 https://crosswalk-project.org/
4 https://github.com/pwnall/chromeview



2.2). Recent research work [8,14,22,23] has highlighted the problems rooted in
the use of JavaScript Bridge. However, an automated and fine-grained solution
that can precisely and scalably detect JavaScript Bridge security issues is still
missing.

In this paper, we present a precise and scalable static detection framework
named “BridgeScope”. BridgeScope can automatically vet JavaScript Bridge usage
in Android hybrid apps, and generate test exploit code to validate problematic
JavaScript Bridge usage. Our approach is four-fold. First, BridgeScope fills
the semantic gap between different core WebView implementations using a
generalized WebView model. Second, using the generalized code, BridgeScope is
able to precisely discover all available WebView components and bridges in an
app. Third, BridgeScope reconstructs the semantic information of all JavaScript
Bridges and identifies the sensitive bridges that contain data flows to sensitive
API invocations (such as getLastLoction()). Finally, BridgeScope generates test
exploit code using the analysis results (such as the UI event sequences to trigger
WebView components and data flow inside sensitive bridges).

To achieve high precision and scalability, BridgeScope applies fine-grained type,
taint, and value analysis, which is implemented based using a novel “shadowbox”
data structure. We refer to our analysis technique as “shadowbox analysis”.
Compared with state-of-the-art static approaches such as data flow tracking [4,33],
shadowbox analysis is path- and value-sensitive, while preserving precision and
scalability. We evaluated our shadowbox analysis technique using a generic
benchmark (DroidBench5), and found that it achieved 93% precision.

Finally, we evaluated BridgeScope with 13,000 of the most popular free
Android apps, gathered from Google Play across 26 categories. BridgeScope
found a total of 913 potentially vulnerable apps that may enable various types
of attacks such as stealing sensitive information, gaining privileged access by
bypassing security checks (such as Same Origin Policy6 in the web context),
and other serious attacks that may result in monetary loss to device users.
Furthermore, our evaluation on real-world malware apps also demonstrated that
BridgeScope could identify malicious functionalities hidden in sensitive JavaScript
Bridges, even when the associated malicious servers were unavailable.

In summary, we highlight our key contributions:

– We conduct a systematic study on how WebView and JavaScript Bridge are
used by both benign apps and malware with diverse WebView implementa-
tions.

– We design a precise and scalable static detection system to automatically
detect vulnerabilities caused by JavaScript Bridge.

– We evaluate our detection system BridgeScope with real-world popular apps
and find 913 potentially vulnerable apps that could be exploited by attackers.
On average, our system can vet an app within 7 seconds with a low false
positive rate.

5 https://github.com/secure-software-engineering/DroidBench
6 https://en.wikipedia.org/wiki/Same-origin policy



2 Problem Statement

2.1 Background: WebView and JavaScript Bridge

To understand the fundamental components of WebView, irrespective of any
specific implementation, we devise a model, shown in Figure 1, based on Android’s
default WebView which we find to be representative of most key properties that
are important for our JavaScript Bridge analysis.
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Fig. 1. Major modules in Android default WebView. In the example, Bridge Jm enables
interaction between web code Jw and native code M .

JavaScript Bridge. The bridge Jm, shown in Fig. 1, allows interactions between
the embedded web content Jw and the mobile native code implemented in M
(the Bridge Object). Through its access to M , the web code in Jw inherits access
to the local resources and sensitive information in the mobile framework.

To enable bridges in WebView, all bridges must be registered by the API
addJavascriptInterface(BridgeObject, BridgeName) in advance, where BridgeOb-
ject is a native object (i.e., an instance of a Java class such as M in Fig. 1)
that is being imported into the WebView instance W , and BridgeName is the
object’s reference name that can be used to directly access BridgeObject in the
web context through Jw.
Annotation. In Android 4.2+, an annotation mechanism is introduced to restrict
bridge access. In BridgeObject, only the methods that are explicitly annotated
by ‘@JavaScriptInterface’ can be invoked by JavaScript code.
Configuration Settings. Developers can configure a WebView component
through its setting property. For instance, developers can enable/disable JavaScript
in WebView. JavaScript is generally disabled by default requiring explicit activa-
tion by developers.
Event Handler. This mechanism allows developers to handle different events
after WebView runs, which can be further utilized to provide additional security
checks. For instance, the two event handlers shouldOverrideUrlLoading() and
shouldInterceptRequest(), which are designed to handle URL and resources
loading events, can be further used to restrict new web content loaded in WebView.
Same Origin Policy (SOP). In WebView, SOP is enabled to enforce access
control on local data in the web layer between mutually distrusting parties.



However, SOP is not extended to resources in the native layer, such as users’
contact list.

2.2 Security Issues Caused By JavaScript Bridge And Their
Impacts

To illustrate the general problem with JavaScript Bridges, consider an Android
app that exposes several methods {m1...mn} ∈ M through a bridge Jm in
an embedded WebView W , as shown in Figure 1. Consider that m1 provides
privileged access to sensitive APIs and/or functionality in the mobile framework.
The web platform dictates that any code Jw that executes in the context of the
embedded WebView W will also have access to the exposed interface Jm since
Jm ∈ Jw. In other words, all JavaScript code Jw executed in the context of the
WebView, even in embedded iFrames, can invoke all methods exposed by the
app in M .

We consider two general approaches attackers may use to exploit JavaScript
Bridge’s:

– Direct Access To Sensitive APIs: Attackers who can inject code into W can
then directly invoke sensitive functionality exposed through Jm. Attackers
can also combine the use of multiple methods in M for more stealthy attacks
that may use one method to read data, and another method to write data to
a remote server. This is a variant of the classic confused deputy access control
problem [16]. In this scenario, the WebView W , as the deputy, will diligently
allow access to both exposed methods m1 and m2, allowing an attacker
to first invoke the request for sensitive information through m1, and then
append the returned data to another request to the communication-enabled
exposed interface m2. Additionally, even if M does not include a method
such as m2, if the app has INTERNET permissions, then data from m1 can
still be leaked by Jw through a JavaScript HTTP method.

– Cross-Origin DOM Manipulation: A more interesting attack scenario emerges
when mn exposes an API that allows manipulation of the DOM in W , such
as using loadURL() or loadDataWithBaseURL(). As a result, an embedded
iFrame in W can inject cross origin JavaScript code to effectively circumvent
the same origin policy (SOP) and execute cross-site-scripting-like attacks in
W ’s web origin. This is a violation of the same origin policy assumption, and
can result in client-side XSS attacks using JavaScript Bridges. The root cause
here is that the origin information is lost when JavaScript causes content to
be loaded via a Bridge Object.

2.3 Sensitive APIs

We consider three type of ‘sensitive’ system APIs, which we categorize as source
(i.e., reading data from Android), sink (i.e., sending data out of mobile devices),
and danger (i.e., dangerous operations) APIs. Specifically, we define “source API”
and “sink API” using a comprehensive categorization developed in a previous
work [25]. Additionally, we treat any API that can access local hardware (such



as camera), and cause charges on the user’s device (e.g. SMS, phone calls), as a
“danger API”.

2.4 Threat Model

We focus on hybrid apps that enable JavaScript and JavaScript Bridge. We
assume that the code written in C/C++ and implicit data flow inside apps have
minimal influence for our analysis. Generally, we consider attack scenarios in the
context of benign and malicious apps:
Benign Apps. In this scenario, we assume that HTML/Javascript code loaded in
WebView of benign apps is untrusted. We also assume that web attackers cannot
directly access the native context, but can inject malicious HTML/JavaScript
code to WebView through code injection attacks. We consider two ways for
attackers to launch such attacks. Attackers can either compromise third-party
websites, or inject/hijack network traffic (e.g., MITM attack) [3], such as the
HTTP communication within WebView or third party Java libraries (e.g., ad
libs [26]).

A much stronger assumption is that attackers may also hijack HTTPS traffic.
Although this type of attack is difficult, it is still feasible, particularly considering
how poorly/insecurely HTTPS is implemented/used in mobile apps [11,13].
Malicious Apps. We assume that an attacker writes a malicious app using
WebView and JavaScript Bridge, and submits it to app marketplaces, such as
Android official market ‘Google Play’. To evade security vetting systems in app
marketplaces, such as Google Bouncer7, the app is designed in such a way that 1)
WebView loads a remote web page, whose content is controlled by the attacker;
2) the malware’s sensitive behaviors are conducted in JavaScript Bridge, while its
command & control (CC) logic is implemented by JavaScript code in WebView;
3) initially, the CC code is not injected into the loaded web page, and it only
becomes available at a specific time, such as after the app bypasses the security
checks and is published.

3 Shadowbox Analysis

In this section, we present details about our shadowbox analysis technique. First,
we highlight the advantages of our approach, compared with other state-of-the-art
approaches. Then, we present definitions and concepts related to shadowbox.
We also discuss more details about type, taint and value analysis respectively.
Finally, we show how to apply shadowbox analysis to solve different challenges,
such as the problem caused by common data structures.

3.1 Challenges

Type, taint, and value/string analysis are frequently used program analysis
techniques [4, 7, 15, 33]. However, the state-of-the-art approaches fall short of
1) precisely handling common data structures, such as list, hashmap, Android

7 http://googlemobile.blogspot.com/2012/02/android-and-security.html



Bundle8, Parcel9, etc.; 2) maintaining path- and value-sensitivity while also
remaining precise and scalable. These shortcomings may cause false negatives
and false positives in analysis results.
Path- And Value-Sensitivity. To achieve high precision, it is critical to main-
tain path- and value-sensitivity. However, state-of-the-art work (such as Flow-
droid [4] and Amandroid [33]) do not thoroughly maintain these properties. For
instance, Listing 1.1 shows a snippet of a test case (from DroidBench) designed
to test false positives of alias analysis. In this test case, sensitive information
saved in ‘deviceId’ is transferred to a field of an instance of the class ‘A’ (Line
14), and then a sink API is called (Line 15), which merely sends out a constant
string rather than the sensitive information. However, existing approaches, such
as Flowdroid [4] and Amandroid [33], erroneously find a path from source to sink
in this scenario due to path-insensitivity.

1 c l a s s A{ pub l i c S t r ing b = ”Y” ;}
2 c l a s s B{ pub l i c A a t t r ;}
3 . . .
4 A b , q , y ; B a , p , x ;
5 a = new B( ) ; p = new B( ) ;
6 b = new A() ; q = new A() ;
7 i f (Math . random ( ) < 0 . 5 ) {x = a ; y = b ;}
8 e l s e {x = p ; y = q ;}
9 x . a t t r = y ;

10 q . b = dev i c e Id ; // source
11 sms . sendTextMessage ( ”+49 1234” , nu l l , a . a t t r . b , nu l l , n u l l ) ; // sink

Listing 1.1. A snippet of a test case for alias analysis in DroidBench

Common Data Structures. When a common data structure (e.g., list, hash
map) is temporarily used to store tainted data (e.g., sensitive information), it
may raise challenges to precisely track the sensitive data flow inside these data
structures, since the position of taint data is difficult to determine. Most existing
work (e.g., [4]) simply overtaints the entire data structure, which inevitably
introduced false positives. Consider, for example, an array where only a single
entry should be tainted (code shown in Listing 1.2). When line 4 is executed, only
array[1] should be tainted. If, instead, the entire array is tainted, false positives
are inevitably caused.

1 ArrayList<Str ing> array = new ArrayList<Str ing >() ;
2 St r ing s = source ( ) ;
3 array . add ( s ) ; // array : [ souce ]
4 array . add (0 , ” element0 ” ) ; // array : [" element0 ", source () ]

Listing 1.2. An Example abstracted from real apps

BridgeScope solves this problem by performing fine-grained type, taint and
value analysis using a ‘shadowbox ’ data structure as discussed in the following
sections.

3.2 Concepts Related to Shadowbox

We define a shadowbox as the representation of an object (e.g. WebView). Gener-
ally, only tainted ‘primitive variables’ (e.g., integers), whose data type is primitive,

8 https://developer.android.com/reference/android/os/Bundle.html
9 https://developer.android.com/reference/android/os/Parcel.html



and all ‘non-primitive variables’ (e.g., string and array) are boxed. The relevant
concepts are defined as follows: (note that v and s represent a variable and a
shadowbox, respectively)
– A variable v’s representation 〈scopev, namev〉 : Generally, scopev is the

full name of a function (for local variables), an object (for regular fields), or
a class name (for static fields), while namev is v’s name, which is usually a
register name.
Furthermore, to support inter-component communication (ICC) [33], the
global but temporary representation <global, intent> is created to repre-
sent an intent message. To record a function f ’s return value, the representa-
tion <f, return> is used.

– Points-to relationship : If a variable v points to an object o, whose
shadowbox is s, v and o have points-to relationship, which is represented by
v → s.

– Alias relationship : If two variables v1 and v2, and their shadowboxes s1

and s2 stasify the following statement: v1 → s1∧v2 → s2∧ID10(s1) = ID(s2),
v1 and v2 are alias. Such relationship is represented by v1 = v2.

– Shadowbox dependency graph (SDG) : A collection of points-to rela-
tionships : {(v, s)∗ | v → s}. For convenience, we use SDG(v), SDGv, or
SDG(〈scopev, namev〉) to represent the shadowbox pointed by v.

– Fields information in shadowbox (FDG) : This is a variant of SDG :
{(v, s)∗ | v → s ∧ v ∈ ‘non-static fields in s’}. Since FDG is always bound
with a shadowbox s, we use FDGs to indicate such relationship.

3.3 Type and Taint Analysis

v1 = v2 op v3 ⇒ SDG(v1)taint = SDG(v2)taint | SDG(v3)taint

v = new C ⇒ s = a new shadowbox; sdata type = C; v → s
v1 = v2 ⇒ v1 → SDG(v2)
v ∈ C ⇒ SDG(v)data type = SDG(v)data type ∧ C
function f(...){...; return r; } ⇒ 〈f, return〉 → SDG(r)

for v ∈ SDGvertexes, delete v if v.scope == f
r = f(p0, p1, ...) ⇒ 〈f, return〉 → null
function f(p′

0, p
′
1, ...) {...} 〈f, p′

0〉 → SDG(p0); 〈f, p′
1〉 → SDG(p1); ...;

r → SDG(〈f, return〉)
v = o.e ⇒ SDGv → FDGSDG(o)(e)
v = C.e ⇒ SDG(v)→ 〈C, e〉
o.e = v ⇒ FDGSDG(o)(e)→ SDGv
C.e = v ⇒ 〈C, e〉 → SDG(v)
a[i] = v ⇒ Section 3.5
v = a[i] ⇒ Section 3.5

Table 1. Analysis Rules

Driven by the shadowbox concept, we define the analysis rules that implement
type and taint analysis. The analysis rules work directly on Dalvik opcode11. We
use lower case letters to represent variables, with the exception of e and f , which
represent fields and functions, respectively. We use upper case letters for classes

10 ID stands for the shadowbox’s memory location in our static analysis.
11 https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html



or data types. In the rules, operations on array are solved with the help of value
analysis, as shown in Section 3.5.

3.4 Value and String Analysis

Given a target variable v and its instruction i, v’s value is calculated by per-
forming backward programming analysis along the analyzed path to update
its “expression tree”. The expression tree is subtly different with the regular
binary expression tree [1]. The expression tree’s leaf nodes correspond to system
APIs (e.g., getDeviceId()), constants, JavaScript Bridge function input, and
variables whose values is to be calculated (i.e., variable leaf ), and the internal
nodes correspond to functions (e.g., string.replace()) and operators. Initially,
the root node of the expression tree is v. Starting from i, all variable leaves
in the expression tree are kept being updated. If it is found that a variable
v1 is dependent on another variable v2 or an expression e1, v1’s leaf node is
replaced by v2 or e1. The analysis is continued till there are no variable leaves.
To handle string operations, the associated functions are modelled. For example,
the function StringBuilder.append() itself is treated as an internal node, and
its function parameters are added as its children nodes.

Then, the target variable’ value can be retrieved by resolving the expression
tree. For this purpose, the expression tree is first converted to a regular expression
using in-order traversal. During the conversion, functions in internal nodes are
converted to proper operators. For example, StringBuilder.append() is replaced
by +, and linked with the function’s parameters (i.e., the children nodes). Then,
we apply a lightweight solver to compute the expression’s value, which is built
on top of the Python function ‘eval()’.

3.5 Application Of Shadowbox Analysis

Path-Sensitivity. We use the code shown in Listing 1.1 as the illustrative
example. Before utilizing shadowbox analysis on the test case, SDG is first
created by initializing shadowboxes of ‘this’ and the corresponding function’s
parameters with their associated data types. Then, the analysis is applied on
each instruction based on the rules defined in Section 3.3. When a conditional
statement c (Line 8) is encountered, the depth-first strategy is used and each
path is analyzed sequentially. To keep the independence of each path, SDG is
cloned and saved so that when a path is done, SDG is quickly restored for another
path. Finally, when the sink API ‘sendTextMessage()’ is encountered, the third
parameter’s shadowbox is read from SDG and checked to determine whether the
parameter contains sensitive information.

SDG’s content (when the branch statement is true) is partially shown in
Figure 2.12 By checking the shadowbox referenced by ‘a.attr.b’ (the box with red
line), we can learn that the third parameter is not tainted.

12 Since most variable scopes are the same, scope information in variable representations
is hidden to make SDG more concise.
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HashMap and Linear Data Structures. The propagation problem caused
by common data structures is due to their lack of regular field information,
which makes it difficult to locate target variables. To mitigate this problem, we
model common data structures using ‘shadowbox’, and augment common data
structures by adding explicit fields to them that enable us to apply our analysis
rules and handle them similar to regular data structures.

We use keys in a hashmap as the explicit fields, since keys are always
unique. We leverage value analysis to retrieve the keys’ values, which are then
treated as fields. Thus the instructions ‘value = H.get(key)’ and ‘H.get(key)
= value’ can be converted to assignment statements ‘value = FDGH(key)’ and
‘FDGH(key) = value’, where H is an instance of hashmap.

We select the element position in linear data structures (such as list, ar-
ray, Android Parcel, etc.) as the explicit fields. Thus the instructions ‘value =

array[index]’ and ‘array[index] = value’ can be converted to assignment
statements ‘value = FDGarray(index)’ and ‘FDGarray(index) = value’.

Most cases can be handled using the above intuition by computing index’s
value in advance (Section 3.4), and converting it to a regular field. However, since
an operation’s index value is changeable, such as injecting a new element in the
middle of a list, or merging two lists, we maintain the data structures’ internal
state (which is represented by FDG) during updates. For example, consider if an
element e is inserted into a list L at the position i through the API ‘L.add(i, e)’.
FDGL can be updated to

FDG′
L ={(v, FDGL(v)) | v ∈ FDGL.fields ∧ v < i}
∪ {(i, e) | i→ e}
∪ {(v + 1, FDGL(v)) | v ∈ FDGL.fields ∧ v >= i}.

Similarly, operations in Android Bundle and Parcel are also supported.

4 BridgeScope

In this section, we present the design and implementation details of BridgeScope,
and we explore the major challenges we encountered in detecting JavaScript
Bridge problems and how BridgeScope intuitively solves these challenges.

4.1 Challenges and Solutions

Semantic gap between web and native code. This adds complexity to the
analysis, especially when the suspicious command and control web code is not
available, which is true for most cases.



To solve the problem, we assume that the code O loaded in WebView is
omnipotent, which means O has the capability to do anything through the
JavaScript Bridge. Under this assumption, it is only necessary to focus on the
analysis of JavaScript Bridge, which lowers the complexity and scope of our
analysis.

However, actual code R loaded in WebView has the following relationship
with O: R ⊂ O, which means our initial assumption introduces false positives
to our analysis, as it may be not feasible for attackers to launch code injection
attacks in some cases. For instance, if a benign app’s communications with remote
servers are always properly protected, then even when there is a sensitive bridge
found in the app, it is still hard to exploit.

To reduce false positives, we consider the complexity for attackers to launch
attacks (i.e., attack complexity). We discuss more details in Section 5.

Semantic gap between different WebView implementations. As dis-
cussed in Section 2.1, there are multiple WebView implementations in the Android
platform. The major challenge is to eliminate the semantic gap between different
implementations to enable a generic analysis. For example, the default Android
WebView uses addJavascriptInterface(BridgeObject,BridgeName) to en-
able a JavaScript Bridge, while rhino-based WebView uses putProperty(scope,
BridgeName, BridgeObject). Similarly, the default WebView in Android 4.2
and above requires the annotation ‘@JavascriptInterface’, while the default Web-
View in older Android versions and Rhino does not use any annotation feature.

Rather than specifically hard-coding and addressing each different implemen-
tation and their syntax differences, we observe that all implementations have key
common elements that follow the model shown in Section 2.1. Armed with that
observation, we address this challenge by translating different implementations
to an intermediate representation. This gives us an abstraction that lowers the
semantic gap and eliminates the diversity to allow analysis that is agnostic of
the specific implementation.

Difficulty in identifying all JavaScript Bridges. A quick but naive solution
to identify Android’s default WebView in 4.2 and above, as well as Crosswalk and
Chromeview, is to directly search for annotations. However, this approach may
introduce false negatives because it is not generic, different WebView implementa-
tions do not use the same annotation syntax, and annotated functions may only
be known at runtime. While our generic WebView model supports the annotation
mechanism, it is still not possible to apply a simple search approach. Specifically,
due to the well-known program analysis points-to problem [30], BridgeObject
cannot be easily identified, meaning that functions which are annotated are
only identifiable at runtime. Additionally, it is error-prone due to annotation
inheritance.

To address this challenge, we leverage a shadowbox dependency graph (see
Section 3), which we use to first identify all possible WebView implementations,
and further identify JavaScript Bridges for each WebView according to the
semantics of WebView.



During analysis, a key consideration is to maintain the status of variables,
especially WebView, so that critical information can be quickly extracted, such
as the pair 〈BridgeObject, BridgeName〉. Then, all JavaScript Bridges can be
extracted using the ‘shadowbox’ data structure and its dependency graph (see
Section 3).
Unknown semantics of functions in JavaScript Bridge. Generally, the
native end of the JavaScript Bridge is a black box, since its source code is not
always readily available. It is challenging to reconstruct the semantics of each
function in a bridge (i.e., bridge function), but it is a critical step in undersanding
the functionality to decide which bridge is sensitive. To solve the problem, we use
fine-grained data flow analysis on all functions of JavaScript Bridges by tracking
their parameters and system sensitive information.
Unknown input format of JavaScript Bridge. Even when a sensitive bridge
is found, it is still challenging to validate it since appropriately formatted input
data is required. We mitigate the problem by applying several heuristics informa-
tion gathered from our analysis results, such as the data flow information, key
API semantic, etc.

4.2 System Overview

Fig. 3. Overview of BridgeScope

As shown in Figure 3, our static analysis approach BridgeScope consists of
four main components: WebView abstraction, WebView and bridge discovery,
bridge analysis, and log analysis. Given an app, the WebView abstraction module
firstly disassembles it to the Dalvik bytecode13 and then abstracts all WebView
implementations in the app by translating the different implementations of
WebView to an ‘intermediate representation’.

Next, starting from entry points of activities [4, 21], type and value/string
analysis based on shadowbox is performed to extract control flow graph (CFG),
where type analysis is critical to resolve virtual function calls and solve points-to
problem, and value/string analysis is useful to resolve Java reflection. Compared
with existing approaches to generate CFG, our approach is fine-grained and
complete.

In addition, during the process, value/string analysis is also run specifically
for two situations: 1) when JavaScript is enabled or disabled in WebView, the key
parameter’s value is computed; 2) When the pair ‘〈BridgeObject, BridgeName〉’
is configured, BridgeName’s value is also computed.

Then, all methods in BridgeObject are further analyzed by means of data
flow analysis to identify sensitive bridges. Finally, the log analysis module collects

13 https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html



all analysis results from other modules and further generates heuristic information
for the test attack code generation purpose.

4.3 WebView Abstraction

This module fills the semantic gap between different WebViews, which is done by
translating different implementations of WebView into a generic ‘intermediate
representation’. We devise an ‘intermediate representation’ scheme, including
common APIs (Table 2), and a generalized annotation mechanism.

API Description

add bridge(BridgeObject, BridgeName) Add JavaScript Bridge to WebView
enable js(boolean) Enable/disable JavaScript
set event handler(event handler) Register event handler
load(URL / local file / JavaScript code) Run WebView

Table 2. Generic WebView common APIs

To support the annotation mechanism, which identifies Bridge Objects, we
define the common annotation ‘@JavaScriptBridge’ and apply it to all WebView
instances, overwriting any specific annotation implementation such as in Android
WebView in 4.2+ and Crosswalk.

We generalize WebView using shadowbox, whose structure is shown in Table
3. Generally, WebView contains three types of fields: 1) JsFlag, which indicates
whether JavaScript is enabled; 2) Event Handler, which is used to react to
different events (e.g., URL redirection, errors in web pages); 3) and JavaScript
Bridge, which is a handle to a Bridge Object between the native and web context.

(a)
DataType Fields
WebView JsFlag (¡) EventHandler Bridge#0 Bridge#1..

(b)
DataType Fields

Bridge BridgeObject BridgeName(¡)

Table 3. The generic model representation of WebView (a) and JavaScript Bridge (b).
Note that we use the special symbol ‘¡’ to indicate that when the associated field is
initialized or changed, it should be computed by value/string analysis immediately.

4.4 WebView And Bridge Discovery

The goal of this module is to discover all WebView components and bridges. We
apply type and value/string analysis based on shadowbox on the generalized
WebView code (Section 4.3). This allows us to generate a complete control flow
graph (CFG), and enables discovery of most WebViews and JavaScript Bridges
within an app.

The analysis starts from entry points of Android Activities, since a WebView
is almost always launched within an Activity. Even if a WebView is standalone
or independent (such as Xbot [24]), we can still identify it after obtaining the
CFG of the target app.

During analysis, data types of key variables, such as BridgeObject, are also
for the further analysis (Section 4.5). Additionally, values of key variables, such
as JsF lag and BridgeName (Section 4.3), are computed on demand with the
help of value and string analysis. JsF lag can be used to filter out WebViews
whose JavaScript is disabled (i.e., JsF lag is false), while BridgeName is helpful
in attack code generation.



4.5 Bridge Analysis

The goal of the module is to identify sensitive bridges from all bridges in
BridgeObject. To achieve the goal, it is critical to reconstruct the semantics and
learn the functionality of all exposed functions in BridgeObject (i.e., bridge func-
tion), which are annotated with ‘@JavaScriptBridge’ (Section 4.3). In BridgeScope,
we apply taint analysis (Section 3) based on shadowbox on each function by
tracking data flow of function parameters (TP ) and system sensitive information
(TS). To distinguish these two types of information, we define different taint value
ranges : [TPmin, TPmax], and [TSmin, TSmax]. Initially, parameters of a bridge
function are tainted from left to right sequentially. Specifically, the nth parameter
is assigned with the taint value TPmin ∗ 2n. During analysis, if a sensitive native
API (Section 2.3) is invoked, we take a snapshot of their parameters’ states (e.g.,
the associated shadowboxes), which will be analyzed further.

Finally, a bridge function’s semantic information is reconstructed based on
its data flow analysis result. A bridge function will be flagged as sensitive
if: 1) its return is tainted by the value t while t ∈ [TSmin, TSmax], 2) or a
sink API s() is called while s()’s parameters are tainted, 3) or a danger API is
invoked. Based on the above three scenarios, we categorize all bridge functions
into SourceBridge, SinkBridge, and DangerBridge, correlating to the API
categorization as defined in Section 2.3.

As a result, an app can be flagged as potentially vulnerable, if a sensitive
bridge function f is found by BridgeScope. We use the following reasoning: 1)
if f ∈ SourceBridge, it means that sensitive information can be obtained in
the web context. Then, an attacker can send out sensitive information through
network related APIs in the web context (like XMLHttpRequest()) or a sink
JavaScript Bridge if it exists; 2) if f ∈ SinkBridge, security checks in event
handlers in WebView, such as shouldOverrideUrlLoading(), can be evaded; 3)
if f ∈ DangerBridge, a danger API can be accessed through f .

4.6 Log Analysis And Exploit Code Generation

Purpose Collected information Which module
Triggering WebView UI Events

WebView &
Bridge Discovery

Generating test code

Domains associated with WebView
〈BridgeObject, BridgeName〉
Semantics of bridge functions

Bridge Analysis
SourceBridge,SinkBridge,DangerBridge

Table 4. Collected Information

BridgeScope collects a rich set of heuristics information for the app under
analysis as it executes each module (Table 4). This information is useful to further
analyze flagged sensitive bridges and to generate test attack code. Furthermore,
inspired by SMV-Hunter [29], we retrieve required UI events for triggering target
WebViews by analyzing the result of the ‘WebView and bridge discovery’ module.

Algorithm 1 outlines our approach that leverages the above collected informa-
tion to generate test code to verify discovered vulnerabilities. In the algorithm, a
function create input() is assumed to generate appropriate inputs for each bridge
function. We implement it as a smart fuzzer using the following heuristics:



Algorithm 1 Test Code Generation
1: function generate test code
2: for f in SourceBridge do
3: input← create input(f);
4: fname← replace bridgeobject with bridgename(P, f);
5: add test code(X, “var r = fname(input)”) . append the JavaScript code to the result X
6: for d in Domains do . bypass security check in event handler
7: add test code(X, “XMLHttpRequest(http://d/r)”)
8: end for
9: for f ′ in SinkBridge do
10: input′ ← create input(f ′,“r”);
11: fname′ ← replace bridgeobject with bridgename(P, f ′);
12: add test code(X, “fname′(input′)”)
13: end for
14: end for
15: for f in SinkBridge ∪DangerBridge do
16: input← create input(f);
17: fname← replace bridgeobject with bridgename(P, f);
18: add test code(X, “fname(input)”)
19: end for
20: return X
21: end function

– Data Types: Based on data type information of parameters of bridge func-
tions, which is gathered from type analysis, we can generate random but
valid inputs [29].

– Bridge Function Name: The bridge function name itself also provides an
important clue. For example, if the function name is downloadImage() and
the input is of type String, then input is likely a URI of a picture file. In
our fuzzer, we handle several keywords, such as “url”, “email”, “picture”,
“camera”, “audio”, “video”, “SMS”, “call” to provide typical input values.

– Semantics of bridge functions and key native APIs: We can also build
input by utilizing the semantic information. For instance, assume there is a
path in CFG from a bridge function to a sensitive API : f(p0 : string, p1 :
string) sendTextMessage(v0, null, v2, null, null), where v0 and v2’s taint
values are TPmin ∗ 2 and TPmin ∗ 4, respectively. The data flow in the bridge
function includes p0  v0 and p1  v2. Since in sendTextMessage(), v0 is
the destination address, and v2 is the message content to be sent, p0 and
p1 are likely a phone number and message content. Therefore, the following
input can be used to test the sensitive bridge function: f("0123456789",
"test").

5 Evaluation of BridgeScope

In this section, we present our evaluation of BridgeScope. First, we measure the
performance of the programming analysis techniques by leveraging the generic
benchmark DroidBench. Then, we evaluate BridgeScope’s efficacy, precision, and
overhead using 13,000 popular apps, and present our findings. Finally, we present
some interesting case studies to illustrate the JavaScript Bridge vulnerability.



5.1 Performance Of Shadowbox Analysis

We evaluate the precision of shadowbox analysis using the generic benchmark
DroidBench 2.0. Our test results (Table 5) show BridgeScope’s overall precision is
93%, compared to 77% and 89% for Flowdroid [4] and Amandroid [33], respectively,
and BridgeScope’s recall and F-score are also better than the others. Our use
of shadowbox analysis benefits from its path- and value-sensitivity, and it is
fine-grained, especially in handling common data structures.

DroidBench BridgeScope Flowdroid Amandroid

Aliasing © ©
Android specific ×× ×× ×××
Arrays and lists ©©©© ©©©©×

Callbacks ×× ©©× ©©©©××××
Emulator detection ×× ×× ××

Field/Object Sensitivity
General java ©©×× ©{4} × × ×× ©××
Implicit flows – – –

Interapp communication ©©©
ICC ×××× ©{16} × × ×× ©×××××

Lifecycle ©× ©×× ××××
Reflection ×××
Threading × × ×{5}

Totally found paths F 105 121 99

False Positives O 7 28 11

False Negatives X 21 26 31

Precision p = (F −O)/F 93% 77% 89%
Recall r = (F −O)/(F −O + X) 82% 78% 74%

F-score 2 ∗ p ∗ r/(p + r) 0.88 0.78 0.81

Table 5. Testing Result on DroidBench. × represents suspicious data flows not detected,
and © represents benign data flows flagged as suspicious. The number in {} represents
the number of errors.

5.2 Performance of BridgeScope

Dataset. We use 13,000 apps that were collected from the Google Play app
market. We crawled these apps from 26 categories, and extracted the top 500
most popular free apps for each category.
Scalability. We implemented BridgeScope in 8,157 lines of Python code on the
top of the disassembly tool Apktool14. We deployed our tool on a university server,
which is allocated with 20 CPU cores and 100 GB of memory. Due to Python’s
poor support for multiple threads, we run single process and single thread for
the analysis (i.e., starting 20 processes for 20 apps each time). Finally, with the
boost of the JIT (Just-in-Time) based Python interpreter (such as pypy15), the
average analysis time of each process is 141 seconds. Thus, the average analysis
time for each app is around 7 seconds. This suggests that BridgeScope is indeed
capable of scaling to the level of real-worlds app markets to provide vulnerability
detection services.

14 https://ibotpeaches.github.io/Apktool/
15 https://pypy.org/



Precision. Among 13,000 apps, we find that 11,913 apps have at least one
WebView component and 8,146 apps declare at least one JavaScript Bridge
interface. In total, 913 apps were flagged as potentially vulnerable apps by
BridgeScope, while a total of 1,530 sensitive bridge functions were found, including
56 bridge functions which could suffer from SOP Violation Attacks (Section 2.2).

Measuring false positives and negatives. A false positive occurs when an
app is flagged as potentially vulnerable by BridgeScope, but has no vulnerability.
A false negative occurs when an app is flagged as non-vulnerable by BridgeScope,
but includes a JavaScript Bridge vulnerability.

Since it is hard to directly collect ground truth for the dataset, manual
verification may be necessary, which is a difficult and tedious job for such a
large dataset. To reduce the workload, we first design a dynamic verification
module to automatically validate the potentially vulnerable apps (thus we do not
need to manually validate all data) when analyzing false positives. Additionally,
we manually analyzed a small set of 20 randomly chosen apps from those not
marked as potentially vulnerable, which we used as the basis of measuring the
false negative rate.

Fig. 4. Overview of the dynamic verification module

As shown in Figure 4, our dynamic verification module is built around an
instrumented Android Emulator, where all executed functions of apps under test
are outputted, sensitive information is modified to special values, and native
sink APIs parameters (e.g., WebView.load) are also outputted. In the module,
UI Event Trigger [29] is used to input UI required event sequentially to trigger
target WebViews, while Network Proxy is used to launch MITM attacks to inject
attack code, which is generated using the example algorithm mentioned earlier
(Algorithm 1).

In our evaluation we also hijack all network traffic, including HTTPS, so
that we can further analyze the complexity faced by attackers who launch code
injection attacks (i.e., Attack Complexity Analysis). We mainly consider three
scenarios : 1) HTTP : the remote server is connected over HTTP; 2) first-party
HTTPS : the remote server belonging to developers is connected over HTTPS;
3) third-party HTTPS : others. In Attack Complexity Analysis, we use the URL
loaded by the WebView as input, and initiate a crawler to check all accessible
URLs, similar to the approach in [14].

Finally, we check whether a potential vulnerability is successfully exploited
by analyzing logs from the Android Emulator and proxy (i.e., Log Analysis).
If a bridge function f satisfies: 1) f ∈ SourceBridge, it can be verified by



checking executed functions, sink API’s parameters and proxy’s traffic. 2) f ∈
SinkBridge ∪DangerBridge, it can be verified by checking executed functions.
False Positives. By means of the dynamic verification module, we found that
617 potentially vulnerable apps flagged by BridgeScope are successfully exploited
(i.e., they are surely not false positives). This reduces our manual verification job
to only 296 non-verified potentially vulnerable apps. We then randomly selected
20 apps and manually analyzed them. We found most of them still contain
vulnerable bridges that could be exploited. The reason they are missed by the
dynamic verification module is because the dynamic module uses heuristics but
cannot guarantee the completeness. For example, it may not always generate
proper input formats of the JavaScript Bridges, such as the JSON string. There
are 4 apps that use WebView to load local HTML files instead of connecting to
Internet. While these 4 apps could be considered as false positives of BridgeScope
(because our assumed network adversary may not be able to inject attack code in
this case), we argue that they could still be vulnerable/exploited in an extended
threat model in which external HTML files are not trusted (which could be also
reasonable considering that these files could be manipulated by malicious apps
in the phone).
False Negatives. To evaluate the false negatives of BridgeScope, we randomly
selected 20 apps from those non-potentially-vulnerable apps that had at least
one WebView. Thorough manual review and testing (almost 1 hour per app) of
how the WebViews are used in those 20 apps, showed that none were potentially
vulnerable, suggesting that indeed our false negative rate is relatively low.

5.3 Overall Findings

Diverse WebView implementations. Based on our static analysis result, we
found that WebView implementations are indeed diverse. Table 6 shows the
distribution of different WebView implementations in our dataset.

Android Default
WebView

Mozilla Rhino
Based WebView

Chromeview XWalkView Total

11,823 526 20 0 11,913

Table 6. Diverse WebView Implementations

Evadable Security Checks in WebView event handlers. As shown in
Section 2, event handlers perform security checks on the URL to be connected.
However, in our evaluation we found that the customized event handler did
not properly protect sensitive information leakage. Once sensitive information
is successfully obtained in the web context, it can always be directly sent out
through a JavaScript API or by dynamically creating DOM elements [9].
Attacking capability. To further understand the attack capability on those
potentially vulnerable apps, we analyze the different sinks and sensitive APIs of
those confirmed potentially vulnerable apps and summarize the attack capabilities
shown in Table 7. The most common attack enabled is to steal private information
from content providers. This is due to the fact that a large number of potentially
vulnerable apps use sensitive JavaScript Bridges to load authentication tokens
from content providers. We also observe that attackers can launch diverse attacks



including some critical attacks such as sending text messages, sending emails,
and playing videos.

Attack Capability App Number Attack Capability App Number

Leaking Content Provider Content 241 Sending text message by intent 57
Leaking the Device ID 42 Sending email by intent 51
Leaking phone numbers 14 Playing video by intent 61

Directly sending text message 2 Create Calendar by intent 171
Downloading/Saving Picture 344 SOP Violation Attack 41

Table 7. Attacking Capability Distribution

Network Channel HTTP Third-Party HTTPS HTTPS
Difficulty Easy Medium Hard
Number 224 103 290

Table 8. Difficulty to exploit vulnerabilities

Attack complexity. To reduce the false positive caused by our analysis assump-
tion (Section 4.1) and further understand the relative difficulty of launching
attacks on vulnerable apps, we define three attack complexity levels:

– Hard : The content in a vulnerable WebView is loaded over first-party HTTPS.
In this case, those vulnerable JavaScript Bridges could be intentional bridges
to the trusted JavaScript in the first-party content. However, it could still be
attacked by hijacking HTTPS traffic [3], especially considering that HTTPS
can be very poorly/insecurely implemented or used in mobile apps [11,13].

– Medium : The vulnerable WebView loads third-party content over HTTPS. It
faces similar risks as above [3,11,13]. In addition, attackers could compromise
third-party content (such as through a Content Delivery Network [20]) to
inject the malicious JavaScript.

– Easy : The vulnerable WebView loads web content through HTTP. In this
case, attackers can easily inject the malicious JavaScript into HTTP traffic.

Based on the above definitions, Table 8 shows the results of attacking com-
plexity analysis of our automatically verified vulnerable apps. We can see that
the majority of vulnerable apps are hard to attack, but we also note that most
apps that fall into this category contain JavaScript Bridges that explicitly allow
trusted JavaScript to access sensitive information from users. In other words, as
long as the transport protocol is compromised, attacker capabilities are enhanced.
Recent disclosures of the fragility of HTTPS [5,6] makes this scenario more trivial
than not.

We also observe that there exists a large number of vulnerable apps using the
HTTP protocol, which can be obviously easily attacked through code injection
since communication is in clear text.

5.4 Case Studies

We present two interesting case studies of vulnerable apps here. In the interest of
responsible disclosure, we avoid naming the specific apps at this time while we
notify developers and coordinate possible fixes.



Case 1 : Advertisement library vulnerability. In this case, the vulnerable
app loads an advertisement library, which is a common practice in app develop-
ment. However, this ad library contains a vulnerable WebView, which is used to
communicate with the advertiser’s website to retrieve advertising content over
the HTTP protocol. BridgeScope detects only one vulnerable JavaScript Bridge
imported into this vulnerable WebView. However, 56 methods are available in
this vulnerable JavaScript Bridge. Among them, 19 are critical methods, which
can be invoked by attackers to steal sensitive information (such as device ID,
WIFI status, network operator name, and user’s internal data) and download or
delete files and folders in the device.

We found 12 apps in our dataset that used this vulnerable advertisement
library, making all of them equally vulnerable.

Case 2 : Vulnerable browser apps. Developers often extend WebView to
quickly create and specify their own customized browser apps. Many specialized
‘browsers’ on the app market use this model. We crawled 100 popular browser
apps from Google Play in January 2016. 74 of them are merely extensions of the
standard WebView. BridgeScope successfully detected 6 vulnerable browser apps
that can be exploited to leak sensitive information such as device ID (5 apps),
phone number (1 app), serial number (1 app).

We also found one popular browsers app, downloaded by more than 100,000
users, which suffers from SOP Violation Attacks. The app is designed to provide
an ad-free user experience by filtering out ads using a blacklist. A bridge function,
named ‘applyAdsRules(String url)’, checks whether the url is related to an
advertisement website. If the url is ‘safe’, it will be sent to the app’s main
Activity to render it using the key API WebV iew.loadUrl(url). This fits the
pattern of the SOP violation attack, giving an attacker the ability to load content
that he knows not to be blacklisted by the app’s filter function to launch client-side
XSS attacks.

Different from other apps, these browser apps have much larger attack surfaces
since the website (e.g, third-party) to be accessed and the protocol used in
communications (e.g, HTTP or HTTPS) are specified by users, making them
relatively easy to attack by simply redirecting a user to an attacker-controlled
website.

5.5 Results on Real-world Malware

In addition to finding potential vulnerabilities in benign apps, we also test our
tool on real-world malware that uses JavaScript Bridge techniques. By searching
reports from Honeynet [2] and Palo Alto Networks [24], we collected 23 malicious
apps that were reported to employ JavaScript Bridge techniques.

By running BridgeScope on these malicious apps, we found a total of 68
sensitive bridges. Although the malicious servers were already down, BridgeScope
still successfully identified malicious behaviors hidden in JavaScript Bridges,
including leaking of sensitive information, sending text messages, and prompting
fake notifications, which are the same as the report descriptions about these
malware by Honeynet [2] and Palo Alto Networks [24].



6 Discussion

Limitation in Static Analysis. Similar to other existing static analysis tools [4,
33], our work does not handle implicit data flow, or low level libraries written
in C/C++, which may lead to false negatives. However, C/C++ library could
be mitigated by modeling their functions, such as system.arraycopy(). We leave
implicit data flow tracking as our future work.
More comments on HTTPS. In this paper, some of detected vulnerable apps
require hijacking HTTPS in order to exploit them. We consider that while HTTPS
may pose a higher level of complexity and difficulty for exploiting JavaScript
Bridge vulnerabilities, it is still a realistic threat vector because HTTPS is widely
implemented insecurely/poorly in mobile apps [11, 13] and several recent high
profile works also showed the inherent issues of HTTPS [5, 6, 20]. Therefore,
once attackers can successfully hijack HTTPS, they can exploit our reported
vulnerabilities to launch diverse critical attacks ( shown in Table 7).

7 Related Work

WebView Security. Luo et al. [22] exposed attack vectors in WebView, and
demonstrated the JavaScript Bridge vulnerability. Chin et al. [8] analyzed Web-
View vulnerabilities that result in excess authorization and file-based cross-zone
scripting attacks. Mutchler et al. [23] did a generic large scale study on security
issues (such as unsafe navigation and unsafe content retrieval) in Android apps
equipped with WebView. Wu et al. [34] discussed file leakage problems caused by
file:// and content:// schemes in WebView. Georgiev et. al. [14] did a study on
a popular third-party hybrid middleware frameworks. Hassanshahi et. al. [17]
studied the security issues caused by intent hyperlinks.

The JavaScript Bridge vulnerability is rooted in the conflict between security
models of the native and web context [14], and the lack of privilege isolation [19].
The approach NoFrak proposed by [14] partially solves the conflict by extending
the web’s same original policy (SOP) to the local resources. Other works such
as MobileIFC [28] also propose a similar concept of extending SOP to mediate
access control between the mobile and web context within a hybrid app. Jin et.
al. [19] proposed a defense solution for JavaScript Bridge vulnerabilities in hybrid
apps, with focus on privilege separation based on iFrame instances within the
WebView. In [31], the authors proposed Draco, a uniform and fine-grained access
control framework for web code running in Android default WebView.
Privacy Detection And Protection. Taint analysis is an effective approach
for detecting privacy leakage. On Android, systems such as TaintDroid [10] and
FlowDroid [4] are among some of the most well-known taint-based systems.
Existing Android analysis tools [4,7,12,15,33] may be useful for detection of vul-
nerabilities. However, existing work either performed coarse-grained analysis, or
imposed high performance overhead [7,18]. Furthermore, existing work could not
handle the semantics of JavaScript Bridge and diverse WebView implementations.

8 Conclusion

The integration of mobile and web through the use of WebView requires compro-
mises to be made in the security of both platforms. Subsequently, we find that



the current design and practices in the implementation of WebView causes a
class of generic vulnerabilities that can be exploited by attackers to cause serious
problems on mobile devices. We implement an analysis framework, BridgeScope,
which can automatically discover vulnerabilities in a hybrid mobile app and
generate test attack code that is then automatically verified as a feasible ex-
ploit. Our system is implemented in Android, and we provide evaluation that
shows our system is a feasible approach to automatically and precisely discover
vulnerabilities at large scale.
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