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Abstract—In this paper, we first show that Group Owner (GO) and waits for its acceptance. The GO’s user acceptanceds use
I the EviDirect atack, a 1ogue GO 15 set Up by an adversary to * 2 oinentication and to perform a D key exchange.
n ' . ;
ok e th it GO o same WAC adres S35, , 07 IO SETy concer and esear chalence o e
and operating channel). The adversary intercepts the clients’ X e hp .
invitation requests and accepts them before the legitimate GO. We refer to this a£vilDirect attack. An EvilDirect is a rogue
Accordingly, the adversary hijacks the wireless communications GO that operates on the same channel as the legitimate GO
between the clients and the legitimate GO. To defend against the gnd has the same MAC address and SSID. It is set up by an
EvilDirect attack, we propose the idea of exploiting the received 54yarsary, who accepts the clients invitation requestsrbef
signal strength (RSS) variations on the wireless channel betweenthe legitimate GO, to hijack the wireless communications
each client and the legitimate GO. Our solution EvilDirectHunter ) ’ o
checks whether the RSS profiles of both the client and the between the clients and the legitimate GO. The best areas for
potential GO devices are similar with each other. Both devices EvilDirect attacker are public, indoor areas. These araase
incrementally prove this similarity by exchanging challenge and ejtherdynamic environmenignobile devices, and/or there are
response packets. EvilDirectHunter is evaluated by implementing ,qije intermediate objects in the environment, e.g.,catrp
it as an Android App, and by modifying the Android kernel code lounges, cafes, restaurants, or student community areas)
responsible for Wi-Fi Direct in Google Nexus 5 and Samsung . o ! . ' /1
Galaxy S2 smartphones. The results show that EvilDirectHunter Static environmentgstatic devices, and there are few mobile
is able, within seconds, to identify EvilDirect attacks with a high intermediate objects in the environment, e.g., libraridsje
detection rate (100%) while maintaining a low false positive rate EvilDirect attack can be successfully launched becauseiGOs
(4.5%). Wi-Fi Direct have no form of identification except their MAC
addresses and SSIDs, which can easily be impersonated. The
Push-Button method specifications (pages 78-83 of [3]Estat
that the client must complete a scan of all 802.11 channels

Today’s smartphones are equipped with a new emergitigat it supports to discover if any other nearby GOs are in
wireless standard that allows users to establish an adiRash-Button mode. If the client discovers more than one GO
wireless network (without a wireless router) and excharaga d in Push-Button mode, it must abort its connection attempt
among them. The new standard, the Wi-Fi Direct protocol [1ind signal an error to the user. However, we successfully
is built upon the IEEE 802.11 infrastructure and it takes launched EvilDirect attack due to the fact that two GOs (with
different approach to enhance device-to-device conrigctivthe same MAC address, SSID, and operating channel) are
Instead of leveraging the adhoc mode of operation betwesdlistinguishable by the clients and treated as a single GO.
two devices, Wi-Fi Direct enables the devices to form P2P Many approaches have been proposed to detect spoofing
groups by negotiating which device will be the Group Ownen wireless networks. [8] [9] [10] detect rogue APs by
(GO) and which devices will be the clients. Wi-Fi Direct idifferentiating (and comparing with an authorized listeth
used for data sharing, video streaming, mobile printingl anmraffic between the wired and wireless connections. Others
gaming. The shipments [2] of Wi-Fi Direct devices (tabletdike [11] [12] [13] monitor Radio Frequency airwaves col-
smartphones, and smart TVs) reached around 1,700 millionléted at routers and compare that with a known authorised i
2016, and it is predicted to reach three billion in 2019. The above methods require a network administrator (not-avai

In order to establish a secure connection between twable in Wi-Fi Direct) and authorization lists to check if &ecit
devices, Wi-Fi Direct implements the in-band mode of Wi-Fises a rogue AP. The user oriented approaches [14] [15]tdetec
Protected Setup (WPS) protocol [3]. There are two methotle rogue APs at the client side by identifying differenaes i
for the in-band mode: PIN and Push-Button methods. In thiee nhumber of wireless hops (one hop from two hops). These
PIN method, a device password, which is obtained from tla@proaches cannot be applied to Wi-Fi Direct since the tdien
GO and entered into the client using a keypad, is used dad the GO are connected by a single hop link. Many wireless
perform a Diffie-Hellman (D-H) key exchange to guaranteiatrusion detection systems (WIDS) [16] [17] [18], which
the authentication between the devices. The PIN methoshuire a training phase and use sniffers, have been prdpose
vulnerabilities to online [4] and offline [5] brute force atks to detect session hijacking attacks in wireless networkRese
were addressed by previous works [6] [7]. In the Push-ButtaIDS are based on behavioral analysis to detect deviations
method, the client invites the GO to start the WPS protoctslbm normal behaviors. However, WIDS are not always avail-
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an open research problem for the Push-Button method.  co s - Ty e
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dynamic environmentswe propose to detect the EvilDirectZyfy o2 6588 ¢/9.818 8 o 8 g5 3| 252

attack by employing the inherent randomness in the Wireless% ;:ei ﬁi 2g 7 ) s = il 3 ;;

channel between the clients and the GO. The properties [19] 0 " ° =Y

the radio channel are unique to the locations of any two @svic slTlclh“HslTlclh ---------- A [T <o Time

because: a) The multi-path properties of the channel at any sren: i channel 11 [armns Req

point in time are identical in both directions of the link; the Fig. 1: Frame exchange sequence for Standard mechanism.

temporal variations in the channel (i.e., the multi-pataratel . . . .
changes due to motion of people in the environment). As aThe P2P devices in the Standard formation mechanism start

result, the adversary will measure a different and uncateel bY executing a “discoyery algorithm™ as shown in Figure 1
radio channel due to the following reasons: a) He cannot BﬁrSt, elacg ZZP dlerlc.:e tﬁelech (;:e gf t(?e ch'?nr}elts (."e"
very close to the legitimate GO or the client (i.e., closemth channeis ., ©, or in e <. z band) as its listening
one half of the wavelength)); b) He cannot restrict other channel. Second, a P2P device alternates between the search
movements in the area (passengers, customers, etc.). If/los%rbd I|§ten ts)tates.cljn the sebarch state, the devur:]e plf]erfcmulvsla h
current wireless cards of smartphones are able to measare YfA"MNG by sending probe requests in each channel. In the

received signal strength (RSS). Thus, we exploit this céipab I?ten stla;[e, the de\gce.tllhstensbfor probe requiséts ":ﬁte':mg pop
in our detection. Our proposed protocol, EvilDirectHuptef'21N€! o respond with probe responses. After the two

is an interactive protocol that executes between eachtcliéifVices find each other, they start the Service Discovergepha
in the P2P group and the GO. Each client records an RSSINe Service Discovery phase in the Standard formation
profile for the legitimate GO, which in turn records a profildneéchanism (shown in Figure 1) is an additional feature for Wi
for each client in the P2P group. EvilDirectHunter checks! Direct devices, which was not present in the traditional W
whether the RSS profiles of both the client and potential GIJ N€tworks (the only service in which clients are interdste
devices are similar to each other by exchanging challeng'em_te”‘et connectivity). Before establishing a P2P gragP
and response packets. Fetatic environmenisdue to the CJ€VICES exchange queries to discover their available cEsvi
lack of randomness in the wireless channel, there are I&Rd: based on this, decide whether to continue the group

variations in the RSS profiles. These low RSS variations dfgfmation or not. Service discovery queries are generayeal b
not sufficient to detect the EvilDirect attacks. Accordingl Nigher layer protocol (UPnP or Bonjour [21]), and employing

our EvilDirectHunter executes an additional detectionsgha the link layer Generic Advertisement Protocol (GAS) spec-
which is designed for the static environments. This phaselfigd by 802.11u [22]. GAS is a layer o query/response
based on Multi-Dimensional Scaling (MDS) algorithm [20 rotocol implemented throu_gh the use of public action fra,me_
and involves a cooperation among all clients in the P2P grodat allows two non-associated devices to exchange queries
Moreover, this phase requires that each client calculates P€longing to a higher layer protocol.
average of the RSS values of the last five packets that werd he Standard formation mechanism has an additional phase,
overheard by it when any other client exchanged packets wifife GO Negotiation (shown in Figure 1), which is implemented
the legitimate GO. using three-way handshake messages (Request, Respaihse, an
The contributions of this paper are as follows: a) We demof-onfirmation). These messages enable the two devices to
strate a successful EvilDirect attack against Wi-Fi Di@@s; decide which one will be the GO and on which channel
b) We design a new protocol, EvilDirectHunter, to detect tH&e P2P group will operate. Each device sends a numerical
EvilDirect attacks in both dynamic and static environmgn)s Parameter (Intent Value (IV)) and a tiebreaker bit withie th
We demonstrate the feasibility of EvilDirectHunter thrbug handshake messages. The device with the highest IV becomes
real implementation on Google Nexus 5 and Samsung Galdfg GO. The tiebreaker bit prevents conflicts when two device
S2 smartphones; d) We prove the effectiveness of EvilDiregeclare the same IV. In Figure 1, the upper device wins the
tHunter by showing that it identifies EvilDirect attacks wia GO Negotiation, and selects channel 11 for its P2P group with

high detection rate while maintaining a low false positigger SSID="Alice” (set by the user). Then, this GO starts to beaco
on channel 11 and waits for new clients to join its group (the

Il. Wi-FI DIRECT BACKGROUND new clients will not execute the GO Negotiation phase).

Wi-Fi Direct’s devices have dynamic roles [1] (the role The Wireless Protected Setup (WPS) Provisioning [3] phase
of GO and the role of client). These devices form P2@ implemented by the Standard formation mechanism, as
groups, which are equivalent in terms of functionalities tehown in Figure 1. WPS aims to achieve a secure connection
the Wi-Fi infrastructure networks. In any P2P group, P2P Glaetween P2P clients and P2P GO. WPS has two modes of
implements the AP-like functionality, and the other desiage oOperation: in-band mode and out-of-band mode. There are
P2P clients. There are three group formation mechanisms f@p methods for the in-band mode: Push-Button method and
to establish a P2P group: Standard, Autonomous (which &&N method. Both methods are used for authentication and to
our focus in this paper), and Persistent. Each mechanism g&tablish Diffie-Hellman keys between the client and the GO.
three main phase®evice DiscoveryService Discoveryand In the Push-Button method, which is our focus in this paper,
Wireless Protected Setup Provisioning the client invites the GO to start the WPS protocol and waits



for its acceptance. As shown in Figure 1, the P2P client's The network administrator solutions can be classified into
user presses a logical button to invite his friend’'s GO devidwo approaches. The first approaches proposed in [24] [§] [25
(with SSID="Alice”) to start the WPS protocol. The client[26] [27][28] [29] [9] [30] [10] detect the attacker by diffen-
device includes its mode (Push-Button Configuration (PBOjating the traffic between the wired and wireless connestio
in the invitation to notify the GO to enable it. The GO’s uself an unauthorized client uses a wireless network while it is
either accepts or declines the invitation by pressing ackigi not authorized to do so (by comparing with an authorized
button within 120 seconds (known as Walk Time). In cadest), the AP attached to this client is classified as a rogue
of acceptance, the two devices execute the eight regatratAP. [25] employs the round trip time (RTT) between the user
protocol messagesiM; to Mg in Figure 1) of the WPS and the DNS server to determine whether an AP is legitimate
protocol and connect to each other (page 33 of [3]). or not. [27] and [30] use packets inter arrival time (IAT) and
The Autonomous formation mechanism [1] enables the PEAT to distinguish between Ethernet and wireless cliei28] [
device’s user to immediately set his device as a GO and creasgsumes that the mean and variance of packets IAT is more
a P2P group (with specific SSID and channel). Then, this G@ndom for a network path that has a wireless link as compared
starts to beacon on the specified channel. Other devices tmm path that has only wired links. [8] and [9] propose
discover the P2P group using traditional scanning mechamnisalgorithms that exploit the fundamental properties of the
and directly proceed with the Service Discovery and WP2.11 CSMA/CA MAC protocol and the half duplex nature
Provisioning phases (no GO Negotiation phase is requiredf wireless channels to differentiate Ethernet and WLAN TCP
traffic. The second network administrator oriented appneac
proposed in [11] [12] [13] [31] [32] [33] work by monitoring
Radio Frequency (RF) airwaves and additional information
We successfully launched eviidirec T A e collected at routers and compare that with a known authtrize
an EvilDirect attack against L list. [11] utilizes the fact that different APs usually have
GO devices due to the fact e different clock skews to detect unauthorized APs. [12] fesa
that two GOs with the same Do @ suspicious APs by scanning RF airwaves from the Intranet and
MAC address and SSID, that = Lot then compares that with specific fingerprints of the RF (with
operate on the same channel e e an authorized list). [13] uses desktop machines in momigori
are indistinguishable by the by attaching them to USB-based wireless adapters. [33] uses
sensors instead of sniffers to scan the RF. The user oriented

clients and treated as a single S
GO. In order to accomplish v v 7 solutions proposed in [14] [15] detect an evil twin AP attack
Client - -

this attack, the attacker needs R O at the client side (without any additional support from the
a smartphone/laptop running m network administrator). CETAD [14] is designed based on
Ubuntu. The first step for the from user the idea that the public IP address, ISP, and RTT values
attacker is to discover (using Fig. 2: EvilDirect attack. of packets traveling through legitimate APs are similae(th
Apps like WiFiScanner [23]) the MAC address, SSID, andame ISP), but they are different for a legitimate AP and
operating channel of the legitimate GO. The second stap evil twin AP. [15] proposes two algorithms to detect an
for the attacker is to set his EvilDirect GO to look likeevil twin AP from the client end based on server IAT. The
the legitimate GO. On a low end notebook, we configurado algorithms need a remote server within the LAN with an
the wireless interface in monitor mode. Then we used thwestalled software to measure the server IAT.
Airbase-ng attack tool to create the EvilDirect GO (with the The current solutions to the evil twin AP attack in Wi-Fi
same MAC address, SSID, and channel as the legitimate Gfrastructure networks are not applicable to Wi-Fi Dirdae
(shown in Figure 2)). When the client’'s user tries to connettt the following reasons: a) There are no network administra
to the legitimate GO, his device invites the legitimate GO trs in Wi-Fi Direct networks (authorized list approaches a
start the WPS protocol and waits for its acceptance for 12@t working); b) Differentiating the traffic at the wired and
seconds, as shown in Figure 2. The EvilDirect GO receivesreless connections is not possible (no wired connection i
this invitation too, as shown in Figure 2. Before the legétm Wi-Fi Direct networks); ¢) Intrusion detection systemdffens
GO'’s user accepts this invitation by pressing a logicaldwytt and sensors are not always available for Wi-Fi Direct deyice
the EvilDirect GO can reply with an acceptance to the cleentt) [14] and [15] cannot be used because they depend on
invitation (with the same MAC address and SSID as thdifferentiating the wireless hops (one or two hops), howeve
legitimate GO). Then, the EvilDirect GO executes the eiglthe clients and the GO are connected by a single hop link.
registration protocol messages of the WPS protocol with the
client and hijacks its wireless communication. IV. EVIL DIRECTHUNTER

In Wi-Fi infrastructure networks, the evil twin AP attack This section presents our main idea, the adversary model,
occurs mainly in free public Wi-Fi areas (airport loungeghe design of EvilDirectHunter protocol, and the tuning tsf i
cafes). The existing rogue AP detection solutions can lparameters.
classified into two categories: network administrator reel, )
which are designed for a wireless network administrator & Main Idea
perform access control policies and authorization for tiRs A As shown in Figure 3(a), EvilDirectHunter is based on
and clients, and user oriented (client-side solutions). the idea that while the client and the legitimate GO execute
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channel (low Shannon entropy of the RSS profile), and the

Device Discovery ~ Service Discover y -30

I ] Ea0 Legmmatce"é?;‘ - MSE of the two devices’ RSS profiles = 13.36 indicating a
e S low degree of similarity (the variations in a static chanaied

; Ei g g gé 860 i . generated by thermal effects and hardware imperfections).
T g ; * """ B. Adversary Model
A 60 0 50 100 150 200 250 Our adversary model assumes that a malicious attacker, Eve,
GO RSS Prefle Probes is able to set up an EvilDirect GO with the same MAC address
@) (b) and SSID as the legitimate GO, and operates on the same
%0 " Clont — 30 " Glont — channel. The best areas for Eve are public, indoor (airport
540 begltimate GO g40 beglimate GO lounges, cafes, restaurants, or student community aréas).
§5° ‘ is free to move in the area but she cannot be very close to the
560 legitimate GO or the clients (we only require that she is more
?70 than 1 m away from them). Moreover, Eve is unable to restrict
80 L1 L : -80 other movements in the channel (passengers in airport &syng
0 %0 1%?ob1e§° 200 250 0 =0 1%?0b2920 200250 cystomers/waiters in cafes, students in student community

© %) areas). We assume that Eve knows EvilDirectHunter protocol
Fig. 3: (a) RSS Profiling. RSS profiles at smartphones (b) After but she has no access to the RSS profiles of the devices.
lunch hour. (c) During lunch hour. (d) In a library. Eve can listen to all communication between the clients and

the Device Discovery and Service Discovery phases in bdite legitimate GO. Also, she can measure both the channels
Standard and Autonomous group formation mechanisms, #rfween herself and the clients and between herself and the
client records an RSS profile with s&k samplesk ¢ N legitimate GO at the same time when the clients and the
(i.e., [rssy, 7850, ...T88), TSSk41, ...T5S9;]) for the legitimate legitimate GO execute the Device Discovery and Service
GO, which in turn records a profile for each client in th&iscovery phases and build each other's RSS profile. We
P2P group with the same number of samp|es_ Moreover, e&gpume that Eve is not interested in Iaunching a denial-of-
client calculates the average of the RSS values of the 1§€tvice attack (DoS) or jamming the communication channel
five packets that were overheard by it when any other cliepgtween the clients and the legitimate GO (which is the same

exchanged packets with the legitimate GO. channel for her EvilDirect GO). Also, Eve is not equipped
with full-duplex radio transceivers or directional antasrthat

In order to validate whether the RSS profile is suitable t : ; .
differentiate legitimate GO and EvilDirect GO for dynamicé?mjlble the reception of a signal from the legitimate GO and

: ; . amming of the same signal at the clients, or vice versa.
and static environments, we performed three experimeing us] 9 g

reover, we assume that Eve doesn’t modify any messages
two _Google Nexus 5 smartphones a_nd recorded 256 R )g:hanged between the clients and the legitimate GO when
readings of these smartphones. The distance between the

(o] . . . .
: . . they execute the Device Discovery and Service Discover
devices in these experiments, equals 10 m. The goals of thSﬁ(gs Y y
experiments are to examine trendomnesgi.e., the variation

es, otherwise, it might raise suspicion and be detected
window), and thedegree of similarityi.e., the Mean Squared However, Eve can launch a replay attack as described below.
Error (MSE) =512 S"2°%[RSSClient; — RSSGO;]?) of the

Consequently, our solution doesn't address all man-in-the
256

two devices’ RSS profilesi (is the it* RSS reading). With glddle aTtacksr.] iasfe(fl on th? assunprtt|to ni (Ijescrlbed above,

MSE closer to zero indicating a higher degree of similarity. ve Ca'? aunc ] (_a oflowing ftypes _O aftacks: )

] ] ] } " 1) Physical proximity attack: Eve aims to obtain the same
The first two experiments (with results shown in Figrgs profile of the client or the legitimate GO in order to pass

ures 3(b) and 3(c)) were conducted in a dynamic indoor envyle detection of EvilDirectHunter. Eve tries to (physighljet

ronment (a cafeteria during and after a busy lunch hour @2:9)5se to the victims to have the same RSS readings.

Cpgf] d-ucltieoc? irllal\a/ll)l.tal-irc]:eint(;](;rc()jr gﬁsﬁg?\qniz;t(l(:;gHkr)?a?(dgzli@\;ljvaﬁ) Predictable channel attack Another way for Eve to obtain
y ge same RSS profile of the client or the legitimate GO is to

on a w'ee.kday'evenmg). As shown n F|gures 3(b) and 3(¢ rfedict the RSS readings at their physical locations to Feke
the variation window of the RSS profile (i.e., the randomne . . . . .
SS readings in dynamic and static environments.

of the channel) increases when we have more moving inter-
mediate objects in the environment between the client adld® result guessing attack The client and the legitimate
the legitimate GO. Moreover, the mobility of the intermadia GO divide the RSS profile that they build for each other
objects helps in achieving a higher degree of similarityhaf t N0 two subsets Rss; = [rssi, rssy ..rssp], Rssyp =
RSS profiles (the MSE of the two devices’ RSS profiles fdf$sk+1, 75sk+2 --7ss2i]). Then, they calculate the (Euclidean
Figures 3(b) and 3(c) are: 3.43 and 1.81, respectively)s THlistance), denoted asd, between these two subsets
mobility improves the degree of similarity due to the facatth measures the similarity between the two RSS profiles. Eve
it dominates the RSS profile variation more than the randdfable to launch an online/offline guessing attack agalmest t
thermal noise and different interference sources, whibkcaf result of to pretend to be the legitimate GO.

the client and the legitimate GO differentially. Howeves, a) Client spoofing attack Eve can try to obtain the results
shown in Figure 3(d), there are no noticeable variation®ién tof @ by pretending to be one of clients. Before launching her



TABLE |: NOTATIONS AND DEFINITIONS ; — _
C Client device. Algorithm 1 EvilDirectHunter at each Client
n: Total number of devices in the P2P group (clients and GO). 1: Read the firse” of GOpr f1

. : 7 —— of 2: pass# 1

- maxj € N, S.t.2l <= size(RssPrfl). 3: <pass#,Rssidl,Rssidn><—Pz'ck2RSS(pass#,GOprfl,T’)
H(GOprl): — Zizl p(GOpr fl;) xlog2p(GOpr fl;), 4. challengec = Rssjq; © Rssiq,,
s.t.l = size(GOprfl). 5. send(pass#,idy,id;r, null) to GO
e: Threshold of Shannon entropy for the dynamic environments. 6: while true do
7
8
9

3: Smallest size of RSS subset (i.e., 16 RSS readings). wait (pass#, idy, idr1, responseco) from GO

- - if |challengec — response <=7 then
@®: (Euclidean distancé)between RSS subsets. i‘f idy # .ngCI # —1pthen ool

T Threshold of difference between C and @& calculations. 10: Rss; =GetSubsetass#, GOpr 1,27, idy)
D: (n X 2) X (n X 2) RSS distance matrix. E Rssy =GetSubsetyass#, GOpr f1,27,idr1)
- - . - - : responsec = Rssy @ Rssrr
Y: (n X 2) x 2 configuration matrix. (i.e., output of MDS). 13- (pass#, Rssua, , Rssya, ) Pick2RSS (pass#,
attack, Eve waits until the client and the legitimate GO duil GOprf1,27)

if pass# # null then
challengec = Rss;q, @ Rssiq;;
send(pass#,idy,idr 1, responsec) to GO

each other’s RSS profile. Then, she executes EvilDirecttunt;s.
with the legitimate GO to learn the results®ffor that client. 16:
Finally, Eve launches her attack and passes EvilDirectetuntl’:
with that client since she is able to respond to its challenge;q.

5) Replay attack Eve can overhear the messages between tﬁ%

else
GOpr flEntropy < H(GOpr fl)
if GOpr flEntropy > € then
Legitimate GO, Stop

. " . . . : else

clients and the legitimate GO (during the Device Discoverys. Broadcasl’

and Service Discovery phases) and replay all/some of theze D + getV’s of other clients

messages in order to influence their RSS profiles. 24: Y« MDS (D|,2) e
25: (d(Rco, Rgp)s Avgii-smld(Roy, Rey)]) < Y
26: if d(Rgo,Ré‘a) > Avgijlﬁn[d(Rci,Ra )] then

- 27: EvilDirect GO, Stop ’
C. EvilDirectHunter Protocol 28: else

Legitimate GO, Stop
else
EvilDirect GO, Stop

EvilDirectHunter is an interactive protocol that runs beggi
tween each client and the GO. The client starts the execafion31:
EvilDirectHunter after the execution of the eight messagfes
WPS protocol with the potential GO that accepts its invitatio
as shown in Figure 2, (i.e., all EvilDirectHunter's messagee Algorithm 2 EvilDirectHunter at the GO
encrypted and authenticated using the WPS secret keys). Both Read the firse” of Cprfi
devices incrementally prove the mutual knowledge of the RSS: while true do

profile by exchanging challenge and response packets. Tableif wait (pass#, idy, i1, responsec) from C
presents the notations we use in describing EvilDirecteiunt s:
Essentially, the GO responds to the client’s challenge ané:
creates a new challenge to the client in each packet, ar@
vice versa. Algorithms 1 and 2 present the pseudo code af
EvilDirectHunter at the client and GO devices, respedivel 10:

1) Phase | of EvilDirectHunter for dynamic and static E
environments the client reads the fir2” of the GO's RSS 13:
profile (GOpr f1) (e.g., for 290 RSS readings, it reads the first4:
256 readings). For the first pagsiss# = 1, the client creates >

if pass# == 1 or |challengego — responsec| <= 7 then
Rss; =GetSubsetgass#, Cprfl,2",id)
Rssy; =GetSubsetgass#, Cpr f1,2",1d1)
responsego = Rss; @ Rssyy
<pass#, Rssiq,, Rssiq;,; ><—Pick2RSS(pass#, Cprfl,2m)
if pass# # null then
challengego = Rssjq, @ Rssiq;,
else
’id[ < id[] +— —1
send(pass#,idy,idrr, responsego) to C
else
llegitimate Client, Stop

a challenge packet by dividing th@Opr f1 into two subsets

The GO waits for the client packet as shown in line 3 of

using the Pick2RSS function presented in Algorithm 3. Firstlgorithm 2 after it reads the firse” of the client's RSS
Pick2RSS divides th&/Opr f1 into total subsets based on theprofile (CprfI). For the first pass, the GO responds to the
value of thepass# (i.e., 2 subsets each of size 128 for thelient’s challenge by getting the two RSS subsetCpf- 1,
256 readings). Second, it picks two random subsets, whiglhich correspond taid; and id;; (indices of the client's
were not selected before as challenges. These two randgimallenge to the GO). The GO uses the GetSubset function
subsets are tagged so that they will not be picked again {@igorithm 4) to get these two RSS subsets (lines 5 & 6
the next challenges (line 8 of Algorithm 3). Pick2RSS resurrof Algorithm 2). Then, the GO calculates between these
(1, Rss1, Rssy) for the first passRss; and Rss, contain the two subsets (line 7 of Algorithm 2) to prepare its response.
first and last 128 RSS readings of t6&pr f1, respectively). Moreover, the GO prepares its challenge using Pick2RSS
The client calculates thed metric (defined in Table I) function. Since the two 128 RSS subsetdgfr fI have been
between Rss; and Rssy subsets, and stores the result imsed as challenges by the client, Pick2RSS increasest by
challengec (line 4 of Algorithm 1). Then, it sends its one. AccordinglyCprfl is divided into four subsets (each of
challenge packetpass+#,id;,id;;, null), which contains the size 64 for the 256 readings). Pick2RSS randomly picks two
indices of its challenge to the GO, and waits for its responsabsets out of them to challenge the client. The GO sends

and challenge (lines 5 & 7 of Algorithm 1). Feuss# = 1,
there is no challenge for the clientelsponsec is null).

(pass#,idy,idrr, responseco) (line 13 of Algorithm 2),
which contains thevass# and indices for its new challenge,



Algorithm 3 Pick Two Random RSS Subsets static environments (Figure 3(d)), and that the RSS level

1: function Pick2RSS fpass#, rssProfile, 27) decreases 6.02 dBm each time the distance from the source is

2: subsetSize « 21 /2P doubled [35], we decided to use the RSS levels between the

3: total < 2" /subsetSize . . . . - .

4: Divide rssProfile evenly into{rssy, rssa...rssoral} clients and the legitimate GO to build their proximity matri

5 unused  {rss1,7ss2...755t0ta1} — 554, SL.7ss; is tagged Each client broadcastsia vector (line 22 of Algorithm 1),

6: if size(unused) >=2 then . . .

7: Pick{Rsss, Rssrr} randomly fromunused which contains the average of RSS values Qf the last five

8:  TagRss; andRssy; as used subsets A ‘ packets that were overheard by it when other clients exathng

90 Findi & j €N, st Rss; & Rssyy are theig, & jyp subsets of pacikets with the GO before and after each client receives its
{rssi,rss2...rss¢otql }» respectively S .

10:  retun (pass#, Rssi, Rss,) invitation acceptance (i.e., Probg REBBC}) from the_ GO.

11: else For example, if we have two clients (A and B), client As

12: if subsetSize >= (3 then _ A A A A ~

13 st V= [R_SSBaRSSEaRSSGOvR_SS@l (where™ represents

14 goto 2 the device after receiving the invitation acceptandey.Ss

150 else is the average of the RSS values of the last five packets

16: return null

that were overheard by client A when client B exchanged
packets with the legitimate GO before it receives the iridta

Algorithm 4 Get the RSS Subset acceptanceRSS7 is the average of the RSS values of the last
1: function GetSubsetgass#, rssProfile, 2, index) five packets that were overheard by client A when client B
gf ﬂbsletsl;e <—§"/t ?;“S# exchanged packets with the GO after it receives the ingitati
2 Divide res Iéf;‘ffli evenly into{rss1, 75527551001} acceptanceRSSZ,, is the average of the RSS values of the
5: Find therss; in {rssi,rss2...rss;0ta1}, S0 = index last five packets that were received by client A from the GO
?f T"igrssi as a used subset before it receives its invitation acceptancESSéB is the

| M resi average of the RSS values of the last five pa&ets that were
and the response to the client's previous challenge. received by client A after it receives its invitation accamte.

Both devices follow the protocol by responding to otheflientB'sV = [RSSY, RSSE. RSSE,, RSSZ]. Each client
device’s challenge and preparing its new challenge as lohgilds a matrix D (symmetric RSS distance matrix) based
as |challengec/go — responsecosc| <= 7 (lines 8 & ON its V and the received’’s from other clients. For our
4 of Algorithms 1 and 2, respectively). Otherwise, eithegxample above, th®) matrix for client A is shown in Figure 4.
the client detects the GO as an EvilDirect GO (line 3N indicates the absence of the RSS value (eSS%,
of Algorithm 1), or the GO stops the protocol (line 15 ofRSS4, RSS?/@). We use R instead of RSS, for condensed
Algorithm 2) to prevent the client spoofing attack (whichlwilnotation. The rows represent the RSS distance vectors for
be discussed in Section VI-D). By increasing thess# in devicesA, B, A, B, GO, GO, respectively. These vectors are
Pick2RSS function, the size of the RSS subsets that are befaglevicesA, B, A, B, GO, GO, respectively D’s columns).
challenged between the two devices becomes smaller. Thepe absolute
goal of decreasing the subsets size is to ensure the siyilajsjue of D matrix,

. . A A
between the two.RSS profiles even for the small portions. D|, is passed to the 0 ROB 'R‘l ":‘l ggg m
If the two devices successfully execute the protocol (th@DS algorithm (line o rRA N RA_
Pick2RSS function returnsull since thesubsetSize < ), 24 of Algorithm 1). oB N Rgo
the client has to check if the channel is dynamic or statithe steps of the 0 CN75
(lines 18 and 19 of Algorithm 1) by calculating the ShannomDS algorithm are 0

entropy ofGOpr fl. If GOpr flEntropy is greater tham, this presented in [20].
indicates a dynamic channel. Accordingly, EvilDirectHemt The output of MDS Fig. 4: D matrix
protocol stops and establishes the P2P group (line 20 jgfy’, the set of 2-dimensional coordinates that describes the
Algorithm 1). Otherwise, an additional detection phase kimilarities between each device’s RSS values before and
executed for the static environments. after it receives its invitation acceptance from the GO. The
2) Phase |l of EvilDirectHunter for static environments: EvilDirect GO can be detected due to the high difference
The solution we propose for detecting EvilDirect GO irbetween his RSS values (received/overheard by all clients
static environments makes use of Multi-Dimensional Scgalirafter they receive the acceptance for their invitationsyl the
(MDS). MDS [20] is a class of statistical techniques uselggitimate GO’s RSS values (received/overheard by alhtdie
to discover relationships in a set of data. The basic idealisfore they receive the acceptance for their invitatiomb)s
that givenn objects and a numerical x n proximity matrix high difference is due to the fact that the EvilDirect GO has a
representing inter-object dissimilarities, an equivalepre- different physical location corresponding to all clientsthe
sentation ofn points in m-dimensional space can be found®2P group compared to the legitimate GO physical location.
whose inter-point distances are proportional to the shitigg. On the other hand, since the clients are static, and there are
MDS algorithm has been used for wormhole localization ifew intermediate mobile objects in static environmentg th
mobile ad hoc networks [34]. The proximity matrix in [34]differences between clients’ RSS values (before and after
represents the travel distances of the mobile nodes. Duethey receive the invitation acceptance from the GO) are low.
the fact that there are low variations in the RSS levels #ccordingly, any client can detect the EvilDirect GO attack



10" Nexus5 v.s. Nexus5 ~N(0.295,1.22) 4 10 Galaxy S2 v.s. Nexus5 ~N(0.791,1.31)
by comparing the difference between the GO’s RSS va
(before and after receiving the invitation acceptance)h®
average of differences between all clients’ RSS value(be
and after they receive the acceptance for their invitajions
For any client,d(Rco, Rgp) is the Euclidean distanc | J
between the two RSS values of the GO before and aft o————-—=——"1 - B
receives its invitation acceptance (line 25 of Algorithm _, RSS Level Difference (dBm) RSS Level Difference (dBm)
Avgianld(Re, ,RC )] is the average of Euclidean distances (@ (b)
of all clients’ RSS values before and after they receiVgd- 5 Histograms of the RSS level difference between (@) Two
the acceptance for their invitations. The client compares exus 5 smartphones. (b) Galaxy S2 and Nexus 5 smartphones.
d(Rco, Rgg) and Avgiinld(Re, ,Rc.)] (line 26 of Al- of the differences between the cliedt's and the GOd*'s.
gorithm 1) to detect the EvilDirect attack. In the normafable Il presents the~ values (dBm) for all passes when
Scenarlos,d(RGo,Réb) < A’Ugb.l—ﬂl[d(RCi?RCi)}! which EvilDirectHunter executes on Google Nexus 5 smartphones.
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indicates a slight change in the GO’s RSS values. We repeated the same 801ltagiE |I: 7 values (dBm).
experiments using Samsun Nexuss 57
o ) Galaxy S2 for the client, and| pass#| v.s. V.S.

D. EvilDirectHunter Parameter Tuning Google Nexus 5 for the GO. Nexus5| Nexus5
This section presents the measurement and tuningasfd Figure 5(b) shows the his-[ 1 809.6 [ 923.8

7 thresholds, respectively. togram of the 205,056 RSS| 2 404.9 | 462.2
1) Measuring the threshold parameter We repeated each level differences of these exper- i igig ﬁéé

experiment presented in Figures 3(b) and 3(c) 267 timdgents. Moreover, we repeate d :

We aim to experimentally investigate the suitable value ¢ifie same steps of the Monte Carlo simulation for these smart-
e, which is used to distinguish between static and dynamiiones. However, we used the normal distribution of Galaxy
environments. Accordingly, we measured the average vdlueS2’s RSS level (omitted here due to space constraints),end t
GOprflEntropy of these 534 experiments and we seto normal distribution presented in Figure 5(b). Table Il skdhe
4.53. We acknowledge that the value sofight be different 7 values (dBm) for all passes when EvilDirectHunter executes
for other environments, and it requires further study. on Samsung Galaxy S2 and Google Nexus 5 smartphones. We
2) Tuning the threshold parameter 7 is used by the client use ther values in Table Il in our experiments that we will
to check if the GO is a legitimate or an EvilDirect devicgresent in Section VII.
(line 8 of Algorithm 1). We aim to find the best value of
for all passes when EvilDirectHunter runs on same/differen V. IMPLEMENTATION & EXPERIMENTAL SETUP
smartphones. We repeated each experiment presented in Fidn order to record the RSS profile for the client and the GO,
ure 3 267 times (total = 801 experiments) to generate 205,086 downloaded, modified and built the Cyanogenmod [36]
RSS readings using Google Nexus 5 smartphone for the cliémtdroid kernel code for Google Nexus 5 and Samsung Galaxy
and the GO. Each experiment generates 256 RSS readi8@ssmartphones. The wireless card drivers of these smart-
for the GO, RS Sz, and the client,RSSciient. We assume phones report the RSS values as integers from -25 to -100
and validate in Section VI-C that the distribution of anylBm. The Android kernel code that is responsible for estab-
RSS reading (sayn) of the client isrss,, ~ N(u,0?). lishing the Wi-Fi Direct connection for these smartphomnas i
We calculated RSSco - RSScuient] for each experiment to plements the “discovery algorithm” (illustrated in Seatib).
create a vector of 256 RSS level differences (dBm). We plott&Ve modified the Android kernel code such that each device
the histogram for the 801HSSco - RSScuient] VeEctors that stores the RSS value of the received probe request/response
were generated from these 801 experiments. Figure 5(a)sshdk@mes during its listen state. In the original Android lka&drn
the histogram of the 205,056 (8R256) RSS level differences. code, the amount of time for the search and listen states is
It's clear that the difference between the GO’s and clieR&S randomly distributed between 100 and 300 msec. Since the
readings RSSgo - RSSciient) is distributed~ N (u, 0?). client and the GO respond with probe responses only during
In order to calculate the best value of for all passes their listen states, we set the duration of the listen andchea
when EvilDirectHunter executes between two Google Nexstates to 100 msec to get 10 RSS readings/sec. Each device
5 smartphones, we run a Monte Carlo simulation with thmight be the initiator of the probe request frames (during
following steps. First, we generated 256 RSS values usiitg search state), or the responder with the probe response
the normal distribution (i.e., which we assume and validiate frames (during its listen state). The initiator injects tteader
Section VI-C) for the client devicelSScient). Second, we of the probe request frame with a specific sequence number
generated 256 RSS values for the G@5Sco = RSSciient In Order to handle the frame losses and retransmissions. |If
+ z. z is a random number generated from the norméhe probe response frame has the same sequence number as
distribution presented in Figure 5(a). Third, we calculatiee the request frame, the initiator records the RSS value df tha
d*(Rssr, Rssyp)'s for all passes for both the client and thérame. Moreover, If the initiator receives two probe resggon
GO. Fourth, we calculated the differences between thetclidrames with the same sequence number, it records both of
d*’s and the GOd?’s for all passes. Fifth, we repeated théhem. Also, If the responder receives two probe requestdsam
previous steps 100,000 times, and we calculated the averagéh the same sequence number, it records both of them.
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W' .
) X x SR ¢ readings that were recorded by Eve for the same packets. As
%0 5 o 152 %o 5 Lo 15 2 shown in Figures 6(b), 6(c), and 6(d), in order to make the RSS

©) ) readings for Eve similar to the RSS readings at the legigmat
Fig. 6: (a) Experiments setup. RSS Differences between Eve andCO'S location d2 dlSta_nce has to be at most 5 C@(S 5 cm).
Legitimate GO for experiments (b) A. (c) B. (d) C. For d2 > 5 cm, the difference in the RSS readings increases,
We implemented the “EvilDirectHunter” Android App Whichand this makes Eve’s task of obtaining the legitimate GO RSS

enables the smartphones’ users to detect the EvilDirect G(S%admgs more difficult.
We performed three experiments using four smartphones .
in different environments as shown in Figure 6(d). (the g Predictable channel attack defense
distance between each client and the legitimate GO) = 10The RSS level in free space environments (the open air
m. d2 is the distance between the legitimate GO and e the anechoic Chamber) follows the inverse square law (the
attacker. In each experiment, both clients execute thed@evRSS level decreases 6.02 dBm each time the distance from the
Discovery and Service Discovery phases with the legitima$@urce is doubled) [35]. It is easy for Eve to predict the RSS
GO for 30 seconds. The clients and GO’s smartphones rectf¢el at either the client’s or the legitimate GO’s locason
the RSS readings of their last 256 packets. The attackegdch environments. In the real world, Eve launches herlattac
smartphone overhears the packets that were sent from elicRublic, indoor areas. In such areas, there are many static
client to the legitimate GO, and records the RSS readings&td moving objects (e.g., tables, walls, doors, passengers
the last 256 packets to launch his attack. In the following, vgustomers, and students). As a result, the radio waves are
describe our experiment$) Experiment A: This experiment reflected, diffracted, and scattered many times. Accoiging
was conducted in a crowded cafeteria during a busy lun8te inverse square law is not strictly applicable, and th& RS
hour (12:00 PM - 1:00 PM). There were around 70 customegyel is very random.
inside the cafeteria?) Experiment B: This experiment was [N static areas, due to the lack of randomness in the wireless
conducted in a cafeteria after the lunch hour (1:30 PM - 2-gannel, there are few vatiations in the RSS profiles. In such
PM). There were around 25 customers inside the cafetgyia;areas, Eve has two approaches to obtain the same RSS profile
Experiment C: This experiment was conducted in the stud@f the client or the legitimate GO. First, is to collect many

area of a |ibrary on a Weekday evening (1000 PM - 110@58 prOfiles that simulate the client and |eg|t|mate GO com-
PM). There were 5 students on the study seats. munications at different physical locations. Eve usesafiSS

profiles during her attack based on the physical locationiseof
clients and legitimate GO. However, the clients use a random
) o transmission power each time they execute the Device Dis-
A. Physical proximity attack defense covery and Service Discovery phases with the legitimate GO
[19] proved that Eve, who is more than half a wavelengtfshown in Figure 3(a). As a result, it is hard for Eve to préedic
away from the client and the legitimate GO, experiencesitadithe transmission power that the client uses. Second, is$® pa
channels to them that are statistically independent froen tthe MDS detection by locating herself in a physical locaiion
fading between the client and the legitimate GO. In order tshich her RSS values (received/overheard by all cliengsr aft
investigate the value af2 distance that enables Eve to obtaithey receive the acceptance for their invitations from beoal
the same RSS readings as the legitimate GO, we performedhe legitimate GO’s RSS values (received/overheard by al
experiments A, B, and C while we variel@ distance between clients before they receive the acceptance for their itigita
2.5 cm to 80 cm. Eve’s smartphone can overhear the packigtsn Eve). This physical location has to be symmetric to
that were sent from Client 1 (Figure 6(a)) to the legitimatthe legitimate GO location corresponding to all clients in
GO, and records the RSS readings of the last 256 packaétsms of distances and intermediate objects (to ensure that
We plotted the absolute difference between the RSS readiig® has the same multi-path channels with all clients as the
of the first 20 packets (for illustration purposes) that wedegitimate GO). In order to make the distances between Eve
received by the legitimate GO from Client 1, and the RS&nd any client equal to the distances between the client and

VI. SECURITY ANALYSIS



4 10* RSS Histogram ~N(-63.9,14.23)
2
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what is the maximum entropy ab’s statistical distribution?

In probability theory and statistics, the uniform disttilon is

the maximum entropy distribution on any interval b] [38].

In order to investigate the hardness of guessing the re$ult o
@, we compared the entropy ef's statistical distribution with
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RSS Level (dBm) Euclidean Dlslance(dBm)2 For the firS'[ pass, the Sta.- 10.5 Uniform

Chi-squared

) @) ) (b) ) tistical distribution of® (Fig- 9
Fig. 8: Google Nexus 5's histograms of the (a) RSS readings. (b)ure 8(b)) is distributed on 75

@ between two RSS subsets. 6
the interval[0, 1800] according 45

the legitimate GO, all clients have to be in the same geometf}y the scaled version of chi- 3

plane/line, as shown in Figure 7. However, even if the cieny,ared distribution with 128 IR R

exist in the same geometric plane (rare when the ”Umberd%grees of freedomy? (128) ® T tas 2cst S re
Pass # (Block Size)

clients > 4), the intermediate objects between Eve and afe entropy OfX (k) = &+

clients have to be similar to the corresponding mtermedlaitn(QF( )+ (1_7) ( ) [:237]

objects between the legitimate GO and all clients, as showpe entropy of the unlform dis-

Entropy

Fig. 9: Entropy of the Uni-
form and x?(k) Distributions

in Figure 7 (also rare in public areas). tribution on the interval0, 1800] is in(1800) = 7.5. We found
. the distributions ofp; for other passes (Whepmuss#= 2, 3, 4)
C. @ result guessing attack defense in the same way we did for the first pass. Then, we compared

In order to validate whethep is a suitable statistical metric the entropies of these distributions with the entropieshef t
that can securely measure the similarity between the slientiniform distributions on the same intervals. As shown in
and the legitimate GO’s RSS profiles, we repeated each &igure 9, the entropy of the distribution af is at least 75%
periment presented in Figure 3 267 times to generate 205,@F&he entropy of the uniform distribution.

RSS readings. First, we want to find the statistical distidvu
of the RSS readings. Figure 8(a) shows the histogram of the cjient spoofing attack defense

client RSS readings for the 801 experiments. The distobut EvilDirectHunter enables the legitimate GO to discover and

of any RSS reading, say, of the client,rss,, ~ N (u,0?). . . :
AN L . top Eve while she launches the client spoofing attack. As
The GO RSS readings’ histogram is similar to Figure 8(@@ described in Section IV-C, the client and the legitimate

(omitted here due to space constraints). Second, we valldgo incrementally prove the mutual knowledge of the RSS

@ for EvilDirectHunter.

The Euclidean dlstancei X,Y), between X and Y sets prpﬂle_ t_)y exchanging challenge and response paqket_s .Smce
oG, cach f sz 5 /S, (X112 At cach pas |15 IEUL 0 i 0 reate an RS prole b & s
of EV|ID|rectHunter the client divides th [ into two ) .

&Oprf in Sections VI-A and VI-C, respectively), Eve cannot pursue

subsets Rss; = [rss1, 788y ...rssg] and Rssy; = [rssk11, g .
rssies .rssa]). FOr GOprfl with 256 readingsk — 128 EvilDirectHunter and learn the results of themetric.

for the first pass. We want to find the statistical distribatio
of d?(Rssy, Rssy;), which is the square of the EuclidearE- Replay attack defense
distance. Since eactss,, ~ N (u,0?), then(rss,, — rss,) If Eve replays some/all of the client’s probe-requests/GAS
~ N(0,20%) (m - r = k). If we assume that’;, Z,...Z; requests or the legitimate GO’s probe-responses/GAS-
are k£ independent normal random variables that represeesponses, the RSS profile that the client builds will be a
[(rss1 —rssky1), (rsse — r8Sg42)...(rssy — rssa)] (i.€., the mixture of the legitimate GO’s messages and Eve's replayed
square of the Euclidean distance betwdess; and Rss;r), messages. Indeed, the RSS profile at the client is created
then: d?(Rssy, Rssyr) = Zle zZ? = Zle[N(O,QO'Q)]Q = Dbased on the multi-path of the channels between the client
Zle[\/iaj\f(o, ]2 =202 328 NV(0,1)2, and the legitimate GO, and between the client and Eve. On
The sum of the squares &findependent standard normakhe other hand, the RSS profile at Eve is created based on the
random variables );_, NV(0,1)?) is distributed according multi-path of the channels between Eve and the client, and
to chi-squared dlstrlbutlon [37] witht degrees of free- between Eve and the legitimate GO. Accordingly, the RSS
dom, x?(k). Due to the multiplication by202, the value profile that is created at Eve is different from the RSS profile
of d*(Rssy, Rssyy) is distributed according to the scaledat the client (unless Eve is very close to the client or the
version of chi-squared distribution with degrees of freedom. legitimate GO, as shown in Section VI-A). As a result, if Eve
Figure 8(b) shows the histogram df (Rss;, Rss;r) for the launches her attack, she will be detected by EvilDirectidunt
801 experiments with 128 (i.e., size fifss; & Rss;; during On the other hand, if Eve does not launch her attack and the
the first pass) degrees of freedom. client tries to connect to the legitimate GO, our algorithm
The hardness of guessing the resultdafdepends on its will mistakenly claim the legitimate GO as an EvilDirect GO
statistical distribution. We use Shannon entropy to measurecause the RSS profile that the legitimate GO builds will be a
the randomness of the statistical distributions. The hesgln mixture of the client’s messages and Eve’s replayed message
of guessing the result ofy increases when the entropy ofEssentially, if Eve causes a replay attack, she will not be
its statistical distribution increases. A valid questi@fidws: able to successfully launch an EvilDirect GO attack. Howgeve
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© 0092 © Moreover, we investigated the effect d2 distance on the
€ 085 @ 095 detection rate. We performed experiments A, B, and C while
g e g we variedd?2 distance between 10 cm to 6 m to investigate its
8 07| Experimenth —— g " Experiment A —— effect on the detection rate. For each experiment, we regeat
08 | Eperiment 0 —— g5 | Dperment C —— the same steps above. However, we usedrtivalues for the
0 40 B0 120 160 200 240 o 12 2yt ° ¢ four passes presented in the second column of Table Il. We
(a) (b) repeated each experiment 40 times, and we averaged these 40
oo Experiment A —— f; Experiment A'—— runs for each experiment. Figure 10(b) shows the detecaiten r
§oe ExporimentC —=— | 85| ExpermentC —— of EvilDirectHunter for both clients for different2 values. As
%gg gi is clear in this figure, the detection rate is 100% for A, B, and
£ 04 53 C experiments whed2 > 1 m.
§§§ §f 2) False Positive Ratein order to investigate the best values
o 0 of = from the false positive rate perspective, we performed

o

080 G 2 RS E}Of%liegts 7 8 % experiments A, B, and C with = 4.53. We varied the value
© of 7 for the fourth pass to demonstrate its influence on the

Fig. 10: Experiments A, B, and C on same hardware. (a) Detection . . )
Rate for different 7's. (b) Detection Rate for different d2's. (c) false positive rate. In each experiment, both clients evegtu

False Positive Rate for differentr’s. (d) Execution Time. EvilDirectHunter with the legitimate GO. We counted the
her replay attack will cause a denial-of-service attackgponumber of times that EvilDirectHunter mistakenly detedtes
against the legitimate GO, which is not the interest of Eve.!€gitimate GO as EvilDirect GO for both clients. We repeated
each experiment 40 times, and we averaged these 40 runs for
each experiment. Figure 10(c) shows the false positive rate
when we vary the value af for the fourth pass. As is clear in
‘this figure, the false positive rate decreases whémcreases.
. . Our goal is to achieve a 0% false positive rate for our prdtoco
A. Evaluation Metrics Even though increasing values achieves a very low false
We evaluated EvilDirectHunter using the following metricspositive rate, we are unable to use higlvalues because they
1) Detection Rate the ability of EvilDirectHunter on detect- will lower the detection rate as is presented in Figure 10(a)
ing the attempts of the EvilDirect attacker (true positiaée), Thus, there is a tradeoff between the detection rate and the
ideally 100%;2) False Positive Ratethe rate of claiming a false positive rate. We found that the highest false pasitiv
legitimate GO as an EvilDirect GO, ideally 09) Execution rate for all experiments using thevalues for Google Nexus

VIl. PERFORMANCEEVALUATION
This section presents our evaluation metrics and results

Time (sec) the execution time of EvilDirectHunter. 5 smartphones in Table Il is 4.0%.
o 3) Execution Time: in order to evaluate the execution time of
B. EvilDirectHunter on Same Smartphones EvilDirectHunter, we repeated experiments A, B, and C while

We performed the experiments with Google Nexus 5 smawte increased the number of clients between one and eight
phones for the clients, the legitimate GO, and the attacker.devices. These clients simultaneously run EvilDirectiéunt

1) Detection Rate in Section IV-D2, we tuned the values of with the legitimate GO. We measured the execution time

when EvilDirectHunter runs on Google Nexus 5 smartphondtéeded to run EvilDirectHunter on all clients. We repeated
The value ofr impacts the detection rate of our protocol. [fB&ch experiment 40 times, and we averaged these 40 runs for

order to investigate the best valuesrarom the detection rate €ach experiment. Figure 10(d) shows the execution timelfor a
perspective, we performed experiments A, B, and C with experiments, with error bars showing standard deviatios. A
=2 m. ande = 4.53. We varied the value of for the fourth IS clear in this figure, by increasing the number of cliertts, t

pass to demonstrate its influence on the detection rate.chn e§Xecution time increases linearly. Accordingly, the liegte
experiment, the attacker used the RSS readings of the packe® is able to run EvilDirectHunter, and reply to all clients’
that he overheard while each client exchanged packets éth ghallenges in a short time. Due to the additional phase for
legitimate GO. Then, both clients executed EvilDirectHunt Static environments, the execution time for experiment C is
with the attacker’s smartphone. We counted the number [jgher than the execution times for experiments A and B.
times that EvilDirectHunter was able to detect the attaclser

EvilDirect GO for both clients. We repeated each experimefit EvilDirectHunter on Different Smartphones

40 times, and we averaged these 40 runs for each experimenfae investigated the robustness of EvilDirectHunter on
Figure 10(a) shows the detection rate of EvilDirectHuntar f smartphones with different hardware components by remgati
both clients for experiments A, B, and C. As shown in thithe same steps of all experiments presented in Section VII-B
figure, the detection rate of EvilDirectHunter decreaseswhHowever, we used Samsung Galaxy S2 smartphones for the
T increases. Indeed, the valuesothat we tuned from the two clients, and Google Nexus 5 smartphones for both the
Monte Carlo simulation for Google Nexus 5 smartphones Iagitimate GO and the attacker. Figure 11(a) shows that the
Table Il achieve a 100% detection rate for all experimentdetection rate of EvilDirectHunter for both clients decesa
The additional phase for static environments (Section JV-@hen ther value for the fourth pass increases. The values of
executed for all runs of experiment C. that we calculated from the Monte Carlo simulation for Geogl
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