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Abstract—In this paper, we first show that Group Owner (GO)
devices in Wi-Fi Direct are vulnerable to the EvilDirect attack.
In the EvilDirect attack, a rogue GO is set up by an adversary to
look like the legitimate GO (with the same MAC address, SSID,
and operating channel). The adversary intercepts the clients’
invitation requests and accepts them before the legitimate GO.
Accordingly, the adversary hijacks the wireless communications
between the clients and the legitimate GO. To defend against the
EvilDirect attack, we propose the idea of exploiting the received
signal strength (RSS) variations on the wireless channel between
each client and the legitimate GO. Our solution,EvilDirectHunter
checks whether the RSS profiles of both the client and the
potential GO devices are similar with each other. Both devices
incrementally prove this similarity by exchanging challenge and
response packets. EvilDirectHunter is evaluated by implementing
it as an Android App, and by modifying the Android kernel code
responsible for Wi-Fi Direct in Google Nexus 5 and Samsung
Galaxy S2 smartphones. The results show that EvilDirectHunter
is able, within seconds, to identify EvilDirect attacks with a high
detection rate (100%) while maintaining a low false positive rate
(4.5%).

I. I NTRODUCTION

Today’s smartphones are equipped with a new emerging
wireless standard that allows users to establish an adhoc
wireless network (without a wireless router) and exchange data
among them. The new standard, the Wi-Fi Direct protocol [1],
is built upon the IEEE 802.11 infrastructure and it takes a
different approach to enhance device-to-device connectivity.
Instead of leveraging the adhoc mode of operation between
two devices, Wi-Fi Direct enables the devices to form P2P
groups by negotiating which device will be the Group Owner
(GO) and which devices will be the clients. Wi-Fi Direct is
used for data sharing, video streaming, mobile printing, and
gaming. The shipments [2] of Wi-Fi Direct devices (tablets,
smartphones, and smart TVs) reached around 1,700 million in
2016, and it is predicted to reach three billion in 2019.

In order to establish a secure connection between two
devices, Wi-Fi Direct implements the in-band mode of Wi-Fi
Protected Setup (WPS) protocol [3]. There are two methods
for the in-band mode: PIN and Push-Button methods. In the
PIN method, a device password, which is obtained from the
GO and entered into the client using a keypad, is used to
perform a Diffie-Hellman (D-H) key exchange to guarantee
the authentication between the devices. The PIN method
vulnerabilities to online [4] and offline [5] brute force attacks
were addressed by previous works [6] [7]. In the Push-Button
method, the client invites the GO to start the WPS protocol

and waits for its acceptance. The GO’s user acceptance is used
for authentication and to perform a D-H key exchange.

One major security concern and research challenge for the
Push-Button method is the vulnerability of the GO to spoofing.
We refer to this asEvilDirect attack. An EvilDirect is a rogue
GO that operates on the same channel as the legitimate GO
and has the same MAC address and SSID. It is set up by an
adversary, who accepts the clients invitation requests before
the legitimate GO, to hijack the wireless communications
between the clients and the legitimate GO. The best areas for
EvilDirect attacker are public, indoor areas. These areas can be
eitherdynamic environments(mobile devices, and/or there are
mobile intermediate objects in the environment, e.g., airport
lounges, cafes, restaurants, or student community areas),or
static environments(static devices, and there are few mobile
intermediate objects in the environment, e.g., libraries). The
EvilDirect attack can be successfully launched because GOsin
Wi-Fi Direct have no form of identification except their MAC
addresses and SSIDs, which can easily be impersonated. The
Push-Button method specifications (pages 78-83 of [3]) state
that the client must complete a scan of all 802.11 channels
that it supports to discover if any other nearby GOs are in
Push-Button mode. If the client discovers more than one GO
in Push-Button mode, it must abort its connection attempt
and signal an error to the user. However, we successfully
launched EvilDirect attack due to the fact that two GOs (with
the same MAC address, SSID, and operating channel) are
indistinguishable by the clients and treated as a single GO.

Many approaches have been proposed to detect spoofing
in wireless networks. [8] [9] [10] detect rogue APs by
differentiating (and comparing with an authorized list) the
traffic between the wired and wireless connections. Others
like [11] [12] [13] monitor Radio Frequency airwaves col-
lected at routers and compare that with a known authorized list.
The above methods require a network administrator (not avail-
able in Wi-Fi Direct) and authorization lists to check if a client
uses a rogue AP. The user oriented approaches [14] [15] detect
the rogue APs at the client side by identifying differences in
the number of wireless hops (one hop from two hops). These
approaches cannot be applied to Wi-Fi Direct since the clients
and the GO are connected by a single hop link. Many wireless
intrusion detection systems (WIDS) [16] [17] [18], which
require a training phase and use sniffers, have been proposed
to detect session hijacking attacks in wireless networks. These
WIDS are based on behavioral analysis to detect deviations
from normal behaviors. However, WIDS are not always avail-
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able for Wi-Fi Direct devices. As a result, EvilDirect is still
an open research problem for the Push-Button method.

To address the aforementioned research challenge for the
dynamic environments, we propose to detect the EvilDirect
attack by employing the inherent randomness in the wireless
channel between the clients and the GO. The properties [19] of
the radio channel are unique to the locations of any two devices
because: a) The multi-path properties of the channel at any
point in time are identical in both directions of the link; b)The
temporal variations in the channel (i.e., the multi-path channel
changes due to motion of people in the environment). As a
result, the adversary will measure a different and uncorrelated
radio channel due to the following reasons: a) He cannot be
very close to the legitimate GO or the client (i.e., closer than
one half of the wavelength,λ); b) He cannot restrict other
movements in the area (passengers, customers, etc.). Most of
current wireless cards of smartphones are able to measure the
received signal strength (RSS). Thus, we exploit this capability
in our detection. Our proposed protocol, EvilDirectHunter,
is an interactive protocol that executes between each client
in the P2P group and the GO. Each client records an RSS
profile for the legitimate GO, which in turn records a profile
for each client in the P2P group. EvilDirectHunter checks
whether the RSS profiles of both the client and potential GO
devices are similar to each other by exchanging challenge
and response packets. Forstatic environments, due to the
lack of randomness in the wireless channel, there are low
variations in the RSS profiles. These low RSS variations are
not sufficient to detect the EvilDirect attacks. Accordingly,
our EvilDirectHunter executes an additional detection phase,
which is designed for the static environments. This phase is
based on Multi-Dimensional Scaling (MDS) algorithm [20]
and involves a cooperation among all clients in the P2P group.
Moreover, this phase requires that each client calculates the
average of the RSS values of the last five packets that were
overheard by it when any other client exchanged packets with
the legitimate GO.

The contributions of this paper are as follows: a) We demon-
strate a successful EvilDirect attack against Wi-Fi DirectGOs;
b) We design a new protocol, EvilDirectHunter, to detect the
EvilDirect attacks in both dynamic and static environments; c)
We demonstrate the feasibility of EvilDirectHunter through a
real implementation on Google Nexus 5 and Samsung Galaxy
S2 smartphones; d) We prove the effectiveness of EvilDirec-
tHunter by showing that it identifies EvilDirect attacks with a
high detection rate while maintaining a low false positive rate.

II. W I-FI DIRECT BACKGROUND

Wi-Fi Direct’s devices have dynamic roles [1] (the role
of GO and the role of client). These devices form P2P
groups, which are equivalent in terms of functionalities to
the Wi-Fi infrastructure networks. In any P2P group, P2P GO
implements the AP-like functionality, and the other devices are
P2P clients. There are three group formation mechanisms [1]
to establish a P2P group: Standard, Autonomous (which are
our focus in this paper), and Persistent. Each mechanism has
three main phases:Device Discovery, Service Discovery, and
Wireless Protected Setup Provisioning.
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Fig. 1: Frame exchange sequence for Standard mechanism.

The P2P devices in the Standard formation mechanism start
by executing a “discovery algorithm” as shown in Figure 1.
First, each P2P device selects one of the channels (i.e.,
channels 1, 6, or 11 in the 2.4 GHz band) as its listening
channel. Second, a P2P device alternates between the search
and listen states. In the search state, the device performs active
scanning by sending probe requests in each channel. In the
listen state, the device listens for probe requests in its listening
channel to respond with probe responses. After the two P2P
devices find each other, they start the Service Discovery phase.

The Service Discovery phase in the Standard formation
mechanism (shown in Figure 1) is an additional feature for Wi-
Fi Direct devices, which was not present in the traditional Wi-
Fi networks (the only service in which clients are interested in,
is Internet connectivity). Before establishing a P2P group, P2P
devices exchange queries to discover their available services
and, based on this, decide whether to continue the group
formation or not. Service discovery queries are generated by a
higher layer protocol (UPnP or Bonjour [21]), and employing
the link layer Generic Advertisement Protocol (GAS) spec-
ified by 802.11u [22]. GAS is a layer two query/response
protocol implemented through the use of public action frames,
that allows two non-associated devices to exchange queries
belonging to a higher layer protocol.

The Standard formation mechanism has an additional phase,
the GO Negotiation (shown in Figure 1), which is implemented
using three-way handshake messages (Request, Response, and
Confirmation). These messages enable the two devices to
decide which one will be the GO and on which channel
the P2P group will operate. Each device sends a numerical
parameter (Intent Value (IV)) and a tiebreaker bit within the
handshake messages. The device with the highest IV becomes
the GO. The tiebreaker bit prevents conflicts when two devices
declare the same IV. In Figure 1, the upper device wins the
GO Negotiation, and selects channel 11 for its P2P group with
SSID=“Alice” (set by the user). Then, this GO starts to beacon
on channel 11 and waits for new clients to join its group (the
new clients will not execute the GO Negotiation phase).

The Wireless Protected Setup (WPS) Provisioning [3] phase
is implemented by the Standard formation mechanism, as
shown in Figure 1. WPS aims to achieve a secure connection
between P2P clients and P2P GO. WPS has two modes of
operation: in-band mode and out-of-band mode. There are
two methods for the in-band mode: Push-Button method and
PIN method. Both methods are used for authentication and to
establish Diffie-Hellman keys between the client and the GO.

In the Push-Button method, which is our focus in this paper,
the client invites the GO to start the WPS protocol and waits
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for its acceptance. As shown in Figure 1, the P2P client’s
user presses a logical button to invite his friend’s GO device
(with SSID=“Alice”) to start the WPS protocol. The client
device includes its mode (Push-Button Configuration (PBC))
in the invitation to notify the GO to enable it. The GO’s user
either accepts or declines the invitation by pressing a logical
button within 120 seconds (known as Walk Time). In case
of acceptance, the two devices execute the eight registration
protocol messages (M1 to M8 in Figure 1) of the WPS
protocol and connect to each other (page 33 of [3]).

The Autonomous formation mechanism [1] enables the P2P
device’s user to immediately set his device as a GO and create
a P2P group (with specific SSID and channel). Then, this GO
starts to beacon on the specified channel. Other devices can
discover the P2P group using traditional scanning mechanisms
and directly proceed with the Service Discovery and WPS
Provisioning phases (no GO Negotiation phase is required).

III. M OTIVATION & STATE OF THE ART

WPS (Push Button)

Pr
ob

e 
Re

q 
{P

BC
}

Pr
ob

e 
Re

s 
{P

BC
}

M
1

M
8

Time

Time

...

Wait 120 s for

Pairing Res

Walk Time (120 s)

Pairing Res

from user

Pairing Req

from user

Client

Legitimate

GO

EvilDirect

GO Time

Pr
ob

e 
Re

s 
{P

BC
}

Execute

EvilDirectHunter

Fig. 2: EvilDirect attack.

We successfully launched
an EvilDirect attack against
GO devices due to the fact
that two GOs with the same
MAC address and SSID, that
operate on the same channel
are indistinguishable by the
clients and treated as a single
GO. In order to accomplish
this attack, the attacker needs
a smartphone/laptop running
Ubuntu. The first step for the
attacker is to discover (using
Apps like WiFiScanner [23]) the MAC address, SSID, and
operating channel of the legitimate GO. The second step
for the attacker is to set his EvilDirect GO to look like
the legitimate GO. On a low end notebook, we configured
the wireless interface in monitor mode. Then we used the
Airbase-ng attack tool to create the EvilDirect GO (with the
same MAC address, SSID, and channel as the legitimate GO
(shown in Figure 2)). When the client’s user tries to connect
to the legitimate GO, his device invites the legitimate GO to
start the WPS protocol and waits for its acceptance for 120
seconds, as shown in Figure 2. The EvilDirect GO receives
this invitation too, as shown in Figure 2. Before the legitimate
GO’s user accepts this invitation by pressing a logical button,
the EvilDirect GO can reply with an acceptance to the client’s
invitation (with the same MAC address and SSID as the
legitimate GO). Then, the EvilDirect GO executes the eight
registration protocol messages of the WPS protocol with the
client and hijacks its wireless communication.

In Wi-Fi infrastructure networks, the evil twin AP attack
occurs mainly in free public Wi-Fi areas (airport lounges,
cafes). The existing rogue AP detection solutions can be
classified into two categories: network administrator oriented,
which are designed for a wireless network administrator to
perform access control policies and authorization for the APs
and clients, and user oriented (client-side solutions).

The network administrator solutions can be classified into
two approaches. The first approaches proposed in [24] [8] [25]
[26] [27] [28] [29] [9] [30] [10] detect the attacker by differen-
tiating the traffic between the wired and wireless connections.
If an unauthorized client uses a wireless network while it is
not authorized to do so (by comparing with an authorized
list), the AP attached to this client is classified as a rogue
AP. [25] employs the round trip time (RTT) between the user
and the DNS server to determine whether an AP is legitimate
or not. [27] and [30] use packets inter arrival time (IAT) and
RTT to distinguish between Ethernet and wireless clients. [28]
assumes that the mean and variance of packets IAT is more
random for a network path that has a wireless link as compared
to a path that has only wired links. [8] and [9] propose
algorithms that exploit the fundamental properties of the
802.11 CSMA/CA MAC protocol and the half duplex nature
of wireless channels to differentiate Ethernet and WLAN TCP
traffic. The second network administrator oriented approaches
proposed in [11] [12] [13] [31] [32] [33] work by monitoring
Radio Frequency (RF) airwaves and additional information
collected at routers and compare that with a known authorized
list. [11] utilizes the fact that different APs usually have
different clock skews to detect unauthorized APs. [12] locates
suspicious APs by scanning RF airwaves from the Intranet and
then compares that with specific fingerprints of the RF (with
an authorized list). [13] uses desktop machines in monitoring
by attaching them to USB-based wireless adapters. [33] uses
sensors instead of sniffers to scan the RF. The user oriented
solutions proposed in [14] [15] detect an evil twin AP attack
at the client side (without any additional support from the
network administrator). CETAD [14] is designed based on
the idea that the public IP address, ISP, and RTT values
of packets traveling through legitimate APs are similar (the
same ISP), but they are different for a legitimate AP and
an evil twin AP. [15] proposes two algorithms to detect an
evil twin AP from the client end based on server IAT. The
two algorithms need a remote server within the LAN with an
installed software to measure the server IAT.

The current solutions to the evil twin AP attack in Wi-Fi
infrastructure networks are not applicable to Wi-Fi Directdue
to the following reasons: a) There are no network administra-
tors in Wi-Fi Direct networks (authorized list approaches are
not working); b) Differentiating the traffic at the wired and
wireless connections is not possible (no wired connection in
Wi-Fi Direct networks); c) Intrusion detection systems, sniffers
and sensors are not always available for Wi-Fi Direct devices;
d) [14] and [15] cannot be used because they depend on
differentiating the wireless hops (one or two hops), however,
the clients and the GO are connected by a single hop link.

IV. EVIL DIRECTHUNTER

This section presents our main idea, the adversary model,
the design of EvilDirectHunter protocol, and the tuning of its
parameters.

A. Main Idea

As shown in Figure 3(a), EvilDirectHunter is based on
the idea that while the client and the legitimate GO execute
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Fig. 3: (a) RSS Profiling. RSS profiles at smartphones (b) After
lunch hour. (c) During lunch hour. (d) In a library.

the Device Discovery and Service Discovery phases in both
Standard and Autonomous group formation mechanisms, the
client records an RSS profile with say2k samples,k ∈ N

(i.e., [rss1, rss2, ...rssk, rssk+1, ...rss2k]) for the legitimate
GO, which in turn records a profile for each client in the
P2P group with the same number of samples. Moreover, each
client calculates the average of the RSS values of the last
five packets that were overheard by it when any other client
exchanged packets with the legitimate GO.

In order to validate whether the RSS profile is suitable to
differentiate legitimate GO and EvilDirect GO for dynamic
and static environments, we performed three experiments using
two Google Nexus 5 smartphones and recorded 256 RSS
readings of these smartphones. The distance between the two
devices in these experiments, equals 10 m. The goals of these
experiments are to examine therandomness(i.e., the variation
window), and thedegree of similarity(i.e., the Mean Squared
Error (MSE) = 1

256

∑256

i=1
[RSSClienti − RSSGOi]

2) of the
two devices’ RSS profiles (i is the ith RSS reading). With
MSE closer to zero indicating a higher degree of similarity.

The first two experiments (with results shown in Fig-
ures 3(b) and 3(c)) were conducted in a dynamic indoor envi-
ronment (a cafeteria during and after a busy lunch hour (12:00
PM - 1:00 PM)). The third experiment (Figure 3(d)) was
conducted in a static indoor environment (a library building
on a weekday evening). As shown in Figures 3(b) and 3(c),
the variation window of the RSS profile (i.e., the randomness
of the channel) increases when we have more moving inter-
mediate objects in the environment between the client and
the legitimate GO. Moreover, the mobility of the intermediate
objects helps in achieving a higher degree of similarity of the
RSS profiles (the MSE of the two devices’ RSS profiles for
Figures 3(b) and 3(c) are: 3.43 and 1.81, respectively). This
mobility improves the degree of similarity due to the fact that
it dominates the RSS profile variation more than the random
thermal noise and different interference sources, which affect
the client and the legitimate GO differentially. However, as
shown in Figure 3(d), there are no noticeable variations in the

channel (low Shannon entropy of the RSS profile), and the
MSE of the two devices’ RSS profiles = 13.36 indicating a
low degree of similarity (the variations in a static channelare
generated by thermal effects and hardware imperfections).

B. Adversary Model

Our adversary model assumes that a malicious attacker, Eve,
is able to set up an EvilDirect GO with the same MAC address
and SSID as the legitimate GO, and operates on the same
channel. The best areas for Eve are public, indoor (airport
lounges, cafes, restaurants, or student community areas).Eve
is free to move in the area but she cannot be very close to the
legitimate GO or the clients (we only require that she is more
than 1 m away from them). Moreover, Eve is unable to restrict
other movements in the channel (passengers in airport lounges,
customers/waiters in cafes, students in student community
areas). We assume that Eve knows EvilDirectHunter protocol,
but she has no access to the RSS profiles of the devices.
Eve can listen to all communication between the clients and
the legitimate GO. Also, she can measure both the channels
between herself and the clients and between herself and the
legitimate GO at the same time when the clients and the
legitimate GO execute the Device Discovery and Service
Discovery phases and build each other’s RSS profile. We
assume that Eve is not interested in launching a denial-of-
service attack (DoS) or jamming the communication channel
between the clients and the legitimate GO (which is the same
channel for her EvilDirect GO). Also, Eve is not equipped
with full-duplex radio transceivers or directional antennas that
enable the reception of a signal from the legitimate GO and
jamming of the same signal at the clients, or vice versa.
Moreover, we assume that Eve doesn’t modify any messages
exchanged between the clients and the legitimate GO when
they execute the Device Discovery and Service Discovery
phases, otherwise, it might raise suspicion and be detected.
However, Eve can launch a replay attack as described below.
Consequently, our solution doesn’t address all man-in-the-
middle attacks. Based on the assumptions described above,
Eve can launch the following types of attacks:

1) Physical proximity attack: Eve aims to obtain the same
RSS profile of the client or the legitimate GO in order to pass
the detection of EvilDirectHunter. Eve tries to (physically) get
close to the victims to have the same RSS readings.

2) Predictable channel attack: Another way for Eve to obtain
the same RSS profile of the client or the legitimate GO is to
predict the RSS readings at their physical locations to fakeher
RSS readings in dynamic and static environments.

3) ⊕ result guessing attack: The client and the legitimate
GO divide the RSS profile that they build for each other
into two subsets (RssI = [rss1, rss2 ..rssk], RssII =
[rssk+1, rssk+2 ..rss2k]). Then, they calculate the (Euclidean
distance)2, denoted as⊕, between these two subsets.⊕
measures the similarity between the two RSS profiles. Eve
is able to launch an online/offline guessing attack against the
result of⊕ to pretend to be the legitimate GO.

4) Client spoofing attack: Eve can try to obtain the results
of ⊕ by pretending to be one of clients. Before launching her
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TABLE I: NOTATIONS AND DEFINITIONS
C: Client device.
n: Total number of devices in the P2P group (clients and GO).
η: max j ∈ N, s.t.2j <= size(RssPrfl).

H(GOprfl): −
∑l

i=1
p(GOprfli)×log2p(GOprfli),

s.t. l = size(GOprfl).
ε: Threshold of Shannon entropy for the dynamic environments.
β: Smallest size of RSS subset (i.e., 16 RSS readings).
⊕: (Euclidean distance)2 between RSS subsets.
τ : Threshold of difference between C and GO⊕ calculations.
D: (n × 2) × (n × 2) RSS distance matrix.
Y : (n × 2) × 2 configuration matrix. (i.e., output of MDS).

attack, Eve waits until the client and the legitimate GO build
each other’s RSS profile. Then, she executes EvilDirectHunter
with the legitimate GO to learn the results of⊕ for that client.
Finally, Eve launches her attack and passes EvilDirectHunter
with that client since she is able to respond to its challenges.

5) Replay attack: Eve can overhear the messages between the
clients and the legitimate GO (during the Device Discovery
and Service Discovery phases) and replay all/some of these
messages in order to influence their RSS profiles.

C. EvilDirectHunter Protocol

EvilDirectHunter is an interactive protocol that runs be-
tween each client and the GO. The client starts the executionof
EvilDirectHunter after the execution of the eight messagesof
WPS protocol with the potential GO that accepts its invitation,
as shown in Figure 2, (i.e., all EvilDirectHunter’s messages are
encrypted and authenticated using the WPS secret keys). Both
devices incrementally prove the mutual knowledge of the RSS
profile by exchanging challenge and response packets. TableI
presents the notations we use in describing EvilDirectHunter.
Essentially, the GO responds to the client’s challenge and
creates a new challenge to the client in each packet, and
vice versa. Algorithms 1 and 2 present the pseudo code of
EvilDirectHunter at the client and GO devices, respectively.

1) Phase I of EvilDirectHunter for dynamic and static
environments: the client reads the first2η of the GO’s RSS
profile (GOprfl) (e.g., for 290 RSS readings, it reads the first
256 readings). For the first pass,pass# = 1, the client creates
a challenge packet by dividing theGOprfl into two subsets
using the Pick2RSS function presented in Algorithm 3. First,
Pick2RSS divides theGOprfl into total subsets based on the
value of thepass# (i.e., 2 subsets each of size 128 for the
256 readings). Second, it picks two random subsets, which
were not selected before as challenges. These two random
subsets are tagged so that they will not be picked again for
the next challenges (line 8 of Algorithm 3). Pick2RSS returns
〈1, Rss1, Rss2〉 for the first pass (Rss1 andRss2 contain the
first and last 128 RSS readings of theGOprfl, respectively).

The client calculates the⊕ metric (defined in Table I)
betweenRss1 and Rss2 subsets, and stores the result in
challengeC (line 4 of Algorithm 1). Then, it sends its
challenge packet,〈pass#, idI , idII , null〉, which contains the
indices of its challenge to the GO, and waits for its response
and challenge (lines 5 & 7 of Algorithm 1). Forpass# = 1,
there is no challenge for the client (responseC is null).

Algorithm 1 EvilDirectHunter at each Client

1: Read the first2η of GOprfl
2: pass#← 1
3:

〈
pass#, RssidI , RssidII

〉
←Pick2RSS(pass#, GOprfl, 2η)

4: challengeC = RssidI ⊕ RssidII
5: send〈pass#, idI , idII , null〉 to GO
6: while true do
7: wait 〈pass#, idI , idII , responseGO〉 from GO
8: if |challengeC − responseGO| <= τ then
9: if idI 6= idII 6= −1 then

10: RssI =GetSubset (pass#, GOprfl, 2η , idI )
11: RssII =GetSubset (pass#, GOprfl, 2η , idII )
12: responseC = RssI ⊕ RssII
13:

〈
pass#, RssidI , RssidII

〉
←Pick2RSS(pass#,

GOprfl, 2η)
14: if pass# 6= null then
15: challengeC = RssidI ⊕ RssidII
16: send〈pass#, idI , idII , responseC〉 to GO
17: else
18: GOprflEntropy ← H(GOprfl)
19: if GOprflEntropy > ε then
20: Legitimate GO, Stop
21: else
22: BroadcastV
23: D ← getV ’s of other clients
24: Y ← MDS (|D| , 2)

25:
〈
d(RGO, R

ĜO
), Avgi:1→n[d(RCi

, R̂Ci
)]
〉
← Y

26: if d(RGO, R
ĜO

) > Avgi:1→n[d(RCi
, R

Ĉi

)] then
27: EvilDirect GO, Stop
28: else
29: Legitimate GO, Stop
30: else
31: EvilDirect GO, Stop

Algorithm 2 EvilDirectHunter at the GO

1: Read the first2η of Cprfl
2: while true do
3: wait 〈pass#, idI , idII , responseC〉 from C
4: if pass# == 1 or |challengeGO − responseC | <= τ then
5: RssI =GetSubset (pass#, Cprfl, 2η , idI )
6: RssII =GetSubset (pass#, Cprfl, 2η , idII )
7: responseGO = RssI ⊕ RssII
8:

〈
pass#, RssidI , RssidII

〉
←Pick2RSS(pass#, Cprfl, 2η)

9: if pass# 6= null then
10: challengeGO = RssidI ⊕ RssidII
11: else
12: idI ← idII ← −1
13: send〈pass#, idI , idII , responseGO〉 to C
14: else
15: Illegitimate Client, Stop

The GO waits for the client packet as shown in line 3 of
Algorithm 2 after it reads the first2η of the client’s RSS
profile (Cprfl). For the first pass, the GO responds to the
client’s challenge by getting the two RSS subsets ofCprfl,
which correspond toidI and idII (indices of the client’s
challenge to the GO). The GO uses the GetSubset function
(Algorithm 4) to get these two RSS subsets (lines 5 & 6
of Algorithm 2). Then, the GO calculates⊕ between these
two subsets (line 7 of Algorithm 2) to prepare its response.
Moreover, the GO prepares its challenge using Pick2RSS
function. Since the two 128 RSS subsets ofCprfl have been
used as challenges by the client, Pick2RSS increasespass# by
one. Accordingly,Cprfl is divided into four subsets (each of
size 64 for the 256 readings). Pick2RSS randomly picks two
subsets out of them to challenge the client. The GO sends
〈pass#, idI , idII , responseGO〉 (line 13 of Algorithm 2),
which contains thepass# and indices for its new challenge,
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Algorithm 3 Pick Two Random RSS Subsets

1: function Pick2RSS (pass#, rssProfile, 2η)
2: subsetSize← 2η/2pass#

3: total← 2η/subsetSize
4: Divide rssProfile evenly into{rss1, rss2...rsstotal}
5: unused← {rss1, rss2...rsstotal} − rssi, s.t. rssi is tagged
6: if size(unused) >= 2 then
7: Pick {RssI , RssII} randomly fromunused
8: TagRssI andRssII as used subsets
9: Find i & j ∈ N, s.t. RssI & RssII are theith & jth subsets of

{rss1, rss2...rsstotal}, respectively
10: return 〈pass#, Rssi, Rssj〉
11: else
12: if subsetSize >= β then
13: pass#++
14: goto 2
15: else
16: return null

Algorithm 4 Get the RSS Subset

1: function GetSubset (pass#, rssProfile, 2η , index)
2: subsetSize← 2η/2pass#

3: total← 2η/subsetSize
4: Divide rssProfile evenly into{rss1, rss2...rsstotal}
5: Find therssi in {rss1, rss2...rsstotal}, s.t. i = index
6: Tagrssi as a used subset
7: return rssi

and the response to the client’s previous challenge.
Both devices follow the protocol by responding to other

device’s challenge and preparing its new challenge as long
as |challengeC/GO − responseGO/C | <= τ (lines 8 &
4 of Algorithms 1 and 2, respectively). Otherwise, either
the client detects the GO as an EvilDirect GO (line 31
of Algorithm 1), or the GO stops the protocol (line 15 of
Algorithm 2) to prevent the client spoofing attack (which will
be discussed in Section VI-D). By increasing thepass# in
Pick2RSS function, the size of the RSS subsets that are being
challenged between the two devices becomes smaller. The
goal of decreasing the subsets size is to ensure the similarity
between the two RSS profiles even for the small portions.

If the two devices successfully execute the protocol (the
Pick2RSS function returnsnull since thesubsetSize < β),
the client has to check if the channel is dynamic or static
(lines 18 and 19 of Algorithm 1) by calculating the Shannon
entropy ofGOprfl. If GOprflEntropy is greater thanε, this
indicates a dynamic channel. Accordingly, EvilDirectHunter
protocol stops and establishes the P2P group (line 20 of
Algorithm 1). Otherwise, an additional detection phase is
executed for the static environments.

2) Phase II of EvilDirectHunter for static environments:
The solution we propose for detecting EvilDirect GO in
static environments makes use of Multi-Dimensional Scaling
(MDS). MDS [20] is a class of statistical techniques used
to discover relationships in a set of data. The basic idea is
that givenn objects and a numericaln× n proximity matrix
representing inter-object dissimilarities, an equivalent repre-
sentation ofn points inm-dimensional space can be found
whose inter-point distances are proportional to the similarities.
MDS algorithm has been used for wormhole localization in
mobile ad hoc networks [34]. The proximity matrix in [34]
represents the travel distances of the mobile nodes. Due to
the fact that there are low variations in the RSS levels in

static environments (Figure 3(d)), and that the RSS level
decreases 6.02 dBm each time the distance from the source is
doubled [35], we decided to use the RSS levels between the
clients and the legitimate GO to build their proximity matrix.

Each client broadcasts aV vector (line 22 of Algorithm 1),
which contains the average of RSS values of the last five
packets that were overheard by it when other clients exchanged
packets with the GO before and after each client receives its
invitation acceptance (i.e., Probe Res{PBC}) from the GO.
For example, if we have two clients (A and B), client A’s
V = [RSSA

B , RSS
Â
B̂
, RSSA

GO, RSS
Â
ĜO

] (where .̂ represents
the device after receiving the invitation acceptance).RSSA

B

is the average of the RSS values of the last five packets
that were overheard by client A when client B exchanged
packets with the legitimate GO before it receives the invitation
acceptance.RSSÂ

B̂
is the average of the RSS values of the last

five packets that were overheard by client A when client B
exchanged packets with the GO after it receives the invitation
acceptance.RSSA

GO is the average of the RSS values of the
last five packets that were received by client A from the GO
before it receives its invitation acceptance.RSSÂ

ĜO
is the

average of the RSS values of the last five packets that were
received by client A after it receives its invitation acceptance.
Client B’sV = [RSSB

A , RSS
B̂
Â
, RSSB

GO, RSS
B̂
ĜO

]. Each client
builds a matrixD (symmetric RSS distance matrix) based
on its V and the receivedV ’s from other clients. For our
example above, theD matrix for client A is shown in Figure 4.
N indicates the absence of the RSS value (e.g.,RSSA

Â
,

RSSA
B̂

, RSSA
ĜO

). We use R instead of RSS, for condensed
notation. The rows represent the RSS distance vectors for
devicesA,B, Â, B̂, GO, ĜO, respectively. These vectors are
to devicesA,B, Â, B̂, GO, ĜO, respectively (D’s columns).




0 RA
B N N RA

GO N
0 N N RB

GO N

0 RÂ

B̂
N RÂ

ĜO

0 N RB̂

ĜO
0 N

0




Fig. 4: D matrix

The absolute
value of D matrix,
|D|, is passed to the
MDS algorithm (line
24 of Algorithm 1).
The steps of the
MDS algorithm are
presented in [20].
The output of MDS
is Y , the set of 2-dimensional coordinates that describes the
similarities between each device’s RSS values before and
after it receives its invitation acceptance from the GO. The
EvilDirect GO can be detected due to the high difference
between his RSS values (received/overheard by all clients
after they receive the acceptance for their invitations), and the
legitimate GO’s RSS values (received/overheard by all clients
before they receive the acceptance for their invitations).This
high difference is due to the fact that the EvilDirect GO has a
different physical location corresponding to all clients in the
P2P group compared to the legitimate GO physical location.
On the other hand, since the clients are static, and there are
few intermediate mobile objects in static environments, the
differences between clients’ RSS values (before and after
they receive the invitation acceptance from the GO) are low.
Accordingly, any client can detect the EvilDirect GO attack
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by comparing the difference between the GO’s RSS values
(before and after receiving the invitation acceptance) to the
average of differences between all clients’ RSS values (before
and after they receive the acceptance for their invitations).

For any client,d(RGO, RĜO
) is the Euclidean distance

between the two RSS values of the GO before and after it
receives its invitation acceptance (line 25 of Algorithm 1).
Avgi:1→n[d(RCi

, R̂Ci
)] is the average of Euclidean distances

of all clients’ RSS values before and after they receive
the acceptance for their invitations. The client compares
d(RGO, RĜO

) and Avgi:1→n[d(RCi
, R̂Ci

)] (line 26 of Al-
gorithm 1) to detect the EvilDirect attack. In the normal
scenarios,d(RGO, RĜO

) ≤ Avgi:1→n[d(RCi
, R̂Ci

)], which
indicates a slight change in the GO’s RSS values.

D. EvilDirectHunter Parameter Tuning

This section presents the measurement and tuning ofε and
τ thresholds, respectively.

1) Measuring the threshold parameterε: We repeated each
experiment presented in Figures 3(b) and 3(c) 267 times.
We aim to experimentally investigate the suitable value of
ε, which is used to distinguish between static and dynamic
environments. Accordingly, we measured the average value of
GOprflEntropy of these 534 experiments and we setε to
4.53. We acknowledge that the value ofε might be different
for other environments, and it requires further study.

2) Tuning the threshold parameterτ : τ is used by the client
to check if the GO is a legitimate or an EvilDirect device
(line 8 of Algorithm 1). We aim to find the best value ofτ
for all passes when EvilDirectHunter runs on same/different
smartphones. We repeated each experiment presented in Fig-
ure 3 267 times (total = 801 experiments) to generate 205,056
RSS readings using Google Nexus 5 smartphone for the client
and the GO. Each experiment generates 256 RSS readings
for the GO,RSSGO, and the client,RSSClient. We assume
and validate in Section VI-C that the distribution of any
RSS reading (saym) of the client is rssm ∼ N (µ, σ2).
We calculated [RSSGO - RSSClient] for each experiment to
create a vector of 256 RSS level differences (dBm). We plotted
the histogram for the 801 [RSSGO - RSSClient] vectors that
were generated from these 801 experiments. Figure 5(a) shows
the histogram of the 205,056 (801×256) RSS level differences.
It’s clear that the difference between the GO’s and client’sRSS
readings (RSSGO - RSSClient) is distributed∼ N (µ, σ2).

In order to calculate the best value ofτ for all passes
when EvilDirectHunter executes between two Google Nexus
5 smartphones, we run a Monte Carlo simulation with the
following steps. First, we generated 256 RSS values using
the normal distribution (i.e., which we assume and validatein
Section VI-C) for the client device (RSSClient). Second, we
generated 256 RSS values for the GO,RSSGO = RSSClient

+ x. x is a random number generated from the normal
distribution presented in Figure 5(a). Third, we calculated the
d2(RssI , RssII)’s for all passes for both the client and the
GO. Fourth, we calculated the differences between the client
d2’s and the GOd2’s for all passes. Fifth, we repeated the
previous steps 100,000 times, and we calculated the average
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Fig. 5: Histograms of the RSS level difference between (a) Two
Nexus 5 smartphones. (b) Galaxy S2 and Nexus 5 smartphones.

of the differences between the clientd2’s and the GOd2’s.
Table II presents theτ values (dBm) for all passes when
EvilDirectHunter executes on Google Nexus 5 smartphones.

TABLE II: τ values (dBm).

Pass#
Nexus5

v.s.
Nexus5

S2
v.s.

Nexus5
1 809.6 923.8
2 404.9 462.2
3 202.5 231.1
4 101.2 115.6

We repeated the same 801
experiments using Samsung
Galaxy S2 for the client, and
Google Nexus 5 for the GO.
Figure 5(b) shows the his-
togram of the 205,056 RSS
level differences of these exper-
iments. Moreover, we repeated
the same steps of the Monte Carlo simulation for these smart-
phones. However, we used the normal distribution of Galaxy
S2’s RSS level (omitted here due to space constraints), and the
normal distribution presented in Figure 5(b). Table II shows the
τ values (dBm) for all passes when EvilDirectHunter executes
on Samsung Galaxy S2 and Google Nexus 5 smartphones. We
use theτ values in Table II in our experiments that we will
present in Section VII.

V. I MPLEMENTATION & EXPERIMENTAL SETUP

In order to record the RSS profile for the client and the GO,
we downloaded, modified and built the Cyanogenmod [36]
Android kernel code for Google Nexus 5 and Samsung Galaxy
S2 smartphones. The wireless card drivers of these smart-
phones report the RSS values as integers from -25 to -100
dBm. The Android kernel code that is responsible for estab-
lishing the Wi-Fi Direct connection for these smartphones im-
plements the “discovery algorithm” (illustrated in Section II).
We modified the Android kernel code such that each device
stores the RSS value of the received probe request/response
frames during its listen state. In the original Android kernel
code, the amount of time for the search and listen states is
randomly distributed between 100 and 300 msec. Since the
client and the GO respond with probe responses only during
their listen states, we set the duration of the listen and search
states to 100 msec to get 10 RSS readings/sec. Each device
might be the initiator of the probe request frames (during
its search state), or the responder with the probe response
frames (during its listen state). The initiator injects theheader
of the probe request frame with a specific sequence number
in order to handle the frame losses and retransmissions. If
the probe response frame has the same sequence number as
the request frame, the initiator records the RSS value of that
frame. Moreover, If the initiator receives two probe response
frames with the same sequence number, it records both of
them. Also, If the responder receives two probe request frames
with the same sequence number, it records both of them.
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Fig. 6: (a) Experiments setup. RSS Differences between Eve and
Legitimate GO for experiments (b) A. (c) B. (d) C.

We implemented the “EvilDirectHunter” Android App, which
enables the smartphones’ users to detect the EvilDirect GOs.

We performed three experiments using four smartphones
in different environments as shown in Figure 6(a).d1 (the
distance between each client and the legitimate GO) = 10
m. d2 is the distance between the legitimate GO and the
attacker. In each experiment, both clients execute the Device
Discovery and Service Discovery phases with the legitimate
GO for 30 seconds. The clients and GO’s smartphones record
the RSS readings of their last 256 packets. The attacker’s
smartphone overhears the packets that were sent from each
client to the legitimate GO, and records the RSS readings of
the last 256 packets to launch his attack. In the following, we
describe our experiments:1) Experiment A: This experiment
was conducted in a crowded cafeteria during a busy lunch
hour (12:00 PM - 1:00 PM). There were around 70 customers
inside the cafeteria;2) Experiment B: This experiment was
conducted in a cafeteria after the lunch hour (1:30 PM - 2:30
PM). There were around 25 customers inside the cafeteria;3)
Experiment C: This experiment was conducted in the study
area of a library on a weekday evening (10:00 PM - 11:00
PM). There were 5 students on the study seats.

VI. SECURITY ANALYSIS

A. Physical proximity attack defense

[19] proved that Eve, who is more than half a wavelength
away from the client and the legitimate GO, experiences fading
channels to them that are statistically independent from the
fading between the client and the legitimate GO. In order to
investigate the value ofd2 distance that enables Eve to obtain
the same RSS readings as the legitimate GO, we performed
experiments A, B, and C while we variedd2 distance between
2.5 cm to 80 cm. Eve’s smartphone can overhear the packets
that were sent from Client 1 (Figure 6(a)) to the legitimate
GO, and records the RSS readings of the last 256 packets.
We plotted the absolute difference between the RSS readings
of the first 20 packets (for illustration purposes) that were
received by the legitimate GO from Client 1, and the RSS

WallWall
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client2

client3
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GO

EvilDirect

GO
Dist

ance
 1

Dist
ance

 3

Distance 1

Distance 3
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Fig. 7: Successful Predictable Channel Attack

readings that were recorded by Eve for the same packets. As
shown in Figures 6(b), 6(c), and 6(d), in order to make the RSS
readings for Eve similar to the RSS readings at the legitimate
GO’s location,d2 distance has to be at most 5 cm (d2 ≤ 5 cm).
For d2 > 5 cm, the difference in the RSS readings increases,
and this makes Eve’s task of obtaining the legitimate GO RSS
readings more difficult.

B. Predictable channel attack defense

The RSS level in free space environments (the open air
or the anechoic chamber) follows the inverse square law (the
RSS level decreases 6.02 dBm each time the distance from the
source is doubled) [35]. It is easy for Eve to predict the RSS
level at either the client’s or the legitimate GO’s locations in
such environments. In the real world, Eve launches her attack
in public, indoor areas. In such areas, there are many static
and moving objects (e.g., tables, walls, doors, passengers,
customers, and students). As a result, the radio waves are
reflected, diffracted, and scattered many times. Accordingly,
the inverse square law is not strictly applicable, and the RSS
level is very random.

In static areas, due to the lack of randomness in the wireless
channel, there are few vatiations in the RSS profiles. In such
areas, Eve has two approaches to obtain the same RSS profile
of the client or the legitimate GO. First, is to collect many
RSS profiles that simulate the client and legitimate GO com-
munications at different physical locations. Eve uses these RSS
profiles during her attack based on the physical locations ofthe
clients and legitimate GO. However, the clients use a random
transmission power each time they execute the Device Dis-
covery and Service Discovery phases with the legitimate GO
(shown in Figure 3(a). As a result, it is hard for Eve to predict
the transmission power that the client uses. Second, is to pass
the MDS detection by locating herself in a physical locationin
which her RSS values (received/overheard by all clients after
they receive the acceptance for their invitations from her)equal
to the legitimate GO’s RSS values (received/overheard by all
clients before they receive the acceptance for their invitations
from Eve). This physical location has to be symmetric to
the legitimate GO location corresponding to all clients in
terms of distances and intermediate objects (to ensure that
Eve has the same multi-path channels with all clients as the
legitimate GO). In order to make the distances between Eve
and any client equal to the distances between the client and
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Fig. 8: Google Nexus 5’s histograms of the (a) RSS readings. (b)
⊕ between two RSS subsets.

the legitimate GO, all clients have to be in the same geometric
plane/line, as shown in Figure 7. However, even if the clients
exist in the same geometric plane (rare when the number of
clients ≥ 4), the intermediate objects between Eve and all
clients have to be similar to the corresponding intermediate
objects between the legitimate GO and all clients, as shown
in Figure 7 (also rare in public areas).

C. ⊕ result guessing attack defense

In order to validate whether⊕ is a suitable statistical metric
that can securely measure the similarity between the clients’
and the legitimate GO’s RSS profiles, we repeated each ex-
periment presented in Figure 3 267 times to generate 205,056
RSS readings. First, we want to find the statistical distribution
of the RSS readings. Figure 8(a) shows the histogram of the
client RSS readings for the 801 experiments. The distribution
of any RSS reading, saym, of the client,rssm ∼ N (µ, σ2).
The GO RSS readings’ histogram is similar to Figure 8(a)
(omitted here due to space constraints). Second, we validate
⊕ for EvilDirectHunter.

The Euclidean distance,d(X,Y ), between X and Y sets
of data, each of sizeq, is

√∑q
i=1

(Xi − Yi)2. At each pass
of EvilDirectHunter, the client divides theGOprfl into two
subsets (RssI = [rss1, rss2 ...rssk] andRssII = [rssk+1,

rssk+2 ...rss2k]). For GOprfl with 256 readings,k = 128
for the first pass. We want to find the statistical distribution
of d2(RssI , RssII), which is the square of the Euclidean
distance. Since eachrssm ∼ N (µ, σ2), then(rssm − rssr)
∼ N (0, 2σ2) (m - r = k). If we assume thatZ1, Z2...Zk

are k independent normal random variables that represent
[(rss1 − rssk+1), (rss2 − rssk+2)...(rssk − rss2k)] (i.e., the
square of the Euclidean distance betweenRssI andRssII ),
then: d2(RssI , RssII) =

∑k
i=1

Z2
i =

∑k
i=1

[N (0, 2σ2)]2 =∑k
i=1

[
√
2σN (0, 1)]2 = 2σ2

∑k
i=1

N (0, 1)2.
The sum of the squares ofk independent standard normal

random variables (
∑k

i=1
N (0, 1)2) is distributed according

to chi-squared distribution [37] withk degrees of free-
dom, χ2(k). Due to the multiplication by2σ2, the value
of d2(RssI , RssII) is distributed according to the scaled
version of chi-squared distribution withk degrees of freedom.
Figure 8(b) shows the histogram ofd2(RssI , RssII) for the
801 experiments with 128 (i.e., size ofRssI & RssII during
the first pass) degrees of freedom.

The hardness of guessing the result of⊕ depends on its
statistical distribution. We use Shannon entropy to measure
the randomness of the statistical distributions. The hardness
of guessing the result of⊕ increases when the entropy of
its statistical distribution increases. A valid question follows:

what is the maximum entropy of⊕’s statistical distribution?
In probability theory and statistics, the uniform distribution is
the maximum entropy distribution on any interval[a, b] [38].
In order to investigate the hardness of guessing the result of
⊕, we compared the entropy of⊕’s statistical distribution with
the entropy of the uniform distribution for all passes.
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For the first pass, the sta-
tistical distribution of⊕ (Fig-
ure 8(b)) is distributed on
the interval[0, 1800] according
to the scaled version of chi-
squared distribution with 128
degrees of freedom,χ2(128).
The entropy ofχ2(k) = k

2
+

ln(2Γ(k
2
))+(1− k

2
)ψ(k

2
) [37].

The entropy of the uniform dis-
tribution on the interval[0, 1800] is ln(1800) = 7.5. We found
the distributions of⊕ for other passes (whenpass#= 2, 3, 4)
in the same way we did for the first pass. Then, we compared
the entropies of these distributions with the entropies of the
uniform distributions on the same intervals. As shown in
Figure 9, the entropy of the distribution of⊕ is at least 75%
of the entropy of the uniform distribution.

D. Client spoofing attack defense

EvilDirectHunter enables the legitimate GO to discover and
stop Eve while she launches the client spoofing attack. As
we described in Section IV-C, the client and the legitimate
GO incrementally prove the mutual knowledge of the RSS
profile by exchanging challenge and response packets. Since
it is difficult for Eve to create an RSS profile that is similar
to the client profile and to guess the result of⊕ (as shown
in Sections VI-A and VI-C, respectively), Eve cannot pursue
EvilDirectHunter and learn the results of the⊕ metric.

E. Replay attack defense

If Eve replays some/all of the client’s probe-requests/GAS-
requests or the legitimate GO’s probe-responses/GAS-
responses, the RSS profile that the client builds will be a
mixture of the legitimate GO’s messages and Eve’s replayed
messages. Indeed, the RSS profile at the client is created
based on the multi-path of the channels between the client
and the legitimate GO, and between the client and Eve. On
the other hand, the RSS profile at Eve is created based on the
multi-path of the channels between Eve and the client, and
between Eve and the legitimate GO. Accordingly, the RSS
profile that is created at Eve is different from the RSS profile
at the client (unless Eve is very close to the client or the
legitimate GO, as shown in Section VI-A). As a result, if Eve
launches her attack, she will be detected by EvilDirectHunter.
On the other hand, if Eve does not launch her attack and the
client tries to connect to the legitimate GO, our algorithm
will mistakenly claim the legitimate GO as an EvilDirect GO
because the RSS profile that the legitimate GO builds will be a
mixture of the client’s messages and Eve’s replayed messages.
Essentially, if Eve causes a replay attack, she will not be
able to successfully launch an EvilDirect GO attack. However,
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Fig. 10: Experiments A, B, and C on same hardware. (a) Detection
Rate for different τ ’s. (b) Detection Rate for different d2’s. (c)
False Positive Rate for differentτ ’s. (d) Execution Time.

her replay attack will cause a denial-of-service attack (DoS)
against the legitimate GO, which is not the interest of Eve.

VII. PERFORMANCEEVALUATION

This section presents our evaluation metrics and results.

A. Evaluation Metrics

We evaluated EvilDirectHunter using the following metrics:
1) Detection Rate: the ability of EvilDirectHunter on detect-
ing the attempts of the EvilDirect attacker (true positive rate),
ideally 100%;2) False Positive Rate: the rate of claiming a
legitimate GO as an EvilDirect GO, ideally 0%;3) Execution
Time (sec): the execution time of EvilDirectHunter.

B. EvilDirectHunter on Same Smartphones

We performed the experiments with Google Nexus 5 smart-
phones for the clients, the legitimate GO, and the attacker.

1) Detection Rate: in Section IV-D2, we tuned the values ofτ
when EvilDirectHunter runs on Google Nexus 5 smartphones.
The value ofτ impacts the detection rate of our protocol. In
order to investigate the best values ofτ from the detection rate
perspective, we performed experiments A, B, and C withd2
= 2 m, andε = 4.53. We varied the value ofτ for the fourth
pass to demonstrate its influence on the detection rate. In each
experiment, the attacker used the RSS readings of the packets
that he overheard while each client exchanged packets with the
legitimate GO. Then, both clients executed EvilDirectHunter
with the attacker’s smartphone. We counted the number of
times that EvilDirectHunter was able to detect the attackeras
EvilDirect GO for both clients. We repeated each experiment
40 times, and we averaged these 40 runs for each experiment.

Figure 10(a) shows the detection rate of EvilDirectHunter for
both clients for experiments A, B, and C. As shown in this
figure, the detection rate of EvilDirectHunter decreases when
τ increases. Indeed, the values ofτ that we tuned from the
Monte Carlo simulation for Google Nexus 5 smartphones in
Table II achieve a 100% detection rate for all experiments.
The additional phase for static environments (Section IV-C)
executed for all runs of experiment C.

Moreover, we investigated the effect ofd2 distance on the
detection rate. We performed experiments A, B, and C while
we variedd2 distance between 10 cm to 6 m to investigate its
effect on the detection rate. For each experiment, we repeated
the same steps above. However, we used theτ values for the
four passes presented in the second column of Table II. We
repeated each experiment 40 times, and we averaged these 40
runs for each experiment. Figure 10(b) shows the detection rate
of EvilDirectHunter for both clients for differentd2 values. As
is clear in this figure, the detection rate is 100% for A, B, and
C experiments whend2 > 1 m.

2) False Positive Rate: in order to investigate the best values
of τ from the false positive rate perspective, we performed
experiments A, B, and C withε = 4.53. We varied the value
of τ for the fourth pass to demonstrate its influence on the
false positive rate. In each experiment, both clients executed
EvilDirectHunter with the legitimate GO. We counted the
number of times that EvilDirectHunter mistakenly detectedthe
legitimate GO as EvilDirect GO for both clients. We repeated
each experiment 40 times, and we averaged these 40 runs for
each experiment. Figure 10(c) shows the false positive rate
when we vary the value ofτ for the fourth pass. As is clear in
this figure, the false positive rate decreases whenτ increases.
Our goal is to achieve a 0% false positive rate for our protocol.
Even though increasingτ values achieves a very low false
positive rate, we are unable to use highτ values because they
will lower the detection rate as is presented in Figure 10(a).
Thus, there is a tradeoff between the detection rate and the
false positive rate. We found that the highest false positive
rate for all experiments using theτ values for Google Nexus
5 smartphones in Table II is∼ 4.0%.

3) Execution Time: in order to evaluate the execution time of
EvilDirectHunter, we repeated experiments A, B, and C while
we increased the number of clients between one and eight
devices. These clients simultaneously run EvilDirectHunter
with the legitimate GO. We measured the execution time
needed to run EvilDirectHunter on all clients. We repeated
each experiment 40 times, and we averaged these 40 runs for
each experiment. Figure 10(d) shows the execution time for all
experiments, with error bars showing standard deviation. As
is clear in this figure, by increasing the number of clients, the
execution time increases linearly. Accordingly, the legitimate
GO is able to run EvilDirectHunter, and reply to all clients’
challenges in a short time. Due to the additional phase for
static environments, the execution time for experiment C is
higher than the execution times for experiments A and B.

C. EvilDirectHunter on Different Smartphones

We investigated the robustness of EvilDirectHunter on
smartphones with different hardware components by repeating
the same steps of all experiments presented in Section VII-B.
However, we used Samsung Galaxy S2 smartphones for the
two clients, and Google Nexus 5 smartphones for both the
legitimate GO and the attacker. Figure 11(a) shows that the
detection rate of EvilDirectHunter for both clients decreases
when theτ value for the fourth pass increases. The values ofτ

that we calculated from the Monte Carlo simulation for Google
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Fig. 11: Experiments A, B, and C on different hardware. (a)
Detection Rate for different τ ’s. (b) Detection Rate for different
d2’s. (c) False Positive Rate for differentτ ’s. (d) Execution Time.

Nexus 5 and Samsung Galaxy S2 smartphones (third column
of Table 2) achieve a 100% detection rate for experiments
A, B, and C. As shown in Figure 11(b), the detection rate
is 100% for A, B, and C experiments whend2 > 1 m.
Figure 11(c) shows the false positive rate when we vary the
value of τ for the fourth pass. The highest false positive rate
for all experiments using theτ values for Google Nexus 5
and Samsung Galaxy S2 smartphones (third column of Table
2) is ∼ 4.5%. The execution time (shown in Figure 11(d))
of EvilDirectHunter on different smartphones is similar tothe
execution time on similar smartphones (i.e., Figure 10(d)).

VIII. C ONCLUSIONS ANDFUTURE WORK

We presented a novel protocol, EvilDirectHunter, for de-
tecting EvilDirect attacks in Wi-Fi Direct for both static and
dynamic environments. EvilDirectHunter exploits the random-
ness in the wireless channel between the clients and the GO as
the source for detecting the EvilDirect attacks. Our evaluations
show that EvilDirectHunter is able to identify EvilDirect GOs
with a very high detection rate while maintaining a very low
false positive rate. In our future work, we plan to validate
EvilDirectHunter detection capabilities in other environments
with many heterogeneous hardware components. We also
plan to study the values ofε and τ parameters for these
environments and hardware components. Moreover, we plan
to improve EvilDirectHunter to be able to defend against other
types of man-in-the-middle attacks.
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