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ABSTRACT
A fundamental problem in intrusion detection is what met-
ric(s) can be used to objectively evaluate an intrusion detec-
tion system (IDS) in terms of its ability to correctly classify
events as normal or intrusive. Traditional metrics (e.g., true
positive rate and false positive rate) measure different as-
pects, but no single metric seems sufficient to measure the
capability of intrusion detection systems. The lack of a sin-
gle unified metric makes it difficult to fine-tune and evaluate
an IDS. In this paper, we provide an in-depth analysis of ex-
isting metrics. Specifically, we analyze a typical cost-based
scheme [6], and demonstrate that this approach is very con-
fusing and ineffective when the cost factor is not carefully se-
lected. In addition, we provide a novel information-theoretic
analysis of IDS and propose a new metric that highly com-
plements cost-based analysis. When examining the intru-
sion detection process from an information-theoretic point
of view, intuitively, we should have less uncertainty about
the input (event data) given the IDS output (alarm data).
Thus, our new metric, CID (Intrusion Detection Capability),
is defined as the ratio of the mutual information between the
IDS input and output to the entropy of the input. CID has
the desired property that: (1) It takes into account all the
important aspects of detection capability naturally, i.e., true
positive rate, false positive rate, positive predictive value,
negative predictive value, and base rate; (2) it objectively
provides an intrinsic measure of intrusion detection capa-
bility; and (3) it is sensitive to IDS operation parameters
such as true positive rate and false positive rate, which can
demonstrate the effect of the subtle changes of intrusion de-
tection systems. We propose CID as an appropriate perfor-
mance measure to maximize when fine-tuning an IDS. The
obtained operation point is the best that can be achieved
by the IDS in terms of its intrinsic ability to classify input
data. We use numerical examples as well as experiments of
actual IDSs on various data sets to show that by using CID,
we can choose the best (optimal) operating point for an IDS
and objectively compare different IDSs.
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1. INTRODUCTION
Evaluating intrusion detection systems is a fundamental

topic in the field of intrusion detection. In this paper, we
limit our focus of evaluation to measure the effectiveness
of an IDS in terms of its ability to correctly classify events
as normal or intrusive. Other important IDS performance
objectives, such as economy in resource usage, resilience
to stress [20], and ability to resist attacks directed at the
IDS [19, 17], are beyond the scope of this paper. Policy-
dependent IDS evaluation is also beyond the scope.

Measuring the capability of an IDS (to correctly classify
events as normal or intrusive) is essential to both practice
and research because it enables us to better fine-tune an IDS
(selecting the best IDS configuration for an operation envi-
ronment) and compare different IDSs. For example, when
deploying an anomaly-based IDS, we need to adjust some
parameters (e.g., the threshold of deviation from a normal
profile) to tune the IDS at an optimal operating point. Each
adjustment (setting) is a different configuration. If we can
measure the capability of an IDS at these configurations,
we can simply choose the configuration that maximizes this
capability metric.

There are several existing metrics that measure different
aspects of intrusion detection systems, but no single met-
ric seems sufficient to objectively measure the capability of
intrusion detection systems.

The most basic and commonly used metrics are true pos-
itive rate (TP , i.e., the probability that the IDS outputs
an alarm when there is an intrusion) and false positive rate
(FP , i.e., the probability that the IDS outputs an alarm
when no intrusion occurs). Alternatively, one can use false
negative rate FN = 1 − TP and true negative rate TN =
1−FP . When we fine-tune an IDS (particularly an anomaly
detection system), for example, by setting the threshold of



Term Equivalent Terms from IDS Literature Meaning

FP , or α P (A|¬I) False positive rate. The chance that there is an
alert, A, when there is no intrusion, ¬I.

TP (1− β), P (A|I) True positive rate (or detection rate). The chance
there is an alert, A, when there is an intrusion, I.

FN , or β P (¬A|I) False negative rate. The chance there is no alert,
¬A, when there is an intrusion, I.

TN (1− α), P (¬A|¬I) True negative rate. The chance there is no alert,
¬A, when there is no intrusion, ¬I.

PPV “Bayesian detection rate”, P (I|A) Positive predictive value. The chance that an in-
trusion, I, is present when an IDS outputs an
alarm, A.

NPV P (¬I|¬A) Negative predictive value. The chance that there
is no intrusion, ¬I, when an IDS does not output
an alarm, ¬A.

B P (I) Base rate. The probability that there is an intru-
sion in the observed audit data.

Table 1: Terminology used in this paper. For readability, we will use the terms listed in the leftmost column.

a deviation from a normal profile, there may be different
TP and FP values associated with different IDS operation
points (e.g., each with a different threshold). For example,
at one configuration, TP = 0.8, FP = 0.1, while at another
configuration, TP = 0.9, FP = 0.2. If only the metrics of
TP, FP are given, determining the better operation point is
difficult. This naturally motivates us to find a new compos-
ite metric. Clearly, both TP and FP need to be considered
in this new metric. The question is then how to use these
two basic metrics together.

A popular approach is to use an ROC (receiver operating
characteristic) curve [9] to plot the different TP and FP
values associated with different IDS operation points. For
example, an ROC curve can show one (operation) point with
< TP = 0.99, FP = 0.001 > and another with < TP =
0.999, FP = 0.01>. An ROC curve shows the relationship
between TP and FP , but by itself, it cannot be used to
determine the best IDS operation point. ROC curves may be
used for comparing IDSs. If the ROC curves of the two IDSs
do not “cross” (i.e., one is always above the other), then the
IDS with the top ROC curve is better because for every FP ,
it has a higher TP . However, if the curves do cross, then
there is no easy way to compare the IDSs. It is not always
appropriate to use the area under the ROC curve (AUC)
for comparison because it measures all possible operation
points of an IDS. One can argue that a comparison should
be based on the best operation point of each IDS because in
practice an IDS is fine-tuned to a particular configuration
(e.g., using a particular threshold).

One approach to integrating the metrics TP and FP is
through cost-based analysis. Essentially, the tradeoff be-
tween a true positive and a false positive is considered in
terms of cost measures (or estimates) of the damage caused
by an intrusion and inconvenience caused by a false alarm.
Gaffney and Ulvila [6] used such an approach to combine
ROC curves with cost analysis to compute an expected cost
for each IDS operation point. The expected cost can be
used to select the best operation point and to compare dif-
ferent IDSs. The quality of cost-based analysis depends on
how well the cost estimates reflect the reality. However,
cost measures in security are often determined subjectively

because of the lack of good (risk) analysis models. Thus,
cost-based analysis cannot be used to objectively evaluate
and compare IDSs. As shown in Section 3, this approach [6]
is very confusing and ineffective when the cost factor is not
carefully selected. Moreover, cost-based analysis does not
provide an intrinsic measure of detection performance (or
accuracy).

In addition to TP and FP , two other useful metrics are
the positive predictive value (PPV ), which is the probability
of an intrusion when the IDS outputs an alarm, and the
negative predictive value (NPV ), which is the probability of
no intrusion when the IDS does not output an alarm. These
metrics are very important from a usability point of view
because ultimately, the IDS alarms are useful to an intrusion
response system (or administrative staff) only if the IDS has
high PPV and NPV . Both PPV and NPV depend on TP
and FP , and are very sensitive to the base rate (B), which
is the prior probability of intrusion. Thus, these two metrics
can be expressed using Bayes theorem (and PPV is called
Bayesian detection rate [1] in IDS literature) so that the base
rate can be entered as a piece of prior information about
the IDS operational environment in the Bayesian equations.
Similar to the situation with TP and FP , both PPV and
NPV are needed when evaluating an IDS from a usability
point of view, and currently, there is no objective method
to integrate both metrics.

We need a single unified metric that takes into account
all the important aspects of the detection capability, i.e.,
TP , FP , PPV , NPV , and B. That is, this metric should
incorporate existing metrics because they are all useful in
their own right. This metric needs to be objective. That is,
it should not depend on any subjective measure. In addi-
tion, it needs to be sensitive to IDS operation parameters to
facilitate fine-tuning and fine-grained comparison of IDSs.
We use TP and FP as the surrogates of IDS operation pa-
rameters (e.g., threshold) because changes to the operation
parameters usually result in changes to TP and FP . Al-
though it is difficult or sometimes impossible to control the
base rate in an IDS, we still consider it as an operation
parameter because it is a measure of the environment in
which the IDS operates. TP, FP, B can be measured when



we evaluate an IDS because we have the evaluation data set
and should know the ground truth.

We propose an information-theoretic measure of the intru-
sion detection capability. At an abstract level, the purpose
of an IDS is to classify the input data (i.e., events that the
IDS monitors) correctly as normal or an intrusion. That
is, the IDS output (i.e., the alarms) should faithfully reflect
the “truth” about the input (i.e., whether an intrusion re-
ally occurs or not). From an information-theoretic point
of view, we should have less uncertainty about the input
given the IDS output. Thus, our metric, called the Intru-
sion Detection Capability, or CID, is simply the ratio of the
mutual information between the IDS input and output to
the entropy of the input. Mutual information measures the
amount of uncertainty of the input resolved by knowing the
IDS output. We normalize it using the entropy (the orig-
inal uncertainty) of the input. Thus, the ratio provides a
normalized measure of the amount of certainty gained by
observing IDS outputs. This natural metric incorporates
TP , FP , PPV , NPV , and B, and thus, provides a unified
measure of the detection capability of an IDS. It is also sen-
sitive to TP , FP , and B, which can demonstrate the effect
of the subtle changes of intrusion detection systems.

This paper makes contributions to both research and prac-
tice. We provide an in-depth analysis of existing metrics and
provide a better understanding of their limitations. We ex-
amine the intrusion detection process from an information-
theoretic point of view and propose a new unified metric
for the intrusion detection capability. CID is the appro-
priate performance measure to maximize when fine-tuning
an IDS. The obtained operation point is the best that can
be achieved by the IDS in terms of its intrinsic ability to
classify input data. We use numerical examples as well as
experiments of actual IDSs on various data sets to show that
by using this metric, we can choose the best (optimal) op-
erating point for an IDS and objectively compare different
IDSs.

Note that this new metric, CID, is not intended to re-
place existing metrics such as TP , FP . In fact, TP, FP are
used as basic inputs to compute CID. Thus, CID presents
a composite/unified measure and a nature tradeoff between
TP and FP . Furthermore, CID is just one possible measure
for IDS evaluation. It is not to replace cost-based analysis,
but instead, it greatly complements the cost-based approach,
particularly in the cases that risk model is not clear or not
available. Finally, although our measure can be used in
other domains, we focus on intrusion detection (specifically
network-based intrusion detection) as a motivating example.

The rest of this paper is organized as follows. Section 2
provides an information-theoretic view of the intrusion de-
tection process. After reviewing some essential information
theory concepts, we introduce our unified metric of the in-
trusion detection capability, CID. Section 3 analyzes exist-
ing metrics and compares them with CID. Section 4 de-
scribes how CID can be used to select the best operation
point of an IDS and to compare different IDSs. Section 5
discusses limitations and extensions. Section 6 introduces
related work, and Section 7 concludes the paper and dis-
cusses future work.

2. AN INFORMATION-THEORETIC VIEW
OF INTRUSION DETECTION

Let us revisit the intrusion detection process from an information-
theoretic point of view. At an abstract level, an IDS accepts
and analyzes an input data stream and produces alerts that
indicate intrusions. Every unit of an input data stream has
either an intrusive or normal status. Thus, we can model
the input of an IDS as a random variable X, where X = 1
represents an intrusion, and X = 0 represents normal traf-
fic. The output alerts of an IDS is also modeled as a random
variable Y , where Y = 1 indicates an alert of an intrusion,
and Y = 0 represents no alert from the IDS. We assume here
that there is an IDS output (decision) corresponding to each
input. The exact encoding of X, Y is related to the unit of
the input data stream, which is in fact related to IDS anal-
ysis granularity, or the so-called unit of analysis [15]. For
network-based IDSs such as Snort [22], the unit of analysis
is a packet. The malicious packets are encoded as X = 1.
The IDS examines every packet to classify it as malicious
(Y = 1) or normal (Y = 0). There are also IDSs such as
Bro [17] which analyze events based on flows. In this case,
the malicious flow is encoded as X = 1, and the output in-
dicates whether this flow contains an attack (Y = 1) or not
(Y = 0).

An abstract model for intrusion detection is shown in Fig-
ure 1. In this model, p(X =1) is the base rate, which is the
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Figure 1: An abstract model for intrusion detection.

prior probability of intrusion in the input event data exam-
ined by the IDS. We denote it as B. An intrusion event
has a probability p(Y = 0|X = 1) of being considered nor-
mal by the IDS. This is the false negative rate (FN), de-
noted as β. Similarly, a normal event also has a probability
p(Y = 1|X = 0) of being misclassified as an intrusion. This
is the false positive rate (FP ), denoted as α. We will use
the notations (B, α, β) throughout this paper. Table 1 lists
the terms used by this paper and their meaning. Note that
when we evaluate an IDS, we should have an evaluation data
set of which we know the ground truth. Thus, once the eval-
uation data set is given and the tests are run, we should be
able to calculate B, α and β.

This model is useful because intrusion detection can be
analyzed from an information-theoretic point of view. We
will first review a few basic concepts in information the-
ory [3], the building blocks of our proposed metric of the
intrusion detection capability.

2.1 Information Theory Background

Definition 1. The entropy (or self-information) H(X) of a
discrete random variable X is defined by [3]

H(X) = −
∑

x

p(x) log p(x)



This definition is commonly known as the Shannon en-
tropy measure, or the uncertainty of X. A larger value of
H(X) indicates that X is more uncertain. We use the con-
vention that 0 log 0 = 0, which is easily justified by continu-
ity because x log x → 0 as x → 0. The definition of entropy
can be extended to the case of jointly distributed random
variables.

Definition 2. If (X, Y ) is jointly distributed as p(x, y),
then the conditional entropy H(X|Y ) is defined as [3]

H(X|Y ) = −
∑

y

∑
x

p(x, y) log p(x|y) (1)

Conditional entropy is the amount of remaining uncer-
tainty of X after Y is known. We can say H(X|Y ) = 0
if and only if the value of X is completely determined by
the value of Y . Conversely, H(X|Y ) = H(X) if and only if
X and Y are completely independent. Conditional entropy
H(X|Y ) has the following property:

0 ≤ H(X|Y ) ≤ H(X)

Definition 3. Consider two random variables X and Y
with a joint probability mass function p(x, y) and marginal
probability mass functions p(x) and p(y). The mutual in-
formation I(X; Y ) is defined as [3]

I(X; Y ) =
∑

x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)

Mutual information tells us the amount of information
shared between the two random variables X and Y . Obvi-
ously, I(X; Y ) = I(Y ; X).

Theorem 1. Mutual information and entropy [3]:

I(X; Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

This equation shows that we can interpret mutual infor-
mation as the amount of reduction of uncertainty in X af-
ter Y is known, H(X|Y ) being the remaining uncertainty.
This theorem shows the relationship between conditional en-
tropy and mutual information. We can also express this
relationship in a Venn diagram shown in Figure 2. Here,
mutual information I(X; Y ) corresponds to the intersection
of the information in X with the information in Y . Clearly,
0 ≤ I(X; Y ) ≤ H(X).

2.2 CID: A New Metric of The Intrusion De-
tection Capability

Our goal is to define a metric that measures the capa-
bility of an IDS to classify the input events correctly. At
an abstract level, the purpose of an IDS is to classify the
input correctly as normal or intrusive. That is, the IDS
output should faithfully reflect the “truth” about the in-
put (i.e., whether an intrusion occurs or not). From an
information-theoretic point of view, we should have less un-
certainty about the input, given the IDS output. Mutual
information is a proper yardstick because it captures the re-
duction of original uncertainty (intrusive or normal) given
that we observe the IDS alerts.

We propose a new metric, Intrusion Detection Capability,
or CID, which is simply the ratio of the mutual information
between IDS input and output to the entropy of the input.

H(Y|X)H(X|Y) I(X;Y)

H(X) H(Y)

Realistic IDS Situation

H(Y)

H(X)

Figure 2: Relationship between entropy and mutual
information. For example, H(X) = I(X; Y )+H(X|Y ).
On the right, the entropy H(Y ) is much larger than
H(X). This reflects a likely IDS scenario, where the
base rate is very small (close to zero), so H(X) is
nearly zero. On the other hand, the IDS may pro-
duce quite a few false positives. Thus, H(Y ) can be
larger than H(X).

Definition 4. Let X be the random variable representing
the IDS input and Y the random variable representing the
IDS output. Intrusion Detection Capability is defined as

CID =
I(X; Y )

H(X)
(2)

As discussed in Section 2.1, mutual information measures
the reduction of uncertainty of the input by knowing the
IDS output. We normalize it using the entropy (i.e., the
original uncertainty) of the input. Thus, CID is the ratio
of the reduction of uncertainty of the IDS input, given the
IDS output. Its value range is [0, 1]. Obviously, a larger
CID value means that the IDS has a better capability of
classifying input events accurately.

CID can also be interpreted in the following way. Consider
~X as a stochastic binary vector that is the “correct assess-
ment” of the input data stream ~S, i.e., the correct indica-
tion whether each stream unit is an intrusion or not. The
detection algorithm is a deterministic function acting on ~S,
yielding a bitstring ~Y that should ideally be identical to ~X.
The IDS has to make correct guesses about the unknown ~X,
based on the input stream ~S. The actual number of required
binary guesses is H( ~X), the “real” information content of
~X. Of these, the number correctly guessed by the IDS is
I( ~X; ~Y ) (see Figure 2 for the intersection H(X)

∧
H(Y )).

Thus, I( ~X; ~Y )/H( ~X) is the fraction of correct guesses.
Using the definitions in Section 2.1 and the abstract model

of IDS input (X) and output (Y ), shown in Figure 1, we
can expand CID and see that it is a function of three basic
variables: base rate (B), FP (α), and FN (β). When B = 0
or B = 1 (i.e., the input is 100% normal or 100% intrusion),
H(X) = 0. We define CID = 1 for these two cases.

From Figure 3(a), we can see the effect of different base
rates on CID. In realistic situations in which the base rate
(B) is very low, an increase in B will improve CID. We
should emphasize that the base rate is not normally con-
trolled by an IDS. However, it is an important factor when
studying intrusion detection capability.

Figure 3(a) clearly shows that for low base rates, it is
better to decrease FP than FN in order to achieve a better
CID. For example, suppose we have an IDS with a base
rate B = 10−5, and a FP = 0.1, and FN = 0.1. If we
decrease the FP from 0.1 to 0.01 (a ten-fold decrease), the
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CID moves from 0.1405 to 0.3053. If we instead decrease the
FN from 0.1 to 0.01, the CID only moves from about 0.1405
to 0.1778. Thus, for very low base rates, a reduction in FP
yields more improvement in intrusion detection capability
than the same reduction in FN . This is intuitive as well,
if one realizes that both FN and FP are misclassification
errors. When the base rate is low, there are more normal
packets that have a chance of being misclassified as FP .
Even a large change in FN may not be very beneficial if
few attack packets are at risk for misclassification as FN .
A formal proof that CID is more sensitive to FP than to
FN is given in our technical report [8].

We know that in the perfect case where FP = FN = 0,
CID is always the same (CID = 1) because the IDS classifies
the events without a mistake. For realistic (low) base rates,
the effects of FP and FN are shown in Figures 3(b) and
3(c). CID will improve with a decrease in both FP and
FN . Note that any reasonable (or “allowable”) IDS should
have detection rate greater than the false positive rate (1−
FN > FP ). That is, an IDS should be doing better than
random guessing, which has FP=FN=50%. Thus, when
1− FN < FP , we define CID = 0.

There do exist several other similar metrics based on nor-
malized mutual information in other research areas. For ex-
ample, in medical image processing, NMI (Normalized Mu-
tual Information [18], which is defined as NMI = (H(X) +
H(Y ))/H(X, Y )), is used to compare the similarity of two
medical images. In fact, NMI = (H(X)+H(Y ))/H(X, Y ) =
(H(X, Y ) + I(X; Y ))/H(X, Y ) = 1 + I(X; Y )/H(X, Y ). It
ranges from 1 to 2. For comparison with CID, we can plot
NMI using NMI = I(X; Y )/H(X, Y ) (omitting the “1
plus” from the term as a constant) in Figure 4.

We can see from Figure 4(a) that NMI shows a similar
trend as CID. However, we clearly see that NMI is not
sensitive to FN in that a variation of FN has little effect.
For example, when FP = 0.01, if we vary FN from 0.01 to
0.1, NMI remains almost the same, because in a realistic IDS
operation environment, the base rate is very low (close to
zero), indicating that the uncertainty of X is close to zero.
Thus, the entropy of X (nearly zero) is far less than the en-

tropy of Y because the IDS can produce many false positives,
as shown in the right part of Figure 2. We have NMI =
I(X; Y )/H(X, Y ) = I(X; Y )/(H(X) + H(Y ) − I(X; Y )),
and H(Y ) À H(X) > I(X; Y ). We also know that a change
in FN will cause only a very slight change of I(X; Y ). (Re-
call the discussion above, where a low base rate implies there
are few attack packets exposed to the risk of being misclas-
sified as FN .) Thus, a change in FN actually has very little
effect on the change in NMI.

Furthermore, consider the plots in Figure 3(c) with Fig-
ure 4(c). For equivalent ranges of FN , the y-axis for the
NMI plot in Figure 4 ranges from 0 to 0.07, while the axis
for the CID ranges from 0.1 to 0.6. Thus, CID is almost an
order of magnitude more sensitive to changes in FN than
NMI. Similarly, the corresponding FP plots in Figures 3(b)
and 4(b) show that CID is approximately 100 times as sen-
sitive to equivalent shifts in FP as NMI. For all these
reasons, NMI is not a good measure of intrusion detec-
tion capability. In other domains, where the relationship
H(X) ¿ H(Y ) does not apply, NMI may be a suitable
metric.

NMI is a symmetric measure. There is an asymmetric
measure called NAMI (Normalized Asymmetric Mutual In-
formation) in [23], which is defined as NAMI = I(X; Y )/H(Y ).
This metric has the same problem as NMI in that it is rela-
tively insensitive to changes in FN . In realistic IDS scenar-
ios, the base rate is low, and H(X) ¿ H(Y ). Accordingly,
H(Y ) ≈ H(X, Y ). Thus, NAMI ≈ NMI, and is unsuitable
for an intrusion detection metric.

3. ANALYSIS AND COMPARISON
This section provides an in-depth analysis of existing IDS

metrics and compares them with the new metric CID.

3.1 ROC Curve-Based Measurement
An ROC curve shows the relationship between TP and

FP , but by itself, it cannot be used to determine the best
IDS operation point. The ROC curves can sometimes be
used for comparing IDSs. If ROC curves of two IDSs do not
“cross” (i.e., one is always above the other), then the IDS
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Figure 4: NMI=I(X;Y)/H(X,Y). Using a realistic base rate B, we plot NMI against changes in α and β.
Compared to Figure 3, NMI is far less sensitive than CID. Note the orders of magnitude difference in scales
used in this plot, and Figure 3.

with the top ROC curve is better. However, if the curves do
cross, the area under the ROC curve (AUC) can be used for
comparison. However, this may not be a “fair” comparison
because AUC measures all possible operation points of an
IDS, while in practice, an IDS is fine-tuned to a particular
(optimal) configuration (e.g., using a particular threshold).

Gaffney and Ulvila [6] proposed to combine cost-based
analysis with ROC to compute an expected cost for each
IDS operation point. The expected cost can then be used
to select the best operation point and to compare different
IDSs. They assigned cost Cα for responding to a false alarm
and cost Cβ for every missed attack. They defined the cost
ratio as C = Cβ/Cα. Using a decision tree model, the ex-
pected cost of operating at a given point on the ROC curve
is the sum of the products of the probabilities of the IDS
alerts and the expected costs conditional on the alerts. This
expected cost is given by the following equation:

Cexp = Min{CβB, (1−α)(1−B)}+Min{C(1−β)B, α(1−B)}
(3)

In a realistic IDS operation environment, the base rate
is very low, say 10−5. The α is also very low, say 10−3

(because most IDSs are tuned to have very low α), while
β may not be as low, say 10−1. Hence, we can reasonably
assume B < α ¿ β < 1. If we have selected a very small C
(say, less than α/(B(1− β))), then

Cexp = CβB + C(1− β)B = CB

This suggests that regardless of the false positive and false
negative rates, the expected cost metric remains the same
CB! If we have chosen a very large C (say, larger than 1/B),
then the expected cost will become

Cexp = (1− α)(1−B) + α(1−B) = 1−B

Again, in this case, it has nothing to do with α and β.
Consider that 1 − α u 1 − B u 1 in realistic situations,

we can approximate Eq( 3) as

Cexp = Min{CβB, 1}+ Min{C(1− β)B, α} (4)

The above equation can be rewritten as

Cexp = CB if CB < α
1−β

= CβB + α if α
1−β

< CB < 1

= 1 + α if CB > 1

(5)

From the above analysis, we can see that C is a very im-
portant factor in determining the expected cost. However,
C is not an objective measure. In fact, in practice, the ap-
propriate value of C is very hard to determine. Furthermore,
in [6], Gaffney and Ulvila assumed a stationary cost ratio
(C), which may not be appropriate because in practical sit-
uations, the relative cost (or tradeoff) of a false alarm and
a missed attack changes as the total number of false alarms
and missed attacks changes.

To conclude, using ROC alone has limitations. Combin-
ing it with cost analysis can be useful, but it involves a
subjective parameter that is very hard to estimate because
a good (risk) analysis model is hard to obtain in many cases.
On the other hand, our CID is a very natural and objective
metric. Therefore, it provides a very good complement to
the cost-based approach.

3.2 Bayesian Detection Rate
Bayesian detection rate [1] is, in fact, the positive predic-

tive value (PPV ), which is the probability of an intrusion
when the IDS outputs an alarm. Similarly, Bayesian nega-
tive rate (or negative predictive value, NPV ) is the prob-
ability of no intrusion when the IDS does not output an
alarm. These metrics are very important from a usability
point of view because ultimately, the IDS alarms are useful
only if the IDS has high PPV and NPV . Both PPV and
NPV depend on TP and FP , and are sensitive to base rate.
They can be expressed using Bayes theorem so that the base
rate can be entered as a piece of prior information about the
IDS operational environment in the Bayesian equations.

The Bayesian detection rate (PPV ) is defined as [1]:



P (I|A) =
P (I, A)

P (A)
=

P (I)P (A|I)

P (I)P (A|I) + P (¬I)P (A|¬I)

Similarly, the Bayesian negative rate (NPV ) is

P (¬I|¬A) =
(1−B)(1− α)

(1−B)(1− α) + Bβ

Clearly PPV and NPV are functions on variables B, α, β.
Their relationship is shown in Figure 5. We can see that
both PPV and NPV will increase if FP and FN decrease.
This is intuitive because lower FP and FN should yield
better detection results.

Figures 5(a) and 5(b) show that FP actually dominates
PPV when the base rate is very low, which indicates that
in most operation environments (when B is very low), PPV
almost totally depends only on FP . It also changes very
slightly with different FN values. For example, when FP =
0.01, if we vary FN from 0.01 to 0.1, PPV remains almost
the same. This shows that PPV is not sensitive to FN .
Figure 5(c) shows PPV is not as sensitive to FN as CID.
Similarly, Figures 5(d), 5(e), and 5(f) show that NPV is
not sensitive to FP and FN .

To conclude, both PPV and NPV are useful for an evalu-
ating of IDS from a usability point of view. However, similar
to the situation with TP and FP , there is no existing objec-
tive method to integrate these metrics. On the other hand,
H(X|Y ) can be expanded as

H(X|Y ) = −B(1− β) log PPV −Bβ log (1−NPV )
−(1−B)(1− α) log NPV − (1−B)α log (1− PPV )

We can see that our new metric CID has incorporated
both PPV and NPV in measuring the intrusion detection
capability. CID, in fact, unifies all existing commonly used
metrics, i.e., TP , FP , PPV , and NPV . It also factors in
the base rate, a measure of the IDS operation environment.

3.3 Sensitivity Analysis
We already see one important advantage of CID over ex-

isting metrics: it is a single unified metric, very intuitive
and appealing, with a grounding in information theory.

In this section, we analyze in depth why CID is more sen-
sitive than traditional measures in realistic situations (i.e.,
where the base rate is low). IDS design and deployment
often results in slight changes in these parameters. For
example, when fine-tuning an IDS (e.g., setting a thresh-
old), different operation points have different TP and FP .
Being sensitive means that CID can be used to measure
even slight improvements to an IDS. PPV and NPV , on
the other hand, require more dramatic improvements to an
IDS to yield measurable differences. Similarly, CID pro-
vides a fairer comparison of two IDSs because, for example,
a slightly better FN actually shows more of an improve-
ment in capability than in PPV . In short, CID is a more
“precise” metric.

As we know, the scales of PPV, NPV, CID are all the
same, i.e., from 0 to 1. This provides a fair situation to
test their sensitivity. To investigate how much more sensi-
tive CID is compared to PPV and NPV , we can perform
a differential analysis of base rate B, false positive FP , and
false negatives FN to study the effect of changing these pa-
rameters on PPV , NPV , and CID. We can assume that

B ¿ 1 and α ¿ 1, i.e., for most IDSs and their operation
environments, the base rate and false positive rates are very
low. Approximate derivatives and detailed steps are shown
in our technical report [8]. Note that although we originally
plot Figure 6 according to their equations, where we sim-
plify B ¿ 1 and α ¿ 1, it turns out we will obtain almost
the same figures when we do the numerical solution on the
differential formula of PPV, NPV , and CID without any
simplification on B, α.

Figure 6 shows the derivatives (in absolute value) for dif-
ferent metrics. We need to see only the absolute value of the
derivative. A larger derivative value shows more sensitivity
to changes. For example, in Figure 6(a), a change in the
base rate results in a slight change in NPV . PPV improves
with the change, but not as much as CID. Clearly, from
Figure 6, we can see that CID is more sensitive to changes
in B, FP , FN than PPV and NPV .

For small base rates and false negative rates, PPV is more
sensitive to changes in the base rate than changes in FP . It
is least sensitive to FN . Given the same base rate and FP ,
the change of FN has a very small effect on PPV , implying
that for a large difference in FN but a small difference in
FP , the IDS with the smaller FP will have a better PPV .
For example, suppose we have two IDSs with the same base
rate B = 0.00001, IDS1 has FP = 0.2%, FN = 1% while
IDS2 has FP = 0.1%, FN = 30%. Although IDS1 has a
far lower FN (1% ¿ 30%) and slightly higher FP (0.2% >
0.1%), its PPV (0.0049) is still lower than IDS2 (0.007).
On the other hand, its CID (0.4870) is greater than IDS2

(0.3374).
NPV , on the other hand, is more sensitive to B and FN

and it does not change much when FP changes. This implies
that for a large difference in FP but a small difference in
FN , the one with the smaller FN will have a better NPV .
For example, two IDS’s with the same base rate 0.00001,
IDS1 has FP = 0.1%, FN = 2% while IDS2 has FP = 2%,
FN = 1%. Although IDS1 has far lower FP (0.1% ¿ 2%)
and slightly higher FN (2% > 1%), its NPV (0.999998) is
still lower than IDS2 (0.99999898). On the other hand, its
CID (0.4014) is greater than IDS2 (0.2555).

Hence, CID is a more precise and sensitive measure than
PPV and NPV .

4. PERFORMANCE MEASUREMENT US-
ING CID

4.1 Selection of Optimal Operating Point
CID factors in all existing measurements, i.e., B, FP ,

FN , PPV , and NPV , and is the appropriate performance
measure to maximize when fine tuning an IDS (so as to se-
lect the best IDS operation point). The obtained operation
point is the best that can be achieved by the IDS in terms of
its intrinsic ability to classify input data. For anomaly detec-
tion systems, we can change some threshold in the detection
algorithm so that we can achieve different corresponding FP
and FN and create an ROC curve. In order to obtain the
best optimized operational point, we can calculate a corre-
sponding CID for every point in the ROC. We then select
the point which gives the highest CID, and the threshold
corresponding to this point provides the optimal threshold
for use in practice.

We first give a numerical example. We take the two ROC
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Figure 5: Positive and Negative Predictive Value. These plots, similar to those in Figures 4 show that PPV
and NPV are not sensitive measures when the base rate is low. In (a), changes in β (for the same α values)
have nearly no effect on PPV . In (b) for a low base rate, changes in α have a small effect on PPV . The
insensitivity of PPV is also seen in (c), where changes in β do not result in large changes in PPV . The same
is true for NPV , in graphs (d), (e), and (f), which show that changes in α and β do not significantly affect
NPV .

examples from [6]. These two intrusion detectors, denoted
as IDS1 and IDS2, have ROC curves that were determined
from data in the 1998 DARPA off-line intrusion detection
evaluation [7]. We do not address how these ROC curves
were obtained, and instead merely use them to demonstrate
how one selects an optimized operating point using CID.

As in [6], the IDS1 ROC can be approximated as 1−β =
0.6909× (1− exp(−65625.64α1.19)). The IDS2 ROC is ap-
proximated as 1−β = 0.4909×(1−exp(−11932.6α1.19)). For
both IDSs, the base rate is B = 43/660000 = 6.52 × 10−5.
From these two ROC curves, we can get their corresponding
CID curves in Figure 7.

We can see that IDS1 achieves the best CID (0.4557)
when the false positive rate is approximately 0.0003 (cor-
responding to detection rate 1 − β = 0.6807). Therefore,
this point (with the corresponding threshold) provides the
best optimized operating point for IDS1. The optimized
operating point for IDS2 is approximately α = 0.001, 1 −
β = 0.4711 and the corresponding maximized CID is 0.2403.
Thus, to set the optimized threshold, one merely has to cal-
culate a CID for each known point (for its TP and FP ) on
the ROC curve and then select the maximum.

4.2 Comparison of Different IDSs
When we get the maximized CID for every IDS, we can

compare their CID to tell which IDS has a better intrusion
detection capability. For example, in the previous section,

clearly IDS1 is better than IDS2 because it has a higher
CID. Granted, in this case, IDS1 and IDS2 can be easily
compared just from ROC curves. However, in many cases,
comparing ROC curves is not straightforward, particularly
when the curves cross.

Consider another simple numerical example with the data
taken from [12]. We compare two IDSs that have only single
point ROC curves (for PROBE attacks). IDS1 has FP =
1/660, 000, TP = 0.88, while IDS2 has FP = 7/660, 000,
TP = 0.97. The base rate here is B = 17/(17 + 660, 000).
We note these single point curves were critiqued in [15], but
here we use it merely as a simple numerical example of how
CID might compare two IDSs. IDS1 has CID = 0.8390, and
IDS2 has CID = 0.8881. Thus, IDS2 is a little better than
IDS1. Reaching this same conclusion using just the ROC
curves in [12] is not obvious.

The relative CID between different IDSs is fairly stable
even if the base rate in realistic situations may change a
little. This can be easily seen from Figure 3(a). The four
curves do not intersect within the range of the base rate
from 10−7 to 10−1.

4.3 Experiments
To demonstrate how to use the sensitivity of the CID mea-

surement to select the optimal operation point (or fine-tune
an IDS) in practice, we examined several existing anomaly
detection systems and measured their accuracy, CID, under
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Figure 6: Derivative analysis (in absolute value). In every situation CID has the highest sensitivity, compared
to PPV and NPV . For realistic situations, its derivative is always higher than other measures.
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Figure 7: IDS1 and IDS2 ROC curves and corre-
sponding CID curves. These plots, based on values
reported by Gaffney and Ulvila, show how CID can
be used to select an optimal operating point. It is
not clear how simple ROC analysis could arrive at
this same threshold.

various configurations. Specifically, we used two anomaly
network intrusion detection systems, Packet Header Anomaly
Detection (PHAD) [13] and Payload Anomaly Detection
(PAYL) [25]. To demonstrate how to compare two different
IDSs using CID, we compared an anomaly detection sys-
tem PAYL with another open source signature-based IDS,
Snort [22], in terms of their capabilities to detect Web at-
tacks based on the same testing data set.

PHAD and PAYL both detect anomalies at the packet
level, with PHAD focusing on the packet header and PAYL
using byte frequencies in the payload. We tested PHAD
using the DARPA 1999 test data set [16], using week 3 for
training and weeks 4 and 5 for testing. We configured PHAD
to monitor only HTTP traffic. As noted in [25], it is difficult
to find sufficient data in the DARPA 1999 data set to thor-
oughly test PAYL, so we used GTTrace, a backbone capture
from our campus network. The GTTrace data set consists of
approximately six hours of HTTP traffic captured on a very
busy 1Gb/s backbone, or approximately 1G of data. We
filtered the GTTrace set to remove known attacks, split the
trace into training and testing sets, and injected numerous
HTTP attacks into the testing set, using tools such as lib-

whisker [21]. We used CID to identify an optimal setting
for each IDS.

In PHAD, a score is computed based on selected fields
in each packet header. If this score exceeds a threshold,
then an intrusion alert is issued. Adjusting this threshold
yields different TP, FP values, shown in Figure 8(a). We
configured PHAD to recognize the attack packets, instead
of the attack instances reported in [13].

We can see in Figure 8(a) that the CID curve almost fol-
lows the ROC curve (both like straight lines). The reason is
that with the DARPA data set, we found the false positive
rate for PHAD was fairly low, while the false negative rate
was extremely high, with β ≈ 1. As shown in our technical
report [8], given small values of α and large values of β, ROC
and CID can both be approximated as straight lines, and
the equation for CID becomes essentially K(1 − β)/H(X),
where K is a constant. We note that the authors in [13]
used PHAD to monitor traffic of all types, and the details
of training and testing were also different from our experi-
ments. In particular, we configured PHAD to report each
packet involved in an attack instead of reporting the attack
instance. Therefore, our PHAD has a high β than reported
in [13].

One can argue that just selecting the point from the ROC
with the highest detection rate is an adequate way to tune
an IDS. This may be true in anecdotal cases, as illustrated
by our configuration of PHAD. However, it is not always the
case, as shown in other situations such as Figure 7.

Our analysis of PHAD, therefore, illustrates a worst-case
scenario for CID. With β ≈ 1, and α ≈ 0, CID identifies an
operating point no better than existing detection measure-
ments, e.g. ROC. Note, however, that CID will never return
a worse operating point.

In other situations, CID will outperform existing metrics.
Indeed, our analysis of PAYL and the GTTrace data set il-
lustrates a situation in which CID provides a better measure
than simple ROC analysis. PAYL requires the user to se-
lect an optimal threshold for determining whether observed
byte frequencies vary significantly from a trained model. For
example, a threshold of 256 allows each character in an ob-
served payload to vary within one standard deviation of the
model [25]. As before, we can experiment with different
threshold values, and measure the resulting FP, FN rates.
In Figure 8(b), we see that for the GTTrace data, as the
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Figure 8: Experiment results. (a) A low false positive and high false positive rate in the PHAD test means
CID is no better (and no worse) than ROC. (b) CID identifies an optimal threshold in PAYL. A simple ROC
analysis would fail to find this point because of an increasing detection rate.

threshold drops, CID reaches a peak and then drops, while
the ROC curves (shown in the top graph) continue to in-
crease slowly.

An analyst using just the top graph in Figure 8(b) might
be tempted to set a threshold lower than, say, 8 (where
α=3×10−3), because the detection capability still increases
even if the false positive rate grows slightly as well. However,
using CID, we see the detection capability actually declines
after CID =0.033448 (marked in Figure 8(b) with a vertical
line). Thus, CID identifies a higher, but optimal operating
threshold of 64 (where α=0.7 × 10−3, 1 − β =0.10563). In
this situation, CID provides a better operating point. It
is not obvious how ROC analysis could provide the same
optimal threshold.

To demonstrate how CID can be used to compare differ-
ent IDS, we ran Snort (Version 2.1.0 Build 9) on the same
data as PAYL to compare their capabilities. Since the use
of libwhisker which tried to evade snort, we have a poor de-
tection rate with 1−β = 0.0117 (worse than PAYL), a good
false positive rate α = 0.0000006701 (better than PAYL).
Without CID, we cannot tell which IDS is better based on
existing metrics. With the base rate B = 0.000010191, we
can calculate CID = 0.0081 for Snort in this testing data.
Clearly 0.033448 > 0.0081, so (optimally configured) PAYL
performs better than Snort based on our test data.

Again, we emphasize that as with all evaluation attempts,
the above results are strongly related to the testing data in
use.

5. DISCUSSION

5.1 Trace-driven Evaluation and Ground Truth
Currently, all IDS evaluation work is trace-driven, sug-

gesting that when evaluating IDSs, we should have the eval-
uation data set where we know the details about the ground
truth, i.e., what data are attacks and what data are normal
traffic. Thus, we can easily find out the base rate, which is
the fraction of attacks in the whole data set. After testing
the IDS on this evaluation data set, we compare the IDS

alerts with the ground truth, then we can calculate the false
positive rate (the fraction of misclassified normal data in the
whole normal data) and false negative rate (the fraction of
undetected attacks among all the attack data). Using these
basic metrics as inputs, we can finally compute CID. In our
technical report [8], we also briefly discuss the estimation
of prior probabilities and transition probabilities in the real
situation.

5.2 Unit of Analysis
An important problem in IDS evaluation is “unit of anal-

ysis” [15]. As we mentioned when introducing the abstract
IDS model, for network based intrusion detection, there are
at least two units of analysis in different IDSs. Some IDSs
(e.g., Snort, PAYL [25]) analyze packets and output alerts
on the packets, while other IDSs such as Bro analyze traffic
based on flows.

Although a different unit of analysis will result in a differ-
ent base rate even on the same evaluation data set, it does
not affect the usage of CID in fine-tuning an IDS to get op-
timal operation point. However, when comparing different
IDSs, we must consider this problem. In this paper, we are
not trying to solve the “unit of analysis” problem, because
it is not peculiar to CID, but a general problem for all the
existing evaluation metrics, e.g., TP, FP . Thus, in order to
provide a fair and meaningful comparison, we recommend
running the IDSs based on the same unit of analysis as well
as the same data set and the same detection spaces (or at-
tack coverages).

Regardless of the metrics being used, the “unit of analy-
sis” problem is a general yet difficult problem in IDS evalu-
ation. In some cases, we can also convert the different units
to the same one when comparing different IDSs. For ex-
ample, we can convert a packet-level analysis to a flow-level
analysis by defining a flow as malicious when it contains any
malicious packet; otherwise, it is a normal flow. Using such
a conversion allows the comparison between a packet-level
IDS and a flow-level IDS based on the same (“virtual”) gran-
ularity or unit of analysis. However, this kind of conversion



does not always work, particularly when the two units, such
as packet sequence and system call sequence, are totally un-
related.

5.3 Involving Cost Analysis inCID

We have shown that CID is a very natural and objective
metric for measuring the intrusion detection capability and
claim it is a good complement to the cost-based approach.
In some cases, however, we may want to include a subjective
cost analysis, particularyly when a good risk analysis model
is available. We notice that CID has some connection to
the cost-based metric if the log part can be considered the
cost function. In addition, we can easily involve cost analy-
sis in CID as an extension. A possible solution is achieved
by using a weighted conditional entropy H(X|Y ) when cal-
culating CID = (H(X) −H(X|Y ))/H(X). We can change
the original form of conditional entropy slightly and place
weights in. Now

Hw(X|Y ) =
−∑

x

∑
y wxyp(x, y) log p(x|y)∑

x

∑
y wxy

,

where wxy means the weight/cost considered when X =
x, Y = y. We can set a larger weight of wxy when we believe
the situation X = x, Y = y costs more. For instance, in the
military network example, we can define a very large weight
on w10, which essentially gives more weight to missed attacks
(X = 1 while Y = 0), i.e., false negatives. In this weighted
setting, CID will give more preference to FN than FP . Sim-
ilarly, we can set a larger weight of w01 in the case with a
single overloaded operator (or with an automated response
system), which indicates a false positive (X = 0, Y = 1) is
more important in the analysis. In such a cost-based exten-
sion, CID can achieve a similar capability as ROC combining
cost analysis. Further study of cost-based extensions on CID

will be in our future work.

6. RELATED WORK
Intrusion detection has been a field of active research for

more than two decades, and many IDSs have been devel-
oped. There are several relevant fundamental (theoreti-
cal) research in this field. Denning [5] introduced an intru-
sion detection model and proposed several statistical models
to build normal profiles. Helman and Liepins [10] studied
some statistical foundation of audit trail analysis for the
detection of computer misues. They modeled the normal
traffic and attack traffic as the output of two independent
stationary stochastic processes. Axelsson [2] argued that
the well-established signal detection and estimation theory
bears similarities with the IDS domain. However, the ben-
efits of the similarities for the design and evaluation of IDS
in practice are as yet unclear. Maxion et al. [14] studied
the relationship between data regularity and anomaly de-
tection performance. The study focused on sequence data,
and hence, regularity was defined as conditional entropy.
The key result from experiments on synthetic data was that
when an anomaly detection model was tested on data sets
with varying regularity values, the detection performance
also varied. Lee et al. [11] applied information theoretic
measurement to describe the characteristics of audit data
set, suggest the appropriate anomaly detection model, and
explain the performance of the models. Our work is another
application of information theory to IDS and provides a nat-

ural and unified metric of the intrusion detection capability.
In the area of IDS evaluation, true positive rate and false

positive rate are two commonly used metrics. To consider
both of these metrics, we can use ROC (receiver operat-
ing characteristic) curve [9] based analysis, which has al-
ready been well studied in other fields such as medical di-
agnostic tests [24]. Lippmann et al. [12] evaluated IDSs on
the 1998 DARPA Intrusion Detection Evaluation Data Set
and used ROC curves to evaluate (and implicitly compare)
them. McHugh [15] pointed out that the evaluation in [12]
had serious shortcomings. For example, the proper unit of
analysis and measurement was different for different detec-
tors. McHugh also called for a more helpful measure of IDS
performance. Our work is an attempt to develop a better
metric. Gaffney and Ulvila [6] combined ROC curves with
cost analysis methods to compute the expected cost of an
IDS so that different IDSs can be evaluated and compared
based on their expected costs. This approach is not practi-
cal because the result depends on the subjective estimate of
the cost ratio between true and false positives.

Axelsson [1] proposed two other metrics: the Bayesian
detection rate and the Bayesian negative rate. These are
in fact the Bayesian representations of positive predictive
value (PPV ) and negative predictive value (NPV ), both
commonly used in medical diagnosis [24]. Axelsson’s main
conclusion is that given that the base rate is very low in most
environments, the false alarm rate needs to be a lot lower
than what most current algorithms can achieve in order to
have a reasonable Bayesian detection rate.

The existing metrics are all useful. However, the lack
of a unified metric makes it hard to fine-tune and evaluate
an IDS. Our new metric, Intrusion Detection Capability, de-
rived from analyzing the intrusion detection process from an
information-theoretic point of view, naturally unifies all the
existing objective measures of the IDS detection capability.

The IBM Zurich team of RIDAX [4] (developed in the con-
text of the European MAFTIA project) proposed a set of
metrics such as precision, recall, as used in the information-
retrieval field. Their approach is very different from CID

because they focus on assessing the completeness and util-
ity of arbitrary IDS combinations, while we try to capture
the intrinsic capability of IDS using an information-theoretic
approach.

Our new metric is similar to but different from NMI (Nor-
malized Mutual Information, (H(A)+H(B))/H(A, B)) used
in medical image registration [18] and NAMI (Normalized
Asymmetric Mutual Information, I(X; Y )/H(Y )) [23]. These
other metrics are not as sensitive as CID for realistic intru-
sion detection scenarios, as discussed in Section 2.

7. CONCLUSION AND FUTURE WORK
The contributions of this paper are both theoretical and

practical. We provided an in-depth analysis of existing IDS
metrics. And we argued that the lack of a unified metric
makes it hard to fine-tune an IDS and compare different
IDSs. Then, we studied the intrusion detection process from
the viewpoint of information theory and proposed a natural,
unified metric to measure the capability of the IDS in terms
of its capability to correctly classify the input events. Our
metric, Intrusion Detection Capability, or CID, is simply the
ratio of the mutual information between the IDS input and
output to the entropy of the IDS input. This intuitive metric
combines all commonly used metrics, i.e., true positive rate,



false positive rate, and both positive and negative predictive
values. It also factors in the base rate, an important measure
of the IDS operation environment. As a composite (unified)
metric, CID greatly complements the cost-based approach.

Using this metric, one can choose the best (optimized)
operation point of an IDS (e.g., the threshold for an anomaly
detection system). Furthermore, since CID is normalized,
we can compare different IDSs, even though their FP , FN
rates are different. We presented numerical experiments and
case studies to show the utility.

This paper has not presented every application for In-
trusion Detection Capability, and numerous extensions are
possible.

An obvious extension of CID comes from rethinking the
simple model of IDS inputs and outputs, X, Y , represented
as a 1 or a 0. We can instead encode different types of
attacks into X, Y , creating a more accurate model, par-
ticularly in the context of signature-based IDS. Aware of
this more accurate model, we will use CID to measure more
signature-based detection systems.

Our abstract model for the intrusion detection process can
be further studied using channel capacity models from in-
formation theory. Multiple processes (or layers) of IDS can
be considered as multiple (chained) channels. We can ana-
lyze and improve both internal and external designs of IDS
instead of only considering the intrusion detection process
as an entire black box.
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