Measuring Intrusion Detection Capability: An Information-Theoretic Approach

Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee Georgia Tech

> Boris Skoric Philips Research Lab

Outline

- Motivation
 - Problem
 - Why existing metrics not enough?
- An Information-Theoretic View of Intrusion Detection
 - Intrusion detection capability: C_{ID}
- Experiment Evaluation
- Conclusion and Future Work

Two Motivating Examples

- Suppose your company is choosing IDS from two candidates
 - IDS1 can detect 10% more attacks, but IDS2 can produce 10% lower false alarms
 - Which one is better?
- Suppose you are configuring your IDS at some operation point (by setting threshold, rule set, policy, ...) in your environment
 - How do you set the IDS at an optimal point?

Problem

- A fundamental problem in intrusion detection
 - What metric(s) to objectively measure the effectiveness of an IDS in terms of its ability to correctly classify events as normal or intrusion?
- Why we need such a metric?
 - selecting the best IDS configuration for an operation environment
 - evaluating different IDSs

Basic and Commonly Used Metrics

- \blacksquare FP (α): false positive rate
 - □ P(A|¬I)
- TP (1-β): true positive rate, or detection rate
 P(A|I)
- Instead of using TP, we can also use FN (β): false negative rate
 - $P(\neg A|I) = 1 P(A|I)$

Tradeoff is Needed

Example

- □ IDS1: FN=10%, FP=5%
- □ IDS2: FN=20%, FP=2%
- Which one is better?

IDS operation point

- □ Point1: FN=1%, FP=2%
- Point2: FN=10%, FP=0.5%
- Which point to configure?

ROC Curve

Lesson: ROC curve provides tradeoff, but itself cannot tell you which one is better in many cases!

Cost-based Analysis

- Assign different costs to FP, FN according to the risk model in operation environment
- Compute the expected cost
 - the operation point/IDS with the minimal expected cost is better

Analysis on One Example

[GU,Oakland'01] Using a decision tree model, the expected cost of operating at a given point on the ROC curve is the sum of the products of the probabilities of the IDS alerts and the expected costs conditional on the alerts

$$C_{exp} = Min\{C\beta B, (1-\alpha)(1-B)\} + Min\{C(1-\beta)B, \alpha(1-B)\}$$

- C is a cost ratio: C=Cost(FN)/Cost(FP)
- B is the base rate P(I)

Analysis on One Example (cont.)

$$C_{exp} = CB \quad if \ CB < \frac{\alpha}{1 - \beta}$$

Improvement of FP,FN does not show effect!

$$C_{exp} = C\beta B + \alpha$$
 if $\frac{\alpha}{1-\beta} < CB < 1$

Improvement of FN and change of base rate do not show effect!

$$C_{exp} = 1 + \alpha$$
 if $CB > 1$

Problem with Cost-based Analysis

- Cost measures (cost of false alarms and missed attacks) determined subjectively, and usually they are very hard to choose accurately
 - Lack of good risk analysis models in many real situations
 - So it cannot be used to objectively evaluate and compare IDSs
- It does not provide an intrinsic measure of detection performance (or accuracy)

Two Other Metrics

- Consider the important environment parameter, base rate. And from a user point of view
- PPV: Positive predictive value, or "Bayesian detection rate"
 - P(I|A): given IDS alerts, how many of them are real intrusions?
- NPV: Negative predictive value
 - □ P(¬I|¬A): given there are no IDS alerts, does it mean there are really no intrusions?
- Base rate fallacy [Axelsson, CCS99]: PPV is very low because B is extremely low in realistic environment
- Tradeoff is also needed between PPV and NPV

PPV, NPV

What We Want?

- A single unified metric that takes into account all the important aspects of detection capability
- Be objective, not depend on any subjective measure (which is hard to determine in many realistic situations)
- Be sensitive to IDS operation parameters to facilitate fine tuning and fine-grained comparison of IDSs

An Information-Theoretic View of Intrusion Detection

Information Theory Background

Uncertainty (information) of X

Entropy H(X)*

The remaining uncertainty in X after Y is known

Conditional entropy
 H(X|Y)

Mutual information I(X;Y) ★······....

The amount of reduction of uncertainty in X after Y is known

An Information-Theoretic View of Intrusion Detection (cont.)

- The purpose of an IDS (abstract level)
 - Classify the input correctly as normal or intrusion
 - The IDS output should faithfully reflect the ``truth" about the input (whether there is an intrusion or not).
- Information-theoretic point of view, we should have less uncertainty about the input given the IDS output
- Mutual information: captures the reduction of original uncertainty (intrusion or normal) given that we observe the IDS alerts.

Intrusion Detection Capability

$$C_{ID} = \frac{I(X;Y)}{H(X)}$$

$$C_{ID} = I(X;Y)/H(X) = (H(X)-H(X|Y))/H(X)$$

- A function of three basic variables
 - B
 - □ FP
 - □ FN

Another Intuitive Meaning

- Input X: a data stream (a stochastic binary vector with the ground truth indication unknown to the IDS)
- Output <u>Y</u>: an alert stream that should ideally be identical to <u>X</u>
- The IDS has to make correct guesses about the unknown X
- The actual number of required binary guesses is H(X) (the ``real" information content of X). Of these, the number correctly guessed by the IDS is I(X;Y). (see Venn diagram for the intersection H(X) and H(Y))
- Thus I(X; Y)/H(X) is the fraction of correct 'information' guesses

Other Similar Metrics

Based on different ways to normalize mutual information

$$NMI = (H(X) + H(Y))/H(X,Y)$$
$$NMI' = I(X;Y)/H(X,Y)$$
$$NAMI = I(X;Y)/H(Y)$$

NMI' as an Example

Realistic IDS Situation

■ Less sensitive (note the *orders of magnitude* difference in scales with C_{ID})

Reason

Why C_{ID} is better than existing metrics?

- A clear information-theoretic meaning
 - Not arbitrary subjective cost setting
- A unified metric
 - A nature tradeoff by taking care of existing metrics
- A more sensitive metric
 - Good to demonstrate the effect of the subtle changes of intrusion detection systems

Unified Metric: C_{ID}

$$C_{ID} = I(X;Y)/H(X) = (H(X)-H(X|Y))/H(X)$$

$$H(X) = -\sum_{x} p(x) \log p(x) = -B \log B - (1-B) \log (1-B)$$

$$H(X|Y) = -B(1-\beta)\log PPV - B\beta\log(1-NPV) - (1-B)(1-\alpha)\log NPV - (1-B)\alpha\log(1-PPV)$$

Unify existing metrics;

Also can be viewed as a nature cost tradeoff with the log() as cost functions

Sensitivity Analysis Using Derivatives

C_{ID} has the highest sensitivity compared to PPV, NPV

(a) Dependence on base rate analysis ($\alpha = 0.001, \beta = 0.01$)

(b) Dependence on false positive rate analysis ($B = 0.00001, \beta = 0.01$)

(c) Dependence on false negative rate analysis (B = 0.00001, $\alpha = 0.001$)

Utility of C_{ID}: Selection of Optimal Operating Point

Utility of C_{ID} : Comparison of Different IDSs $C_{ID} = 0.8390$

Example

□ IDS1: FP=1/660,000, TP=0.88

□ IDS2: FP=7/660,000, TP=0.97

Which one is better?

 $C_{ID} = 0.8881$

Real IDS Experiment

- Data
 - DARPA 1999 intrusion detection test data set
 - Georgia Tech CoC http traffic (about 6 hours)
- IDS
 - PHAD: Packet Header Anomaly Detection
 - PAYL: Payload Anomaly Detection
 - Snort (Version 2.1.0 Build 9)

PHAD

PAYL

Comparison

PAYL

- optimal operating threshold of 64
- \Box $C_{ID} = 0.033448$
- $\alpha = 0.7 \times 10^{-3}, 1-\beta = 0.10563$

Snort

- $\alpha = 0.0000006701$
- \Box 1- β =0.0117
- $C_{ID} = 0.0081$

Better compared to PAYL

worse

worse

Summary and Future Work

- In-depth analysis of existing IDS metrics
- Studied the intrusion detection from the viewpoint of information theory
 - Proposed a novel, natural, unified, objective, sensitive metric to measure the capability of IDS
- Impact
 - Choose the best (optimized) operation point of an IDS
 - Compare different IDSs
- Future work
 - Rich encoding of X and Y
 - Analyze and improve both internal and external designs of IDS, by looking into multiple (chained) channel/layer architecture of the IDS

Q &A

Thank you!

Other Issues

Estimation of Base Rate, FP, FN

Unit of Analysis

Involving Cost Analysis in C_{ID}