

Using an Ensemble of One-Class SVM Classifiers to Harden Payload-Based Anomaly Detection Systems

Roberto Perdisci⁺, Guofei Gu[,] Wenke Lee[,] Georgia Institute of Technology, Atlanta, GA, USA ⁺University of Cagliari, ITALY

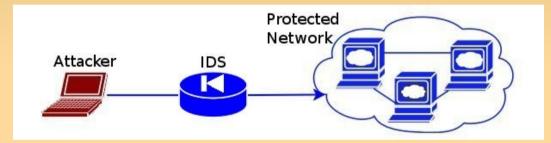
presented by Roberto Perdisci

- Anomaly Detection in Computer Networks
- PAYL, a PAYLoad-based Anomaly Detector
- Polymorphic Blending Attack
- Hardening Payload-based Anomaly Detection
 - Payload Analysis using 2v-grams
 - Combining Multiple One-Class Classifiers
- Experimental Results
- Conclusion

- Anomaly Detection in Computer Networks
- PAYL, a PAYLoad-based Anomaly Detector
- Polymorphic Blending Attack
- Hardening Payload-based Anomaly Detection
 - Payload Analysis using 2v-grams
 - Combining Multiple One-Class Classifiers
- Experimental Results
- Conclusion

Anomaly Detection in Computer Networks

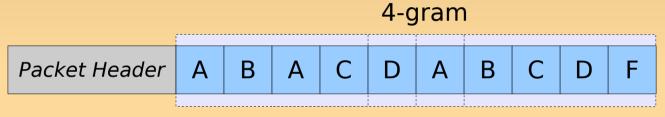
- Problem Definition
 - Classify computer network traffic
 - Distinguish between normal traffic and attacks
 - No labelled dataset
- Assumptions



- The vast majority of the network traffic is normal
- Network attacks can be distinguished from normal traffic using suitable metrics
- Outlier Detection problem

- Anomaly Detection in Computer Networks
- PAYL, a PAYLoad-based Anomaly Detector
- Polymorphic Blending Attack
- Hardening Payload-based Anomaly Detection
 - Payload Analysis using 2v-grams
 - Combining Multiple One-Class Classifiers
- Experimental Results
- Conclusion

- PAYLoad-based Anomaly Detector
 - Developed at Columbia University, NY
 - Based on occurrence frequency of n-grams (sequences of n bytes) in the payload



- Training
 - Frequency of n-grams is extracted for each payload in a (noisy) dataset of *normal* traffic
 - A simple model is constructed by computing the average and standard deviation of frequency of n-grams
 - 256ⁿ possible n-grams = 256ⁿ features

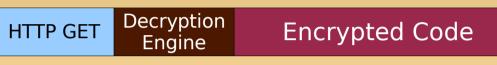
PAYL

- Operational Phase
 - The frequency of n-grams is extracted from the payload of each packet entering the network
 - *Simplified* Mahalanobis distance used to compare the packet under test to the model of normal traffic
 - An alarm is flagged if distance greater than a certain threshold
- Problems
 - PAYL assumes there is no correlation among features
 - Uses 1-gram (or 2-gram) analysis because high values of n are impractical
 - if *n* is high -> curse of dimensionality
 - if *n* is low -> low amount of structural information

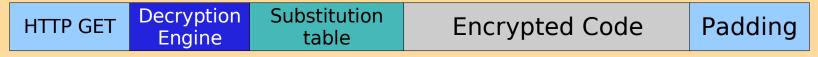
- Anomaly Detection in Computer Networks
- PAYL, a PAYLoad-based Anomaly Detector
- Polymorphic Blending Attack
- Hardening Payload-based Anomaly Detection
 - Payload Analysis using 2v-grams
 - Combining Multiple One-Class Classifiers
- Experimental Results
- Conclusion

Polymorphic Blending Attack

 Polymorphism is used by attackers to avoid signaturebased detection

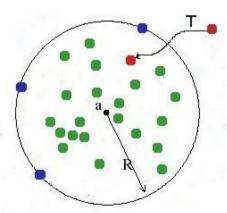


- 1-gram and 2-gram PAYL can easily detect "standard" and Polymorphic attacks
 - normal HTTP requests are highly structured, they contain mostly printable characters
 - the Executable Code, the Decryption Engine and the Encrypted Code contain lots of "unusual" characters (e.g., non-printable)
- Polymorphic Blending Attack can *evade* PAYL
 - Encryption algorithm is designed to make the attack look like normal traffic



Polymorphic Blending Attack

- Attack strategy
 - Estimate frequency distribution of n-grams in normal traffic (e.g., sniffing traffic sent towards the victim network)
 - Encode the attack payload to approximate the learned distribution
 - Add padding bytes to further adjust the distribution of n-grams in the attack payload
- Can evade 1-gram and 2-gram PAYL
 - Attack transformation *T* brings the attack pattern inside the decision surface



Analysis of Polymorphic Blending Attack

- Why does the Blending Attack work?
 - Model of normal traffic constructed by PAYL is too simple
 - 1-gram and 2-gram analysis do not extract enough structural information
- Shortcomings of the attack
 - Polymorphic Blending Attack uses a greedy algorithm to find a sub-optimal attack transformation
 - The attack transformation is less and less likely to find a good solution for high values of n

- Anomaly Detection in Computer Networks
- PAYL, a PAYLoad-based Anomaly Detector
- Polymorphic Blending Attack
- Hardening Payload-based Anomaly Detection
 - Payload Analysis using 2v-grams
 - Combining Multiple One-Class Classifiers
- Experimental Results
- Conclusion

Extracting structural information

- We could use n-gram analysis with a high value of n, but...
 - 256ⁿ features! (if n=3 we have 16,777,216 features!)
 - curse of dimensionality
 - problems related to computational cost and memory consumption of learning algorithms
- Observation
 - if n=2 we have $256^2 = 65,536$ features
 - in this case the classification problem is still tractable

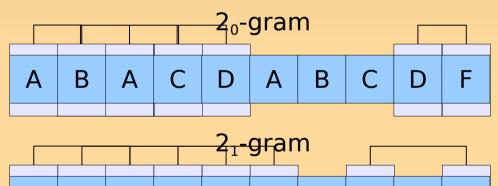
2v-gram analysis

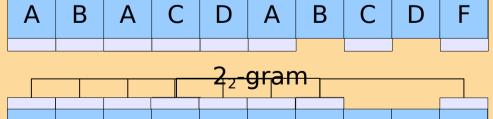
Α

В

Α

- Definition
 - 2v-gram = 2 bytes in the payload that are v bytes apart from each other
 - instead of measuring the occurrence frequency of ngrams we measure the freq. of 2v-grams, with v=0..(n-2)





Α

В

С

D

F

D

С

Combining multiple models

Intuition

 combining the structural information extracted using the 2v-gram analysis, v=0..(n-2) approximately reconstructs the structural information extracted by n-gram analysis

• In practice

- using 2ν -gram analysis we obtain (n-2+1) different descriptions of the payload
- each description projects the payload in a 256²dimensional feature space
- construct one model of normal traffic for each value of v=0..(n-2) using One-Class SVM
- combine the output of the obtained (n-2+1) classifiers using the Majority Voting combination rule

Feature Reduction

- $256^2 = 65,536$ features!
 - we need to reduce the dimensionality of each of the (n-2+1) feature spaces before constructing classifiers
- Payload-based Anomaly Detection with n-gram analysis is analogous to text classification
 - true if we consider the bag-of-words technique with freq. of words as features
 - n-grams = words
 - payload = document
- We use a Feature Clustering algorithm proposed for text classification problems
 - Dhillon et al., "A divisive information-theoretic feature clustering algorithm for text classification", JMLR 2003

Summary

- Our approach to make Polymorphic Blending Attack harder to succeed
 - Extract more structural information from the payload
 - Construct descriptions of the payload in different feature spaces
 - Reduce the dimensionality of these feature spaces
 - Construct a One-Class SVM classifier on each of the reduced feature spaces to model normal traffic
 - Combine the output of the constructed classifiers

- Anomaly Detection in Computer Networks
- PAYL, a PAYLoad-based Anomaly Detector
- Polymorphic Blending Attack
- Hardening Payload-based Anomaly Detection
 - Payload Analysis using 2v-grams
 - Combining Multiple One-Class Classifiers
- Experimental Results
- Conclusion

Experimental Results

- Datasets
 - HTTP requests towards www.cc.gatech.edu collected between October and November 2004
 - Training dataset
 - 1 day of normal traffic (384,389 payloads)
 - Test datasets
 - 4 days of normal traffic (1,315,433 payloads)
 - Attack Dataset (126 payloads)
 - 11 non-polymorphic Buffer Overflow attacks
 - 6 polymorphic attacks
 - 1 Polymorphic Blending Attack (trained to evade 1-gram and 2-gram PAYL)

Experimental Results

1-gram PAYL

DFP(%)	RFP(%)	Detected attacks	DR(%)
0.0	0.00022	1	0.8
0.01	0.01451	4	17.5
0.1	0.15275	17	69.1
1.0	0.92694	17	72.2
2.0	1.86263	17	72.2
5.0	5.69681	18	73.8
10.0	11.05049	18	78.6

2-gram PAYL

DFP(%)	RFP(%)	Detected attacks	DR(%)
0.0	0.00030	14	35.2
0.01	0.01794	17	96.0
0.1	0.12749	17	96.0
1.0	1.22697	17	97.6
2.0	2.89867	17	97.6
5.0	6.46069	17	97.6
10.0	11.25515	17	97.6

Multiple One-Class SVM (n=12,k=40)

DFP(%)	RFP(%)	Detected attacks	DR(%)
0.0	0.0	0	0
0.01	0.00381	17	68.5
0.1	0.07460	17	79.0
1.0	0.49102	18	99.2
2.0	1.14952	18	99.2
5.0	3.47902	18	99.2
10.0	7.50843	18	100

DFP =	False	positives	on training	dataset

RFP = False positives on **test dataset**

DR = Percentage of **detected attack packets**

- Anomaly Detection in Computer Networks
- PAYL, a PAYLoad-based Anomaly Detector
- Polymorphic Blending Attack
- Hardening Payload-based Anomaly Detection
 - Payload Analysis using 2v-grams
 - Combining Multiple One-Class Classifiers
- Experimental Results
- Conclusion

Conclusion

- We introduced the 2ν -gram analysis technique to extract information from the payload
- We used the analogy between payload-based anomaly detection and text classification for feature reduction
- We used an ensemble of classifiers to "combine" the structural information extracted with the 2ν -gram technique
- This makes the Polymorphic Blending Attack more difficult to succeed

Related Work

- **Wang** et al. "Anomalous Payload-based Network Intrusion Detection". RAID 2004.
- **Fogla** et al. "*Polymorphic Blending Attack*". USENIX Security 2006.
- **Dhillon** et al. "A divisive information-theoretic feature clustering algorithm for text classification", MIT Journal of Machine Learning Research, Vol. 3, 2003
- **Barreno** et al. "*Can machine learning be secure?*". AsiaCCS'06.

Anomaly vs. Signature-based Detection

- Signature-based IDS are the most deployed
 - efficient patter matching
 - can detect known attacks
 - low number of false positives (i.e., false alarms)
 - not able to detect unknown (zero-day) attacks
- Anomaly Detection
 - can detect known and unknown attacks (in theory!)
 - difficulties in precisely modelling the normal traffic
 - may generate a higher number of false positives compared to signature-based IDS

Polymorphic Attack

• A "standard" Buffer Overflow attack (for example) looks like

HTTP GET Executable Code

- these attacks can usually be detected using pattern matching (signature-based IDS)
- Polymorphism is used by attackers to avoid signature-based detection

HTTP GET Decryption Engine Encrypted Code

 the Decryption Engine and the Encrypted Code change every time the attack is launched towards a new victim

Experimental Results

- Single One-Class SVM classifiers
 - *RBF* kernel (γ =0.5)

ν

- k = number of Feature Clusters
- v = parameter for the 2*v*-gram analysis

			k		
	10	20	40	80	160
0	0.9660 (0.4180E-3)	0.9664 (0.3855E-3)	0.9665 (0.4335E-3)	0.9662 (0.2100E-3)	0.9668 (0.4686E-3)
1	0.9842 (0.6431E-3)	0.9839 (0.7047E-3)	0.9845 (0.7049E-3)	0.9833 (1.2533E-3)	0.9837 (0.9437E-3)
2	0.9866 (0.7615E-3)	0.9867 (0.6465E-3)	0.9875 (0.6665E-3)	0.9887 (2.6859E-3)	0.9862 (0.7753E-3)
3	0.9844 (1.2207E-3)	0.9836 (1.1577E-3)	0.9874 (1.0251E-3)	0.9832 (1.0619E-3)	0.9825 (0.6835E-3)
4	0.9846 (0.5612E-3)	0.9847 (1.5334E-3)	0.9846 (0.9229E-3)	0.9849 (1.5966E-3)	0.9855 (0.4649E-3)
5	0.9806 (0.8638E-3)	0.9813 (0.9072E-3)	0.9810 (0.5590E-3)	0.9813 (0.8494E-3)	0.9818 (0.3778E-3)
6	0.9809 (0.7836E-3)	0.9806 (1.1608E-3)	0.9812 (1.6199E-3)	0.9794 (0.3323E-3)	0.9796 (0.4240E-3)
7	0.9819 (1.6897E-3)	0.9854 (0.8485E-3)	0.9844 (1.2407E-3)	0.9863 (1.9233E-3)	0.9877 (0.7670E-3)
8	0.9779 (1.7626E-3)	0.9782 (1.9797E-3)	0.9787 (2.0032E-3)	0.9793 (1.0847E-3)	0.9785 (1.7024E-3)
9	0.9733 (3.1948E-3)	0.9775 (1.9651E-3)	0.9770 (1.0803E-3)	0.9743 (2.4879E-3)	0.9722 (1.2258E-3)
10	0.9549 (2.7850E-3)	0.9587 (3.3831E-3)	0.9597 (3.8900E-3)	0.9608 (1.2084E-3)	0.9681 (7.1185E-3)

AUC measured in the interval [0,0.1] of false positives (normalized)

Advantages of our approach

- The attacker could evade our IDS if he was able to construct the attack transformation to approximate the distribution of (n/2+1)-grams in normal traffic
- However, the greedy attack transformation algorithm is unlikely to find a good solution if (n/2+1) is a sufficiently high value
- A new attack transformation algorithm specifically crafted to approximate the distribution of 2ν -grams has to evade at least n/2 different models at the same time
- The introduced overhead added to the operational phase is expected to be fairly low