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Abstract

It’s an essential step to understand malware’s behaviors

for developing effective solutions. Though a number of

systems have been proposed to analyze Android mal-

ware, they have been limited by incomplete view of in-

spection on a single layer. What’s worse, various new

techniques (e.g., packing, anti-emulator, etc.) employed

by the latest malware samples further make these system-

s ineffective. In this paper, we propose Malton, a nov-

el on-device non-invasive analysis platform for the new

Android runtime (i.e., the ART runtime). As a dynam-

ic analysis tool, Malton runs on real mobile devices and

provides a comprehensive view of malware’s behaviors

by conducting multi-layer monitoring and information

flow tracking, as well as efficient path exploration. We

have carefully evaluated Malton using real-world mal-

ware samples. The experimental results showed that

Malton is more effective than existing tools, with the ca-

pability to analyze sophisticated malware samples and

provide a comprehensive view of malicious behaviors of

these samples.

1 Introduction

To propose effective solutions, it is essential for malware

analysts to fully understand malicious behaviors of An-

droid malware. Though many systems have been pro-

posed, malware authors have quickly adopted advanced

techniques to evade the analysis. For instance, since

the majority of static analysis tools inspect the Dalvik

bytecode [2], malware circumvent them by using vari-

ous obfuscation techniques to raise the bar of code com-

prehension [61], implementing malicious activities in na-

tive libraries to evade the inspection [13, 59, 70, 92], and

leveraging packing techniques to hide malicious pay-

loads [82,85,88]. For example, the percentage of packed
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Android malware has increased from 10% to 25% [36],

and 37.0% of the Android apps execute native code [11].

These sophisticated techniques employed by the latest

malware also make the dynamic analysis systems inef-

fective. First, malicious behaviors usually cross sever-

al system layers (e.g., the Android runtime, the Android

framework, and native libraries, etc.). However, the ma-

jority of dynamic analysis systems [34, 46, 73, 91] lack

of the capability of cross-layer inspection, and thus pro-

vide incomplete view of malicious behaviors. For exam-

ple, CopperDroid [73] monitors malware behaviors main-

ly through the trace of system calls (e.g., sys sendto()
and sys write()). Thus, it is hard to expose the execution

details in the Android framework layer and the runtime

layer, due to the well-known semantic gap challenge.

Second, the anti-debug and anti-emulator techniques em-

ployed by malware [44, 47, 56, 74] as well as the new

Android runtime (i.e., the ART runtime) further limit the

usage of many dynamic analysis systems. For example,

in [14], 98.6% malware samples were successfully ana-

lyzed on the real smartphone, whereas only 76.84% mal-

ware samples were successfully inspected using the em-

ulator. Most of the existing tools either rely on emulators

(e.g., DroidScope [83]) or modify the old Android run-

time (i.e., Dalvik Virtual Machine, or DVM for short) to

monitor malware behaviors (e.g., TaintDroid [38]). Third,

it is a common practice that malware executes differen-

t payloads according to the commands from the remote

command and control (i.e., C&C) servers. However, ex-

isting systems are not effective in capturing the execu-

tion of all malicious payloads, because they are impaired

by the inherent limitation of dynamic analysis (i.e., low

code coverage) and the lack of efficient code path explo-

ration technique.

In this paper, we propose Malton, a novel on-device

non-invasive analysis platform for the ART runtime.

Compared with other systems, Malton employs two im-

portant capabilities, namely, a) multi-layer monitoring

and information flow tracking, and b) efficient path ex-



ploration, to provide a comprehensive view of malware

behaviors. Moreover, Malton does not need to modify

malware’s bytecode for conducting static instrumenta-

tion. To our best knowledge, Malton is the first system

with such capabilities. Table 7 in Section 6 illustrates the

key differences between Malton and other systems.

Malton inspects Android malware on different layer-

s. It records the invocations of Java methods, includ-

ing sensitive framework APIs and the concerned meth-

ods of the malware, in the framework layer, and captures

stealthy behaviors, such as dynamic code loading and JNI

reflection, in the runtime layer. Moreover, it monitors

library APIs and system calls in the system layer, and

propagates taint tags and explores different code paths

in the instruction layer. However, multi-layer monitor-

ing is not enough to provide a comprehensive view of

malware behaviors, because malicious payloads could be

conditionally executed. We deal with this challenge with

the capability to efficiently explore code paths. First, to

trigger as many malicious payloads as possible, we pro-

pose a multi-path exploration engine based on the con-

colic execution [27] to generate concrete inputs for ex-

ploring different code paths. Second, to conduct efficient

path exploration on mobile devices with limited compu-

tational resources, we propose an offloading mechanism

to move heavy-weight tasks (e.g., solving constraints) to

resourceful desktop computers, and an in-memory opti-

mization mechanism that makes the execution flow re-

turn to the entry point of the interested code region im-

mediately after exiting the code region. Third, in case the

constraint solver fails to find a solution to explore a code

path, we equip Malton with a direction execution engine

to forcibly execute a specified code path. Since Malton

requires the necessary human annotations of the interest-

ed code regions, it is most useful in the human-guided

detailed exploration of Android malware.

We have implemented a prototype of Malton based on

the binary instrumentation framework Valgrind [53]. S-

ince both the app’s code and the framework APIs are

compiled into native code in the ART runtime, we lever-

age the instrumentation mechanism of Valgrind to intro-

spect apps and the Android framework. We evaluated

Malton with real-world malware samples. The experi-

mental results show that Malton can analyze sophisticat-

ed malware samples and provide a comprehensive view

of their malicious behaviors.

In summary, we make the following contributions.

• We propose a novel Android malware analysis system

with the capability to provide a comprehensive view

of malicious behaviors. It has two major capabili-

ties, including multi-layer monitoring and information

flow tracking, and efficient path exploration.

• We implement the system named Malton by solv-

ing several technical challenges (e.g., cross-layer taint

propagation, on-device Java method tracking, execu-

tion path exploration, etc.). To the best of our knowl-

edge, it is the first system having such capabilities.

To engage the whole community, we plan to release

Malton to the community.

• We carefully evaluate Malton with real-world mal-

ware samples. The results demonstrated the effective-

ness of Malton in analyzing sophisticated malware.

The rest of this paper is organized as follows. Sec-

tion 2 introduces background knowledge and describes a

motivating example. Section 3 details the system design

and implementation. Section 4 reports the evaluation re-

sults. Then, we discuss Malton’s limitations and possible

solutions in Section 5. After presenting the related work

in Section 6, we conclude the paper in Section 7.

2 Background

2.1 The ART Runtime

ART is the new runtime introduced in Android version

4.4, and becomes the default runtime from version 5.0.

When an app is being installed, its Dalvik bytecode in

the Dex file is compiled to native code1 by the dex2oat
tool, and a new file in the OAT format is generated includ-

ing both the Dalvik bytecode and native code. The OAT

format is a special ELF format with some extensions.

The OAT file has an oatdata section, which contains

the information of each class that has been compiled into

native code. The native code resides in a special sec-

tion with the offset indicated by the oatexec symbol.

Hence, we can find the information of a Java class in the

oatdata section and its compiled native code through

the oatexec symbol.

When an app is launched, the ART runtime parses the

OAT file and loads the file into memory. For each Java

class object, the ART runtime has a corresponding in-

stance of the C++ class Object to represent it. The first

member of this instance points to an instance of the C++

class Class, which contains the detailed information of

the Java class, including the fields, methods, etc. Each

Java method is represented by an instance of the C++

class ArtMethod, which contains the method’s address,

access permissions, the class to which this method be-

longs, etc. The C++ class ArtField is used to represent

a class field, including the class to which this field be-

longs, the index of this field in its class, access rights, etc.

We can leverage the C++ Object, Class, ArtMethod
and ArtField to find the detailed information of the Ja-

va class, methods and fields of the Java class.

1Native code denotes the native instructions that could directly run

with a particular processor.



Listing 1: A motivating example

1 public static native void readContact();
2 public static native void parseMSG(String msg);
3 private void readIMSI(){
4 TelephonyManager telephonyManager =
5 (TelephonyManager) getSystemService(
6 Context.TELEPHONY_SERVICE);
7 String imsi = telephonyManager.getSubscriberId();
8 // Send back data through SMTP protocol
9 smtpReply(imis);

10 }
11 private void procCMD(int cmd, String msg){
12 if(cmd == 1) {
13 readSMS(); // Read SMS content
14 } else if(cmd == 2) {
15 readContact(); // Read Contact content
16 } else if(cmd == 3) {
17 readIMSI(); // Read device IMSI information
18 } else if(cmd == 4) {
19 rebootDevice(); // Reboot the device
20 } else if(cmd == 5) {
21 parseMSG(msg); // Parse msg in native code
22 } else { // The command is unrconginized.
23 reply("Unknown command!");
24 }
25 }
26 public boolean equals(String s1, String s2) {
27 if(s1.count != s2.count)
28 return false;
29 if(s1.hashCode() != s2.hashCode())
30 return false;
31 for(int i = 0; i < count; ++i)
32 if (s1.charAt(i) != s2.charAt(i))
33 return false;
34 return true;
35 }
36 public void onReceiver(Context context, Intent intent){
37 String body = smsMessage.getMessageBody();
38 // Get the telephone of the sender
39 String sender = smsMessage.getOriginatingAddress();
40 // Check if the SMS is sent form the controller
41 if(equals(sender, "6223**60")) {
42 procCMD(Interger.parseInt(body), body);
43 }
44 ...
45 }

The Android framework is compiled into an OAT

file named “system@framework@boot.oat”. This file is

loaded to the fixed memory range for all apps running on

the device without ASLR enabled [69].

2.2 Motivating Example

We use the example in Listing 1 to illustrate the usage of

Malton. In this example, the method onReceiver() is an

SMS listener and it is invoked when an SMS arrives. In

this method, the telephone number of the sender is first

acquired (Line 39) for checking whether the SMS is sent

from the controller (Tel: 6223**60). Only the SMS from

the controller will be processed by the method procCMD()
(Line 42). There are 5 types of commands, each of which

leads to a special malicious behavior (i.e., Line 13, 15,

17, 19 and 21). Reading contact and parsing SMS are

implemented in the JNI methods readContact() (Line 1)

and parseMSG() (Line 2), respectively.

Existing malware analysis tools could not construct a

complete view of the malicious behaviors. For example,

when cmd equals 3 (Line 16), IMSI is obtained by in-

voking the framework API getSubscriberId() (Line 7), and

then leaked through SMTP protocol (Line 9). Although

existing tools (e.g., CopperDroid [73]) can find that the

malware reads IMSI and leaks the information by sys-

tem call sys sendto(), they cannot locate the method used

to get IMSI and how the IMSI is leaked in detail, be-

cause sys sendto() can be called by many functions (e.g.,

JavaMail APIs, Java Socket methods and C/C++ Socket

methods) from both the framework layer and the native

layer. Malton can solve this problem because it performs

multi-layer monitoring.

When cmd equals 5, the content of SMS, which is

obtained from the framework layer (Line 37), will be

parsed in the JNI method parseMSG() (Line 2) by native

code. Although taint analysis could identify this infor-

mation flow, existing static instrumentation based tools

(e.g., TaintART [71] and ARTist [21]) cannot track the in-

formation flow in the native code. Malton can tackle this

issue since it offers cross-layer taint analysis.

Moreover, as shown in the method procCMD()
(Line 11), the malware performs different activities ac-

cording to the parameter cmd. Due to the low code cov-

erage of dynamic analysis, how to efficiently explore all

the malicious behaviors with the corresponding inputs is

challenging. Malton approaches this challenge by con-

ducting concolic execution with in-memory optimization

and direct execution. Furthermore, we propose a new of-

floading mechanism to avoid overloading the mobile de-

vices with limited computational resources. Since some

constraints may not be solved (e.g., the hash functions at

Line 29), we develop a direct execution engine to cover

specified branches forcibly.

3 Design and Implementation

In this section, we first illustrate the design of our ap-

proach, and then detail the implementation of Malton.

Framework API invocations

System call invocations

Runtime function invocations

Logs

Malton

Multi-layer
Monitoring

Information-
Flow
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Path
Exploration

Comprehensive 
Behaviors
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Cross-layer execution paths

Cross-layer data flows

Implementation features

Library function invocations

Figure 1: The scenario of Malton.

3.1 Overview
Malton helps security analysts obtain a complete view

of malware samples under examination. To achieve this

goal, Malton supports three major functionalities. First,

due to the multi-layer nature of Android system, Malton

can capture malware behaviors at different layers. For

instance, malware may conduct malicious activities by



invoking native code from Java methods, and such be-

haviors involve method invocations and data transmis-

sion at multiple layers. The challenging issue is how to

effectively bridge the semantic gap when monitoring the

ARM instructions.

Second, malware could leak private information by

passing the data across multiple layers back and forth.

Note that many framework APIs are JNI methods (e.g.,

String.concat(), String.toCharArray(), etc.), whose real

implementations are in native code. Malton can detect

such privacy leakage because it supports cross-layer in-

formation flow tracking (Section 3.5).

Third, since malware may conduct diverse malicious

activities according to different commands and contexts,

Malton can trigger these activities by exploring the paths

automatically (Section 3.6). It is non-trivial to achieve

this goal because dynamic analysis systems usually have

limited code coverage.

Figure 1 illustrates a use scenario of Malton. Malton

runs in real Android devices and conducts multi-layer

monitoring, information flow tracking, and path explor-

ing. After running a malware sample, Malton generates

logs containing the information of method invocations

and taint propagations at different layers and the result

of concolic executions. Based on the logs, we can recon-

struct the execution paths and the information flows for

characterizing malware behaviors.

Though Malton performs the analysis in multiple lay-

ers as shown in Figure 2, the implementation of Malton

in each layer is not independent. Instead, different layers

share the information with each other. For example, the

taint propagation module in the instruction layer needs

the information about the Java methods that are parsed

and processed in the framework layer.

Malton is built upon Valgrind [53] (V3.11.0) with

around 25k lines of C/C++ codes calculated by CLOC [1].

Next, we will detail the implementation at each layer.

3.2 Android Framework Layer

To monitor the invocations of privacy-concerned Java

methods of the Android framework and the app itself,

Malton instruments the native code of the framework and

the app. Since the Dalvik code has been compiled into

native instructions, we leverage Valgrind for the instru-

mentation. The challenge here is how to recover and un-

derstand the semantic information of Java methods from

the ARM instructions, including the method name, pa-

rameters, call stacks, etc. For instance, if a malware sam-

ple uses the Android framework API to retrieve user con-

tacts, Malton should capture this behavior from the ARM

instructions and recover the context of the API invoca-

tion. To address this challenge, we propose an efficient

way to bridge the semantic gaps between the low level

M
alton

Android Application (APK)

Smartphone

Android Framework Layer

Oat file parser Java object parserJava method tracker

Android Runtime (ART) Layer
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Dynamic native code loading Dynamic Java code loading 

JNI reflection
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File operation monitor
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Figure 2: The overview of Malton.

native instructions and upper layer Java methods.

Java Method Tracker To track the Java method invoca-

tions, we need to identify the entry point and exit points

of each Java method from the ARM instructions dynam-

ically. Note that the ARM instructions resulted from the

Dalvik bytecode are further translated into multiple IR

blocks by Malton. An IR block is a collection of IR state-

ments with one entry point and multiple exit points. One

exit point of an IR block could be either the condition-

al exit statement (i.e., Ist Exit) or the next statement

(i.e., Ist Next). We leverage the APIs from Valgrind

to add instrumentation at the beginning, before any IR

instruction, after any IR instruction, or at the end of the

selected IR block. The instrumentation statements will

invoke our helper functions.

To obtain the entry point of a Java method, we use

the method information in the OAT file. Specifically, the

OAT file contains the information of each compiled Java

method (ArtMethod), including the method name, off-

set of the ARM instructions, access flags, etc. Malton

parses the OAT files of both the Android framework and

the app itself to retrieve such information, and keeps it

in a hash table. When the native code is translated into

the IR blocks, Malton looks up the beginning address of

each IR block in the hash table to decide whether it is the

entry of a Java method. If so, Malton inserts the helper

function (i.e., callTrack()) at the beginning of the block to

record the method invocation and parse arguments when

it is executed.

To identify the exit point of a Java method, Malton

leverages the method calling convention of the ARM ar-

chitecture2. Specifically, the return address of a method

is stored in the link register (i.e., the lr register) when the

method is invoked. Hence, in callTrack(), Malton pushes

2Comments in file /art/compiler/dex/quick/arm/arm lir.h



ClassObject
(of java.lang.String)
object_.klass_
object_.monitor_
.....
name_("java.lang.String")

.....

StringObject
object_.klass_
object_.monitor_
count_
hash_code_
value_: 
"6534900622308366"

Instance of Java class 
java.lang.String

Class object representing type
java.lang.String

Register r0

Figure 3: The example of parsing the Java object of the

result of TelephonyManager.getDeviceId()

the value of lr into the method call stack since lr could

be changed during the execution of the method. Malton

also inserts the helper function (i.e., retTrack()) before

each exit point (i.e., Ist Exit and Ist Next) of the

IR block. In retTrack(), Malton compares the jump target

of the IR block with the method’s return address stored

at the top of the method call stack. If they are equal, an

exit point of the method is found, and this return address

is popped from the method call stack.

Malton parses the arguments and the return val-

ue of the method after the entry point and the

exits point of the method are identified, respective-

ly. According to the method calling convention,

the register r0 points to the ArtMethod object of

current method, and registers r1 − r3 contain the

first three arguments. Other arguments beyond the

first three words are pushed into the stack by the

caller. For example, when the framework method

sendMessageAtTime(Message msg, long uptimeMillis)
of class android/os/Handler is invoked, r0 points

to the ArtMethod instance of the method

sendMessageAtTime(), r1 stores the this object and

r2 represents the argument msg. For the argument

uptimeMillis, the high 32 bits are stored in the register

r3 and the low 32 bits are pushed into the stack. When

the method returns, the return value is stored in the

register r0 if the return value is 32 bits, and in registers

r0 and r1 if the return value is 64 bits.

Java Object Parser After getting the method arguments

and the return value, we need to further parse the value

if it is not the primitive data. There are two major data

types [42] in Java, including primitive data types and ref-

erence/object data types (objects). For the primitive type-

s, which include byte, char, short, int, long, float, double

and boolean, we can directly get the value from registers

and the stack. For the object, the value that we obtain

from the register or the stack is a pointer that points to a

data structure containing the detailed information of this

object. Following this pointer, we get the class informa-

tion of this object, and then parse the memory of this

object to determine the concrete value.

Figure 3 illustrates the process of parsing the Java ob-

ject of the result of TelephonyManager.getDeviceId(). Ac-

cording to its method shorty, we know that the return val-

ue of this API is a Java object represented by an Object
instance, of which the memory address is stored in the

register r0. Then, we can decide that the concrete type

of this object is java.lang.String. By parsing the results

according to the memory layout of String object, which

is represented by the StringObject data structure, we can

obtain the concrete string “6534900622308366”. Current-

ly, Malton can parse the Java objects related to String and

Array. To handle new objects, users just need to imple-

ment the corresponding parsers for Malton.

3.3 Android Runtime Layer
To capture stealthy behaviors that cannot be monitored

by the Java method tracker in the Android framework

layer, Malton further instruments the ART runtime (i.e.,

libart.so). For example, the packed malware may use

the internal functions of the ART runtime to load and

execute the decrypted bytecode directly from the memo-

ry [85,88]. Malicious payloads could also be implement-

ed in native code, and then invoke the privacy-concerned

Java methods from native code through the JNI reflection

mechanism. While the invoked Java method could be

tracked by the Java method tracker in the Android frame-

work layer, Malton tracks the JNI reflection to provide

a comprehensive view of malicious behaviors, such as,

the context when privacy-concerned Java methods are in-

voked from the native code. This is one advantage of

Malton over other tools.

Table 1: Runtime behaviors related functions.

Behavior Functions
Native code loading JavaVMExt::LoadNativeLibrary()

Java code loading

DexFile::DexFile()
DexFile::OpenMemory()
ClassLinker::DefineClass()

JNI invocation
artFindNativeMethod()
ArtMehod::invoke()

JNI reflection

InvokeWithVarArgs()
InvokeWithJValues()
InvokeVirtualOrInterfaceWithJValues()
InvokeVirtualOrInterfaceWithVarArgs()

Java reflection InvokeMethod()

Table 1 enumerates the runtime behaviors and the cor-

responding functions in the ART runtime that Malton in-

struments. Native code loading means that malicious

code could be implemented in native code and loaded in-

to memory, where Java code loading refers to loading the

Dalvik bytecode. Note that Android packers usually ex-

ploit these APIs to directly load the decrypted bytecode

from memory. JNI invocation refers to all the function

calls from Java methods to native methods. This includes



the JNI calls in the app and the Android framework. JNI

reflection, on the other hand, refers to calling Java meth-

ods from native code. For instance, malicious payload-

s implemented in native code could invoke framework

APIs using JNI reflection. Java reflection is commonly

used by malware to modify the runtime behavior for e-

vading the static analysis [61]. For example, framework

APIs could be invoked by decrypting the method names

and class names at runtime using Java reflection.

3.4 System Layer

Malton tracks system calls and system library functions

at the system layer. To track system calls, Malton reg-

isters callback handlers before and after the system cal-

l invocation through Valgrind APIs. For system library

functions, Malton wraps them using the function wrapper

mechanism of Valgrind. In the current prototype, Malton

focuses on four types of behaviors at the system lever.

• Network operations. Since malware usually receives

the control commands and sends private data through

network, Malton inspects these behaviors by wrapping

network related system calls, such as, sys connect(),
sys sendto(), recvfrom(), etc.

• File operations. As malware often accesses sensitive

information in files and/or dynamically loads mali-

cious payloads from the file system, Malton records

file operations to identify such behaviors.

• Memory operations. Since packed malware usually

dynamically modifies its own codes through memory

operations, like sys mmap(), sys protect(), etc., Malton

monitors such memory operations.

• Process operations. As malware often needs to fork

new process, or exits when the emulator or the debug

environment is detected, Malton captures such behav-

iors by monitoring system calls relevant to the process

operations, including sys execve(), sys exit(), etc.

Moreover, Malton may need to modify the arguments

and/or the return values of system calls to explore code

paths. For example, the C&C server may have been shut

down when malware samples are being analyzed. In

this case, Malton replaces the results of the system call

sys connect() to success, or replaces the address of C&C

with a bogus one controlled by the analyst to trigger ma-

licious payloads. We will discuss the techniques used to

explore code paths in Section 3.6.

3.5 Instruction Layer: Taint Propagation

At the instruction layer, Malton performs two major

tasks, namely, taint propagation and path exploration.

Note that accomplishing these tasks needs the semantic

Table 2: The taint propagation related IR Statements.

IR Statement Representation
Ist WrTmp Assign a value (i.e., IR Expression) to a temporary.
Ist LoadG Load a value to a temporary with guard.
Ist CAS Do an atomic compare-and-swap operation.
Ist LLSC Do an either load-linked or store-conditional operation.
Ist Put Write a value to a guest register.

Ist PutI
Write a value to a guest register at a non-fixed
offset in the guest state.

Ist Store Write a value to memory.
Ist StoreG Write a value to memory with guard.
Ist Dirty Call a C function.

information in the upper layers, such as the method invo-

cations for identifying the information flow, etc.

To propagate taint tags across different layers, Malton

works at the instruction layer because the codes of all

upper layers become ARM instructions during execution.

Since these ARM instructions will be translated into IR s-

tatements [53], Malton performs taint propagation on IR

statements with byte precision by inserting helper func-

tions before selected IR statements.

Table 3: Taint propagation related IR expressions.

IR Expression Representation
Iex Const A constant-valued expression.
Iex RdTmp The value held by a VEX temporary.
Iex ITE A ternary if-then-else operation.
Iex Get Get the value held by a guest register at a fixed offset.
Iex GetI Get the value held by a guest register at a non-fixed offset.
Iex Unop A unary operation.
Iex Binop A binary operation.
Iex Triop A ternary operation.
Iex Qop A quaternary operation.
Iex Load Load the value stored in memory.
Iex CCall A call to a pure (no side-effects) helper C function.

For Malton, there are 9 types IR statements related to

the taint propagation, which are listed in Table 2. For

the Ist WrTmp statement, since the source value may be

the result of an IR expression, we also need to parse the

logic of the IR expression for taint propagation. The IR

expressions that can affect the taint propagation are sum-

marized in Table 3. During the execution of the target ap-

p, Malton parses the IR statements and expressions in the

helper functions, and propagates the taint tags according

to the logic of the IR statements and expressions.

Malton supports taint sources/sinks in different layers

(i.e., the framework layer and the system layer). For ex-

ample, Malton can take the arguments and results of both

Java methods and C/C++ methods as the taint sources,

and check the taint tags of the arguments and the result-

s of sink methods. By default, at the framework layer,

11 types of information are specified as taint sources,

including device information (i.e., IMSI, IMEI, SN and

phone number), location information (i.e., GPS location,

network location and last seen location) and personal

information (i.e., SMS, MMS, contacts and call logs).

Malton also checks the taint tags of the arguments and

results when each framework method is invoked. In the

system layer, Malton takes system calls sys write() and



sys sendto() as taint sinks by default, because the sensi-

tive information is usually stored to files or leaked out of

the device through these system calls. As malware can

receive commands from network, Malton takes system

call sys recvfrom() as the taint source by default. Note that

Malton can be easily extended to support other method-

s as taint sources and sinks in both the framework layer

and the system layer.

3.6 Instruction Layer: Path Exploration
Advanced malware samples usually execute malicious

payloads according to the commands received from the

C&C server or the special context (e.g., date, locations,

etc.). To trigger as many malicious behaviors as possi-

ble for analysis, Malton employs the efficient path ex-

ploration technique, which consists of taint analysis, in-

memory concolic execution with an offloading mecha-

nism, and direct execution engine. Specifically, tain-

t analysis helps the analyst identify the code paths de-

pending on the inputs, such as network commands, and

the concolic execution module can generate the required

inputs to explore the interested code paths. When the

inputs cannot be generated, we rely on the direct exe-

cution engine to forcibly execute certain code paths. S-

ince concolic execution [27] is a well-known technique

in the community, we will not introduce it in the fol-

lowing. Instead, we detail the offloading mechanism and

the in-memory optimization used in the concolic execu-

tion module, and explain how the direct execution engine

works.

Concolic Execution: Offloading Mechanism It is non-

trivial to apply concolic execution in analyzing Android

malware on real devices, because concolic execution re-

quires considerable computational resources, resulting in

unacceptable overhead on the mobile devices. To allevi-

ate this limitation, Malton utilizes an offloading mech-

anism that moves the task of solving constraints to the

resourceful desktop computers, and then sends back the

satisfying results to the mobile devices as inputs. Our

approach is motivated by the fact that the time consump-

tion for solving constraints occupies the overall runtime

of concolic execution. For example, the percentage of

time used to solve constraints is nearly 41% of the KLEE

system, even after optimizations [25].

More precisely, when the malware sample is running

in our system, Malton redirects all the constraints to

the logcat messages [4], which could be retrieved by

the desktop computer using the ADB (Android Debug

Bridge) tool. Then, the constraint solver, which is im-

plemented based on Z3 [33], generates the satisfying in-

puts and feeds the inputs back to Malton through a file.

Since we may have multiple code paths that need to be

explored, this process could be repeated several times un-

til the constraint solver pushes an empty input file to the

device for notifying Malton to finish path exploring.

Concolic Execution: In-memory Optimization To

speed up the analysis, especially when there are multiple

execution paths, each of which depends on the special in-

put, we propose in-memory optimization to restrict con-

colic execution within the interested code region speci-

fied by the analyst without repeatably running from the

beginning of the program. By default, the analyst is re-

quired to specify the arguments or variables as the input

of the concolic execution, which will be represented as

symbolic values during concolic execution. For exam-

ple, the analyst can select the SMS content acquired from

the method getMessageBody() (Line 37 in Listing 1) as the

input. Moreover, the analyst can select the IR statement

that lets the input have concrete values as the entry point

of the code region, and choose the exit statement (i.e.,

Ist Exit) or the next statement (i.e., Ist Next) of the

subroutine as the exit point of the code region.

Malton runs the malware sample until the exit point of

the interested code region for collecting constraints and

generating new inputs for different code paths through

an SMT solver. Then, it forces the execution to return

to the entry point of the code region through modifying

the program counter and feeds the inputs by writing the

new inputs directly into the corresponding locations (i.e.,

memories or registers). Moreover, Malton needs to re-

cover the execution context and the memory state at the

entry point of the code region.

To recover the execution context, Malton conduct-

s instrumentation at the beginning of the code region,

and inserts a helper function to save the execution con-

text (i.e., register states at the first iteration). Af-

ter that, the saved register states will be recovered in

the later iterations. As Valgrind uses the structure

VexGuestArchState to represent the register states,

we save and recover the register states by reading and

writing the VexGuestArchState data in the memory.

To recover the memory states, Malton replaces the

system’s memory allocation/free functions with our cus-

tomized implementations to monitor all the memory al-

location/free operations. Malton can also free the allo-

cated memory or re-allocate the freed memory. Besides,

Malton inserts a helper function before each memory

store (i.e., Ist Store and Ist StoreG) statement to

track the memory modifications, so that all the modified

memory could be restored.

Alternatively, the analyst can choose the target code

region according to the method call graph, or first use

static analysis tool to identify code paths and then select

a portion of the path as the interested code region.

Direct Execution The concolic execution may not be

able to explore all the code paths of the interested code

region, because the constraint solver may not find satis-



fying inputs for complex constraints, such as float-point

operations and encryption routines. For the condition-

al branches with unresolved constraints, Malton has the

capability to directly execute certain code paths.

The direct execution engine of Malton is implement-

ed through two techniques: a) modifying the arguments

and the results of methods, including library functions,

system calls and Java methods; b) setting the guard value

of the conditional exit statement (i.e., Ist Exit). The

guard value is the expression used in the Ist Exit state-

ment to determine whether the branch should be taken.

It’s straightforward to modify arguments and the re-

turn values of library functions and system calls by lever-

aging Valgrind APIs. However, it’s challenging to deal

with the Java methods because there is no interface in

Valgrind to wrap Java methods. Fortunately, we have ob-

tained the entry point and exit points of the compiled Java

method in the framework layer (Section 3.2). Hence, we

could wrap the Java method by adding instrumentation at

its entry point and exit points. For example, to change the

source telephone number of a received SMS to explore

certain code path (Line 41 in Listing 1), Malton can wrap

the framework API SmsMessage.getOriginatingAddress()
and modify its return value to a desired number at the

exit points.

To set the guard value of the Ist Exit statement, we

insert a helper function before each Ist Exit statement

and specify the guard value to the result of the helper

function. In an IR block, the program can only con-

ventionally jump out of the IR block at the location of

the Ist Exit statement (e.g., an if-branch in the pro-

gram). The Ist Exit statement is defined with the for-

mat “if(t) goto <dst>” in Valgrind, where t and

dst represent the guard value and destination address,

respectively. By returning “1” or “0” in the helper func-

tion, we can let t satisfy or dissatisfy the condition for

exploring different code paths.

Table 4: Comparison of the capability of capturing the

sensitive behaviors of malware samples.

Behavior CopperDroid DroidBox Malton
Personal Info 435 (85.0%) 135 (26.4%) 511 (99.8%)

Network access 351 (68.5%) 211 (41.2%) 445 (86.9%)

File access 438 (85.5%) 509 (99.4%) 512 (100%)

Phone call 52 (10.1%) 1 (0.2%) 59 (11.5%)

Send SMS 26 (5.1%) 15 (2.9%) 28 (5.5%)

Java code loading NA 509 (99.4%) 512 (100%)

Anti-debugging 4 (0.8%) NA 4 (0.8%)

Native code loading NA NA 160 (31.2%)

4 Evaluation

We evaluate Malton using real-world Android malware

samples to answer the following questions.

Q1: Can Malton capture more sensitive operations than

other systems?

Q2: Can Malton analyze sophisticated malware samples

(e.g., packed malware) to provide a comprehensive view

of malicious behaviors?

Q3: Is the path exploration mechanism effective and ef-

ficient?

4.1 Sensitive Behavior Monitoring

To answer Q1, we compare Malton’s capability of cap-

turing sensitive behaviors with CopperDroid [73] and

DroidBox [34]. These two systems are implemented

by instrumenting Android emulator and modifying the

Android system, respectively. Since CopperDroid’s web-

site3 has just queued all our uploaded malware sam-

ples, we cannot obtain the corresponding analysis re-

sults. Therefore, we downloaded the analysis reports

of 1,362 malware samples that have been analyzed by

CopperDroid. According to their md5s, we collected 512

samples, and run them using Malton and DroidBox, re-

spectively. The comparison results are listed in Table 4.

The first column shows the type of sensitive behaviors,

and the following columns list the numbers and percent-

ages of malware samples that have been detected by each

system due to the corresponding sensitive behaviors . We

can see that for all the sensitive behaviors Malton detect-

ed more samples than the other two systems.

We further manually analyze the malware samples

to understand why Malton detects more sensitive be-

haviors in those samples than the other two systems.

First, Malton monitors malware’s behaviors in multi-

ple layers, and thus it can capture more behaviors than

the systems focusing on one layer. For instance, the

malware sample4 retrieves the serial number and op-

erator information of the SIM card through the frame-

work APIs TelephonyManager.getSimSerialNumber() and

TelephonyManager.getSimOperator(), respectively. How-

ever, CopperDroid does not support reconstructing such

behaviors from system calls and DroidBox does not mon-

itor these framework APIs. Second, Malton runs on re-

al devices, and hence it could circumvent many anti-

emulator techniques. For instance, the malware sample5

detects the existence of emulator based on the value of

android id and Build.DEVICE. If the obtained value in-

dicates that it is running in an emulator, the malicious

behaviors will not be triggered.

Note that these samples were analyzed by CopperDroid

before 2015 and it is likely that their C&C servers were

active at that time. However, not all C&C servers

3http://copperdroid.isg.rhul.ac.uk/copperdroid/reports.php
4md5: 021cf5824c4a25ca7030c6e75eb6f9c8
5md5: a0000a85a2e8e458660c094ebedc0c6e
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Figure 4: Malton can help the analyst construct the complete flow of information leakage in the XXshenqi malware. The ellipses

refer to function invocations, where the grey ellipses represent taint sources and the ellipses with bold lines denote taint sinks. The

rectangles indicate data and red italics strings highlight the tainted information.

were still active when Malton inspects the same samples.

Hence, in the worst case, Malton’s results may be penal-

ized since the malware cannot receive commands.

Summary Compared with existing tools running in the

emulator and monitoring malware behaviors in a sin-

gle layer, Malton can capture more sensitive behaviors

thanks to its on-device and cross-layer inspection.

4.2 Malware Analysis
To answer Q2, we evaluate Malton with sophisticat-

ed malware samples by constructing the complete flow

of information leakage across different layers, detecting

stealthy behaviors with Java/JNI reflection, dissecting the

behaviors of packed Android malware, and identifying

the malicious behaviors of hidden code.

4.2.1 Identify Cross-Layer Information Leakage
This experiment uses the sample in the XXShenqi [3]

malware family, which is an SMS phishing malware with

package name com.example.xxshenqi. When the mal-

ware is launched, it reads the contact information and

creates a phishing SMS message that will be sent to all

the contacts collected. In this inspection, we focused on

the behavior of creating and sending the phishing SMS

message to the retrieved contacts by letting the contact-

s be the taint source and the methods for sending SMS

messages be the taint sink. The detailed flow is illustrat-

ed in Figure 4.

To retrieve the information of each contact, the mal-

ware first obtains the column index and the value of the

field id in step 1 and step 2 in Figure 46, respective-

ly. Then, a new instance of the class CursorWrapper

6The number in each ellipse denotes the step index.

is created based on id and uri (com.android.contact),
and this contact’s phone number is acquired through this

instance. After that, blank characters and the national

number (“+86”) are removed from the retrieved phone

number in steps 8 and 9. In the method String.replace()7,

StringFactory.newStringFromString() and String.setCharAt()
are invoked to create a new string according to the

current string and set the specified character(s) of the

new string, respectively. These two methods are JNI

functions and implemented in the system layer. For

String.setCharAt(), Malton can further determine the taint-

ed portion of the string at the byte granularity. By con-

trast, TaintDroid does not support this functionality be-

cause for JNI methods it lets the taint tag of the whole

return value be the union of the function arguments’ taint

tags. After that, a phishing SMS message is constructed

according to the display name of a retrieved contact and

the phishing URL through steps 10-13. Finally, the phish-

ing SMS is sent to the contact in step 14 and a message

“send Message to Jeremy 1” is printed in step 15.

Summary By conducting the cross-layer taint propaga-

tion, Malton can help the analyst construct the complete

flow of information leakage.

4.2.2 Detect Stealthy Malicious Behaviors

Some malware adopts Java/JNI reflection to hide their

malicious behaviors. We use the sample in the photo38

malware family to evaluate Malton’s capability of detect-

ing such stealthy behaviors. Figure 5 demonstrates the i-

dentified stealthy behaviors, which are completed in two

different threads. The number in the ellipse and rectan-

gle is the step index, and we use different colours (i.e.,

7in /libcore/libart/src/main/java/java/lang/String.java
8md5:8bd9f5970afec4b8e8a978f70d5e87ab
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blue and red) for the numbers to distinguish two threads.

The execution paths are denoted by both the solid lines

and dashed lines, and the solid lines further indicate how

the information is leaked. We describe the identified ma-

licious behaviors as follows.

• The device ID is returned by the method

TelephonyManager.getDeviceId() in step 1 and step 2.

• A new thread is created to send the collected

information to the malware author. In step 3,

a memory area is allocated by the system cal-

l sys mmap(), and the thread method run() is invoked

by the runtime through the JNI reflection function

InvokeVirualOrInterfaceWithJValues() in step 4. Nex-

t, the class android/telephony/SmsManager is defined

and initialized in step 5 and step 6. In step 7,

the SmsManager object is obtained through the static

method SmsManager.getDefault().

• The malware sends SMS messages through Java

reflection. Specifically, in step 8, the malware obtain-

s the object of the android.telephony.SmsManager
class through the Java reflection method

Class.forName(). Then, it retrieves the method

object of sendTextMessage() using the Java reflection

method Class.getMethod() in step 9. Finally, it calls

the Java method sendTextMessage() in step 10. This

invocation goes to the method InvokeMethod() in the

ART runtime layer in step 11.

Summary Malton can identify malware’s stealthy be-

haviors through Java/JNI reflection in different layers.

4.2.3 Dissect Packed Android Malware’s Behaviors

Since Malton stores the collected information into log

files, we can dissect the behaviors of packed Android

malware by analyzing the log files. As an example, Fig-

ure 6 shows partial log file of analyzing the packed mal-

ware sample9, and Figure 7 illustrates the identified mali-

cious behaviors of this sample. Such behaviors can be di-

vided into two parts. One is related to the original packed

malware (Lines 1-21), and the other one is relevant to the

hidden payloads of the malware (Lines 22-30).

Once the malware is started, the class

com.netease.nis.wrapper.MyApplication is loaded for

preparing the real payload (Line 2). Then, the Android

framework API Application.attach() is invoked (Line 4)

to set the property of the app context. After that, the

malware calls the Java method System.loadLibrary() to

load its native component libnesec.so at Line 7.

Malton empowers us to observe that the ART runtime

invokes the function FindClass() (Line 8) and the

function LoadNativeLibrary() (Line 9) to locate the

class com.netease.nis.wrapper.MyJni and load the library

libnesec.so, respectively.

After initialization, the malware calls the JNI method

MyJni.load() to release and load the hidden Dalvik byte-

code into memory. More precisely, the package name

is first obtained through JNI reflection (Line 11 and

12). Then, the hidden bytecode is written into the file

“.cache/classes.dex” under the app’s directory (Line 13

and 14). After that, a new DexFile object is initialized

based on the newly created Dex file through the runtime

function DexFile::OpenMemory() (Line 16).

We also find that the packed malware reg-

isters an Intent receiver to handle the Intent

com.zjdroid.invoke at Line 19 and 21. Note

that ZjDroid [9] is a dynamic unpacking tool based

on the Xposed framework and is started by the Intent

com.zjdroid.invoke. By registering the Intent

receiver, the malware can detect the existence of ZjDroid.

Finally, the app loads and initializes the class

v.v.v.MainActivity in Line 23 to 26, and the hidden mali-

cious payloads are executed at Line 29. To hide itself, the

9md5: 03b2deeb3a30285b1cf5253d883e5967



01 Instrumentation.newApplication()
02       ClassLoader.loadClass("com.netease.nis.wrapper.MyApplication")
03 Application.init()
04 Application.attach() // Internal framework API
05       ContextWrapper.attathBaseContext() // Set the base context for this ContextWrapper.
06        ...; // Malicious behaviors 1
07       System.loadLibrary("nesec") // Load native library libnesec.so
08              FindClass( "com/netease/nis/wrapper/MyJni") // Find and define Class = "com/netease/nis/wrapper/MyJni"          
09              LoadNativeLibrary("/data/app/com.vnuhqwdqdqd.trarenren5-1/lib/arm/libnesec.so")  //  Load library libnesec.so
10       MyJni.load() // Invoke the JNI method MyJni.load()
11              InvokeVirtualOrInterfaceWithVarArgs()  // JNI reflection invocation. args: Method=Context.getPackageName()  
12              Context.getPackageName() // res: "com.vnuhqwdqdqd.trarenren5"
13              sys_open("data/data/com.vnuhqwdqdqd.trarenren5/.cache/classes.dex")  //  res: fd = 24
14              sys_write(fd = 24);            sys_close(fd = 24) // Write protected dex content to classes.dex
15              /* Open and initialize DexFile arg location="/data/user/0/com.vnuhqwdqdqd.trarenren5/.cache/classes.dex"  */
16             OpenMemory( ) // res: DexFileObj@0x06d541c8 The DexFile object is used to represented the dex file in Android runtime
17 Instrumentation.callApplicationOnCreate()          // arg: Application@0x12e05498
18 Application.onCreate() // Called when the application is starting, before the activity is created
19       IntentFilter.<init>("com.zjdroid.invoke") // Create an IntentFilter@0x12e4d848,
20        /* Register an Intent receiver dynamically */
21       ContextWrapper.registerReceiver() // arg:  IntentFilter@0x12e4d848   
22 Instrumentation.newActivity() // Initialize the new activity arg: Activity="v.v.v.MainActivity", res: Activity@0x12c79f08 
23       ClassLoader.loadClass("v.v.v.MainActivity") // Load Class="v.v.v.MainActivity", res: Class@0x13110808
24             DefineClass() // args: DexFileObj=0x06d541c8  Class="Lv/v/v/MainActivity;"
25       Class.newInstance()
26             Activity.init()
27 Instrumentation.callActivityOnCreate() // Create and display an activity
28             Activity.performCreate() // Create activity "v.v.v.MainActivity"
29                 ...; // Malicious behaviors 2
30             Activity.finish() // Close the activity for hiding
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Figure 6: The major information collected by Malton on function level. The names of Android runtime functions and system calls

are in black italics. We omit the information of method arguments due to the space limitation).

malware also calls the framework method Activity.finish()
to destroy its activity (Line 30).

Summary Malton can analyze sophisticated packed mal-

ware samples, and help the analyst identify the behaviors

of both the malware and its hidden code.

Behavior of Class com.netease.nis.wrapper.MyApplication

Create new dex file classes.dex

Load dex file classes.dex and 
initialize new DexFile object

Get package name through JNI 
reflection invocation

Behavior of Class v.v.v.MainActivity

Get IMEI of the device

Create a new thread

Leak the IMEI by the new thread 
through network

Get IMEI of the device

Write the IMEI information into disk 
through the interfaces of class 
android.app.SharedPreferences.

Malicious behavior 1

Load native component 
libnesec.so

Call JNI method 
MyJni.load()

Malicious behavior 2

Anti dynamic analysis
Register receiver for Intent 

com.zjdroid.invoke

Figure 7: Malton can reconstruct the behaviors of the

packed malware and its hidden code.

4.3 Path Exploration
To answer Q3, we first employ Malton to analyze the

SMS handler of the packed malware com.nai.ke. From

the logs, we find that its SMS handler handleReceiver()

processes each incoming SMS by obtaining its address

and content through methods getOriginatingAddress() and

getMessageBody(), respectively. If the SMS is not from

the controller (i.e., Tel: 1851130**14), it calls the method

abortBroadcast() to abort the current broadcast.

Effectiveness To explore all the malicious payload-

s controlled by the received SMS message, we speci-

fy the code region between the return of the function

getMessageBody() and the return of handleReceiver() to

perform in-memory concolic execution. We set the re-

sult of getMessageBody() (i.e., SMS content) as the input

of the concolic execution. To circumvent the checking

of the phone number of the received SMS message, we

trigger the malware to execute the satisfied code path by

changing the result of getOriginatingAddress() to the num-

ber of the controller.

However, we find that the constraint resolver cannot

always find the satisfying input due to the comparison of

two strings’ hash values. Therefore, we use the direct

execution engine to force the malware to execute the s-

elected code path. Eventually, we identify 14 different

code paths (or behaviors) that depend on the content of

the received SMS. The generated inputs and their cor-

responding behaviors are listed in Table 5. This result

demonstrated the effectiveness of Malton to explore dif-

ferent code paths.

Efficiency Thanks to the in-memory optimization, when

exploring code paths in the interested code region,

Malton just needs one SMS and then iteratively executes

the specified code region for 14 times without the need

of restarting the app for 14 times. To evaluate the ef-



Table 5: The commands and the related behaviors explored by Malton (The 3rd column lists the number of IR blocks to be

executed for exploring the code paths with/without in-memory optimization).

Command Detected behavior Number of executed blocks

“cq”
Read information SMS contents, contacts, device model and system version,

then send to 292019159c@fcvh77f.com with password “aAaccvv11” through SMTP protocol.
32k/20443k

“qf” Send SMS to all contacts with no SMS content. 7k/20537k

“df” Send SMS to specified number, and both the number and content are specified by the command SMS. 5k/22970k

“zy”
Set unconditional call forwarding through making call to “**21*targetNum%23”,

and the targetNum is read from the command SMS.
8k/22848k

“by”
Set call forwarding when the phone is busy through making call to “%23%23targetNum%23”,

and the targetNum is read from the control SMS.
15k/20639k

“ld”,“fd”,“dh”,“cz”,

“fx”,“sx”,“dc”, “bc”
Modify the its configuration file zzxx.xml. 5k-18k/20403k-20452k

Others Tell the controller the command format is error by replying an SMS. 15k/20443k

ficiency of the in-memory optimization, we record the

number of IR blocks to be executed for exploring each

code path with/without in-memory optimization, and list

them in Table 5 (the last column). The result shows that

the in-memory optimization can avoid executing a large

number of IR blocks. For example, when exploring the

paths decided by the command “df”, Malton only need-

s to execute 5k IR blocks with in-memory optimization.

Otherwise, it has to execute 22,970k IR blocks.

Table 6: The number of IR blocks to be executed for path

exploration with and without in-memory optimization.

Malware With
Optimization

Without
Optimization

0710e f 0ee60e1ac f d2817988672b f 01b 203k 26237k

0ced776e0 f 18dd f 02785704a72 f 97aac 203k 26010k

0e69a f 88dcbb469e30 f 16609b10c926c 4k 16826k

336602990b176c f 381d288b79680e4 f 6 13k 1908k

8e1c7909aed92eea89 f 6a14e0 f 41503d 7k 69968k

We also use five other malware samples, which have

the SMS handler, to further evaluate the efficiency of

the path exploration module. The average number of IR

blocks to be executed with and without in-memory opti-

mization are listed in Table 6. The in-memory optimiza-

tion can obviously reduce the number of IR blocks to be

executed.

Summary The path exploration module of Malton can

explore code paths of malicious payloads effectively and

efficiently. The concolic execution engine generates the

satisfying inputs to execute certain code paths, and the

direct execution engine forcibly executes selected code

paths when the constraint resolver fails.

4.4 Performance Overhead

To understand the overhead introduced by Malton, we

run the benchmark tool CF-Bench [8] 30 times on

a Nexus 5 smartphone running Android 6.0 under

four different environments, including Android without

Valgrind, Android with Valgrind, and Malton with and
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Figure 8: Performance measured by CF-Bench.

without the taint propagation. To compare with the dy-

namic analysis tools based on the Qemu emulator, we

also execute CF-Bench in Qemu, which runs on a Ubuntu

14.04 desktop equipped with Core(TM) i7 CPU and 32G

memory.

The results are shown in Figure 8. There are three

types of scores. The Java score denotes the performance

of Java operations, and the native score indicates the per-

formance of naive code operation. The overall scores

are calculated based on the Java and the native score. A

higher score means a better performance.

Figure 8 illustrates that Malton introduces around 16x

and 36x slowdown to the Java operations without and

with taint propagation. However, when the app runs with

only Valgrind, there is also 11x slowdown. It mean-

s that Malton brings 1.5x-3.2x additional slowdown to

Valgrind. Similarly, for the native operations, Malton in-

troduces 1.7x-2.3x additional slowdown when running

Valgrind is taken as the baseline. Overall, Malton in-

troduces around 25x slowdown (with taint propagation).

Since the Qemu [57] emulator incurs around 15x over-

all slowdown, and the Qemu-based tools (e.g., the taint

tracker of DroidScope [83]) may incur 11x-34x additional

slowdown, Malton could be more efficient than the exist-

ing tools based on Qemu.

Summary As a dynamic analysis tool, Malton has a rea-

sonable performance and could be more efficient than the

existing tools based on the Qemu emulator.



5 Discussion

In this section, we discuss the limitations of Malton and

potential solutions to be investigated in future work.

First, Malton is based on the Valgrind framework.

Similar to the anti-emulator techniques, malware sam-

ples may detect the existence of Malton and then stop

executing malicious payloads or confuse the Java method

tracker of Malton. For example, the malware could check

the app starting command or the time used to finish some

operations. To address this challenge, we could leverage

Malton’s path exploration mechanism to explore and trig-

ger conditionally executed payloads. Nevertheless, it’s

an arm race between the analysis tool and anti-analysis

techniques.

Second, though the in-memory optimization signifi-

cantly reduces the code required to be executed, it is

semi-automated because the analysts have to specify the

entry point and the exit point of the interested code re-

gion. How to fully automate this process is an interest-

ing research direction that we will pursue. Moreover, the

direct execution needs analysts to specify the branches

to be executed directly. Our current prototype ignores all

possible crashes because the directly executed code path

may access invalid memory. Advanced malware may ex-

ploit this weakness to evade Malton. In future work, we

will borrow some ideas from the X-Force [55] system to

recover the execution from crashes automatically.

Third, the code coverage is a concern for all dynam-

ic analysis platforms, including ours. We leverage the

monkey tool to generate events, and use the path ex-

ploration module to explore code paths. Even using the

simple monkey tool, Malton has demonstrated better re-

sults than existing tools in Section 4.1. In future work,

we will equip Malton with UI automation frameworks

(e.g., [41]) to generate more directive events. Moreover,

as Malton only defines the default sensitive APIs, users

can add more sensitive APIs to Malton.

Last but not least, though Malton uses taint analysis to

track sensitive information propagation, it cannot track

implicit information flow and propagate taint tags over

indirect flows.We will enhance it by leveraging the ideas

in [45]. For example, we can track the indirect flows

like Binder IPC/RPC by hooking the related framework

methods and runtime functions. Moreover, since the ma-

jor purpose of Malton is to provide a comprehensive view

of the target apps instead of finding unknown malware,

it requires users to specify the malicious patterns for em-

ploying Malton to identify potential malware.

6 Related Work

Android malware analysis techniques can be generally

divided into static analysis, dynamic analysis, and the

hybrid of static and dynamic analysis. Since Malton is a

dynamic analysis system, this section introduces the re-

lated dynamic and hybrid approaches. Interested readers

please refer to [18,51,58,63,72,80] for more information

on static analysis of Android apps.

6.1 Dynamic or Hybrid Analysis

According to the implementation techniques, the exist-

ing (dynamic or hybrid) Android malware analysis tools

can be roughly divided into five types: tailoring Android

system [34, 39, 71, 89], customizing Android emulator

(e.g., Qemu) [73, 83], modifying (repackaging) app im-

plementation [37], employing system tracking tools [84],

or leveraging an app sandbox [20, 24].

We compare Malton with popular (dynamic or hybrid)

Android malware analysis tools, and enumerate the ma-

jor differences in Table 7. Please note that , , and in-

dicate that the tool can capture malware behaviors in the

framework layer, the runtime layer and the native layer,

respectively. Besides, the shadow sector means partial

support. For example, of TaintART suggests that it can

monitor partial framework behaviors.

TaintDroid [39] conducts dynamic taint analysis to de-

tect information leakage by modifying DVM. It does not

capture the behaviors in native layer because it trust-

s the native libraries loaded from firmware and does

not consider third-party native libraries. While on-

ly a small percent of apps used native libraries when

TaintDroid was designed, recent studies showed that na-

tive libraries have been heavily used by apps and mal-

ware [19, 59]. At the runtime layer, although TaintDroid

can track taint propagation in DVM, it neither monitor the

runtime behaviors nor support ART. Though many stud-

ies [34, 62, 65, 68, 77, 89, 90] enhanced TaintDroid from

different aspects, they cannot achieve the same capability

as Malton. For example, AppsPlayground [62] combines

TaintDroid and fuzzing to conduct multi-path taint anal-

ysis. Mobile-Sandbox [68] uses TaintDroid to monitor

framework behaviors and employs ltrace [5] to capture

native behaviors.

To avoid modifying Android system (including the

framework, native libraries, Linux kernel etc.), a number

of studies [10, 12, 22, 23, 31, 32, 43, 60, 61, 67, 78, 81, 87]

propose inserting the logics of monitoring behaviors or

security policies into the Dalvik bytecode of the malware

under inspection and then repacking it into a new APK.

Those studies have three common drawbacks. First, they

can only monitor the framework layer behaviors by ma-

nipulating Dalvik bytecode. Second, those approaches

are invasive that can be detected by malware. Third,

malware may use packing techniques to prevent such ap-

proaches from repacking it [85, 88].

Based on QEMU, DroidScope [83] reconstructs the



Table 7: Comparison of Malton with the popular existing Android malware analysis tools.

Tool On device Non-invasive
Support

ART
Cross-layer
Monitoring

Multi-path
analysis

In-memory
mechanism

Offload
mechanism

Direct
execution

Without
modifying OS

Type

TaintDroid [39] � � × × × × × × Dynamic

TaintART [71] � × � × × × × × Dynamic

ARTist [21] � × � × × × × × Dynamic

DroidBox [34] � � × × × × × × Dynamic

VetDroid [89] � � × × × × × × Dynamic

DroidScope [83] × � × × × × × � Dynamic

CopperDroid [73] × � � × × × × � Dynamic

Dagger [84] � � � × × × × � Dynamic

ARTDroid [30] � � � × × × × � Dynamic

Boxify [20] � � � × × × × � Dynamic

CRePE [29] � � × × × × × × Dynamic

DroidTrace [91] � � � × × × × � Dynamic

DroidTrack [64] � � × × × × × × Dynamic

MADAM [35] � � � × × × × × Dynamic

HARVESTER [61] � � � � × × � � Hybrid

AppAudit [79] × × × × × × × × Hybrid

GroddDroid [10] � × � � × × � � Hybrid

ProfileDroid [76] � � � × × × × � Hybrid

Malton � � � � � � � � Dynamic

OS-level and Java-level semantics, and exports APIs for

building specific analysis tools, such as dynamic infor-

mation tracer. Hence, there is a semantic gap between

the VMI observations and the reconstructed Android spe-

cific behaviors. Since it monitors the Java-level behav-

iors by tracing the execution of Dalvik instructions, it

cannot monitor the Java methods that are compiled into

native code and running on ART (i.e, partial support of

framework layer). Moreover, DroidScope does not mon-

itor JNI and therefore it cannot capture the complete be-

haviors at runtime layer. CopperDroid [73] is also built

on top of Qemu and records system call invocations by

instrumenting Qemu. Since it performs binder analy-

sis to reconstruct the high-level Android-specific behav-

iors, only a limited number of behaviors can be mon-

itored. Moreover, it cannot identify the invocations of

framework methods. ANDRUBIS [50] and MARVIN [49]

(which is built on top of ANDRUBIS) monitor the behav-

iors at the framework layer by instrumenting DVM and

log system calls through VMI.

Monitoring system calls [17, 35, 46, 48, 54, 68, 75, 76,

84, 91] is widely used in Android malware analysis be-

cause considerable APIs in upper layers eventually in-

voke systems calls. For instance, Dagger [84] collect-

s system calls through strace [6], recodes binder trans-

actions via sysfs [7], and accesses process details from

/proc file system. One common drawback of system-

call-based techniques is the semantic gap between sys-

tem calls with the behaviors of upper layers, even though

several studies [54, 84, 91] try to reconstruct high-level

semantics from system calls. Besides tracing system

calls, MADAM [35] and ProfileDroid [76] monitor the in-

teractions between user and smartphone. However, they

cannot capture the behaviors in the runtime layer.

Both TaintART [71] and ARTist [21] are new frame-

works to propagate the taint information in ART. They

modify the tool dex2oat, which is provided along with

ART runtime to turn Dalvik bytecode into native code

during app’s installation. The taint propagation instruc-

tions will be inserted into the compiled code by the modi-

fied dex2oat. However, they only propagate taint at the

runtime layer, and do not support the taint propagation

through JNI or in native codes. Moreover, they cannot

handle the packed malware, because such malware usu-

ally dynamically load the Dalvik bytecode into runtime

directly without triggering the invocation of dex2oat.

CRePE [29] and DroidTrack [64] track apps’ behaviors at

the framework layer by modifying Android framework.

Boxify [20] and NJAS [24] are app sandboxes that en-

capsulate untrusted apps in a restricted execution envi-

ronment within the context of another trusted sandbox

app. Since they behave as a proxy for all system call-

s and binder channels of the isolated apps, they support

the analysis of native code and could reconstruct partial

framework layer behaviors.

ARTDroid [30] traces framework methods by hooking

the virtual framework methods and supports ART. S-

ince the boot image boot.art contains both the vtable and

virtual methods arrays that store the pointers to virtual

methods, ARTDroid hijacks vtable and virtual methods

to monitor the APIs invoked by malware.

HARVESTER and GroddDroid [10, 61] support multi-

path analysis. The former [61] covers interested code

forcibly by replacing conditionals with simple Boolean

variables, while the latter [10] uses a similar method to

jump to interested code by replacing conditional jumps

with unconditional jumps. Different from Malton, they

need to modify the bytecode of malware.



6.2 Multi-path analysis for Android
There are a few studies about multi-path analysis for

Android. TriggerScope [40] is a static symbolic execu-

tor that handles Dalvik bytecode. Similar to other static

analysis tools, it may run into trouble when handling re-

flections, native code, dynamic Dex loading etc. Anand

et al. [15] proposed ACTEve that uses concolic execution

to generate input events for testing apps and offloads con-

straint solving to the host. There are three major differ-

ences between ACTEve and the path exploration module

of Malton. First, since ACTEve instruments the analyzed

app and the SDK, this invasive approach may be detect-

ed by malware. Second, ACTEve does not support native

code. Third, it does not apply the in-memory optimiza-

tion. ConDroid [66] also depends on the static instru-

mentation, and therefore has the same limitations.

Two recent studies [52,86] propose converting Dalvik

bytecode into Java bytecode and then using Java

PathFinder [16] to conduct symbolic execution in a cus-

tomized JVM. However, JVM cannot properly emulate

the real device. Moreover, they do not support the analy-

sis of native code.

To make concolic execution applicable for testing em-

bedded software, Chen et al. [28] and MAYHEM [26]

adopt similar offloading method. However, they do not

apply the in-memory optimization and cannot be used to

analyze Android malware. For example, Chen et al. co-

ordinates the part on device and the part on host through

the Wind River Tool Exchange protocol for VxWorks.

7 Conclusion

We propose a novel on-device non-invasive analysis sys-

tem named Malton for inspecting Android malware run-

ning on ART. Malton provides a comprehensive view

of the Android malware behaviors, by conducting multi-

layer monitoring and information flow tracking and ef-

ficient path exploration without the need of modifying

the malware. We have developed a prototype of Malton

and the evaluation with real-world sophisticated malware

samples demonstrated the effectiveness of our system.
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M. Polino, P. de Geus, C. Kruegel, and G. Vigna.

Going native: Using a large-scale analysis of an-

droid apps to create a practical native-code sand-

boxing policy. In NDSS, 2016.

[12] V. Afonso, M. de Amorim, A. Grégio, G. Junquera,

and P. de Geus. Identifying android malware using

dynamically obtained features. Journal of Comput-
er Virology and Hacking Techniques, 11(1), 2015.

[13] S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi.

Droidnative: Semantic-based detection of android

native code malware. Computers & Security, 65,

2017.

[14] M. Alzaylaee, S. Yerima, and S. Sezer. Emulator vs

real phone: Android malware detection using ma-

chine learning. In Proc. ACM IWSPA, 2017.

[15] S. Anand, M. Naik, M. Harrold, and H. Yang. Au-

tomated concolic testing of smartphone apps. In

Proc. FSE, 2012.
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