
Understanding the Market-level and Network-level
Behaviors of the Android Malware Ecosystem

Chao Yang
Niara, Inc.

Jialong Zhang
IBM Research

Guofei Gu
Texas A&M University

Abstract—The prevalence of malware in Android marketplaces
is a growing and significant problem. Most existing studies focus
on detecting Android malware or designing new security exten-
sions to defend against specific types of attacks. In this paper, we
perform an empirical study on analyzing the market-level and
network-level behaviors of the Android malware ecosystem. We
focus on studying whether there are interesting characteristics
of those market accounts that distribute malware and specific
networks that are mainly utilized by Android malware authors.
We further investigate community patterns among Android mal-
ware from the perspective of their market account infrastructure
and remote server infrastructure. Spurred by these analysis,
we design a novel community inference algorithm to find more
malicious apps by exploiting their community relationships. By
using a small seed set (50) of known malicious apps, we can
effectively find another extra 20 times of malicious apps, while
maintaining considerable accuracy higher than 94%.

I. INTRODUCTION

With the boom of Android applications (apps), a torrent of
diverse Android malware has been released recently. Different
from spreading desktop malware, Android malware authors
can utilize Android markets to spread malware more effi-
ciently. According to a recent report from [4], app markets
become significant sources for spreading Android malware.

While most existing research efforts are spent on detecting
Android malware [8], [11], [13], [23], [29]–[31] or designing
new security extensions to defend against specific types of
attacks [9], [12], we still lack some basic insights on the whole
ecosystem of spreading Android malware. It is known that
malware authors typically need to submit Android malware
to the markets to attract victims’ downloads, and build remote
servers to communicate with the malware to achieve malicious
goals (e.g., C&C control and compromising victims’ privacy).
However, the characteristics of the market-level behaviors
and network-level behaviors of the Android malware ecosys-
tem are still not well understood.

In this paper, we empirically perform a systematic measure-
ment study on analyzing the market-level and network-level
behaviors of the Android malware ecosystem. We crawled
and analyzed over 82,000 Android apps and 28,000 Android
market accounts from multiple representative markets (includ-
ing both official and third-party markets). We further obtain
a dataset of over 9,700 malicious Android apps, and another
dataset of over 3,500 malicious market accounts that distribute
at least one malicious app to the market. To facilitate the anal-
ysis of network-level behaviors, we also extract networking
attempts of Android apps by running them in a customized

Android runtime environment with randomly generated UI
events. In total, we obtain over 239,000 unique URLs leading
to over 25,000 unique remote servers.

To understand the market-level behaviors, we investigate
whether there are any special characteristics of those market
accounts that distribute malware. We investigate whether spe-
cific metrics, such as the popularity of the app are effective
indications to the quality of Android apps or not. In partic-
ular, we investigate whether malicious accounts have specific
temporal behavioral patterns in submitting malware samples.

To understand the network-level behaviors, we investigate
whether there are any special network regions frequently uti-
lized by Android malware authors to host their remote servers
and whether there are any large communities among Android
malware. Through the analysis, we aim at understanding more
deeply on how Android malware is spread, and generating new
defense insights against Android malware.

Motivated by the market and network behaviors of the
Android malware ecosystem, we further designed a novel
algorithm (AMIA) to infer more malicious apps. With the
help of a small seed set of known malicious apps, AMIA can
effectively find another extra 20 times of malicious apps with
a considerable accuracy 94%.

II. ANDROID MALWARE ECOSYSTEM

A typical Android malware ecosystem includes malware
developing, malware uploading, malware downloading and
malware running. Figure 1 shows the working flow of the
Android malware ecosystem.

Fig. 1. Working flow of Android malware ecosystem.

The flow begins with Android malware authors developing
Android malware (1©). To achieve malicious goals such as

compromising victims’ privacy, malware authors typically
need to build remote servers (2©) to communicate with (or
control) their malware samples. Next, malware authors require
to register Android market accounts (3©) to upload malware
on specific Android markets (4©). After successfully attracting
victims’ attention and obtaining their trust, the malware will
be downloaded and further installed on victims’ smartphones
(5©, 6©). Once the victims’ phones are infected, the malware
typically communicates with the remote servers, to send out
private/system information (7©), or even to further receive
instructions from remote servers (8©). Finally, malware au-
thors will obtain profits by selling victims’ sensitive data or
stealthily charging victims’ mobile bills (9©).

Throughout this process, we can see that Android malware
authors typically require two types of behaviors: utilizing
Android markets to spread malware and building remote
servers to communicate with malware. Our research goal is
to provide the first empirical analysis of the characteristics of
the market-level and network-level behaviors of the Android
malware ecosystem, and provide new defense insights.

III. DATA COLLECTION

A. Crawling Android Apps

To achieve our research goals, we crawled Android apps
from four representative Android markets: the official An-
droid market (GooglePlay) and three representative third-party
Android markets (SlideMe from USA, Anzhi from China,
and Tapp from Russia). SlideME is a leading independent
Android Application Marketplace, “powering over 140 OEM’s
preloaded with the SlideME Market, positioning SlideMe
second to Google Play in terms of global reach for Android
Apps and Games distribution” [2]. Anzhi is one of the most
popular Chinese third-party Android markets, which has over
11 million registered users and whose apps are averagely
downloaded over 600 million times per month until the second
quarter of 2014 [1]. Tapp is one of the largest and most popular
Russian third-party Android markets.

Our crawler downloaded all free apps that were available
in these third-party markets. Due to the crawling rate limit
and the large amount of apps in GooglePlay, our dataset of
official apps were randomly sampled from all 33 app cate-
gories in GooglePlay. Moreover, during the crawling process,
besides downloading Android apps, our crawler also recorded
those apps’ market information (e.g., author, submission time,
downloading number, and app category). Table I shows the
number of collected Android apps for each market.

TABLE I
SUMMARY OF CRAWLING ANDROID APPS

GooglePlay SlideMe Anzhi Tapp

Location U.S.A U.S.A China Russia
Creation Time 2008 2008 2010 2012

Number of Unique Apps 18,751 15,109 38,458 11,822

Total (Unique) 18,751 (22%) 65,232 (78%)
82,966

B. Identifying Android Malware

Next, we identified malicious apps from our Android app
corpus by searching their values of MD5 in VirusTotal [6],
which is a free anti-virus blacklist service providing the
scanning reports from over 40 different anti-virus products.
For each app, if it has been seen by VirusTotal, we obtained its
full scanning report, which includes the first and the last time
the app was seen, as well as the results from each individual
virus scan. We consider an app to be malicious, if it is labeled
as malware by at least one anti-virus product.

Table II shows the Android malware distribution for each
market. We totally obtained 9,712 unique malicious apps,
We term this dataset of malicious apps as MalApps. Apart
from the dataset of 9,956 adware (AdwareApps), we term
the dataset of the rest 63,298 apps as RestApps. Note
that since a few anti-virus tools consider those non-malicious
apps that use certain advertisement libraries as adware, to
better guarantee the accuracy of our measurement results, we
distinguish the adware from those truly malicious apps.

TABLE II
SUMMARY OF COLLECTING ANDROID MALWARE

GooglePlay SlideMe Anzhi Tapp

MalApps 1,593 1,946 4,840 1,450

Total(Unique) 1,593 (16%) 8,229 (84%)
9,712

AdwareApps 1,037 1,247 6,764 994

Total(Unique) 1,037 (12%) 8,977 (88%)
9,956

RestApps 16,121 11,916 26,854 9,378

Total(Unique) 16,121 (29%) 38,726(71%)
63,298

IV. MARKET-LEVEL BEHAVIORS

Different from desktop malware authors, who typically have
to build their own platforms/websites to spread malware,
Android malware authors can spread malware more effectively
by utilizing popular Android markets. In this section, we first
collected market accounts (uniquely identified by the author
name) from those four representative markets and extracted
malicious accounts that at least submitted one malicious app.
Table III shows the overall accounts and malicious accounts
for each market. Then we study the market behaviors of
Android apps from the following perspectives.

TABLE III
SUMMARY OF COLLECTING MARKET ACCOUNTS

GooglePlay SlideMe Anzhi Tapp

of Accounts 10,064 3,896 9,665 4,871

Total (Unique) 10,064 (35%) 18,432 (65%)
28,496

of Malicoius Accounts 883 432 1,493 709

Total(Unique) 883 (25%) 2,634 (75%)
3,517

App Quality vs App Popularity. Many users prefer to trust
those popular apps that have a large number of downloads.
Question 1: Are apps with higher downloading numbers safer?

Empirical Answer: No. An app’s downloading number does
not have a strong correlation with its quality. Many malicious
apps have been downloaded for a great number of times.

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Download Number

F
ra

c
ti

o
n

 o
f

A
p

p
s

MalApps

RestApps

0 0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Download Number

F
ra

c
ti

o
n

 o
f

A
p

p
s

MalApps

RestApps

(a) Third-party Markets (b) GooglePlay

Fig. 2. App downloading numbers distribution.

Figure 2 shows the downloading numbers distribution in
both third-party markets and GooglePlay, we can find that the
distributions of the downloading number between MalApps
and RestApps are similar. Specifically, in the third-party
markets, the percentage of the apps in MalApps that have
been downloaded more than 10,000 times is around 12%,
which is even slightly larger than that (10%) in RestApps.
Also, we can find that around 20% of apps in MalApps
have been downloaded more than 5,000 times, whereas around
80% of apps in RestApps have been downloaded less than
5,000 times. Similar results can be seen for GooglePlay.
Thus, such observation indicates that many popular apps with
high downloading numbers are still malicious and an app’s
popularity is not an effective indicator to its quality.

Common Behaviors Among Malicious Accounts. Ques-
tion 2: Are there any common behavioral characteristics
among malicious market accounts? Our Empirical Answer:
Yes. There is a spatial and temporal locality property in terms
of malware authors’ submissions of their malware samples.
Malicious authors tend to repeatedly use the same accounts to
post multiple malicious apps, and within a short time period.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Malicious Account Ratio

F
ra

c
ti

o
n

 o
f

M
a
li
c
io

u
s
 A

c
c
o

u
n

ts

Third−party Markets

GooglePlay

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Interval (Days)

F
ra

c
ti

o
n

 o
f

In
te

rv
a

ls

(a) Account Malicious Ratio (b) Time Interval

Fig. 3. The distribution of account malicious ratios, and time intevals between
two consequent malware submissions from the same malicious account.

To answer this question, for each of 3,517 malicious mar-
ket accounts, we first calculate its account malicious ratio,
which is the percentage of malware samples in all of its
submitted apps. As seen in Figure 3(a), around 50% of
malicious accounts from third-party markets, and around 70%
of malicious accounts from GooglePlay have a malicious
ratio higher than 0.5. This observation indicates that malware
authors tend to repeatedly use the same malicious accounts

to submit malicious apps. Especially, we find that malicious
accounts in GooglePlay typically have a higher ratio than
those malicious accounts in third-party markets. That might
be because GooglePlay requires a higher cost for registering
accounts (e.g., valid Google accounts and registration fee)
than third-party markets (e.g., SlideMe requires valid email
addresses and physical contact addresses).

We also examine the time interval between two consequent
submissions of malicious apps for the same malicious ac-
counts. As seen in Figure 3(b), over 60% of time intervals
are zero (i.e., those two consequent submissions happened in
the same day), and around 80% of time intervals are less than
5 days. This observation indicates that malware authors tend to
submit multiple malware samples within a short time period.

V. NETWORK-LEVEL BEHAVIORS

To facilitate the analysis of the network-level behaviors,
we extract remote servers by running apps in a customized
Android runtime environment (Android phone emulator). Be-
fore analyzing each app, the emulator will start from a clean
snapshot to avoid possible effects generated by other apps.
To trigger an app to execute more networking connections,
we use Monkey to simulate real users’ usage of the app
by adding random UI events (e.g., click buttons, stretch the
views, and type characters). As seen in Table1 IV, we finally
collect 239,582 unique URLs leading to 25,099 unique servers
(including 19,342 domain names and 5,755 IP addresses).

TABLE IV
THE SUMMARY OF EXTRACTING REMOTE SERVERS.

Type URLs Domains IPs Servers1

MalServers 34,176 3,980 1,162 5,142
AdwareServer 35,267 3,112 1,057 4,169

RestServers 176,949 16,580 5,125 21,707
Total 239,582 19,342 5,755 25,099

1 Each remote server is counted by one of its valid domain
names, if available. Otherwise, the server is counted by
its IP address.

Since our goal is to analyze the remote servers uniquely
used by malware, we need to filter benign servers that are
also visited by Android malware. We first filter top 10,000
Alexa [3] domain names. Then, we use two conservative strate-
gies to further filter benign servers: (1) filtering all servers vis-
ited by apps in RestApps, thus generating a filtered dataset
named as FAMalServers with 2,288 unique servers, and (2)
filtering top frequently used servers by apps in RestApps,
resulting in a filtered dataset named FTMalServers with
4,379 servers. We clearly acknowledge that these filtered
datasets may still contain some benign servers, and miss some
malware servers. However, these two strategies are essentially
complementary, If our conclusions could hold under the usage
of both two datasets, we believe that the same conclusions will
also likely hold under the usage of another real dataset.

1The datasets of MalServers, AdwareServers and RestServers
in the table represent the servers extracted from the apps in the dataset of
MalApps, AdwareApps and RestApps, respectively.

We now perform our detailed analysis of network behaviors
of Android apps from following perspectives.

Usage of Network Space. Question 1: Are there any special
network regions frequently used by Android malware authors?
Our Empirical Answer: Yes. We find that Android malware
authors tend to use cloud services to host their remote servers.

We extract the IP addresses of the remote servers and
its corresponding Autonomous system (AS) names. Then, in
each dataset, we rank the ASes according to the number of
unique apps that visit them. Table V shows the top ten most
frequently visited ASes in each dataset. We can find that
in RestServers, only one of the top ten ASes belongs
to the cloud vendors and it ranks the sixth. However, in
MalServers, four of the top ten ASes belong to cloud
vendors; in FAMalServers, six of the top ten ASes are
allocated to five different cloud vendors, and the top AS
(AS14618) belongs to the popular cloud vendor AmazonEC2.
This observation implies that malware authors tend to host
their remote servers in cloud vendors, which further motivate
our analysis of those apps that share the same cloud vendors.

To further study the characteristics of Android malware
samples whose remote servers are hosted in the cloud ven-
dors, we use the popular cloud vendor AmazonEC2 as
a case study. We extract AmazonEC2 servers, termed as
MalEC2Servers, visited by malicious apps. Then, for each
MalEC2Server, we extract its MalEC2Families, which
are the malware families of the malware samples that visit that
server.

We extract 92 different MalEC2Servers in total. Figure 4(a)
shows the distribution of the number of unique apps in those
92 MalEC2Servers. We can find that these MalEC2Servers
tend to be visited by multiple malicious apps (i.e., around 58%
of those MalEC2Servers are visited by more than 10 different
malicious apps).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Malicious Apps

F
ra

c
ti

o
n

 o
f

M
a
lE

C
2
 S

e
rv

e
rs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FamilyCoverage

F
ra

c
ti

o
n

 o
f

M
a
lE

C
2
 S

e
rv

e
rs

Top One Family

Top Two Families

(a) Number of Malicious Apps (b) FamilyCoverage

Fig. 4. The distributions of the number of malicious apps, and the famliy
coverages among MalEC2Servers.

For each MalEC2Familiy in each MalEC2Server, we calcu-
late its value of FamilyCoverage, which is the percentage (cov-
erage) of the malware samples belonged to the MalEC2Family
in all malware samples that visit MalEC2Server. Next, in each
MalEC2Server, we rank its MalEC2Families according to their
values of FamilyCoverage. Figure 4(b) shows the distribution
of the FamilyCoverage of the top MalEC2Family, and the sum
of the top two values of FamilyCoverage, among those 92
servers. We can find that in over 90% of MalEC2Servers,

the top MalEC2Family’s FamilyCoverage is higher than 0.5
(i.e., more than half malware samples belong to the same
family). While considering the sum of the top two families,
the coverage is increased to 0.85 (i.e., the top two families
coverage over 85% of malware samples). Also, we can see
that in over 50% of MalEC2Servers, the sum of the top two
families is 1.0 (i.e., over half of MalEC2Servers have only two
families). These observations imply that the malware samples
that visit the same AmazonEC2 server tend to belong to the
same family. In other words, with the popularity of cloud
hosting services, malware authors begin to use cloud machines
as remote servers. That is mainly because comparing with
deploying personal servers, it will cost less time/money to use
a cloud vendor, and the anonymity is also better preserved.

Malware Community. Due to the observation that malware
samples frequently share the same authors and remote servers,
we next analyze whether the submissions of the malicious apps
are more likely to be organized activities or isolated actions.
Question 2: Are there any Android malware communities? Our
Empirical Answer: Yes. A few large malware communities
contribute to a great amount of malicious apps.

In this experiment, we cluster malicious apps into com-
munities according to their community relationships. More
specifically, we consider there is a community relationship
between two malicious apps if they share the same author
name or at least one malicious server.

To model such community relationships among malicious
apps, we build a community relationship graph G = (V,E).
In this graph, each node (vi) is represented as a two-tuple
(app, author name). There is an edge eij between node vi
and vj , if there is a community relationship between them.
Accordingly, our relationship graph contains 9,850 nodes and
621,166 edges. The majority (80.67%) of the nodes in the
relationship graph are connected with other nodes. Also, there
are a few large subgraphs that are well connected, which
implies that there are some large malware communities.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rank (N)

C
u

m
u

la
ti

v
e

 C
o

v
e

ra
g

e

10

Fig. 5. The distribution of the cumulative community coverage.
We next examine the percentage of the malware samples

covered by those large communities in all malware samples.
More specifically, we consider each connected subgraph as one
community, and thus obtain 847 communities. We next rank
those communities based on their size. For each community,
we calculate its coverage (ci), which is the percentage of its
malware samples in all malware samples. Then, summing up
the coverages from the top community to the nth community,

TABLE V
TOP TEN ASES FOR RESTAPPS AND FAMALAPPS

RestServers MalServers FAMalServers

Rank AS Number AS Name AS Number AS Name AS Number AS Name
1 AS15169 Google AS9308 Abitcool AS14618 Amazon (Cloud)
2 AS4134 Chinanet AS4134 Chinanet AS4134 Chinanet
3 AS9308 Abitcool AS15169 Google AS15169 Google
4 AS4808 China169 Beijing AS17964 Beijing Dian-Xin-Tong (Cloud) AS16509 Amazon (Cloud)
5 AS24400 Shanghai Mobile AS23724 IDC, China (Cloud) AS4837 China169 Backbone
6 AS14618 Amazon (Cloud) AS14618 Amazon (Cloud) AS36351 SoftLayer (Cloud)
7 AS22577 Google AS24400 Shanghai Mobile AS4808 China169 Beijing
8 AS4837 China169 Backbone AS17431 Beijing TONEK AS37963 Alibaba (Cloud)
9 AS17431 Beijing TONEK AS3549 Global Crossing AS26496 GoDaddy (Cloud)
10 AS20645 PurePeak Limited AS33494 IHNetworks(Cloud) AS24940 Hetzner (Cloud)

we calculate the cumulative coverage as Cn =
∑n

i=1 ci. Figure
5 shows the distribution of the cumulative coverage with the
value of n. We can find that the top 100 communities cover
over 55% of all malware samples which implies that a few
communities contribute to a large number of malware samples.

From the above observation, we can conclude that those
malicious apps have strong community relationships, which
can be applied to find more malicious apps.

VI. COMBATING MALICIOUS APPS

In this section, we propose a lightweight Android malware
inference algorithm (AMIA) to infer malicious apps based
on the market-level and network-level behaviors of Android
malware ecosystem.

A. Design of Inference Algorithm

In brief, our inference algorithm (AMIA) propagates ma-
licious scores from a seed set of known malicious apps to
other apps according to the closeness of their community
relationships. If an app accumulates a sufficient malicious
score, it is more likely to be a malicious app.

Specifically, given a set of unknown apps U and a seed set
of known malicious apps M . We build a Malicious Relevance
Graph G = (V,E) by using these (M + U) apps. In this
graph, each node (vi) is represented as a two-tuple (app, author
name). There is an edge eij between node vi and vj , if these
two nodes has the same app (i.e., the same value of MD5) or
the same author name, or their apps share at least one remote
server. Then, for each node whose app is malicious, we assign
a non-zero malicious score and propagate this score to other
nodes according to the weights of the edges between them
by using the PageRank algorithm [5]. When the score vector
converges after several propagation steps, we infer the apps in
those nodes with high malicious scores as malicious apps.

B. Evaluation

To evaluate the effectiveness of AMIA, we consider both the
number of correctly inferred malicious apps, termed as “Hit
Number”, and the ratio of Hit Number to the total number
of inferred apps, termed as “Hit Rate”. Thus, a higher Hit
Number indicates AMIA can catch more malicious apps; and a
higher Hit Rate indicates AMIA can infer malicious apps more
accurately. Next, we provide our evaluation results by varying

different selection sizes (i.e., the number of apps inferred in
the top list), and different seed sizes.

100 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

Selection Size

H
it

 N
u

m
b

e
r

Seed=50

Seed=100

Seed=200

100 1000 2000 3000 4000 5000

0.4

0.5

0.6

0.7

0.8

0.9

1

Selection Size

H
it

 R
a
te

Seed=50

Seed=100

Seed=200

(a) Hit Number (b) Hit Rate

Fig. 6. The hit number and hit rate based on the ground truth of VirusTotal.

Varying Selection Size: As shown in Figure 6(a), while
increasing the selection size, more malicious apps could be
identified by AMIA. This implies that our lightweight algo-
rithm can be effectively used to infer more malicious apps.
Also, as seen in Figure 6(b), the Hit Rate decreases with the
increase of the selection size. That is mainly because the apps
with higher malicious scores are more likely to be malicious.

Varying Seed Size: As in seen in Figure 6, the more
seeds we use, the higher Hit Number and Hit Rate we can
achieve by selecting the same size of apps. This is because
when we use more malicious seeds, we have more knowledge
about the community relationships among malicious apps.
In addition, many of those inferred apps do not share the
same family (type) with those seeds. This implies although
as a complementary and lightweight strategy to quickly find
those more suspicious apps, AMIA can still find new types of
malware.

Further Analysis: We further manually analyze those in-
ferred apps that are not labeled as malicious by VirusTotal.
More specifically, while selecting 1,000 apps, we manually
scan the APK files of those apps, with the usage of multiple
most recent Android Anti-Virus tools2. Table VI shows the
actual Hit Number by adding the numbers of malicious apps
identified by VirusTotal (VT) and reported by other Android
anti-virus tools. We can see that by using three different sets of
seeds, AMIA can all correctly infer more than 940 malicious
apps with the Hit Rate higher than 0.94, while selecting 1,000

2This is a time-consuming work. Thus, it is not practical to use this strategy
to identify malware from a large-scale (e.g., over 70,000) corpus of apps.

apps. This also indicates that our inference algorithm is a good
complement to existing Android malware blacklist service.

TABLE VI
ACTUAL HIT NUMBER WHILE SELECTING THE TOP 1,000 APPS.

Seed Size 50 100 200

VT Actual VT Actual VT Actual
Hit Number 677 943 732 949 771 950

VII. RELATED WORK

Android Malware Detection: An extensive body of sys-
tems have been developed to analyze and detect Android
malware by monitoring system calls [10], [20]–[22], [25],
analyzing the usage of Android permissions [7], [14]–[16],
[19], and analyzing the usage of Framework APIs [8], [11],
[13], [23], [29]–[31] . These detection systems usually focus
on mobile level detection and require deep domain knowledge
about Android system, the development of Android malware
and a lot of resources for the detection.

Community based detection: Community based tech-
niques have also been widely researched in both spam and
malware detection. [26], [27] explored community behaviors
to detect comment spam and social network spam respectively.
[17], [28] can infer more malicious servers based on different
community patterns.

Analysis of market: Recently [18] studied the role of third
party markets with a focus on malicious apps and designed
a system to quickly locate the same malicious app across
the markets. [24] studied the app promoting patterns on app
markets and proposed a system to detect suspicious apps that
are promoted by attackers.

VIII. CONCLUSION

In this paper, we present the first in-depth empirical analysis
of the market-level and network-level behaviors of the Android
malware ecosystem. We identify interesting spatial-temporal
behavioral patterns of malware market accounts, spatial local-
ity patterns of malware servers, and the community patterns
of Android malware from the perspectives of their market and
server infrastructure. We hope this study can inspire further
interest and research to study the Android malware ecosystem.

IX. ACKNOWLEDGMENTS

This material is based upon work supported in part by the
National Science Foundation (NSF) under Grant no. CNS-
1314823 and CNS-0954096. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of NSF.

REFERENCES

[1] About anzhi. http://www.anzhi.com/aboutus.php.
[2] About slideme. http://slideme.org/about-slideme.
[3] Alexa top websites. http://www.alexa.com/topsites/category/Top/

Computers/Internet/Domain Names.
[4] Android app stores become significant sources for malware. http://www.

cmcm.com/blog/en/security/2016-01-20/925.html.
[5] Pagerank algorithm. http://en.wikipedia.org/wiki/PageRank.

[6] Virus total. https://www.virustotal.com/.
[7] K. Au, Y. Zhou, Z. Huang, D. Lie, X. Gong, X. Han, and W. Zhou.

Pscout: Analyzing the android permission specification. In Proceedings
of CCS, 2012.

[8] A. Bose, X. Hu, K. G. Shin, and T. Park. Behavioral detection of
malware on mobile handsets. In Proceeding of MobiSys, 2008.

[9] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry. Towards taming privilege-escalation attacks on android. In
Proceedings of NDSS, 2012.

[10] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: Behavior-
based malware detection system for android. In Proceedings of the 1st
Workshop on CCSSPSM, 2011.

[11] K. Chen, N. Johnson, V. Silva, S. Dai, K. MacNamara, T. Magrino,
E. Wu, M. Rinard, and D. Song. Contextual policy enforcement in
android applications with permission event graphs. In Proceedings of
NDSS, 2013.

[12] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire:
lightweight provenance for smart phone operating systems. In Proceed-
ings of USENIX Security, 2011.

[13] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. Mc-Daniel, and A. N.
Sheth. Taintdroid: An information-flow tracking system for realtime
privacymonitoring on smartphones. In Proceedings of OSDI, 2010.

[14] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android
application security. In Proceedings of the 20th USENIX, 2011.

[15] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th CCS, 2009.

[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystied. In Proceedings of CCS, 2011.

[17] Z. Li, S. Alrwais, Y. Xie, F. Yu, and X. Wang. Finding the Linchpins of
the Dark Web: a Study on Topologically Dedicated Hosts on Malicious
Web Infrastructures. In Proceedings of S&P, 2013.

[18] M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner, E. Athana-
sopoulos, F. Maggi, C. Platzer, S. Zanero, and S. Ioannidis. AndRadar:
Fast Discovery of Android Applications in Alternative Markets. In
Proceedings of DIMVA, 2014.

[19] H. Peng, C. Gates, B. Sarm, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy. Using probabilistic generative models for ranking risks
of android apps. In Proceedings of the 19th CCS, 2012.

[20] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos. Paranoid
android: versatile protection for smartphones. In Proceedings of ACSAC,
2010.

[21] A. Schmidt, R. Bye, H. Schmidt, J. Clausen, O. Kiraz, K. Yxksel,
S. Camtepe, and A. Sahin. Static analysis of executables for collab-
orative malware detection on android. In ICC Communication and
Information Systems Security Symposium, 2009.

[22] A. Schmidt, H. Schmidt, J. Clausen, K. Yuksel, O. Kiraz, A. Sahin,
and S. Camtepe. Enhancing security of linux-based android devices. In
Proceedings of 15th International Linux Kongress, 2008.

[23] D. Wu, C. Mao, T. Wei, H. Lee, and K. Wu. Droidmat: Android malware
detection through manifest and api calls tracing. In Proceedings of
ASIAJCIS, 2012.

[24] Z. Xie and S. Zhu. AppWatcher: Unveiling the Underground Market of
Trading Mobile App Reviews. In Proceedings of WiSec, 2015.

[25] L. Yan and H. Yin. Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis. In
Proceedings of USENIX Security, 2012.

[26] C. Yang, R. Harkreader, J. Zhang, S. Shin, and G. Gu. Analyzing
Spammers’ Social Networks For Fun and Profit – A Case Study of
Cyber Criminal Ecosystem on Twitter. In Proceedings of WWW, 2012.

[27] J. Zhang and G. Gu. NeighborWatcher: A Content-Agnostic Comment
Spam Inference System. In Proceedings of NDSS, 2013.

[28] J. Zhang, S. Saha, G. Gu, S. Lee, and M. Mellia. Systematic mining of
associated server herds for malware campaign discovery. In Proceedings
of ICDCS, 2015.

[29] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zhou. Smart-
droid: an automatic system for revealing ui-based trigger conditions in
android applications. In Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices, 2012.

[30] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets. In Proceedings of the 19th NDSS, 2012.

[31] Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable
and accurate zero-day android malware detection. In Proceedings of
MobiSys, 2012.

