
NOMAD: Towards Non-Intrusive Moving-Target
Defense against Web Bots

Shardul Vikram, Chao Yang, Guofei Gu
SUCCESS Lab, Texas A&M University

{shardul.vikram, yangchao, guofei}@cse.tamu.edu

Abstract—Web bots, such as XRumer, Magic Submitter and
SENuke, have been widely used by attackers to perform illicit
activities, such as massively registering accounts, sending spam,
and automating web-based games. Although the technique of
CAPTCHA has been widely used to defend against web bots, it
requires users to solve some explicit challenges, which is typically
interactive and intrusive, resulting in decreased usability.

In this paper, we design a novel, non-intrusive moving-target
defense system, NOMAD, to complement existing solutions. NO-
MAD prevents web bots from automating web resource access by
randomizing HTML elements while not affecting normal users.
Specifically, to prevent web bots uniquely identifying HTML
elements for later automation, NOMAD randomizes name/id
parameter values of HTML elements in each HTTP form page.
We evaluate NOMAD against five powerful state-of-the-art web
bots on several popular open source web platforms. According to
our evaluation, NOMAD can prevent all these web bots with a
relatively low overhead.

I. INTRODUCTION

Popular websites attract users’ attention by providing fa-
vorable web services such as information searching, social
networking, online blogs and web-based games. Masquerading
as normal users, attackers have utilized web bots to launch
attacks on those websites and consume precious resources like
memory, bandwidth by illicitly registering accounts [23] and
automatically posting web spam [11]. According to a recent
report released in 2012 [20], 51% of web site traffic is “non-
human” and mostly malicious from various automated hacking
tools and web bots.

In fact, web bots such as XRumer, Magic Submitter, and
SENuke have been developed for creation of backlinks in
Blackhat Search Engine Optimization (SEO) techniques, au-
tomated content creation on web services, or bulk registration
of free services through identifying meanings and functions
of special HTML elements. As one of the most powerful
and popular forum spam bots, XRumer [19] can be used to
automatically register fake forum accounts, build appropriate
browsing history, and send spam to boost search engine ranks
[40], [41]. It is not only capable of posting spam on multi-
ple popular software platforms (e.g., phpBB and Wordpress),
but also can be adapted to new forum types of platforms.
XRumer can also circumvent spam prevention mechanisms
commonly employed by forum operators (e.g., automatically
solving CAPTCHAs). Further more, it can adjust spamming
patterns along the dimensions of time and message content to
thwart detection [40]. In October 2008, XRumer successfully
defeated CAPTCHAs of Hotmail and Gmail to massively create

accounts with these free email services [12]. Popular online
social networking websites such as Twitter and Facebook have
also become web bots’ attacking targets [13].

Most existing work utilizes CAPTCHA (Completely Au-
tomated Public Tests to tell Computers and Humans Apart)
to defend against web bots [21]–[23], [26], [38]. However,
CAPTCHA requires users to solve explicit challenges, which
is typically interactive and intrusive. Also, the robustness of
CAPTCHA relies on intrinsic difficulties of artificial intelli-
gence challenges, which could be compromised through achiev-
ing artificial intelligence breakthroughs [21], [22]. As those
challenges become more complex to defend against evolved
web bots, they have become more difficult as well for legit-
imate users to solve, resulting in a decreased usability. Other
approaches, relying on some machine learning techniques to
detect bots, are usually time-consuming and error-prone. Such
approaches identify web bots mainly through investigating bot
behaviors to design detection features [41]. However, designing
an effective feature set typically requires considerable time and
human efforts. The trained features/models are typically site-
or content-specific, not easily applicable to generic websites.
False positives are still difficult to avoid, leading to bad user
experience. Also, bots could evolve to evade those detection
features by better mimicing real human users’ behavior.

In this paper, we design a novel, first-of-its-kind, non-
intrusive moving-target defense system, named NOMAD,
to complement existing solutions. NOMAD explores a new
perspective that could be easily combined with existing
CAPTCHA and machine learning techniques to form more
effective defense. Specifically, NOMAD targets on defending
against web bots that can automatically submit bulk requests
to remote servers by imitating real users’ actions of filling
out HTML forms and clicking submission buttons. The basic
intuition of NOMAD is based on the fact that web bots need
to obtain semantic meanings of corresponding parameters to
fabricate normal users’ requests through identifying HTML
elements. If the web server randomizes HTML form element
parameters in each session, web bots would fail in sending
bulk automated requests. NOMAD defends against web bots
by preventing them from identifying HTML elements for later
automation. Unlike CAPTCHA, NOMAD is designed to be
totally transparent to end users (i.e., it does not require normal
users to validate themselves as human via explicit actions).
In addition, we believe no security systems are complete
without discussing the weakness. To this end, we analyze



possible advanced attacks on NOMAD, propose and implement
several extensions to enhance NOMAD, and discuss insights,
limitations, and future work.

The main contributions of this paper are as follows:
• We propose NOMAD, a novel, non-intrusive moving-

target defense system against web bots. While certainly not
perfect, it is a new, further step towards a moving-target,
defense-in-depth architecture and can greatly complement
existing defense solutions.

• We implement a prototype system and evaluate it against
five real-world state-of-the-art web bots on four popular
open source web applications/platforms. According to our
evaluation, NOMAD can prevent all these web bots with
a reasonably low overhead.

• We thoroughly discuss possible evolving techniques that
can be utilized by more powerful future web bots. We
implement several extensions to enhance NOMAD and
discuss insights to defeat possible evolving techniques.

II. PROBLEM STATEMENT

Web bots are unwanted automation programs targeting spe-
cific websites to automate browsing behaviors, aiming at gain-
ing profits for bot owners. They have become a great hazard
to many websites: causing security concerns (phishing and
spamming), consuming server resources (bandwidth and stor-
age space), and degrading user experience. Next, we introduce
our targeted web bots and their major threats.

A. Threat Model
Current web bots could be mainly divided into two cate-

gories: fixed bots and self-learning bots. Fixed bots are typically
written in fixed scripting languages, and send simple and fixed
HTTP requests. Since the functions of these bots are fixed,
they may not work well once their target web applications
change their web content. Many cross-site scripting worms
on the social network platform, aiming at posting duplicated
message spam on victims’ profiles, belong to this type.

Self-learning bots are more advanced, intelligent, and com-
plex. They can evolve through analyzing the changes of their
target web applications. Also, they can imitate real human
users’ browsing behavior to automatically send data submission
requests. Here, we define data submission requests as those
requests that contain users’ submitted data through filling out
HTML forms (e.g., a user authentication request containing
values of username and password). XRumer, is a typical self-
learning bot, collects inputs with their names, data-types and
label-text, which appears next to input HTML forms. Then,
XRumer sends specific responses back to the server by filling
out these input forms and submitting corresponding HTTP
requests. In our work, we target both two types of bots, with
a focus on the second one, because if we can defend against
advanced bots, we can defeat simple bots.

We next briefly introduce the operating mechanism of self-
learning web bots. To fabricate meaningful data processing
requests to remote servers, web bots need to have an semantic
understanding of the HTML web forms on the web page.

Particularly, each input HTML element (e.g., textbox, textarea,
checkbox and submit button) in an HTML form, is uniquely
implemented in the web page by assigning a unique “name/id”
attribute. When a real user submits data through filling out a
form, the browser generates HTTP requests containing param-
eters with key-value pairs, which will be processed by remote
servers. The keys in the parameters are “name/id” attributes
of input elements, and the values are users’ input data. Thus,
through parsing and identifying those “name/id” attributes
in input HTML elements, web bots can be programmed to
automatically fabricate and submit requests with customized
content.

B. Web Bots’ Threats
Web bots are widely used for the following attacks. (1)

Massive Account Registration/Login. Attackers could utilize
web bots to massively register web application accounts to
more effectively launch illicit actions (e.g., sending spam); (2)
Comment Form Spamming. Attackers can utilize web bots to
post customized information (e.g., spam or malicious links)
on the comment sections in forums, blogs, or online social
networks [3], [16], [37], [41]; (3) Email Field Spamming.
Attackers can send spam to victims through exploiting mail
servers, and utilizing web bots to automatically submit content
in the email field of website forms; (4) Online Vote Cheating.
Poll bots, a special type of web bots, can skew online poll
results [8]; (5) Web-based Game Automation. Web game bots
are developed to automate certain repetitive tasks in the games,
which essentially violates the policy of fair competition of
online games.

III. SYSTEM DESIGN

A. System Overview
As described in Section I, the intuition behind NOMAD

is that web bots need to pre-identify those unique id/name
parameter values of the HTML form elements to automatically
interact with remote servers. Because the name/id parameters
in an HTML element are used in the server-side logic, these
parameters are generally designed as constant. Accordingly,
these constant values are utilized by web bots to automatically
fabricate massive requests. With this observation, NOMAD is
designed to defeat web bots by hiding correct name/id param-
eter values of those HTML elements. Specifically, NOMAD
hides those values by randomizing them in the web source.

NOMAD can be naturally implemented at the server-side
by modifying the source code of the web applications. Also,
NOMAD could be implemented as middleware between the
server and client, to avoid adding the complexity to the server-
side logic of the web applications. Implementing NOMAD as
a middleware allows it to be independent and universally appli-
cable to different web applications (without directly modifying
the source code) and client-side technologies(e.g., different
browsers and plugins). Thus, the middleware solution will be
transparent to both servers and end users. Furthermore, it is
worth noting that NOMAD does not need to randomize all
regular web pages. Instead, NOMAD only needs to randomize



a very small percent of HTML form pages on which users
can submit data. Thus, the workload of NOMAD is relatively
lightweight.

Fig. 1. The system architecture of NOMAD

With this intuition, the middleware version of NOMAD
is designed with three major components: Element Tagger,
Randomizer, and De-randomizer. As illustrated in Figure 1,
once the remote server replies to the client any response of
webpage source code that is related to HTML forms such
as HTML, Javascript, and CSS, NOMAD will intercept the
response and utilize the component of Element Tagger to tag
those HTML elements in the source for (de-)randomizer to
recognize. These elements can be all HTML elements in the
webpage or specific types of elements used to achieve web
service functions, such as posting content on specific webpages
(comments, posts, blogs etc), collecting users’ email addresses
and so on. Then, the randomizer replaces parameter values of
those tagged elements in the source with newly randomized
values, and relays the randomized HTTP form page to the
client. Once the client receives the randomized form page and
submits back their form, the de-randomizer restores original
parameter values of those R-tagged elements and relays to the
server. We next describe the design of the middleware version
of NOMAD in details.1

B. Tagging Elements
The goal of element tagger is to tag those elements that

should be protected and randomized by NOMAD. By default,
NOMAD randomizes all HTML form elements in the webpage
source to defend against web bots. Alternatively, NOMAD can
randomize a subset of critical HTML elements depending on
the need, and ignore some other elements (e.g., those navigation
elements such as buttons and links that are difficult to be
exploited by attackers). Some examples of critical HTML ele-
ments include the following: a) those allow users to post content
in the webpages; b) those used by remote servers to form
email headers; c) those used by the server to modify/update
other server resources such as a database, a file and in-memory
states; d) the values of those elements, which are a part of the
parameters in a request.

After knowing which elements need to be randomized,
we annotate the parameter values of those elements in the
webpage source for the randomizer to recognize. This could
be done by either adding a unique and specific prefix with
those parameters or specifying totally new parameter values.

1The major difference between the server-side version and the middleware
version of NOMAD is that the server-side version does not need Element
Tagger, which is directly hard-coded by the web developers. However, the
principles of (de-)randomizer are still the same.

In our work, we choose the first approach, i.e., we annotate
“name/id” parameter values of the elements by adding a
unique and specific prefix string, named as “R-tag”. Specif-
ically, we use the unique and special string of RaNmE

as R-tag (web developers can easily choose their own unique
ones), which is not normally used in the webpage source,
aiming at preventing any unwarranted errors. For example,
if a submission button with an id value of “submit” (e.g.,
“< button type = button id = submit >”) needs to
be randomized, Element Tagger will annotate this element as
“< button type = button id = RaNmE submit >”.
Since the parameters of those elements can also be used in the
presentation code such as javascript and CSS, NOMAD will
also annotate elements in those presentation code with R-tags.

C. Randomization

The randomizer will randomize those elements with R-tags.
In order to guarantee NOMAD to be stateless (i.e., NOMAD
does not need to save original values to de-randomize), the
randomizer uses a symmetric encryption scheme to randomize
the parameters. As seen in Figure 2, the entire process of
randomization can be divided into four main steps.

Fig. 2. System flow of the Randomizer

Generate Master Key. The system periodically generates a
master key in every “T” time slots2, which is used to encrypt
those annotated parameters. The master key generation should
be fast and efficient, since a busy web server may serve millions
of requests per day. Thus, we adopt Xorshift random number
generator [35], which generates sequences of random numbers
basically by applying the “xor” operation on a seed number
with a bit shifted version. The seed number could be a random
counter or a specific system state value of the server such as
system time and number of current processes. Since the change
of the master key during each session may cause errors for the
de-randomization, once a session is built between the server
and client, NOMAD will load current master key and use it to
protect web resource for the entire session. In this way, even
though a new master key has been generated during a session,
the current session will not be broken.

Generate Client Session Key. After generating the master
key, for each session, the randomizer transforms the master
key to a specific client session key. This client session key is
generated by hashing the string of the combination of the master
key and some specific client-side identifiers such as IP address.

2In our experiment, we choose T=30min, which could be tuned easily
depending on the need.



The hashing algorithm can be SHA1 or MD5. The usage of a
constant client identifier (e.g., IP address) could guarantee that
web pages and javascripts are (de-)randomized by the same
client session key.

Generate Randomized Parameter Values. After obtaining
the client session key, the randomized parameter values can
be calculated by using any encryption cipher (e.g., AES) on
the R-tagged parameter value with the client session key.
Particularly, although the sever may transfer some javascripts to
the client after transferring HTML pages, NOMAD will record
the relationships between the javascripts and corresponding
webpage requests. Then, it will use the same client and master
key to (de-)randomize the javascripts.

Append R-tag. To indicate those elements that should be de-
randomized, the randomizer appends R-tags again with random-
ized parameter values. Finally, NOMAD will relay randomized
web source to the client.

At the end of this phase, all (R-tagged) HTML elements are
obfuscated thus making web bots unable to recognize correct
parameters. As a result, they can not craft massive, correct
HTTP requests to successfully send to the servers.

D. De-randomization
Once receiving a submission request3 to the server according

to their received randomized web page source, De-randomizer
reverses those “name/id” parameter values with R-tag prefix
back to original parameter values in the following four steps
as illustrated in Figure 3.

Fig. 3. System flow of De-randomizer

Find R-tagged Parameter Values. When De-randomizer
receives users’ requests, it will find out all parameter values
of the HTML elements that have R-tag prefix. These values
will be de-randomized later.

Remove R-tags. Since the randomizer previously appends R-
tag prefix to those randomized parameter values before sending
them to the client, De-randomizer removes the R-tag prefix in
the parameter values.

Calculate Client Session Key. In this step, De-randomizer
will retrieve current master key and use client identifier infor-
mation to calculate client session key. The way of using hash
functions to calculate this client session key is similar to the
one that used in the Randomizer. Thus, since both the master
key and those identifier information will not change during the
session, we can obtain the same client session key that is used
to randomize parameter values.

3The request can be an ajax call, a submitted form, or an HTTP GET request
with randomized parameters.

Generate Original Parameter Values. De-randomizer gen-
erates original parameter values through decrypting the ran-
domized parameter values with the usage of the client session
key. Then, De-randomizer will remove R-tag prefix to generate
original parameter values and send them back to the sever.

IV. EVALUATION

In this section, we evaluate our techniques of defending
against web bots by implementing a prototype system of
NOMAD. We next present our implementation, experiment
setup, and evaluation results.

A. Implementation
As described in Section III, NOMAD can be implemented

as either a server-side approach by directly modifying the web
source or a middleware solution between the server and the
client. In this paper, we choose the latter approach to implement
our prototype NOMAD as a proxy to provide a generic way
to defeat web bots without modifying server-side code. As
most of the websites behind a proxy can be stacked on the
proxy without making any substantial infrastructure changes,
NOMAD under such an implementation will be transparent to
both the servers and the clients.

We modify the source code of a powerful web proxy called
Privoxy [9] to create a NOMAD-enabled proxy through adding
a NOMAD module. Privoxy is an open source and non-caching
web proxy with advanced filtering capabilities, allowing for
modifying web pages and HTTP headers. It can also run in an
intercepting mode. We use Pcre [7] module in the Privoxy to
search, replace and substitute content, through implementing
perl compatible regular expressions in C. The Pcre module
allows to use regular expressions to search for R-tag annotated
parameters and to replace them with randomized values. We
then hook NOMAD in Privoxy’s request/response processing
module. The HTTP form pages are buffered, modified and then
sent to the client.

B. Experiment Setup
We evaluate both security effectiveness and performance

overhead of NOMAD on four popular web platforms: phpBB,
Simple Machine Forums (SMF), WordPress, and Buddypress
[1] (See Table I). PhpBB and SMF are two of the most popular
open-source forum/discussion platforms. Wordpress starts as a
blogging service but has evolved to be a powerful platform
to design websites and content management system [15], [17],
[18]. BuddyPress is an open source endeavour to provide easy
setup of websites with social networking features, which is built
upon WordPress. It has been adopted by a number of websites
such as Solo Practice University and hMag [11]. However,
through misusing those free services offered by these open-
source platforms, attackers have also designed web bots to
launch attacks on victim websites built upon these platforms,
which caused great displeasure to legitimate users [3]. These
four web platforms are chosen with an aim at representing most
popular and state-of-the-art systems, which have been plagued
by web bots.



TABLE I
EXPERIMENT SETUP OF WEB BOTS AND THEIR TARGETED WEB PLATFORMS

Platform Platform Type Web Bots
PHPBB Forum, Content Management XRumer, Magic Submitter, SENuke

SMF Forum, Content Management XRumer, Magic Submitter, SENuke
WordPress Blogs, Websites XRumer, Magic Submitter, SENuke, UWCS, Comment Blaster
BuddyPress Social Networking Addon XRumer, Magic Submitter, SENuke, UWCS, Comment Blaster

We evaluate our prototype of NOMAD using five state-of-
the-art web bots targeting on four web platforms (See Table
I): XRumer, Magic Submitter, Ultimate Wordpress Comment
Submitter (UWCS), SENuke, and Comment Blaster. XRumer
is one of the most widely used web bots [40]. Magic Sub-
mitter allows users to automatically submit bulk messages
on blogs and social networks such as Facebook and Twitter
[6]. Ultimate Wordpress Comment Submitter and SENuke are
two commercial web bots mainly designed for the purpose of
SEO. Comment Blaster allows users to automatically send bulk
comments or messages on the web platforms.

C. Security Effectiveness
As described in Section IV-B, NOMAD is evaluated on

forum and blogging instances of popular open source systems
against five state-of-the-art web bots. The settings on these cre-
ated website instances are liberal, allowing guest/unregistered
users to create threads and to post comments. The web bots
XRumer, Magic Submitter, UWCS, Comment Blaster, and
SENuke can succeed in creating new posts/comments or filling
web forms automatically on the website instances.

Thus, we run NOMAD to protect website instances’ im-
portant webpages such as Login page, Thread Posting page,
Comment page, and Registration page. Then, we run those five
bots to register, login, and post threads/comments on NOMAD
enabled instances of the websites. As seen in Table II, NOMAD
can defend against all of the five bots on different platforms.
(UWCS and Comment Blaster target blogs, and hence could
not be evaluated on the forum platforms.)

We then present an illustration of NOMAD to defend against
a Xrumer instance, which attempts to automatically create a
new thread on phpBB3 platform. As seen in Figure 4(a), when
we do not use basic NOMAD, XRumer can successfully post
a phpBB thread. Specifically, XRumer first issues a request
(see the lower inset) and verifies that the post is successful
(see the upper inset). Then, as shown in Figure 4(b), when
NOMAD is turned on and R-tag is appended to the thread
creation form elements, XRumer fails to identify those HTML
elements. Essentially, this results in an empty request body (see
the lower inset). The “unknown” status signifies that XRumer
reaches an unknown page, which it cannot identify.

D. Performance Overhead of NOMAD
We evaluate the performance overhead of NOMAD based

on the following two metrics: page loading time and webpage
size. The former one reflects the time overhead and the latter
one reflects the page size overhead. We evaluate NOMAD
on three web platforms (phpBB, Wordpress, Buddypress) and

five different types of webpages: New Thread page (NT), Post
Reply page (Post), Account Login page (Log), Comment page
(Comt), and Register page (Reg). The summary of those web
platforms and types of web pages can be seen in Table III.
(“R-tags” denotes the number of HTML elements that are
randomized in the web page.)

TABLE III
SETUP OF WEB PLATFORMS, AND TYPES OF WEB PAGES

Platform phpBB Wordpress Buddypress
Web Page NT Post Log Comt Reg Log Comt Log

R-tags 6 6 5 5 3 4 5 4

Overhead of Page Loading Time. We examine the time
overhead of NOMAD by measuring the metric of “Page
Loading Time (PLT)”, which is the time interval between
the timestamp of sending the request and the timestamp of
completely loading a webpage by the browser. Specifically, we
use Mozilla Firefox’s addon LORI [5] to calculate the time used
to load and display a web page. Thus, a higher PLT increased
by using NOMAD implies a higher overhead. Particularly, this
value will be affected by the number of R-tagged elements in
the web page, because this number affects the time used to
randomize parameter values. Table IV shows the overhead of
PLT on different types of webpages in three web platforms.
Tpage denotes the overhead of PLT (in second) to protect the
whole page; TR�tag denotes the average overhead of PLT (in
second) to protect one R-tag element.

As seen in Table IV, under all of the cases, the overhead
of PLT increased by using NOMAD to protect a webpage is
less than 0.2 seconds. In terms of the percentage, the average
overhead is 14.29% and the highest overhead is still less
than 30%. We believe such a short delay is reasonably low
in practice, and note that such a delay is only generated on
very few HTML form pages instead of most regular webpages
browsed by users. In addition, since our evaluation is based on a
virtual machine environment with limited processing capability,
we expect the performance to be better on a real web server
and with code optimization of NOMAD implementation. Also,
since each PLT is collected using the browser with empty
cache, the overhead can decease even more in a real world
communication session with cache storage.

Page Size. We next examine the increased sizes of web
pages by using NOMAD. Specifically, we also use Mozilla
Firefox’s addon LORI [5] to measure the web page size. Table
V shows original sizes (in KB) of different types of pages on
phpBB3 before using NOMAD (labeled as “Ori”) and after
using NOMAD (labeled as “NOM”). All of these webpages
have six R-tagged elements.



TABLE II
THE EFFECTIVENESS OF USING NOMAD TO DEFEND AGAINST WEB BOTS ON DIFFERENT WEB PLATFORMS. “YES” IMPLIES THAT NOMAD CAN

SUCCESSFULLY DEFEND AGAINST THE BOTS ON THAT PLATFORM. “N/A” IMPLIES THAT THE BOT DOES NOT TARGET ON THE PLATFORM.

Web Platform XRumer Magic Submitter SENuke UWCS Comment Blaster
phpBB Yes Yes Yes N/A N/A
SMF Yes Yes Yes N/A N/A

WordPress Yes Yes Yes Yes Yes
BuddyPress Yes Yes Yes Yes Yes

(a) Success (b) Fail
Fig. 4. Snapshots of requests from XRumer sent to the server to post a new phpBB thread. (a) shows a successful post when NOMAD is OFF, (b) shows a
failed attempt when NOMAD is ON.

TABLE IV
OVERHEAD OF PLT (MEASURED IN SECONDS) ON DIFFERENT TYPES OF WEBPAGES IN THREE WEB PLATFORMS

phpBB Wordpress Buddypress
Type Tpage Percentage TR�tag Type Tpage Percentage TR�tag Type Tpage Percentage TR�tag

NT 0.196 7.67% 0.033 Comt 0.22 27.5% 0.044 Comt 0.18 24% 0.026
Post 0.192 7.57% 0.032 Reg 0.141 17.65% 0.047 Log 0.129 14.48% 0.045
Log 0.015 1.47% 0.003 Log 0.11 14.01% 0.028

TABLE V
OVERHEAD OF PLT ON DIFFERENT TYPES OF WEBPAGES/PLATFORMS

NT Post Log Reg
Ori NOM Ori NOM Ori NOM Ori NOM

60.94 61.02 62.24 62.36 29.69 29.8 22.57 22.67

As seen in Table V, the overhead of page size by using
NOMAD is relatively small. (The average increased size of
these web pages is only 0.103 KB.) That is because this
overhead mainly comes from the prefix of those R-tagged
element values/parameters. According to our implementation,
for each element, the randomizer only needs to increase a small
number of characters from the original string.

From the previous evaluation, we can see that NOMAD
could be used to successfully defend existing web bots with
a relatively low overhead of page loading time and page size.

V. ATTACKING AND ENHANCING NOMAD FOR FUTURE
THREATS

A. Attacking NOMAD with Hypothetical Future Bots

As described in Section III, the intuition of designing our
basic NOMAD is based on the fact that bots use hard-coded
name/id parameters of HTML elements to build HTTP requests.
We believe our moving-target design of the basic version of
NOMAD has already raised the bar for web bots and can be

an effective line in the defense-in-depth architecture. In this
section, we will think as an attacker to design more advanced
(hypothetical) future bots in attempt to evade NOMAD.

Specifically, we envision more advanced bots may evade
NOMAD by using the following two approaches: (1) Analyzing
label context of elements. Each HTML form element has a
label to inform end users about the its semantic meaning. A
bot can identify correct input HTML elements through parsing
the content description in the label associated with the input
element; (2) Analyzing the locations of elements. A bot may
achieve the relative location of specific HTML elements with
respect to other elements in the page. Hence, identifying and
retrieving the correct name/id parameter boils down to moving
through the DOM structure along a pre-identified path.

Although to our best knowledge, none of the current bots
utilize such intelligent techniques yet, however, we believe it is
necessary to think ahead to mitigate such bots when they catch
up. Thus, we create a proof-of-concept bot that has advanced
capabilities to automatically fill a simple user login form on
phpBB3 as shown in Figure 7. This advanced bot first uses
hard-coded parameters to submit the form. If it fails to do
that, it parses element label context and relative positions of
input elements in the page to identify HTML elements. This
advanced bot was able to defeat NOMAD and bypass it to
successfully submit data requests to the login page. (Due to



the page limitation, we skip our implementation details of this
hypothetical advanced bot.)

Fig. 5. Snapshot of the success of our proof-of-concept bot on NOMAD

B. Enhancing NOMAD

To defeat our proposed hypothetical advanced web bots, we
further strengthen NOMAD by adding two enhanced compo-
nents: Label Concealer and Element Trapper. The basic intu-
ition is to incorporate some ideas from existing techniques such
as CAPTCHA, while still keeping our scheme as implicit as
possible (e.g., not asking users to explicitly solve CAPTCHA).

Label Concealer. Since more advanced web bots may learn
semantic meanings of HTML elements through analyzing label
context, to defeat such web bots’ intelligence, the goal of
Label concealer is to replace important label text to random
images. A label text is a string inside “<label></label>”
HTML tags associated with an HTML element, where the string
specifies the purpose of the element to users. The connection
between the text and the element is built either by setting the
attribute of “for” in the label tag “<label for=id>”, or by
placing the element between the label start and end tags. For
example, in a typical login form, the label text of “Username”
and “Password” are placed near the corresponding textbox to
facilitate users to fill up the login form. A more advanced bot
could use the meanings of label text to figure out the name/id
attributes of the original HTML element.

To stop bots recognizing label text, Label Concealer will
randomly substitute label text with images in real time (as
illustrated in Figure 6(a)). To avoid even more intelligent bots
using the OCG (Optical Character Recognition) technique to
identify the context in the images, those images could be
generated with noise in a pre-processing step. More discussion
could be seen in Section VII.

(a) Image Labels (b) Decoy Elements
Fig. 6. Illustration of label concealer and element trapper

Element Trapper. Since more advanced web bots may
identify elements through analyzing elements’ relative locations
in the webpage, the goal of Element Trapper is to insert
decoy elements to stop bots from learning elements’ location

information. Decoy elements are duplicates of original HTML
elements with a random name/id attribute. Also, those decoy
elements are randomly inserted nearby the original element (as
illustrated in Figure 6(b)).

Although adding decoy elements could prevent web bots’
from learning locations of important elements in the webpages,
it may also confuse normal users. Thus, to solve such a
limitation, we suggest two types of decoy elements: hidden
elements and user-notification elements. Hidden elements are
implemented to be hidden from normal users’ eyes, through
setting the “display” or “position” property via css statements
in the source. In this way, web bots may obtain wrong HTML
elements, by automatically parsing keywords in the HTML
source. However, normal users could not see such decoy
elements.

To further stop advanced bots from identifying decoy ele-
ments through parsing css/html, Element Trapper could also
use user-notification images with specific tags, indicating to
human eyes that they are decoy only. (The tag could be “Do
not fill this”, “invalid”, “decoy”, or a simple notification symbol
according to web developers’ design. To make sure that decoy
elements fit the style (size, color, etc.) of the webpage, the
developer could choose a similar design style as used in the
webpage to create decoy elements.) In this way, identifying
decoy elements is an easy and cognitive task for humans, but a
tough AI challenge for web bots. Moreover, enhanced NOMAD
could increase the bar even higher for web bots to analyze
decoy elements by randomly changing decoy elements’ source,
locations, and tags.

It is worth noting that the addition of decoy elements needs
to balance the usability and security. It is an arms race between
web bots and defenders, and there is always a tradeoff between
security and usability. Fortunately, one only needs to use them
in very few selected HTML form pages (e.g., registration page),
which could help minimize the effect to the usability.

We also note that it might be impossible to design a perfect
approach to defend against all web bots. Our NOMAD repre-
sents a new perspective to incorporate moving-target defense to
complement existing solutions. While not perfect, we believe
it is a very useful component to form a better defense-in-depth
architecture in the battle against web bots. More discussions
could be seen in Section VII.

C. Evaluation of Enhanced NOMAD
We next evaluate the security effectiveness of our enhanced

NOMAD. Based on the previous design, we implement a
prototype of enhanced NOMAD and evaluate it on our proof-of-
concept advanced bot mentioned before. As illustrated in Figure
7), once NOMAD is enhanced with two enhanced elements, the
advanced bot fails to recognize HTML elements of “Username”
and “Password”.

Similar to the evaluation on the overhead of NOMAD, we
also evaluate the overhead of page loading time and page size
on Enhanced NOMAD. With the same configuration on evalu-
ating the basic NOMAD, the average overhead of page loading
time by using enhanced NOAMD to protect one webpage and



Fig. 7. Illustration of the failure of the advanced bot under enhanced NOMAD

one R-tag element is 1.37 seconds and 0.29 seconds, respec-
tively. Compared with NOMAD, the relatively high overhead
of Enhanced NOAMD is mainly because Element Tagger needs
to add decoy images. Accordingly, more time is needed to
create/process images at the server side, to download additional
image bits, and to load them into the browser at the client.
However, this overhead is mainly affected by the number of
added decoy elements, which will not increase much as the
size of webpages increases. Also, since Enhanced NOMAD
will only protect a small number of HTML form pages, this
overhead will not affect users’ web surfing experience (on most
of regular webpages).

The average overhead of page size by using enhanced
NOMAD is 67.99 KB, which is mainly generated by inserting
decoy images. With the increasing network capacity and speed,
we believe that a 60 � 70 KB overhead on very few specific
web pages is acceptable.

VI. RELATED WORK
We next introduce current work in the area of bot prevention

and mitigation.

A. Analysis of Input

Existing studies have analyzed submitted content and HTTP
requests to identify bots [24], [30], [36], [41], [42]. Shin et.
al. [41] examined the characteristics of forum spam posted at
a research blog and developed light-weight features to detect
those spam. Mishne et. al. [36] proposed detecting comment
spam by comparing the language models used in the blog post,
the comment, and pages linked by the comments. Bhattarai et.
al. [24] used content analysis to characterize spam in blogs.
Schluessler et. al. [39] analyzed input data events such as
keystrokes and mouse clicks to detect bots. Brewer et. al.
[25] used link obfuscation to detect and counter web bots.
Gianvecchio et. al. proposed HOP-based (Human Observable
Proof) approaches to detect web bots [31], [32].

Noncespaces [34] also utilizes the technique of source ran-
domization technique that enables web clients to distinguish
between untrusted content to prevent exploitation of XSS vul-
nerabilities. Although sharing the same spirit of moving-target
defense, our NOMAD is a different design and application to
defeat web bots.

B. CAPTCHA Systems

CAPTCHA systems have been widely used to defend against
web bots. Security is not the only concern of a good CAPTCHA
design. All CAPTCHA systems are a form of HIP (Human

Interactional Proofs) and require users’ involvement. Current
CAPTCHA systems could be divided into the following two
types: Text-based and Image-based CAPTCHA.

Text-based CAPTCHA. Text-based CAPTCHA systems ask
the user to identify letters or numbers [4], [10], [21], [22].
Such systems face one inevitable situation: humans find the
CAPTCHA challenge unpleasant as CAPTCHA gets more
complicated. While building a high bar to prevent bots iden-
tifying content, Text-based CAPTCHA also makes trouble for
human users [43], [44].

Image-based CAPTCHA. Since intelligent web bots could
defeat text-based CAPTCHA systems, image-based solutions
are designed to replace text-based CAPTCHA systems, which
are even more complex for human users to solve [2], [14],
[27]–[29]. Most current image-based systems (e.g., ESP-PIX
[2]) suffer from the limitation of creating and maintaining a
large, constantly evolving image database. Although Google
provides a new image-based CAPTCHA system [33], which
asks the user to adjust the orientation of an image, it is restricted
by the requirement of correctly identify subtle mouse (or other
hardware) movement.

VII. LIMITATIONS AND FUTURE WORK

Since our prototype of NOMAD is implemented as an inter-
mediate proxy, it could not protect webpages, if the connection
between the client and server is encrypted with SSL. However,
it is just the limitation of our specific implementation, instead
of the limitation of the fundamental solution. The server-side
version of NOMAD can easily solve this problem through
directly modifying web applications.

Attackers could try to locate R-tagged HTML elements by
analyzing the differences among multiple retrieved contents of
the same webpage. This approach could be effective when there
are few R-tagged elements (out of all elements) in one page,
i.e., when the entropy of randomization space is not high. In
this way, attackers may somehow guess semantic meanings
of some critical elements through checking whether they are
changing each time. However, we could increase the bar for
guessing critical HTML elements under such situations through
R-tagging more randomly selected non-critical (or simply all)
HTML elements in the page. Then, this significantly increased
size will make it more difficult for attackers to correctly guess
out those critical elements. In addition, our enhanced NOMAD
with multiple insertions of decoy elements could further in-
crease the entropy of randomization space and decrease the
success probability of this kind of guessing or brute-forcing
attacks.

More advanced bots may use advanced image recognition
capabilities to identify decoy images and recognize semantic
meanings of the label images. However, this brings a high
cost for attackers, especially when the images are added with
random noise (which can be easily implemented). This is essen-
tially as hard as breaking current CAPTCHA-based approaches.

We admit that our enhanced NOMAD, requiring users to
identify visible decoy elements, may affect usability. However,
these elements are only inserted on the selective pages (e.g.,



registration page). Also, since users at least do not need to pay
more efforts on recognizing those decoy elements than solving
CAPTCHA problems, it is still an implicit defense approach.
We also admit that the insertion of decoy elements and image
labels reduces the accessibility of the web site for blind users.
This limitation exists for many current web sites. To examine
possible effect to users, we plan to conduct a deep user study,
and try to create a more accessible design leveraging audio
elements in our future work.

Enhanced NOMAD generates a relatively higher overhead
than basic NOMAD, because it requires more image insertions.
In our future work, we plan to reduce such overhead. For
example, to improve the time performance, NOMAD can be
designed to create and load images in advance, and then
randomly adding different noises to the images. In addition,
through analyzing users’ HTTP request histories, NOMAD can
add decoy elements only when the requests are suspicious.

VIII. CONCLUSION

In this paper, we present a novel, first-of-its-kind, non-
intrusive moving-target defense system against web bots,
named NOMAD. It is designed to pose implicit challenges to
web bots (i.e., unlike CAPTCHA, it does not require legitimate
users to explicitly solve challenges.). We also provide en-
hanced NOMAD by adding two additional components aiming
at defeating more powerful future web bots. Our evaluation
results show that NOMAD can defeat state-of-the-art web bots
on different popular web platforms, with an reasonably low
performance overhead for better security protection.

IX. ACKNOWLEDGMENT

This research is partially supported by a NPRP grant (5-
648-2-264) from the Qatar National Research Fund (QNRF).
All opinions, findings and conclusions or recommendations
expressed herein are those of the authors and do not necessarily
reflect the views of QNRF.

REFERENCES

[1] Buddypress - social networking in a box. http://buddypress.org/.
[2] Esp-pix. http://server251.theory.cs.cmu.edu/cgi-bin/esp-pix/esp-pix.
[3] Flooded by spam/splog registrations. http://wordpress.org/support/topic/.
[4] Gimpy project. http://www.captcha.net/captchas/gimpy/.
[5] Lori: Life-of-request info. https://addons.mozilla.org/en-US/firefox/

addon/lori-life-of-request-info/.
[6] Magic submitter. http://www.magicsubmitter.com/.
[7] Pcre. http://www.pcre.org/.
[8] Poll bots. http://www.scriptlance.com/projects/1290407615.shtml.
[9] Privoxy. http://www.privoxy.org/.

[10] recaptcha. http://www.google.com/reCAPTCHA.
[11] Spam injection. http://www.web-form-buddy.com/html-wfb/

spam-injection.html.
[12] Spam swine break next-gen captchas. http://www.theregister.co.uk/2008/

10/03/captcha break/.
[13] The spambots on twitter are completely out of con-

trol. http://wilwheaton.typepad.com/wwdnbackup/2009/08/
the-spambots-on-twitter-are-completely-out-of-control.html.

[14] Sq-pix. http://server251.theory.cs.cmu.edu/cgi-bin/sq-pix.
[15] Top powered by wordpress sites. http://www.tripwiremagazine.com/2009/

11/20-remarkable-examples-of-websites-powered-by-wordpress.html.
[16] Web form spam alive and kicking. http://blog.trendmicro.com/

web-form-spam-alive-and-kicking/.
[17] Wordpress - wordpress is web software you can use to create a beautiful

website or blog. http://wordpress.org/.

[18] Wordpress powers 14.7 percent of world’s sites. http://www.h-online.
com/open/news/item/.

[19] Xrumer. http://www.botmasterlabs.net/.
[20] Web bots vs humans: We’re losing. http://www.sitepoint.com/

web-bots-vs-humans/, 2012.
[21] L. Ahn, M. Blum, N. Hopper, and J. Langford. Captcha: Using hard ai

problems for security. In In In Proceedings of Eurocrypt, 2003.
[22] L. Ahn, M. Blum, and J. Langford. Telling humans and computers apart

automatically. Commun. ACM.
[23] H. Baird and K. Popat. Human interactive proofs and document image

analysis. In Proceedings of the 5th International Workshop on Document
Analysis Systems V, DAS ’02.

[24] A. Bhattarai, V. Rus, and D. Dasgupta. Characterizing comment spam
in the blogosphere through content analysis. In IEEE Symposium on
Computational Intelligence in Cyber Security, (CICS’09).

[25] D. Brewer, K. Li, L. Ramaswamy, and C. Pu. A link obfuscation service to
detect webbots. International Conference on Services Computing, 2010.

[26] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski. Designing
human friendly human interaction proofs (hips). In Proceedings of the
SIGCHI conference on Human factors in computing systems, CHI ’05.

[27] M. Chew and J. Tygar. Image recognition captchas. In In Proceedings
of the 7th International Information Security Conference (ISC’04).

[28] R. Datta, J. Li, and J. Wang. Imagination: a robust image-based captcha
generation system. In Proceedings of the 13th annual ACM international
conference on Multimedia (MULTIMEDIA ’05).

[29] J. Elson, J. Doucerur, J. Howell, and J. Saul. Asirra: A captcha that
exploits interest-aligned manual image categorization. In Proceedings of
the 14th ACM CCS, 2007.

[30] S. Gianvecchio, Zhenyu Wu Mengjun Xie, and Haining Wang. Detecting
Blog Bots through Behavioral Biometrics. 2013.

[31] S. Gianvecchio, M. Xie, Z. Wu, and H. Wang. Measurement and
Classification of Humans and Bots in Internet Chat. In USENIX Security
Symposium, 2008.

[32] Steven Gianvecchio, Z. Wu, M. Xie, and H. Wang. Battle of Botcraft:
Fighting Bots in Online Games with Human Observational Proofs. In
USENIX Security Symposium, 2008.

[33] R. Gossweiler, M. Kamvar, and S. Baluja. What’s up captcha?: a captcha
based on image orientation. In Proceedings of the 18th international
conference on World wide web (WWW’09).

[34] M. V. Gundy and H. Chen. Noncespaces: using randomization to enforce
information tracking and thwart crosssite scripting attacks. In 16th Annual
Network and Distributed System Security Symposium, 2009.

[35] P. Matthews and C. Zou. Scene tagging: image-based captcha using image
composition and object relationships. In Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security,
ASIACCS ’10.

[36] G. Mishne. Blocking blog spam with language model disagreement.
In In Proceedings of the First International Workshop on Adversarial
Information Retrieval on the Web (AIRWeb’05).

[37] Y. Niu, Y. Wang, H. Chen, M. Ma, and F. Hsu. A quantitative study of
forum spamming using contextbased analysis. In In Proc. Network and
Distributed System Security Symposium (NDSS’07).

[38] Y. Rui and Z. Liu. Excuse but are you human? In 11th ACM international
conference on Multimedia, 2003.

[39] T. Schluessler, S. Goglin, and E. Johnson. Is a bot at the controls?
detecting input data attacks. In Proceedings of the 6th ACM SIGCOMM
workshop on Network and system support for games (NetGames ’07).

[40] Y. Shin, M. Gupta, and S. Myers. The nuts and bolts of a forum spam
automator. In Proceedings of the 4th USENIX conference on Large-scale
exploits and emergent threats, LEET’11.

[41] Y. Shin, M. Gupta, and S. Myers. Prevalence and mitigation of forum
spamming. In 2011 Proceedings of IEEE INFOCOM.

[42] S. Webb. Characterizing web spam using content and http session
analysis. In 4th Conference on Email and Anti-Spam (CEAS’07).

[43] J. Yan, E. Ahmad, and A. Salah. A low-cost attack on a microsoft
captcha. In Proceedings of the 15th ACM conference on Computer and
communications security (CCS’08).

[44] J. Yan, E. Ahmad, and A. Salah. Usability of captchas or usability issues
in captcha design. In Proceedings of the 4th symposium on Usable privacy
and security (SOUPS’08).


