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Abstract. In this paper, we analyze a large amount of infection data for
three major botnets: Conficker, MegaD, and Srizbi. These botnets rep-
resent two distinct types of botnets in terms of the methods they use to
recruit new victims. We propose the use of cross-analysis between these
different types of botnets as well as between botnets of the same type in
order to gain insights into the nature of their infection. In this analysis,
we examine commonly-infected networks which appear to be extremely
prone to malware infection. We provide an in-depth passive and active
measurement study to have a fine-grained view of the similarities and
differences for the two infection types. Based on our cross-analysis re-
sults, we further derive new implications and insights for defense. For
example, we empirically show the promising power of cross-prediction
of new unknown botnet victim networks using historic infection data of
some known botnet that uses the same infection type with more than
80% accuracy.

1 Introduction

Recent botnets use several methods to find and infect victims. Among these
methods, most botnets have mainly employed two infection techniques [9] [7]
[6]:

– Bots automatically propagate themselves (auto-self-propagating, Type I ). To
do this, bots usually employ network scanning techniques to find vulnerable
hosts and exploit them. This approach is active and aggressive in infecting
victims. Conficker [3] is a good example of this kind of botnets [9].

– Bots spread themselves with the help of people or other methods (non-auto-
self-propagating, Type II ). In this case, since bots cannot find new victims
automatically, malware writers should employ other techniques. They install
a malicious binary into compromised web sites and trick people into down-
loading it (i.e., drive-by-download [12]) or they ask other malware owners,
who have pre-installed malware, to distribute their malware (i.e., pay-per-
installation (PPI) [17] [28]). This approach seems to be relatively passive
because the operation sequence of this approach may depend on human ac-
tions or other tools. The MegaD [7] and Srizbi [5] botnets, which are known
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as spam botnets, are representative examples of this type of botnet [7] [17]
[6].

Both auto-self-propagating and non-auto-self-propagating botnets have be-
come serious threats to the Internet. For example, some of them have infected
millions of victims [4] and some are infamous for generating a significant amount
of spam emails [8]. Analyzing and understanding them is thus becoming an im-
portant and urgent research task in order to design more effective and efficient
defenses against them.

In this paper, we start our research with a simple yet important question:
are there any similarities/differences in infection patterns (e.g., the distribution
of victims) between these two types of botnets? We believe the answer to this
question can greatly deepen our understanding of the nature of these botnets
and enable us to develop more accurate/targeted Internet malware monitor-
ing, detection, prediction techniques, strategies and systems. Since both types
of botnets have quite different infection approaches, i.e., auto- and non-auto-
self-propagating, we could predict that their infection patterns are likely also
different. To understand whether this hypothesis is right or wrong, one needs
to collect and cross-analyze both types of botnets. However, although there are
several previous measurement/analysis studies that have made significant efforts
to understand botnet infection characteristics [16] [13] [14] [6], they mainly focus
on only one specific botnet, rarely providing cross-analysis of different (types of)
botnets. This is probably due to many reasons, for example practical difficulties
on data collection: (a) collecting a good amount of real-world botnet data is
hard; (b) collecting multiple different (types of) real-world botnet data is even
harder.

In this work, we have collected a large amount of real-world botnet infection
data, including millions of Conficker victims and several hundred thousands of
MegaD and Srizbi victims. They cover the two representative infection tech-
niques mentioned before with reasonably large amount of samples and thus are
suitable for our study. We perform an in-depth cross-analysis of different botnet
types and show what similarities/differences exist between them. Slightly con-
tradictory to the hypothesis we made above, we find that both types of botnets
have a large portion of victims overlapped and the overall victim distributions
in IPv4 space are quite similar. However, they do show several interesting char-
acteristics different from each other. To obtain a fine-grained understanding of
these similarities and differences, we further perform an in-depth set of large-
scale passive and active measurement studies from several perspectives, such
as IP geographical location, IP address population/density, networks openness
(remote accessibility), and IP address dynamism. Our results reveal many inter-
esting characteristics that could help explain the similarities/differences between
the two botnet infection types.

Furthermore, from our measurement results, we have further derived new
implications and insights for defense. We found that due to the heavily uneven
distribution of botnet victims, we can observe strong neighborhood correlation
in victims. Although it is intuitive that Type I malware (specifically scanning
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malware) tends to infect neighbor networks and thus neighborhood watch could
be a useful prediction technique [2], it is unknown whether this applies to the case
of Type II malware. For the first time in the literature we show with empirical
evidence that Type II botnet victims also exhibit this similar property. More
interestingly, we have empirically discovered that even if we only know some
information of one botnet (e.g., past botnet data), we could predict unknown
victims of another botnet (e.g., a future emerging botnet) with reasonably high
accuracy, given that both botnets use the same infection type. This sheds light
on the promising power of cross-analysis and cross-prediction.

In short, the contributions of this paper are as follows.

– We collect a large amount of real-world botnet data and provide the first
cross-analysis study between two types of botnet infections to the best of our
knowledge. This kind of study is useful to understand the nature of malware
infection and help us gain insights for more effective and efficient defense.

– We perform a large-scale passive and active measurement study for a fine-
grained analysis of similarities/differences in two botnet infection types. We
study several aspects such as IP geolocation, IP address population/density,
IP address dynamism, and network openness (remote accessibility). We have
many interesting findings. To name a few (incomplete) examples, (a) different
countries are likely prone to different types of malware infections while some
countries such as Turkey are extremely vulnerable to both infection types; (b)
malware infection seems to have very interesting correlation with geopolitical
locations; (c) IP address dynamism and network openness are likely to cause
more malware infections (for certain type). And they have different effect on
different types of botnet infections.

– Based on our cross-analysis result, we further derive new implications and
insights for defense. We perform an empirical test to predict unknown victim
networks of non-auto-self-propagating botnets by looking up their neighbor
information. We further extend it to cross-predict unknown victim networks
of a new botnet using existing knowledge of botnets with the same infection
type and we show that the prediction accuracy can be reasonably high (more
than 80%).

2 Data Collection and Term Definition

In this section, we provide information of data that we have analyzed and we
define several terms used in this work.

Data Collection To understand the characteristics of different types of botnets,
we have collected data for three major botnets: Conficker, MegaD, and Srizbi.
Conficker [3] is a recent popular botnet known to have infected several million
Internet machines. It propagates automatically through network scanning. It first
scans random networks to find new victims and if it infects a host successfully,
it scans neighbor networks of the host to find victims nearby [9]. Thus it is a
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representative example of Type I botnets. The MegaD [7] and Srizbi [6] botnets
are two recent botnets known for sending large volume of spam since 2008. In
particular, it is mentioned that MegaD was responsible for sending about 32%
of spam worldwide [7] and Srizbi was responsible for sending more than half of
all the spam in 2008 [1]. They are representative examples of Type II botnets
because they spread by drive-by-download [7, 6] or pay-per-install methods [17].

The Conficker botnet data has been collected by setting up sinkholing servers
because Conficker uses domain-fluxing to generate C&C domain names for vic-
tims to contact [3]. With the help of shadowserver.org, we have collected a large
dataset of Conficker infection including about 25 million victims [2]. The shad-
owserver.org has set up several sinkhole servers and registered the domain names
same as the Conficker master servers to redirect queries of the Conficker bots
to the sinkhole servers. Then, the sinkhole servers capture the information of
hosts contacting them and the hosts can be considered as the Conficker infected
victims.

Botnet Data Source Main Infection Vector # of Victims Collection Date

Conficker Sinkhole server [20] network scanning 24,912,492 Jan. 2010
MegaD Spam trap [19] drive-by-download or PPI 83,316 Aug. 2010
Srizbi Spam trap [19] drive-by-download 106,446 Aug. 2010

Table 1. Data summary of collected botnets.

The MegaD and Srizbi botnet data has been collected through the botlab
project [19], of which spam trap servers were used to gather information of hosts
sending spam emails. The detailed summary information regarding our collected
data is presented in Table 1. The botlab project captures spam emails from spam-
trap servers and further investigates the spam emails through various methods
such as crawling URLs in the spam emails and DNS monitoring. From corre-
lating the investigation results, the botlab project finally reports which hosts are
considered as infected by spam-botnets such as MegaD and Srizbi.

Term Definition Before we perform cross-analysis on the data, there are sev-
eral important issues to be addressed which can bias our result. The first thing
is the dynamism of the IP address of a host. Many ISPs use dynamic IP address
re-assignment to manage their assigned IP addresses efficiently [10]. This makes
it hard to identify each host correctly. This may cause some biases in measuring
the population or characteristics of the botnet [11]. Second, we are not likely
to collect the complete data of certain botnets but only parts of the data (e.g.,
MegaD and Srizbi), and this can also cause some biases.

To account for these issues, instead of basing our analysis unit granularity
on the individual IP address level, we generalize our analysis to examine at the
network/subnet level by grouping adjacent IP addresses. This will help mitigate
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the effect of dynamism, because it is common that dynamic IP addresses of a host
come from the same address pool (subnet). Also, we believe that it is sufficient
to examine subnets because even if only one host in the network is infected, the
neighbor hosts are likely to be vulnerable or be infected soon [2].

In this work, we define our base unit for analyzing, i.e., “infected network”,
as the /24 subnet which has at least one malware infected host. Thus, if a sub-
network is infected by a Type I botnet, we call the subnet a Type I infected
network and a similar definition is also applicable to Type II infected networks.
In addition, we define a Common infected network as an infected network which
has victims of both types of botnets. There may be some infected networks that
are exclusively infected by either Type I or Type II, which are defined as Type I
EX or Type II EX infected networks, respectively.

In our data set, we found 1,339,699 infected networks in the case of the Con-
ficker botnet, 71,896 for the MegaD botnet, and 77,934 for the Srizbi botnet.
Thus, we have data for around 1,339,699 infected networks for the Type I bot-
net and 137,902 infected networks for the Type II botnet1. From this we have
identified 97,290 Common infected networks.

3 Cross-Analysis of Botnet Victims

In this section, we provide detailed cross-analysis results of two types of botnets.

3.1 Point of Departure

We start our analysis with the following Hypothesis 1 that we proposed in Sec-
tion 2.

Hypothesis 1. Since the two types of botnets have very different infection
vectors, they may exhibit different infection patterns (e.g., distributions of their
infected networks).

To verify this hypothesis, we measure how many infected networks are shared
by both types of botnets and how they are different from each other. The basic
measurement results are shown in Figure 1. Figure 1(a) shows the distribution
for infected networks of each type of botnet over the IP address spaces (Type I
(Conficker), II (MegaD and Srizbi), and Common infected networks). Interest-
ingly, the distributions of Type I and Type II botnets are very similar to each
other. Specifically, the IP address ranges of (77.* - 96.*), (109.* - 125.*), and
(186.* - 222.*) are highly infected by both types of botnets and their shared
regions (Common) are also distributed in the similar ranges.

To investigate how many infected networks are “really” shared between them,
we draw a diagram which represents the number of infected networks of each type
of botnet and networks that they share in common in Figure 1(b). There are

1 There are 11,928 infected networks in common between MegaD and Srizbi.
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(a) Infected network distributions over IP address spaces (b) Infected network diagram

Fig. 1. Infected network distributions and diagram.

97,290 Common infected networks, 1,242,409 Type I EX networks, and 40,612
Type II EX networks.

Contrary to our expectation, the two types of botnets are distributed over
similar IP address ranges and there are many Common infected networks be-
tween them. However, this observation is only about the distribution over the
IP address space and it is very hard to find semantic meanings such as their
physical locations from this result. For instance, even though we know a /24
subnet 111.111.111/24 is an infected network, we may not understand who are
using the subnet and where the subnet is located. More importantly, why is the
subnet more likely to be infected by certain type (or both types) of botnets? In
addition, the ranges are too broad to comprehend clearly. We show range (77.*
- 96.*) is highly infected, but that does not mean that all IP addresses in the
range are infected, we need more fine-grained investigation. Besides that, we also
find that there are some differences between them (i.e., Type I EX and II EX
infected networks are still significant) and they also need to be understood, be-
cause they can show which ranges are more vulnerable to which type of botnet.
Only considering IP address ranges might not clearly show these differences.

Thus, we are motivated to consider more viewpoints that provide us some
understandable meanings with fine-grained level semantic information. We have
selected four interesting viewpoints (we call them categories): (i) geographical
distribution of infected networks, which lets us identify more (or less) vulnerable
locations and their correlation with certain types of infections, (ii) IP address
population/density, which helps us understand relationships between the num-
ber of assigned IP address to the country and the number of infected networks
of the country, (iii) remote accessibility of networks, which shows us how open
(and thus possibly prone to infection) the networks are and whether there is
a correlation with certain infection types, and (iv) dynamism of IP addresses,
which tells us whether vulnerable networks use more dynamic IP addresses and
the correlation with infection type. In each category, we build a hypothesis based
on some intuition and then we perform a large scale passive or active measure-
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ment to verify the hypothesis and gain some insights.

Insight 1. Interestingly, the two types of botnets are distributed in similar IP
address ranges despite of their different infection types. In addition, the ranges
are continuous and it might imply that vulnerable networks are close to each
other. More fine-grained analysis over the ranges might help us find new results
and insights.

3.2 Geographical Distribution of Infected Networks

In our first test, we have observed that two types of botnets seem to have similar
distributions over the IP address space. Thus, we could infer that the distribu-
tions of two different types of botnets over geographical locations are similar to
each other. From this intuition, we make the following hypothesis.

Hypothesis 2. Type I and Type II infected networks are mainly distributed
over similar countries.

(a) Common (b) Type I and I EX (c) Type II and II EX

Fig. 2. Infected network distributions over the countries (x-axis for country code, y-axis
for percentage)

To verify this hypothesis, we investigate how each type of infected network is
distributed over countries. When we observe the overall distribution of each type
of botnet over the countries, we find that all Common, Type I, Type I EX, Type
II, and Type II EX infected networks spread all over the world (with the exception
of Africa), but there are some concentrated areas. To analyze the result in detail,
we select the top 16 countries of each case and show their distributions in Figure
2. Results are sorted by the number of infected networks of the countries. Here,
X-axis represents the country code and Y-axis represents the percentage of each
infection type, e.g., if there are 100 Common infected networks overall and 14
infected networks are located in Turkey (its country code is TR2), the percentage
of Turkey is 14%.

2 Each country code represents followings; AR Argentina, AU Australia, BR Brazil,
CA Canada, CL Chile, CN China, CO Colombia, DE Germany, ES Spain, FR France,
GB Great Britain, IN India, IT Italy, JP Japan, KR South Korea, MX Mexico,
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In Figure 2(a), Common infected networks are mainly distributed in Asia
(e.g., Turkey, Korea, Russia, China, and India) with more than 35%. Figure
2(b) also presents that Type I and I EX infected networks are mainly distributed
over Asia. The distributions of Type I EX infected networks are quite similar
to that of Type I. The distributions of Type II and II EX infected networks are
shown in Figure 2(c). Here we still observe more than 30% as being located in
Asia.

From the observations, we find two interesting things. First, the set of coun-
tries that are highly infected are not very different for each type of botnet (i.e.,
if some countries are highly infected by Type I botnet, they are also likely to be
infected by Type II botnets). This implies that these countries are more prone
to be infected regardless of infection methods. Second, there are some countries
that are highly vulnerable to one type of botnet over the other. China is a good
example of this. China has a lot of Type I infected networks. However, it has
relatively small portions of Type II infected networks. We presume that most of
the networks in China are accessible from remote scanning botnets because Type
I botnets usually use network scanning techniques to find new victims. We will
test this in section 3.4 and show whether our presumption is correct.

Insight 2. There are some countries which are prone to be infected by both
types of botnets. However, some other countries are more likely to be infected
by one type of botnet. Management policies of networks (e.g., network access
control) could affect malware infection of the country.

3.3 IP Address Population

From the previous result, we know that the infected networks of each type of
botnet are concentrated mainly within several countries but the infection rates
between them are different. Why is the infection rate between them different?
Are there any possible answers or clues that might explain this? To find out some
clues, we first focus on the number of IP addresses assigned to each country.

IP addresses are not assigned evenly over networks or locations [22] [21]. In
terms of the IPv4 address space, there are some IP address ranges which have
not been assigned to users but registered only for other purposes, e.g., (224.*
- 239.*) is assigned for multicast addresses [22]. In addition, IP addresses have
been assigned differently over locations, e.g., more than 37% of IP addresses are
assigned to the United States, while Turkey only has less than 0.5% [21]. From
this fact, we can easily infer that countries that have more IP addresses could
have more chances to be infected by malware leading to Hypothesis 3. Here, we
will use the term of IP address population to represent the number of assigned
IP addresses and we define high IP address population country as the country
ranked in the top 30 in terms of the number of assigned IP addresses, and low

NL Netherlands, PE Peru, PL Poland, RO Romania, RU Russian Federation, SE
Sweden, TH Thailand, TR Turkey, TW Taiwan, US United States, VN Vietnam
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IP address population country as the country ranked below 30. All ranking in-
formation is based on [21].

Hypothesis 3. Countries with more IP addresses (high IP address popula-
tion countries) might contain more of both types of infected networks than low
IP address population countries.

To verify this hypothesis, we compare the number of infected networks of each
type of botnet with the number of IP addresses assigned to each country. The
comparison results are shown in Figure 3. We can see that the number of infected
networks of the Type I, II, I EX, II EX botnets are relatively proportional to
the IP address population (i.e., the more IP addresses a country has, the more
infected networks it contains). However, in the case of Common infected networks,
they are NOT proportional to IP address population. On the contrary, they are
mainly distributed over some low IP address population countries.

Fig. 3. Infected network distribution versus IP address population (x-axis for percent-
age of assigned IP addresses to a country, y-axis for percentage of infection of each
type of botnet in the country)

Intuitively, countries with more IP addresses have more chances to be in-
fected. Thus, we can easily accept the results of Type I, II, I EX, II EX. How-
ever, why do some high IP address population countries have less Common
infected networks while some low IP address population countries have more?
There may be several possible reasons for this. For example, the security edu-
cation/knowledge of people may play a role. People may open some vulnerable
services or click suspicious URLs without serious consideration, if they do not
have enough education/knowledge of security in some countries. Another possi-
ble reason is in regards to network management. If networks in a country are well
managed and protected very carefully, it is harder for malware to find chances
to infect the networks. Thus, malware infection rate would not be proportional
to the number of IP addresses in the country.
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The other interesting point is the percentage of infected networks over all
networks of the country (e.g., if a country has 100 networks and if 10 networks
among them are infected, the percentage of infected networks of the country is
10%). We have observed that high IP address population countries are likely to
have more infected networks. However, it does not mean that most (or a high
percentage) of networks in the country are infected. For example, even though
the United States has more number of Type II infected networks than other
countries (except Turkey), the infected networksmay only cover small percentage
of all networks in the United States, because the country has around 38% of IP
addresses of the world. This can reveal some low IP address population countries
whose networks are more vulnerable (in terms of percentage) than other countries
and they could be ignored if only considering the absolute number of infected
networks.

To investigate the percentage of infected networks of each country, we have
used the data from the IP2Location.com report [21]. In the report, we find that
2,505,141,392 IP addresses have been observed in the world. This may not cover
all observable IP addresses in the world. However we believe that it is close to
the real value. Their report also shows the percentage of IP addresses that each
country has out of all observed IP addresses.

We use this data to calculate the number of IP addresses assigned to each
country. Then, we calculate the number of /24 sub-networks of each country
by dividing the number of IP addresses assigned to the country by 256. At this
time, we make an assumption that “IP addresses are assigned to each country
with the minimum unit size of /24 subnet” to make our calculation easy. And we
calculate the ratio of infected networks in each country with it and the number
of infected /24 subnets. This scenario can be formalized as follows.

– Θ = the number of all IP addresses in the world (i.e., 2,505,141,392)
– ϵj = the percentage of assigned IP addresses to the country j
– αj = the number of /24 subnets in country j
– γi = the number of infected networks of type i botnet (e.g., γ1 represent the

number of infected networks of Type I botnet)
– ηi = the percentage of infected networks of type i botnet in each country

Our goal is to calculate the value of η of each country, and this can be
obtained by the following formula (here j ∈ {1, 2, ..., 240}, and 240 denotes the
number of countries which have observable IP addresses).

– αj =
Θ
256 ∗ ϵj

– ηi =
γi

αj
∗ 100, where i ∈ {1, 2}

The distribution of the values of η over some selected countries are shown in
Figure 4. This result is quite different from the previous result (in Figure 2). In
the case of Common (Figure 4(a)), some top ranked countries in Figure 2 show
quite low η values. Russia, Korea, China, and the United States are examples of
this case, however Turkey still represents high η value. From the results, we can
understand which countries are more vulnerable (i.e., high η value). Peru is an
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(a) Common

(b) Type I and Type I EX

(c) Type II and Type II EX

Fig. 4. η values of selected countries (x-axis for country code, y-axis for η value)

interesting case. It has not been known as a country containing large number of
infected networks in our previous results. However large portions of its networks
in the country seem to be infected. Type I, I EX, II, and II EX also show similar
characteristics to the Common case and the results are shown in Figure 4 (b)
and (c). Based on these results, we may focus on some vulnerable countries
(e.g., Turkey and Peru) to study infection trends of botnets. They may be good
candidates for monitoring in order to comprehend the infection trends of botnets.

We try to reveal the reason why Turkey and Peru show high η values. From
our investigation, we find a possible reason. It can be caused by geopolitical rea-
sons. Some previous work pointed out that Turkey has been suffered from large
cyber attacks generated by its neighbor countries such as Russia [24]. This ex-
planation is also applicable to Peru, because it is surrounded by several countries
that have a lot of malware infected networks such as Brazil and Mexico.
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Insight 3. To understand malware distributions, we might put our focus
on not only high IP address population countries with large number of infected
networks, but also some low IP address population countries where large portions
of their networks seem to be infected. Malware infection of these low IP address
population countries could be affected by geographical neighbors.

3.4 Remote Accessibility

Another category that we consider is the network openness or remote accessibil-
ity (i.e., whether a host can be directly accessed from remote hosts or not). As
we described in the previous section, one major scheme of finding new victims
of the Type I botnet is scanning remote hosts (or networks). Enterprise networks
are usually protected by several perimeter defending systems such as firewalls,
in an attempt to block malicious threats from remote hosts. However, not all
networks are protected as such and if they are not protected, malware can infect
internal unguarded hosts more easily. From this intuition, we build the following
hypothesis.

Hypothesis 4. Networks that are more open (more directly accessible from
remote hosts) might have more infected networks of Type I botnets than that of
Type II botnets.

We have tested the network accessibility by sending several Ping packets
(i.e., five ICMP echo request packets per host in our test) to several randomly
selected hosts in a network. If any of our Ping queries is successful in selected
hosts, we regard that the network is reachable from remote hosts, otherwise
we regard that the network is unreachable. This test has been already used
before to understand the network reachability by previous work [23]. Note that
this test may only show the lower bound of reachable networks, because some
perimeter defending systems (e.g., firewalls) block incoming ICMP packets, or
our randomly selected hosts may be not alive during testing. In this test, we
assume that each /24 subnet have the same network access control policy (i.e.,
if one of the host in the same /24 subnet is accessible from the remote host, we
consider that all hosts in the same /24 subnet might also be accessible).

In our test, we can access 54.32% of Type I infected networks, which is more
than half. This indeed shows that Type I infected networks are more open (remote
accessible). It confirms our hypothesis, although we presume this ratio could
be higher for Type I. This could be probably explained by (a) our network
reachability test is only a low-bound estimation, and (b) more networks are
aware of malware scanning attacks and thus more (previously open) networks
installed firewalls. In the case of the result for Type II, it shows 46.85% networks
are accessible, which is much less than Type I. This is probably because the
infection vectors of Type II botnets do not depend on remote accessibility.

The result of Common is interesting, because it shows more than 60% of
networks are accessible. This implies that remote accessible networks are much
more vulnerable to malware attacks. It might be reasonable, because even though
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network accessibility may not help Type II botnets infect hosts, at least it helps
Type I botnets.

In addition, we measure the remote accessibility of networks of three coun-
tries: Turkey, China and the United States. These countries show somewhat
interesting patterns (e.g., China has a lot of Type I infected networks, but has
relatively small number of Type II infected networks). In our measurement, we
find that 64.09% of networks in China are accessible from remote hosts. This
corresponds with our previous prediction (i.e., networks in a country that has
a lot of Type I infected networks might be more accessible from remote hosts)
in section 3.2. We discover that 51.8% of networks are accessible in the case of
Turkey and 40.92% of the United States. This result seems to be reasonable,
because these countries are more vulnerable to Type II than Type I botnets.

Insight 4. Open (remote accessible) networks are more likely to be infected,
particularly by Type I infection. However, it does not mean that inaccessible
networks are much more secure, because malware (Type II infection) can still
infect hosts in protected networks by several smart attack methods such as social
engineering.

3.5 Dynamism of IP Address

Previous work has shown that a lot of bots used dynamic IP addresses [10]. We
want to investigate whether the networks with more dynamic IP addresses are
more vulnerable than those with static IP addresses for both types of botnet
infections.

Hypothesis 5. Places (or networks) with more dynamic IP addresses are
more prone to be infected by both types of botnets.

To understand this, we have analyzed how many infected networks are us-
ing dynamic IP addresses. For the analysis, we apply the technique of finding
dynamic IP addresses proposed by Cai et al. [23]. In their analysis, they used re-
verse DNS PTR records of each host. They believed that the reverse PTR record
can represent the status of a host and if some keywords of a reverse PTR record
represent dynamism of IP address, the host is likely to use dynamic IP address.
For instance, if a reverse PTR record of a host A is dynamic-host.abcd.com, it is
very likely for the host A to use dynamic IP address, because its reverse PTR
record has a keyword of dynamic-host. Note that this test only shows the lower
bound of dynamic networks due to the limitation of reverse DNS lookup and
selected keywords. Even though this test can not show all networks using dy-
namic IP addresses, it could give us information of which type of botnet has
more dynamic IP addresses. Based on this idea, we use the same keywords men-
tioned in [23] to find hosts (and finally networks) which are likely to use dynamic
IP addresses. If we find any host in a subnet using keywords representing the
dynamism, we simply consider that the subnet uses dynamic IP addresses.
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Type Dynamic IP Static IP

Common 62% 38%
Type I 50.1% 49.9%
Type II 58.4% 41.6%
Type I EX 49.08% 50.92%
Type II EX 51.87% 48.13%

Table 2. Comparison of the percentage of dynamic or static IP addresses of each type.

We have measured how many infected networks use dynamic IP addresses and
the results are summarized in Table 2. The results are quite interesting. In the
case of Type I, I EX, and II EX we find that around 50% of infected networks use
dynamic and other 50% of infected networks use static IP addresses. However,
in the case of Common and Type II, infected networks use more dynamic IP
addresses than static IP addresses.

The result of Common matches the previous result [10] which mentioned dy-
namic IP addresses are more vulnerable. However, the result of Type I does not
fully match the previous result, i.e., Type I botnet infection does not have no-
ticeable preference on networks with more dynamic addresses. This is actually
reasonable because Type I botnets locate a remote victim by scanning the IP
address space regardless whether the target address is dynamic or static. In the
case of Type II botnet infection, we do observe infection preference on networks
with more dynamic addresses. This is also reasonable because there are probably
more home users in these (dynamic) address space who have less security aware-
ness and potentially more vulnerable computers and web browsing patterns.

Insight 5. Networks with more dynamic IP addresses are more vulnerable to
malware attacks. This is more noticeable in the case of Type II botnet infection
than Type I.

4 Neighborhood Correlation of Botnet Victims

In this section, we provide a prediction approach based on our insights obtained
in the previous section.

4.1 Watch Your Neighbors

Insight 1 in Section 3.1 points out that both types of botnets have heavily un-
even distributions of infected networks and there are several heavily (continuous)
infected areas in some part of the IPv4 space. This implies that infected networks
of both types of botnets might be close to each other, i.e., it is very likely for
them to be located in the same or similar physical locations and neighbor net-
works (e.g., belonging to the same /16 networks). This intuition has already
been discussed before and verified in some previous work for some Type I botnet
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[9] [13] [2]. An interesting thing is that one of the previous work provides an
approach of predicting unknown victims based on the intuition and it predicts
unknown victims with more than 90% accuracy with only employing a simple
method (e.g., K-Nearest Neighbor classification) [2]. However, this work has only
focused on the case of Type I botnets.

The reason for strong neighborhood (network) correlation of Type I botnets
is intuitive, because Type I botnets will very likely scan neighbor networks to
recruit new victims. Then, can we apply a similar prediction approach to Type
II botnets? At first glance, this might not be the case because Type II botnets
have very different infection vectors/types from Type I botnets. However, we have
also shown in the previous section that the distributions of both types of botnets
are continuous and seems to be close to each other (in Figure 1(a)). Thus, it is
hard to immediately draw a conclusion whether similar neighborhood correlation
could be found in Type II botnets or not. Next, we plan to empirically verify this
myth.

The previous work [2] has used the K-Nearest Neighbor (KNN) classifier
which is a very popular machine learning algorithm and it uses neighbor in-
formation for classification. We also apply the KNN algorithm and select the
same features for the KNN classifier used in [2]: /24 subnet address and physical
location of infected networks.

To perform this experiment, we first prepare data for representing the class
of benign and malicious networks. At this time, the infected networks of Type
II botnets can be used to represent the malicious class. However, since we do
not have data for the benign class, we also collect many (at the same scale as
malicious networks) clean networks3 to represent it. When we collect benign
networks, we intentionally choose those which are close to infected networks in
terms of the IP address and physical location, and they could be also neighbors
of infected networks.

After the preparation, we divide each Type II botnet data (MegaD and Srizbi)
into two sets for training/testing. And then, we apply the KNN classifier to
predict unknown infected networks.

As shown in Table 3, the prediction results are quite interesting. Even though
the prediction accuracy is lower than the case of Type I botnet (i.e., [2] reported
around 93% of accuracy), our predictor for Type II botnet (in both MegaD and
Srizbi cases) shows more than 88% accuracy with some reasonably small number
of false positives.

The results imply that Type II botnets also have the similar characteristics
as Type I botnets (i.e., if a host is infected, its neighbors are also likely to be
infected). Then, why does this happen? It may be very hard to find concrete
answers or clues for this question (unlike the intuitive explanation for Type I
infection).

From our investigations, we could provide a possible answer. It may be caused
by its infection media. As we described before, one promising infection method of
Type II botnets is drive-by-download, which typically uses spam emails contain-

3 We checked whether they are clean or not by looking up several DNS blacklists.
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Botnet K Prediction Accuracy False Positive Rate

MegaD
1 88.35% 7.35%
3 88.25% 7.36%
5 88.14% 7.54%

Srizbi
1 88.20% 6.23%
3 87.70% 6.04%
5 88.30% 5.77%

Table 3. Botnet prediction results.

ing links to compromised web sites, to trick people into downloading malicious
binaries. Thus, the infection pattern of Type II botnet might highly depends on
who receives spam emails. We find articles describing how spammers harness
email addresses [26] [27], and they point out that collecting mailing lists is one
of their main tasks. It is likely for mailing lists to contain email addresses be-
longing to similar locations (e.g., same company and same university). It implies
that spam emails are delivered to people who are likely to be close to each other
and thus victims infected by spam emails might also be close to each other.

4.2 Cross-Bonet Prediction

We have shown that if a host is infected by a Type II botnet, its neighbor net-
works are also likely to be infected by this Type II botnet. When we perform
this test, we treat data of MegaD and Srizbi separately. However we know that
these two botnets are very similar in terms of infection vectors. To confirm the
similarity of their infected networks, we calculate a manhattan distance between
the distribution of the two types of botnets. The manhattan distance between
two items is the sum of all feature value differences for each of the all features
in the item, and it is frequently used to denote whether two data distributions
are similar or not (e.g., if a distance between data distributions of A and B is
smaller than between that of A and C, A and B are closer to each other than
C). It can be formalized as the following equation (assuming that there are two
items/distributions of x and y, and they both have n elements).

Manhattan Distance =
∑n

i=1 |xi − yi|

We use the probability distributions of infected networks of Conficker, MegaD,
Srizbi over IP address spaces to measure the manhattan distance and we find
that the manhattan distance between Conficker and MegaD is 1.1427, Conficker
and Srizbi is 1.1604, and MegaD and Srizbi is 0.8404. From the results, we can
easily see that the distance between the Type I and Type II botnet distributions
is larger than the distance between the two type II botnets distributions. This
result shows that the distributions of infected networks with the same infection
type are closer to each other than that of different types of botnet (i.e., infected
networks of botnets in the same type show very similar distribution patterns).
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This result gives us another insight that if two botnets share the same infec-
tion vectors (i.e., they are of the same type), we might predict unknown infected
networks of one botnet (e.g., a future botnet) with the help of the information of
the other botnet (e.g., historic data). This insight can be verified with a similar
test that we have done before. We can perform a test by simply changing the
training and testing data set to cross botnets. In the previous test, we extract
the training and testing data from the same botnet. However in this case, we
use data from botnet A for training and data from botnet B for testing. For
example, when we predict (unknown) infected networks of the Srizbi botnet, we
use data of the MegaD botnet for training.

Botnet K Prediction Accuracy False Positive Rate

MegaD(train), Srizbi(test)
1 87.80% 7.41%
3 86.75% 7.49%
5 86.45% 7.69%

Srizbi(train), MegaD(test)
1 84.09% 6.53%
3 83.89% 6.31%
5 83.65% 5.09%

Table 4. Botnet cross-prediction results.

The cross-prediction results are quite surprising. As denoted in Table 4, this
approach can predict unknown infected networks of the other botnet with more
than 83% accuracy. This prediction accuracy is slightly less than what we ob-
served previously. We believe that these results show us that even if we have
no knowledge of some botnets (e.g., a future emerging botnet), if we have some
information of a botnet whose infection vector is very similar to them4, we may
be able to predict unknown infected networks. To show a realistic example of
application of the neighborhood correlation, let us first assume that a network
administrator knows historic infected networks by Srizbi botnets. Then, he gets
to know that the MegaD botnet starts spreading but he does not have any in-
formation of which networks are and will be infected. In this case, he can use
the information of Srizbi botnet information (e.g., victim distribution). Based on
the physical location and IP address of victims of Srizbi, he can predict future
victim networks that will possibly be infected by MegaD with a reasonably high
probability.

5 Limitations and Discussions

Like any measurement/analysis work, our empirical study has some limitations
or biases. Even though we have collected a large amount of Conficker botnet

4 Note that this is a very reasonable assumption because fundamental infection types
of botnets are very limited and do not change frequently.
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data, we have a relatively smaller amount of data for the MegaD and Srizbi
botnets. This might cause some bias in our measurement results and subse-
quent analysis. In addition, the dynamism of IP addresses may lead to some
over-estimation from the collected data. To reduce some of the side effects, we
generalize our analysis over a network consisting of several adjacent IP addresses
(i.e., measuring/analyzing over /24 subnets instead of each individual host).

To discover interesting insights, we leverage some previous work. For example,
we use previous work to obtain how dynamic IP addresses are distributed over
countries, but the information is not complete, i.e., it does not cover all countries.
However, the provided information may help to uncover interesting cases (e.g.,
countries which are highly infected by botnets), hence the information is still
useful.

When we perform the test to find networks with dynamic IP addresses
through looking up reverse DNS PTR records of hosts in the networks, we may
not collect reverse PTR records from all hosts because registration of a reverse
PTR record is not always necessary. However previous work already verified the
feasibility of such kind of test [23], lending credibility to these results (at least
providing a good low-bound estimation).

6 Related Work

There are several studies of measurement or analysis of the Type I botnet vic-
tims. CAIDA provides basic information about the victim distribution of the
Conficker botnet in terms of their IP address space and physical location [14]. In
[13], Krishnan et al. conducted an experiment to detect infected hosts by Con-
ficker. Weaver [15] built a probabilistic model to understand how the Conficker
botnet spreads via network scanning. These studies provided useful and interest-
ing analysis of the Conficker botnet. Shin et al. provided a large scale empirical
analysis of the Conficker botnet and presented how victims are distributed [2].
However, our work is different from them in that we perform cross-analysis of dif-
ferent botnets and propose an early warning approach based on cross-prediction.
Even though [2] observed neighbor correlation in Conficker, this work differs in
that we empirically verified similar neighborhood correlation in Type II botnets.
In addition, we have proposed and verified cross-botnet prediction techniques to
predict unknown victims of one botnet from the information of the other botnet
if they have similar infection vectors.

Measurement studies of the Type II botnet were also conducted. In [6], Mori
et al. performed a large scale empirical study of the Srizbi botnet. John et al.
set up a spam trap server to capture botnets sending spam emails [16]. This
work also showed the distribution of victims in terms of their IP addresses. Even
though these studies provided detailed analysis of some Type II botnet(s), they
still differ from our work in that they concentrate on a single (or one type of)
specific botnet.

Some interesting studies from the analysis of Type II botnets have been also
proposed. In [17], Cho et al. analyzed the MegaD botnet and showed how it



Cross-Analysis of Botnet Victims: New Insights and Implications 19

works. Caballero et al. provided an interesting technique to infiltrate the MegaD
botnet and performed an analysis of its protocol [18].

Cai et al. measured how IP addresses are distributed over the world through
several interesting sampling techniques [23]. Our work leverages some of its re-
sults but is different from their work in the main purpose.

7 Conclusion and Future Work

In this paper, we have collected a large amount of real-world botnet data and
performed cross-analysis between different types of botnets to reveal the dif-
ferences/similarities between them. Our large scale cross-comparison analysis
results allow us to discover interesting findings and gain profound insights into
botnet victims. Our results show fine-grained infection information and nature
of botnet victims. They show some interesting relationships between geopolitical
issues and malware infection, which might be the first work shedding light on
this correlation. This study can guide us to design better botnet prediction or
defense systems.

In our future work, we will study new approaches to explain relationships
between geopolitical locations and malware infection more clearly with some
realistic examples. In addition, we will collect more botnet data and investigate
more diverse categories to discover correlations with different malware infection
types.
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