
SmartDroid: an Automatic System for Revealing UI-based
Trigger Conditions in Android Applications

Cong Zheng12, Shixiong Zhu12, Shuaifu Dai12, Guofei Gu3, Xiaorui Gong12,
Xinhui Han12, Wei Zou12∗

1Beijing Key Laboratory of Internet Security Technology, Peking University
2Institute of Computer Science and Technology, Peking University

{zhengcong,zhushixiong,daishuaifu,gongxiaorui,hanxinhui,zou_wei}@pku.edu.cn
3SUCCESS Lab, Texas A&M University

guofei@cse.tamu.edu

ABSTRACT
User interface (UI) interactions are essential to Android ap-
plications, as many Activities require UI interactions to be
triggered. This kind of UI interactions could also help ma-
licious apps to hide their sensitive behaviors (e.g., sending
SMS or getting the user’s device ID) from being detected by
dynamic analysis tools such as TaintDroid, because simply
running the app, but without proper UI interactions, will
not lead to the exposure of sensitive behaviors. In this pa-
per we focus on the challenging task of triggering a certain
behavior through automated UI interactions. In particular,
we propose a hybrid static and dynamic analysis method to
reveal UI-based trigger conditions in Android application-
s. Our method first uses static analysis to extract expected
activity switch paths by analyzing both Activity and Func-
tion Call Graphs, and then uses dynamic analysis to tra-
verse each UI elements and explore the UI interaction paths
towards the sensitive APIs. We implement a prototype sys-
tem SmartDroid and show that it can automatically and
efficiently detect the UI-based trigger conditions required to
expose the sensitive behavior of several Android malwares,
which otherwise cannot be detected with existing techniques
such as TaintDroid.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software (e.g.,
viruses, worms, Trojan horses); D.2.5 [Software Engineer-
ing]: Testing and Debugging —Testing tools, Tracing

General Terms
Security, Verification

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPSM’12, October 19, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1666-8/12/10 ...$15.00.

Keywords
Smartphone security, UI-based trigger condition, sensitive
behavior, Android

1. INTRODUCTION
With the rapid development of smartphones, mobile Inter-

net has changed the way we entertain, socialize and work. A
recent news posted by Google shows that the number of An-
droid applications reached more than 450,000 in its Google
Play at the beginning of March 2012 [8]. The growth of the
Android Market (the former name of Google Play) is amaz-
ing; the download number of applications passed 10 billion in
December 2011 up from 3 billion in March 2011 [1]. More-
over, except for the official Android Market, some third-
party vendors provide their own channels (e.g. Amazon
Appstore, Samsung Apps) for users to download applica-
tions.

Unfortunately, Android developers can upload their appli-
cations to the Android Market or other third-party markets
with little, if any, security vetting processes. Market op-
erators should control the quality of applications and block
malicious applications to their markets. Currently, however,
except for Google’s Bouncer [5], which is an automated s-
canning tool of the Android Market for detecting potentially
malicious applications, other third-party markets have not
taken effective actions to protect their users. Even though
Google’s Bouncer can detect some of malicious applications,
these malicious applications may have been already down-
loaded by a huge number of users and stolen user’s privacy or
other valued information before Bouncer finds them. There-
fore, it is very possible for users to download a malicious
application from the Android Market or other third-party
markets.

Note that behaviors of some Android applications could
be difficult to be determined whether they are malicious or
legitimate [20]. For the purpose of this paper, we do not
determine them, but check all suspicious behaviors. In this
paper, these behaviors are called “sensitive behaviors” [18].
In the Android system, behaviors should be executed by
invoking APIs, which are referred to as “sensitive APIs” [11]
related to sensitive behaviors.

A number of solutions including static analysis [15, 14, 19,
31] and dynamic analysis technologies [29, 17, 28] have been

proposed to detect Android applications’ sensitive behav-
iors. For example, TaintDroid presented by Enck et al. [17]
can detect privacy leaks by using a dynamic taint-tracing
method. However, it uses a passive detection method, which
needs to know the conditions of triggering privacy leaking
behaviors in advance. With the trigger conditions, the ana-
lyzer can then interact with applications manually to trigger
and confirm its privacy leaking behaviors. Consider a sam-
ple that only leaks the IMEI after the user clicks a particular
button on the screen, TaintDroid cannot detect this behav-
ior unless the analyzer clicks the right UI button manually.
Thus, the detection ability of TaintDroid is highly limited
when facing malware samples that need UI-based trigger
conditions. Hu et al. [23] proposed a method that feeds ran-
dom events to the application. However, given the huge ran-
domization space, it is very difficult to detect the sensitive
behaviors efficiently. Gilbert et al. [22] tested a variety of
categories of applications by generating random user events
for 30 minutes. However, this can only achieve 40% or less
code coverage in all cases.
In this paper, we are motivated to develop an automat-

ic method to reveal UI-based trigger conditions of sensitive
behaviors in Android applications. With the trigger condi-
tions provided by our method, dynamic analysis tools, such
as TaintDroid, will be able to automatically detect these sen-
sitive behaviors. To reveal UI-based trigger conditions, we
present a system called SmartDroid, which combines static
analysis and dynamic analysis techniques. In the Android
system, an Activity is the whole screen including button-
s, text boxes, and other UI elements, with which the user
can interact. Therefore, the main idea is that we use static
analysis to discover the expected Activity switch paths that
can lead to sensitive behaviors; then for each path, we apply
dynamic analysis to enforce the application run along the
path until sensitive behaviors are triggered. In the dynamic
analysis, SmartDroid will try to interact with every UI ele-
ment automatically in each Activity by traversing the view
tree of the current Activity in the modified Android system.
If the current Activity can jump to the next Activity in the
Activity switch path, the current UI element is our expected
element and will be saved. When we traverse UI elements
in the last Activity, the sensitive behaviors will be triggered
finally. At last, the sequence of all saved UI elements is
the trigger condition, including the coordinate and UI event
type.
We have implemented the SmartDroid system and eval-

uated it using several existing Android malwares with sen-
sitive behaviors. The result shows that SmartDroid is very
effective in revealing UI-based trigger conditions automati-
cally.
Contributions. Our solution makes the following con-

tributions:

• For the first time, we propose a novel method that
combines the static analysis and the dynamic analysis
to reveal UI-based trigger conditions. The key idea
is to use the dynamic analysis technology to enforce
the execution along the suspicious path obtained from
static analysis.

• Our method can augment existing dynamic analysis
tools with automatic UI interaction analysis capabili-
ties. This is a great complement to current techniques
and tools.

• We implement the SmartDroid system and have de-
tected several real-world, complicated, Android mal-
wares in the wild, which otherwise cannot be detected
by existing tools such as TaintDroid.

Organization. Section 2 gives the intuition and overview
of our work. Section 3 describes our system design. Section 4
presents the implementation of our system. Section 5 shows
the evaluation of our system and some case studies. Sec-
tion 6 discusses the limitations of our solution and suggests
possible improvements. Finally, we describe related work in
Section 7 and summarize our conclusions in Section 8.

2. INTUITION AND OVERVIEW
In this section, we present an example (Section 2.1) to

better demonstrate the complex UI-based trigger mechanis-
m of sensitive behaviors. After that, we briefly introduce our
solution (Section 2.2) to reveal the UI-based trigger condi-
tions.

2.1 Example: The Horoscope App
The Horoscope App [7] in this example is intended to show

your daily and monthly horoscopes. It connects to the In-
ternet and sends the IMEI out of your device after you click
certain buttons. We consider both behaviors of reading the
IMEI and accessing the Internet as sensitive behaviors. Be-
cause, the IMEI is the only ID of smartphone devices and
accessing the Internet may leak private information.

When this Horoscope App is started, the Android system
creates an instance of the app’s main Activity (an “Activi-
ty” provides user interfaces) depicted in Figure 1(a), which
will pause 3 seconds and then start another Activity in Fig-
ure 1(b) using an Intent (an Activity is started with an In-
tent in Android system). There are two buttons for logging
into Facebook and Twitter respectively and another button
for setting your date of birth. Twelve icons represent twelve
constellations on the screen. After you click one of twelve i-
cons, it will display the Activity shown in Figure 1(c), which
has two buttons for getting daily and monthly horoscope re-
spectively. Once you click either of them, it switches to the
Activity shown in Figure 1(d). In the last Activity, it read-
s and sends out the device’s IMEI by using the sensitive
APIs “android.telephony.TelephonyManager.getDeviceId()”
and“org.apache.http.client.HttpClient.execute()”respective-
ly.

If we were to use a dynamic analysis tool, such as Taint-
Droid, to test this sample, nothing would be detected, unless
the analyzer understands how to click correct buttons man-
ually. The method of feeding random events to the tool is
also very weak on this sample. Especially when one random
UI event clicks the wrong area, it will no longer reach the
target Activity unless the sample is restarted to be analyzed
again. For instance, when using MonkeyRunner[9] to gener-
ate a click event which clicks the advertisement bar shown in
Figure 1(c), the browser will pop up so that subsequent UI
events of MonkeyRunner will be out of context and therefore
ineffective.

2.2 Overview of our approach
Since the UI-based trigger conditions can be quite com-

plex, as described above, we seek to reveal them automat-
ically and precisely. Figure 2 shows a schematic diagram,
which includes the FCG (Function Call Graph) and the ACG

(a) (b) (c) (d)

Figure 1: Screen shots of Horoscope App.

(Activity Call Graph). In the FCG, we can determine al-
l function call paths to sensitive APIs. The start of the path
is defined as the sensitive source function. In the ACG, we
define the Activity, which is related to sensitive source func-
tions, as a sensitive sink Activity. For example, in Figure 2,
the Activity F is a sensitive Activity. It is linked with t-
wo types of sensitive source functions. When the current
Activity switches to Activity F, the system will invoke the
Activity F’s “onCreate()” function automatically to render
Activity F. Then the control flow of program will arrive at
the “getDeviceId()” API along the function call path. In
addition, there is a button in Activity F. When the user
clicks this button, the system will invoke the corresponding
“onClick()” function. The control flow will then execute the
“sendTextMessage()” API to send an SMS message.

Our approach includes two stages: a static analysis stage
and a dynamic analysis stage. The static analysis can pro-
duce the expected Activity switch path which will guide the
dynamic analysis to determine how to interact with each Ac-
tivity. In the dynamic analysis stage, we can find a sequence
of UI elements which can make the sensitive APIs execute.
The coordinates and UI event types of UI elements are our
target UI-based trigger conditions.
In the static analysis stage, we first create the FCG and

the ACG. It is easy to get the FCG by analyzing function
call relationships using traditional control flow analysis [26].
But for the ACG, we must analyze all Intents in the invo-
cations of the “startActivity” and “startActivityForResult”
functions to obtain the source Activity and the target Ac-
tivity, which are linked by an Intent. Finally, we extract the
expected Activity switch paths which are from the main Ac-
tivity to each sensitive sink Activity. The procedure is: (1)
Get all sensitive source functions. We extract each function
call path to sensitive APIs in the FCG. The first function in
each path is the sensitive source function. (2) Get each sen-
sitive sink Activity. We analyze which Activity the sensitive
source function belongs to. (3) Get the expected Activity
switch path. We use a depth-first searching algorithm in the
ACG to get paths.

In the dynamic analysis stage, our goal is to determine
which UI elements can make the application trigger the sen-
sitive behaviors. But with the direction of expected Activ-
ity switch paths, the target transforms to know which UI
elements can make the application run along the expected
Activity switch paths. In order to know this, we first adopt
an automatic method to interact with each UI element of
Activity. We modify the Android system so that we can
traverse and interact automatically with each UI element of
an Activity after the creation of this Activity. In addition,
to force the application to run along the expected Activi-
ty switch paths, we restrict the creation of the Activity by
modifying the Android system. If our system interacts with
wrong UI elements which make the application switch into
a wrong Activity, we forbid the creation of this incorrect
Activity. Finally, after the sensitive behavior is triggered,
we can obtain a sequence of UI elements. While interacting
with UI elements, we also record their coordinates and UI
event types as the UI-based trigger conditions.

For example, in Figure 2, we want to find the conditions of
triggering the behavior of sending SMS. In static analysis, we
get two expected Activity switch paths (“Main → B → F”
and “Main → C → F”). Suppose there are three buttons
in Main Activity. They are A,B,C buttons which can switch
into Activity A, Activity B and Activity C respectively. For
path “Main → B → F”, the Main Activity will not switch
if our system clicks the Button A or Button C. But it will
switch into Activity B if our system clicks the Button B. In
the meantime, we record the coordinates of Button B and
the “onClick” event type. In Activity B, there is another
key button which can switch into Activity F. After our sys-
tem clicks one button in Activity F, this application sends
a message. We also add this button into the sequence of
UI conditions. So, there are three buttons as the UI-based
trigger condition for this sensitive behavior.

According to our approach, we can reveal UI-based trigger
conditions for sensitive behaviors automatically and precise-
ly.

Main Activity

Activity A Activity B Activity C

Activity D Activity E Activity F Activity G

onClick()

……

Send SMS

onCreate()

……

Read IMEI

FCGFCG

AACCGGACG

……

……

Figure 2: The Schematic Diagram for Trigger Mech-
anisms of Sensitive Behaviors.

3. SYSTEM DESIGN
Figure 3 provides a high-level overview of our SmartDroid

system. It consists of two key components: the Static Path
Selector and the Dynamic UI Trigger. The Static Path S-
elector is used to select the expected Activity switch paths
which can lead to sensitive behaviors. The Dynamic UI Trig-
ger can reveal the trigger conditions by interacting with UI
elements according to these expected Activity switch paths.

3.1 Static Path Selector
The Static Path Selector is used to find the right Activity

switch paths. If an application runs along the expected Ac-
tivity call path, it is possible to trigger the sensitive behav-
ior, otherwise there is no possibility to trigger the sensitive
behavior. For example, in Figure 2, if we click the button
A, the Main Activity will switch into Activity A. The first
step is wrong in this case, so it is not possible to trigger
the behavior of sending SMS. There are three steps in the
Static Path Selector: disassemble, construct the FCG and
construct the ACG. We introduce these three steps in the
following sections.

3.1.1 Disassemble
With an application, we want to know which possible sen-

sitive behaviors it has, so we must inspect the APIs used in
this application. In order to do this, we disassemble this
application. Considering the accuracy of existing “Dalvik
bytecode-to-Java bytecode” translators, we prefer to oper-
ate and analyze directly on the Dalvik bytecode. The smali
code is an intermediate representation of the Dalvik byte-
code. The format of smali code is very convenient for the
static analysis than the original format of the Dalvik byte-
code. So we choose to do static analysis on the smali code
level. Meanwhile, it is easy to get the smali code of an APK
with existing tools.

3.1.2 Construct FCG
In this step, we want to find the FCG, in which all the

child nodes are sensitive APIs. So, we first find all sensitive
APIs in the smali code. In the smali code, it is very easy
to know the function calling relationships according to the
“invoke” instructions. We then use an interactive algorithm
to search function call paths of these sensitive APIs. Howev-
er, many indirect call instructions and event-driven calls in
Android applications should not be ignored. In fact, some of
the indirect call instructions come from the Java polymor-
phism. We use the methods proposed by Woodpecker [25]
to solve this, which uses a conservative method for indirect
function calls. It adds links by semantics for event-driven
calls. Finally, we can obtain an entire FCG.

3.1.3 Construct ACG
Based on our approach, we should know the entire ACG

of Android application. In the Android system, Activity
switching is done through the Intent, which is a message
that declares a recipient and optionally includes data, and
it is used to start a new component. Usually, when an ap-
plication starts a new Activity, it creates an Intent and in-
vokes the “startActivity” or “startActivityForResult” func-
tions. Generally, developers create one Intent correspond-
ing to one “startActivity” or “startActivityForResult” invok-
ing instruction. Applications use Intents to communicate
with components in an application or with other applica-
tions. Additionally, the system sends Intents to applications
as event notifications. Our goal is to find all Intents, and
analyze the source Activity and target Activity linked by
these Intents. We first introduce the Intent in the Android
system and then introduce the method we used to analyze
the Intent.

There are two kinds of Intents: explicit Intent and implicit
Intent. An explicit Intent can specify its particular recipi-
ent by name, whereas an implicit Intent just specifies an
action to the system. The actual recipient is determined by
system according to the AndroidManifest.xml. In the An-
droidManifest.xml, all components (i.e., Activity, Receiver)
in this application define which Intents they can receive and
the specified actions.

For an explicit Intent, it is easy to know its target Activ-
ity according to its definition. But for an implicit Intent,
we need to match the target Activity according to actions
in AndroidManifest.xml. If there is no matched Intent, we
think this Intent can only be received by system components
(i.e., sms box, email) or other applications. There are six
kinds of constructors to construct Intent objects:

a) Intent()

b) Intent(Intent o)

c) Intent(String action)

d) Intent(String action, Uri uri)

e) Intent(Context packageContext, Class<?> cls)

f) Intent(String action, Uri uri, Context packageContext,
Class<?> cls)

In constructor a), it just initializes a null Intent. After
that, the “setClass()”, “setComponent()” method or “setAc-
tion()”method are used to define the target Activity or bind

Disassemble

APK

smali
code Consruct

ACG
Construct

FCG
FCG

Expected Activity Switch Paths

Runtime Execution

Activity Restrictor UI Interaction Simulator

UI-based trigger
conditions

Static Path Selector

Dynamic UI Trigger

Figure 3: The Architecture and Workflow of SmartDroid.

an action to its target Activity respectively. Hence, it is e-
quivalent to use Intent constructors in c), d), e) and f). In
constructor b), an Intent is created by copying from another
Intent. We must further analyze the Intent’s parameters to
know the source Activity and target Activity. In construc-
tors c) and d), they define an implicit Intent by assigning
the actions to the Intent. From the AndroidManifest.xml,
we can determine the target Activity with actions. In con-
structor e) and f), they define an explicit Intent so that we
can get the target class easily. Sometimes, the“packageCon-
text” parameter in constructor e) is assigned by the current
Activity’s name. If it is, we can also get the source Activity.
Every target Activity can be obtained by analyzing the

Intent constructors, but sometimes the source Activity is
not assigned in constructors. We should continue to analyze
the source Activity by a further step. We adopt a rudimental
method to find the source Activity. If the function in which
the Intent is defined is an UI event function, this function
should be in a user event handler class. This handler class
is always an inner class of an Activity class. In the smali
code, the prefix name of an inner class is the same as the
name of its Activity class. So, we can determine the source
Activity’s name. In addition, this UI event function is the
edge between the source Activity and target Activity in the
ACG. However, if the function in which the Intent is defined
is not an UI event function, there are extra steps to do.
We must extract the function call-in paths of this function
from the FCG. For each path, we analyze every function
backward. If a function, whose type is non-static and its
class is Activity type, is found, its class is the source Activity.
This function is the edge between the source Activity and
target Activity in the ACG. At last, we can obtain a source
Activity according to each path.
After we get all Activity switch relationships, we can build

the ACG. With the ACG, we should continue to get expect-
ed Activity switch paths. Firstly, we can get the function
call paths to sensitive API from the FCG. From the first
function in the call path, we can know the sensitive sink
Activity. There are just two types of the sensitive source
function: UI event functions (e.g., onClick and onLongClick)

and Activity related functions (e.g., onCreate and onStart).
For the UI event function, it is registered in an Activity and
always defined in an Activity class. For the Activity related
function, it is a member function of an Activity class. So,
it is easy to know the sensitive sink Activity related with
the sensitive source function. Finally, we extract expected
Activity switch paths which are from the node of the main
Activity to nodes of sensitive sink Activity in the ACG.

3.2 Dynamic UI Trigger
If we only depend on static analysis, it is very difficult to

match the UI element and its corresponding UI event func-
tions. The reasons are: 1) Sometimes developers do not
bind the UI element to its UI event functions in the “onCre-
ate” function of Activity. It is difficult to find where they
are bound. 2) Another problem is that many UI elements
are bound to the same UI event function. Even though we
know that an UI event function can lead to a sensitive be-
havior, we still do not know which UI element is related to
this behavior exactly. So, we use dynamic analysis to solve
this problem. In our Dynamic UI Trigger, there are three
components: UI Interaction Simulator, Activity Restrictor
and Runtime Execution Environment.

3.2.1 Runtime Execution
The Dynamic UI Trigger is based on a Runtime Execution

environment. We build this Runtime Execution environmen-
t on a modified Android emulator. We have modified some
codes of the Android framework and then compiled them
to build a new emulator. In order to monitor the sensitive
behaviors, we add some codes into the functions of the sen-
sitive APIs and log the APIs’ names and parameters when
these APIs are called. The reason why we log the parame-
ters is that some APIs (e.g., “ContentResolver.query()”) can
trigger different sensitive behaviors with different parame-
ters. We run applications in this new emulator and collect
the runtime log. Then we can monitor the log to confirm
whether some sensitive behaviors happen. If we find a sen-
sitive behavior, we can retrieve the related UI information

in the log as the UI-based trigger condition of this sensitive
behavior.

3.2.2 UI Interaction Simulator
In order to make our dynamic analysis automated, the

first step we should do is to develop the UI Interaction Sim-
ulator to interact with UI elements in the Activity automati-
cally. The idea of implementing the UI Interaction Simulator
is: we modify the Activity codes of the Android framework
to traverse all of UI elements in one Activity. Views in an
Activity are organized into a hierarchy tree. The view ob-
ject in the top-level window is the root of any other views
in the Activity. We use a depth-first traversal algorithm in
the tree and retrieve information of every UI element. When
we traverse the UI element, we can trigger some of its event
listeners according to edges of the expected Activity switch
path, because the edge represents possible UI events so that
we need not trigger all of event listeners. Meanwhile, we
record the UI information (e.g., size and coordinates on the
screen) when triggering its event listeners.

3.2.3 Activity Restrictor
We must overcome the challenge of generating expected

user interactions automatically. The key point for this chal-
lenge is to know which UI elements are expected to be in-
teracted with in the current Activity. Since the expected
Activity switch path has been obtained by the Static Path
Selector, we just need to determine which UI elements can
lead the switch to the next Activity in that path. These UI
elements belong to our result UI-based trigger conditions.
Our Activity Restrictor can determine which UI elements

in the current Activity are the UI-based trigger conditions.
If there is a new Activity after interaction with a UI elemen-
t, but this new Activity is not the next expected Activity,
the Activity Restrictor will prevent the creation of that new
Activity. So, in this way, we can ensure that application
runs along the expected Activity switch path. To devel-
op the Activity Restrictor, we choose to modify some codes
of “startActivityForResult” function in the Android frame-
work. Because “startActivity” function is implemented by
invoking the “startActivityForResult” function. In the “s-
tartActivityForResult(Intent, int)” function, we analyze its
first parameter which represents an Intent. From this Intent
object, we can easily know the new Activity by calling “in-
tent.getComponent().getClassName()”. Hence, the Activity
Restrictor can determine whether it could prevent the cre-
ation of a new Activity according to the expected Activity
switch path.

4. IMPLEMENTATION
We have implemented a SmartDroid prototype that con-

sists of a mixture of an modified Android emulator, shell
scripts and Python scripts. Specifically, the smali code in
the static analysis is generated by the open-source apktool
tool [4].

4.1 Dataflow Analysis
We analyze Intents in the smali code. Since now there is

not a runtime and debug environment for the smali code,
we can only implement a dataflow analysis technology on
the smali code. In particular, our target is to know the
two Activities linked by an Intent. For the constructor a),
we use the dataflow analysis to search the parameters in

“setClass()”, “setComponent()” or “setAction()” methods to
know the target Activity. For other constructors, we use
the dataflow analysis to search parameters of constructors
to know the source Activity and target Activity.

In our dataflow analysis, we adopt the fixed-point algo-
rithm [16], which is an iterative algorithm from the initial
state to the fixed state. The fixed-point algorithm can stat-
ically determine which definitions may reach a given point
in codes. After running the fixed-point algorithm, we tra-
verse the CFG to know the values of parameters in Intent’s
constructions or “setClass()”, “setComponent()” and“setAc-
tion()”. To optimize the dataflow analysis between function-
s, we apply the method summaries [25].

4.2 Runtime Execution
The Runtime Execution environment is based on the An-

droid emulator (Android 2.3.3 version). In order to acceler-
ate the starting of the emulator, we save a snapshot when
the emulator finishes starting, so the emulator can be start-
ed from its snapshot every time [2]. This method decreases
the time of starting the emulator certainly.

After we install an Android application into the emulator,
it should wait for an interval (10s in our implementation) be-
fore the interaction of the UI Interaction Simulator. In some
applications, there are automatic sensitive behaviors after
applications start. These automatic behaviors would affect
the results of dynamic analysis if the UI Interaction Simu-
lator interacts with the Activity immediately. For example,
the advertisement in some applications shows by a thread
which runs in asynchronous. Sometimes the advertisement
component reads the IMEI and connects to the Internet in
serval seconds. This interference can be avoided by waiting
for an interval after applications start.

4.3 UI Interaction Simulator
When we traverse the UI tree, we will trigger the listeners

of every UI element. For every UI element, we will check
its type and check whether its corresponding listener exists.
Then we invoke the corresponding trigger functions. Ta-
ble 1 shows different view types, as well as their correspond-
ing listeners and trigger functions. There is one exception:
as the AdapterView has a list of views, we should invoke
“performItemClick”, “onItemLongClick” and “onItemSelect-
ed” functions by the position from 0 to the size of list. In
this paper, we have not handled “View.OnTouchListener”
and “View.OnKeyListener” event, since they have too many
possible parameters to enumerate. This will be our future
work.

Besides, we must consider what the best time is to traverse
the UI tree in an Activity. If we traverse the UI tree early,
the Activity may not be created fully and screen coordinates
of the UI element may not be prepared. If we traverse the UI
tree late, it could increase the time cost very much. Fortu-
nately, we know that the screen coordinates will be prepared
well once it is drawn. In the implementation of the Activ-
ity mechanism, there is an invocation of the “makeVisible”
function which sends a message to the “ViewRoot” object to
draw all views. So, we add some codes at the end of “make-
Visible” function to send a message. Our message will be
handled immediately after the prior message of drawing all
views is handled. In the handler of our message, we traverse
the UI tree of Activity and interact with UI elements.

TYPE LISTENER TRIGGER METHOD

View OnClickListener performClick()
View OnLongClickListener performLongClick()
View OnFocusChangeListener onFocusChange()
Adapter View OnItemClickListener performItemClick()
Adapter View OnItemLongClickListener onItemLongClick()
Adapter View OnItemSelectedListener onItemSelected()

onNothingSelected()
CompoundButton OnCheckedChangeListener setChecked()

Table 1: Different view types and their corresponding listeners and trigger methods.

APP name Package Name Sensitive Behavior a b c d e f

Horoscope fr.telemaque.horoscope Read IMEI 64 10 54 12 16.34 44.32
a.payment.operaupdater com.soft.android.appinstaller Send SMS 6 5 2 1 8.32 28.21
Dalton.The.Awesome com.depositmobi Send SMS 3 3 1 1 8.93 27.43
htc.notes com.depositmobi* Send SMS 2 2 1 1 6.24 27.13
mobileagent opera.updater Send SMS 1 1 1 1 5.73 26.72
kate.v2.2 com.android.installer.full Send SMS 1 1 0 0 6.09 27.26
android.icq pushme.android Send SMS 0 1 1 1 5.15 25.52

Table 2: Evaluation Results.
a) “startActivity/startActivityForResult” number, b) Activity number in the ACG, c) Expected Activity switch paths

number, d) Confirmed activity switch paths number, e)Static analysis time (s), f) Dynamic analysis mean time per path (s)

5. EVALUATION
In this section, we present the evaluation results of test-

ing several Android malwares, which are listed in Table 2.
Except for the Horoscope sample which is introduced in Sec-
tion 2, we find other six Android malware families among 19
applications. In these families, the“a.payment.operaupdater”
is provided by the Antiy [3] and others are obtained from
the Contagio [6], which is a public share platform of An-
droid malwares. Here, we do not list names of all applica-
tions in Table 2, but just select one malware in each fam-
ily. Even though these six families have the same behav-
ior of sending SMS, their disassemble codes and user in-
terfaces are different. For example, the samples with the
“com.depositmobi” package name have two buttons in the
first Activity, but there is only one button in the samples
with the “com.depositmobi*” package name. In these six
families, the trigger condition is very simple, since it just
needs one-click on a button in the first Activity.
We have not tested our system by a large amount of An-

droid applications. Because it is difficult to find Android
applications in the wild, which need UI-based conditions to
trigger sensitive behaviors. In the characterization of the
majority of exiting Android malwares [30], most malicious
behaviors of Android malwares are activated by the system-
wide Android events, such as the “BOOT COMPLETED”
and the “SMS RECEIVED”. Nevertheless, from some sam-
ples we captured, there are some samples having UI-based
trigger conditions to circumvent existing dynamic analysis
tools effectively. We believe more vicious developers will
apply this kind of UI-based activations into their sensitive
applications in the future.
We describe our evaluation results in Section 5.1 and then

present case studies of some samples in Section 5.2.

5.1 Results Overview
We evaluate the SmartDroid system by samples above and

the results are listed in Table 2. Since the application’s codes
and user interfaces are same if they have the same package
name, we just list the results for each package name.

The invocation number of the “startActivity” and “star-
tActivityForResult” functions, the Activity number in the
ACG and the number of expected Activity switch paths are
analyzed by the Static Path Selector. For each expected Ac-
tivity switch path, we manually verify the path by tracing
the disassembled smali codes. Then we run the application
in the Dynamic UI Trigger once for each expected Activity
switch path. Finally, we can confirm each path whether it
is feasible and also get the final UI-based trigger conditions.
From the results, some paths are not feasible with some rea-
sons, which will be elaborated in the following section 5.2.

For the processing time, we analyze these samples on the
AMD Opteron 64 X4 2376 with 4GB of memory. For the
static analysis time, it depends on the code size of samples
and the invocation number of the “startActivity” and “star-
tActivityForResult” functions with the reason that the Stat-
ic Path Selector must scan every instruction and analyze the
Intent in parameters of the “startActivity” and “startActiv-
ityForResult” functions. For the time of dynamic analysis,
we analyze samples for each expected Activity switch path
and then calculate the mean time per path. In the dynam-
ic analysis stage, the processing time consists launching the
emulator, installing the apk into the emulator, waiting for
automatic behaviors and interacting with UI elements au-
tomatically. In our experiment, the interaction time mainly
relies on how many Activities the expected Activity switch
path have. The Horoscope app has more than three Activi-
ties in the expected Activity switch path and other samples
just have only one Activity in the expected Activity switch
path. Hence, the processing time of the Horoscope app is
more than the time of other samples.

To demonstrate the effectiveness of the SmartDroid sys-
tem, we discuss, in more detail, a few cases which have an
UI-based trigger condition to start sensitive behaviors. Our
system is able to handle these cases and reveal their UI-based
trigger conditions.

5.2 Case Studies
In this section, we evaluate our SmartDroid system in

several case studies to demonstrate the effectiveness of the
system.

5.2.1 The Horoscope App
In the Horoscope app, there are mainly three types of sen-

sitive behaviors: reading the IMEI, getting the location in-
formation and connecting to the Internet. But according to
sensitive function call paths, we know that this application
gets the location information and connects to the Internet
automatically for advertising after it starts. User interaction
can only lead to connect to the Internet, as well as read the
IMEI.
We have analyzed all 72 Intents in this application by

static analysis, and get the target Activity and the source
Activity linked by the Intent. Then we construct the ACG
shown in Appendix A. There are five sensitive sink Ac-
tivities labeled with red color, in which “CheckConnection”
Activity is related to the sensitive behavior of reading the
IMEI, and other Activities are only related to the sensitive
behavior of connecting to the Internet.
There are 54 expected Activity switch paths from the“En-

tryPoint” Activity to sensitive sink Activities in the ACG.
For each path, we run this application in the Dynamic UI
Trigger to force this application to execute along the path.
After dynamic analysis, we confirm that there are only 12
paths leading to sensitive behaviors. In order to find the rea-
son why other paths cannot lead to sensitive behaviors, we
analyze the disassembled smali codes manually. The rea-
son is that actually there is not a button in the “Month-
Horoscope”, “DayHoroscope” and “Day2Horoscope” Activi-
ty for connecting to the Internet. We realize that the but-
ton for connecting to the Internet is generated at runtime
according to the returned value from its server. So, it is
incorrect that the “MonthHoroscope”, “DayHoroscope” and
“Day2Horoscope” Activity are sink sensitive Activities de-
termined by static analysis.
The SmartDroid can output the detailed UI-based trigger

conditions. For example, the expected Activity switch path
(EntryPoint → My iHoroscope → My Sign → ChooseSign
→ CheckConnection) can lead to read the IMEI. The con-
dition for this behavior is displayed in Table 3. From this
table, we can know a detailed sequence of user interactions
including the UI element’s type, coordinates, height, width
and its corresponding event type. Provided these user inter-
action information, it is easy to replay this sensitive behavior
automatically by the MonkeyRunner.

5.2.2 The a.payment.operaupdater
The a.payment.operaupdater [10] is an Android malware

which is a fake browser software to entice users to click one
button for activating this application. But if users click the
certain button, this malware will send SMS to deduct the
phone fees. In this case, there are two buttons in the first
Activity shown in Figure 4. If we click the right button,
it will send SMS. So, the UI-based trigger condition of this

Figure 4: The a.payment.operaupdater.

FirstActivity

RulesActivity

onClick

QuestionActivity

onClick

FinishActivity

onClick

onClick

onClick

onClick

Figure 5: The ACG of a.payment.operaupdater.

sample is one-click event on the right button of the first
Activity.

The ACG of this sample is showed in Figure 5. There
are two sink sensitive Activities and two expected Activi-
ty switch paths in the ACG. However, by dynamic analysis
we confirm only one path (“FirstActivity”) is feasible. The
Dynamic UI Trigger cannot walk along the path (“FirstAc-
tivity” → “QuestionActivity”). After analyzing the disas-
sembled smali codes, we find that when users click the right
button in “FirstActivity”Activity, there will be a judgement
on the size of the “this.loc” array. If the size of the “this.loc”
is zero, this application can switch from “FirstActivity” Ac-
tivity to “QuestionActivity”Activity. But by inspecting the
config file of this application, the size of the “this.loc” must
not be zero. So, “FirstActivity” Activity always switches
into “FinishActivity” Activity when uses click on the right
button.

From this case, we can clearly know that some logics in
applications may affect the execution of expected Activity
switch paths extracted by the Static Path Selector. But this
would not affect the final trigger conditions, because all of
final trigger conditions are confirmed by the Dynamic UI
Trigger. So, it just would improve the processing time of
dynamic analysis.

Activity from Activity to UI Event x y h w

EntryPoint My iHoroscope None None − − − −
My iHoroscope My Sign android.widget.ImageView onClick 83 405 46 154
My Sign ChooseSign android.widget.ImageView onClick 110 85 100 100
ChooseSign CheckConnection android.widget.ImageView onClick 83 299 46 154

Table 3: One UI path of Horoscope App that will reach to Read IMEI behavior.

5.2.3 The Kate.v2.2
The samples with the “com.android.installer.full” package

name are very special. The number of the expected Activity
switch path is zero, because the sensitive source function in
the FCG is the “onCreate” function of the main Activity. In
other words, the behavior of sending SMS is automated after
the application starts. However, the Dynamic UI Trigger
can detect one trigger condition of this behavior. There is
no sensitive behavior found before the interaction with UI
elements in the main Activity. However, when the Dynamic
UI Trigger clicks the only one button in the main Activity,
this application sends three SMSs.
We analyze the disassembled smali code and conclude that

the behavior of sending SMS indirectly relies on the click
event. A thread is started when the main Activity starts.
In this thread, there is an implementation that it sends SMS
only if the “startsend”variable is equal to 1. But the default
value of the “startsend” variable is 0. In the “onClick” func-
tion of that button, the “startsend” variable is assigned with
1.
In this case, the SmartDroid is able to reveal this simple

indirect UI-based trigger condition. But now, it cannot re-
veal some complex indirect conditions. That is our future
work which will be discussed in the following Section 6.

6. DISCUSSION AND FUTURE WORK
In this paper, we aim to automatically interact with UI

elements in the Activity and enforce the execution of appli-
cations along the expected Activity switch path. Our system
just focuses on the situation that the trigger conditions of
sensitive behaviors are not data dependent on UI elements.
In other words, we only consider the control dependency on
UI elements. The indirect UI-based condition described in
Section 5.2.3 is an example of the data dependency. In appli-
cations with indirect UI-based conditions, some comparison
instructions determine whether the sensitive behavior can
be started. However, the UI event function can assign the
values to registers in the comparison instruction. So, there is
a data dependency between the comparison instruction and
the UI event function. In future work, we will analyze this
kind of data dependency and add some edges of the data
dependency into the FCG. With this process, the expected
Activity switch paths will be more complete. Besides, there
exist data dependencies when the Activity is created. The
creation of some UI elements is related to the data from the
servers or configuration files. If sometimes the data does not
allow the creation of UI elements which can lead to sensitive
behaviors, our system cannot reveal this hidden UI-based
trigger conditions. This is our future work to conquer this
challenge.
We have not considered the logic-based trigger conditions

which can affect sensitive behaviors. For example, the zSone
malware [30] invokes the SMS sending code when users click

a button in the fifth time. Now our SmartDroid cannot de-
tect this sample, but we are ready to adopt a rewriting apk
method to solve this problem. In static analysis, we analyze
each comparison instructions in disassembled smali codes.
We want to determine whether each branch of the compar-
ison instruction points to sensitive APIs. If one of branches
points to a sensitive API, but others do not point to a sensi-
tive API, we should continue to modify this key comparison
instruction to enforce all branches to point to this sensitive
API. Then we reassemble these modified smali codes to a
new apk and sign it [12]. This technique can bypass the
logic tricks and also get the logic-based trigger conditions in
some cases. However, there may be an exception thrown at
runtime if we modify every key comparison instruction. The
judgement on which key comparison instruction is the real
logic condition is difficult and we will continue to seek the
solution for this problem.

Moreover, we just handle some of UI events without com-
plex events, such as gestures. In order to simulate the correct
gestures, we should identify each gesture in static analysis.
That is a challenging work in the future. Our system has not
covered some sensitive behaviors, such as rooting, which is
existed in the wild so far. Given this, we should continue to
examine possible root causes and explore future solutions.
We do not consider the native codes, in which the developer
can invoke the sensitive API in the C or C++ language by
the JNI [9]. Disassembling native codes to analyze in the
static analysis is our future work.

When coming to dynamic analysis, we traverse all UI ele-
ments in an Activity after the creation of the Activity. We
choose to traverse it after the Activity finishes its “onRe-
sume” function to draw. But there is a possible situation
that an application starts its sensitive behavior in an Activ-
ity’s “onPause”, “onStop”, “onDestory” or “onRestart” func-
tions, even though we have not found one sample like this
in the wild so far. Our system could not detect the sensitive
behaviors in this kind of samples. However, it is not very
difficult to solve this problem. Our static analysis can get
the sensitive source functions. If it finds that these Activ-
ity’s functions belong to sensitive source functions, we will
take the extra procedure in dynamic analysis phase. For the
“onPause”, “onStop” and “onDestory” functions, we kill this
application’s process according to its pid after the Activity
has been created. For “onRestart” function, we can send a
home key event to the emulator and then restart this ap-
plication again. According to the Activity’s life cycle, this
solution can work out this problem.

7. RELATED WORK
Analyzing mobile applications is an emerging hot field in

academic research. Our work covers both static analysis and
dynamic analysis. On static techniques, PiOS [24] use data
flow analysis and slicing techniques to check whether the iOS
application leaks sensitive information. The AndroidLeak-

s [21] reverses the Dalvik bytecode to the java bytecode, then
applies WALA to do static taint analysis. Enck et al. [18]
developed a better decompiled tool ded to reverse Dalvik
bytecode to Java source code with up to 98.04% recovery
rate, and it applies the Fortify SCA static analysis suite to
study 1,100 free Android applications. Grace et al. [25] de-
veloped Woodpecker which does control flow analysis based
on the smali code. Chin et al. [15] proposed ComDroid,
which can statically analyze the disassembled Dex bytecode
from Dedexer and identify potential components’ Intent vul-
nerabilities. However, those static analysis techniques are
not sufficient in analyzing the GUI components such as but-
ton, and they do not have runtime information. Our Smart-
Droid makes use of the static analysis information to guide
the dynamic analysis, and we can solve the UI paths.
On the side of dynamic techniques, TaintDroid [17] uses

a system-wide dynamic tracking technology to identify each
privacy leak. Our SmartDroid can solve the UI paths auto-
matically, which is complementary to TaintDroid. Gilbert et
al. [22] build the AppInspector which extends TaintDroid to
track some types of implicit flows and confirms that the ran-
dom input approach for automated analysis [23] is very poor
and unaccepted. It also proposes to use the concolic execu-
tion approach to generate user inputs. Compared with Ap-
pInspector which covers all branches, our SmartDroid only
executes suspicious paths provided by static analysis within
a short execution time. Saswat et. al [27] build the CON-
TEST to generate input events to exercise smartphone apps
including Android applications. But its intention is different
from our SmartDroid. SmartDroid aims to know the effec-
tive user input events which make the sensitive behaviors
happen, but CONTEST works on GUI testing and on al-
leviating path explosion in concolic testing. Besides, CON-
TEST just focuses on generating input events for a single
Activity, but SmartDroid can generate input events intelli-
gently for multiple Activities. Crowdroid [13] bypasses this
automated generating inputs challenge by collecting traces
from an unlimited number of real users based on crowd-
sourcing. It applies the method of monitoring system calls
to detect Android malwares. But this approach needs many
Android users to be convinced to install Crowdroid and it
only protects users who install it. None of the above efforts
support thoroughly generating UI-based trigger conditions
for Android applications.

8. CONCLUSION
In this paper, we combine the static and dynamic anal-

ysis to automatically revealing UI-based trigger conditions
in Android applications. Through static analysis, we first
build the Activity Call Graph and Function Call Graph for
an app, and extract expected Activity switch paths. Then,
we use dynamic analysis to traverse each UI element and
explore the UI interaction paths towards the sensitive APIs.
We implement a prototype system SmartDroid, which aug-
ments existing dynamic analysis tools with automatic UI
interaction analysis capabilities. The result shows that our
SmartDroid system is very effective in revealing UI-based
trigger conditions automatically.

Acknowledgements
This research is supported by the NDRC under Project
“A Cloud-based service for monitoring security threats in

mobile Internet” and the Beijing Technological Innovation
Project (Grant No. Z111101055311052).

9. REFERENCES
[1] Android market growth.

http://android-developers.blogspot.com/2011/

12/closer-look-at-10-billion-downloads.html.

[2] Android snapshot. http://pastebin.com/bCieGJVV.

[3] Antiy corp. ltd.
http://www.antiy.com/cn/about/index.htm.

[4] Apktool.
http://code.google.com/p/android-apktool/.

[5] Bouncer. http://googlemobile.blogspot.com/2012/
02/android-and-security.html.

[6] Contagio. http://contagiominidump.blogspot.co.
il/search/label/Russian.

[7] The horoscope app. https://play.google.com/
store/apps/details?id=fr.telemaque.horoscope.

[8] Introducing google play.
http://googleblog.blogspot.com/2012/03/

introducing-google-play-all-your.html.

[9] Jni. http://developer.android.com/guide/
practices/jni.html.

[10] Operaupdater. http://www.18digi.com/news/7361/
tencent-security-laboratory,

-december-11-mobile-phone-viruses/.

[11] Sensitive apis.
http://www.android-permissions.org/.

[12] A. K. Benjamin Davis, Ben Sanders and H. Chen.
I-arm-droid: A rewriting framework for in-app
reference monitors for android applications. In
Proceedings of the Mobile Security Technologies 2012,
MOST ’12. IEEE, 2012.

[13] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani.
Crowdroid: behavior-based malware detection system
for android. In Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile
devices, SPSM ’11, pages 15–26, New York, NY, USA,
2011. ACM.

[14] P. P. Chan, L. C. Hui, and S. M. Yiu. Droidchecker:
analyzing android applications for capability leak. In
Proceedings of the fifth ACM conference on Security
and Privacy in Wireless and Mobile Networks, WISEC
’12, pages 125–136, New York, NY, USA, 2012. ACM.

[15] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android.
In Proceedings of the 9th international conference on
Mobile systems, applications, and services, MobiSys
’11, pages 239–252, New York, NY, USA, 2011. ACM.

[16] S. Dienst and T. Berger. Mining interactions of
android applications static analysis of dalvik bytecode.
Technical report, Department of Computer Science,
University of Leipzig, Germany, May 2011. Technical
Note.

[17] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–6, Berkeley, CA,
USA, 2010. USENIX Association.

[18] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A study of android application security. In Proceedings
of the 20th USENIX conference on Security, SEC’11,
pages 21–21, Berkeley, CA, USA, 2011. USENIX
Association.

[19] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In
Proceedings of the 18th ACM conference on Computer
and communications security, CCS ’11, pages 627–638,
New York, NY, USA, 2011. ACM.

[20] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and
D. Wagner. A survey of mobile malware in the wild.
In Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices, SPSM
’11, pages 3–14, New York, NY, USA, 2011. ACM.

[21] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Androidleaks: Automatically detecting potential
privacy leaks in android applications on a large scale.
In Proceedings of the 5th International Conference on
Trust&Trustworthy Computing, TRUST ’12, pages
291–307, Vienna, Austria, 2012.

[22] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung.
Vision: automated security validation of mobile apps
at app markets. In Proceedings of the second
international workshop on Mobile cloud computing and
services, MCS ’11, pages 21–26, New York, NY, USA,
2011. ACM.

[23] C. Hu and I. Neamtiu. Automating gui testing for
android applications. In Proceedings of the 6th
International Workshop on Automation of Software
Test, AST ’11, pages 77–83, New York, NY, USA,
2011. ACM.

[24] E. Manuel, K. Christopher, K. Engin, and
V. Giovanni. Pios: Detecting privacy leaks in ios
applications. In Proceedings of the 19th Network and
Distributed System Security Symposium, NDSS ’11,
2011.

[25] G. Michael, Z. Yajin, W. Zhi, and J. Xuxian.
Systematic detection of capability leaks in stock
android smartphones. In Proceedings of the 19th
Network and Distributed System Security Symposium,
NDSS ’12, 2012.

[26] J. Midtgaard and T. P. Jensen. Control-flow analysis
of function calls and returns by abstract
interpretation. In Proceedings of the 14th ACM
SIGPLAN international conference on Functional
programming, ICFP ’09, pages 287–298, New York,
NY, USA, 2009. ACM.

[27] A. Saswat, N. Mayur, Y. Hongseok, and J. H. Mary.
Automated concolic testing of smartphone apps. In
Proceedings of the ACM Symposium on Foundations of
Software Engineering, FSE ’12, March 2012.

[28] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and
Y. Weiss. ”andromaly”: a behavioral malware
detection framework for android devices. J. Intell. Inf.
Syst., 38(1):161–190, Feb. 2012.

[29] B. Thomas, B. Leonid, S. Aubrey-Derrick, and A. C.
Seyit. An android application sandbox system for
suspicious software detection. In Malicious and
Unwanted Software (MALWARE), 2010 5th
International Conference on, Malware ’10, pages
55–62, 2012.

[30] X. J. Yajin Zhou. Dissecting android malware:
Characterization and evolution. Security and Privacy,
IEEE Symposium on, 0:95–109, 2012.

[31] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party
android marketplaces. In Proceedings of the second
ACM conference on Data and Application Security
and Privacy, CODASPY ’12, pages 317–326, New
York, NY, USA, 2012. ACM.

APPENDIX

A. ACG OF HOROSCOPE

