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Abstract—Nowadays, cyber criminals often build web infras-
tructures rather than a single server to conduct their malicious
activities. In order to continue their malevolent activities without
being detected, cyber criminals make efforts to conceal the
core servers (e.g., C&C servers, exploit servers, and drop-zone
servers) in the malicious web infrastructure. Such deliberate
invisibility of those concealed malicious servers, however, makes
them particularly distinguishable from benign web servers that
are usually promoted to be public.

In this paper, we conduct the first large-scale measurement
study to investigate the visibility of both malicious and benign
servers. From our intensive analysis of over 100,000 benign
servers, 45,000 malicious servers and 40,000 redirections, we
identify a set of distinct features of malicious web infrastructures
from their locations, structures, roles, and relationships perspec-
tives, and propose a lightweight yet effective detection system
called VISHUNTER. VISHUNTER identifies malicious redirections
from visible servers to invisible servers at the entryway of
malicious web infrastructures. We evaluate VISHUNTER on both
online public data and large-scale enterprise network traffic, and
demonstrate that VISHUNTER can achieve an average 96.2%
detection rate with only 0.9% false positive rate on the real
enterprise network traffic.

I. INTRODUCTION

Today’s cyber crimes are no longer monotonous. Attackers
set up a variety of malicious servers, e.g., exploit servers,
C&C servers, and phishing servers, to effectively perpetrate
their criminal activities. Based on a recent threat report from
Websense [7], malicious websites have increased by nearly
600% worldwide since 2012. Different malicious servers, such
as redirectors, exploit kits, C&C, and payment servers, often
join forces to leverage their diverse functionalities, and to
create more efficient and anonymous web infrastructures for
malware distribution, control, and monetization.

Existing systems to identify malicious web infrastructures
fall into three main categories. The first category focuses on
analyzing web contents to determine their maliciousness. For
example, web-based infections can be detected by analyzing
changes between the base version and a modified version of
web contents [11] or JavaScript libraries [19]. Others utilize
instrumented browsers [26] or JavaScript engines [12] to
automatically visit suspicious websites, and examine the run-
time system or browser behaviors for the signs of drive-by

download attacks. The second category investigates evasion
techniques that attackers often use to hide their malicious
activities. These work identifies characteristics unique to the
evasion behaviors to detect malicious servers, e.g., web search
cloaking [29, 30], fast fluxing [14, 16], and domain gen-
eration [9, 25]. The last category looks into the topology
of malicious infrastructures. For example, redirection chain-
s [23, 28] and server ranks (e.g., according to PageRank-based
approach) [20] are studied to identify malicious websites.

While existing solutions demonstrate their effectiveness in
detecting malicious servers or server infrastructures, we note
that they still have their respective limitations. For example,
content analysis often introduces non-trivial overhead, ren-
dering it impractical for large-scale network analysis. Instru-
mentation may also be blocked due to fingerprinting tech-
niques [13]. While topology-based approaches can be content-
agnostic, they often either demand a large and diverse web user
base in order to collect sufficient redirection data and construct
redirection graphs [28], or require malicious hosts as seeds to
bootstrap the system [20]. Thus, understanding the intrinsic
properties of malicious infrastructures and interactions among
the constituent compromised/malicious servers is often critical
in building an effective detection system.

In this paper, we study malicious web infrastructures from
a novel perspective, i.e., visibility. In a nutshell, we define
the visibility1 of a server as whether the server is visible to
benign users, for instance, through search engines. To obtain
a comprehensive understanding of whether invisible malicious
web infrastructures are indeed popular, we investigate 100,000
benign servers and nearly 45,000 malicious servers collected
from both public blacklists and real-world enterprise networks.
Our key findings include: 1) Unlike legitimate servers, a large
number of malicious servers tend to be invisible, especially
for some categories such as C&C servers and exploit servers.
C&C servers used to communicate with bot-infected machines
are almost always invisible to benign users. This is because
bot masters naturally try to minimize the exposure of their
C&C servers to keep their malicious activities under the

1An in-depth discussion on visibility will be in Section II.



radar. 2) Server visibility alone is not sufficient to precisely
pinpoint malicious web infrastructures because a small number
of benign servers are also invisible. Therefore, we further
examine 41,190 redirections collected from a large enterprise
network and observe that the “entrance” into malicious web
infrastructures, i.e., redirection from visible servers to invisible
servers, is significantly different from that of benign web
infrastructures.

Motivated by these findings, we design a lightweight yet
effective system, VISHUNTER, to detect the malicious web
infrastructure by detecting the “entrance” to it. VISHUNTER
extracts 12 features including several novel visibility-related
features, and uses a trained classifier to identify the “entrance”
to the malicious web infrastructures. Our evaluation with one
month traffic from a large enterprise network shows that
VISHUNTER achieves an average true positive rate of 96.2%
at a false positive rate of 0.9% for the malicious entrance
detection.

Contribution. The main contributions of the paper are
summarized as follows:

New findings. To the best of our knowledge, we are the
first to conduct a large-scale and comprehensive study on
the visibility of malicious web infrastructures, offering in-
depth insights into the visibility trends of malicious servers
as well as the significant differences between the entrance to
benign and malicious invisible infrastructures. We characterize
these differences using graph-, location-, role-, and relation-
based features, and demonstrate that they can be leveraged to
accurately detect entrances to malicious web infrastructures.

New techniques. We develop lightweight yet effective tech-
niques to detect malicious web infrastructures by exploring the
nature properties of cyber criminals, which cannot be easily
circumvented. In addition, VISHUNTER dramatically reduces
the amount of network traffic required for analysis because
it focuses on the visibility transition between visible and
invisible servers, instead of the entire redirection chains. Fur-
thermore, compared to existing solutions that require a large
and diverse user base [28], VISHUNTER is more lightweight
and able to detect entrances to malicious web infrastructures
even when there are only a few clients accessing them.

II. SERVER VISIBILITY

The concept of visibility used in this work hinges on how a
normal user locates a server. For popular or frequently visiting
websites, a user may directly type the domain names into the
address bar or follow bookmarks to access the web servers.
We consider these servers visible to normal users. For other
(less popular) websites, a user may locate them using search
engines, and access the websites through search results. We
also consider these web servers visible if the server itself
(not only the domain name) is indexed by search engines.
Intuitively, benign servers are more likely to be visible to
normal users because their owners are often motivated to
promote their websites in search engines to increase their user
base. On the contrary, malicious servers, especially the ones in
the core malicious infrastructure (e.g., exploit servers), are less

likely to be indexed by search engines because attackers try to
minimize their exposure and avoid being detected. Therefore,
we determine server visibility as follows (cf. Fig. 1).

Fig. 1. Determination of server visibility

1) For a domain name, we extract its second-level domain
(SLD) based on [6]. Since a SLD is commonly associ-
ated with the organization that registers the domain, we
assume that a domain has the same visibility as its SLD.
In the remaining of the paper, the term domain denotes
its SLD unless stated otherwise.

2) If a domain is a well-known (e.g., google.com), we
consider it visible. We utilize two public whitelists to
determine well-known domains: top 1 million domains
from Alexa [1], and domains from EasyList [3]. Alexa
provides a global popularity ranking of domains based
on their collected web traffic. EasyList provides a list
of well-known Ad-network domains and trackers. Notes
that domains in whitelists only reflect the popularity of
them, it does not means that they are benign domains.

3) For other domains, we query them in search engines
2 and obtain top 100 3 search results. If the queried
domain appears in the search results, meaning that it
was crawled and indexed by the search engines, we
further examine the indexed content of the domain. If
the site owner blocks the access to the content (e.g.,
Google displays a message under the domain name “A
description for this result is not available because of this
site’s robots.txt”), we consider the domain invisible; oth-
erwise, it is considered visible. Note that since multiple
search results may be returned for a domain, for the
domain to be classified as invisible, none of them should
have available content. This is to avoid misclassifying
legitimate cases where a site owner may use robots.txt
to prevent search engines from crawling their sensitive
webpages (e.g., admin interface).

4) If the queried domain does not appear in the top 100
search results, we consider it invisible.

5) All IP addresses are considered as invisible.
Noting that the definition of server visibility depends on

search engine results that may change dynamically along with
time, we evaluate the server visibility over time in section V-B.

III. MEASUREMENT STUDY OF SERVER VISIBILITY

Our hypothesis is that legitimate servers are more likely
to be visible because their owners have the incentives to
promote their products or services. However, certain categories
of malicious servers (e.g., exploit servers), tend to remain

2We use Google search engine in current implementation. However, other
search engines could be used to reduce possible bias of search engine results.

3100 is the maximum number of search results per page. Since we directly
search the domain, the pages on that domain are usually returned in the first.



invisible for several reasons. First, from the cyber criminals’
perspective, they may only want to allure their targeted victims
to reach the core malicious servers in order to minimize the
exposure to security analysts because previous work has shown
that it is easy to pinpoint malicious servers using search
engines [15]. Second, from the search engines’ perspective,
it may not be straightforward to crawl and index malicious
servers. Some malicious servers are intentionally isolated from
the World Wide Web without any hyper-links pointing to them.
Other malicious servers may be ephemeral and dynamically
changing such as domains generated by domain generation
algorithms (DGAs). Third, search engines employ their own
algorithms (e.g., PageRank) to index and rank servers. In
general, they prefer to return to their users websites with high
reputation. Hence, malicious websites may not be indexed by
search engines or not be returned to the users.

To validate our hypothesis, we conduct a comprehensive
measurement study on the visibility of both benign and mali-
cious servers using real-world datasets.

A. Datasets

Public Blacklists. This dataset consists of domains from
two blacklists: Malware Domain List [4] and DNS-BH Mal-
ware Domain Blocklist [2], both of which have been widely
used as ground truth in existing work [10]. We collected
43,768 malicious SLDs from 2009 to 2014 from [4] and
10,967 SLDs from 2011 to 2014 from [2], and performed
visibility check on Oct 2014. Results show that around 80%
of them were invisible. One caveat here is that malicious
domains may have already expired leading to search engines
may not index them anymore. To avoid such bias, we selected
only the domains that were blacklisted in 2013 and 2014, and
verified their existence by checking if the domains could be
successfully resolved to IP addresses. As a result, this dataset
contains 875 malicious SLDs from Malware Domain List
(M_PB1) and 5,739 malicious SLDs from DNS-BH (M_PB2).

Enterprise Traffic. To avoid possible bias caused by public
blacklists, we also captured real network traffic from a large
enterprise network from June 16 to June 20, 2014, from
which we extracted 462,226 unique servers. Among them,
1,782 servers (M_Enter) were detected as malicious by an
internal intrusion detection system (IDS). For those that were
not detected by the IDS, we randomly chose 100,000 benign
servers that did not share any clients with malicious servers
in M_Enter and labeled them as B_Enter. We performed
the viability check on these servers at the same time we
captured them. We also collected one month traffic of an
institute in June 2013. Due to privacy and storage constraints,
we stored only the metadata and the header information of all
the web requests and responses, which included request URL
paths, HTTP response codes, host names, user agents, referers,
cookies, and so on. Notice that without the content of the web
pages, we were not able to directly determine certain types
of redirections, e.g., JavaScript or iFrame based redirections.
Therefore, we focused on HTTP header redirections in this

dataset. In total, we extracted 41,190 redirections( R_Enter)
and performed the viability check on this data on June 2014.

Table I summarize the data collection results.
TABLE I

DATA COLLECTION
M PB1 M PB2 M Enter B Enter R Enter

# of servers 875 5,739 1,782 100,000 165,957
# of redirections N/A N/A N/A N/A 41,190

B. Server Visibility Study

1) Visibility of Malicious Servers: We first determined
the visibility of malicious servers in M_PB1, M_PB2, and
M_Enter using the process outlined in Section II. To better
understand how visibility correlates with specific malicious
types, we measured the visibility distribution of malicious
servers within each attack category. Based on the description
of malicious functionalities in M_PB1 and M_PB2, we classi-
fied them into 63 and 109 categories respectively.

We then calculated invisibility ratio, defined as the number
of invisible servers over the total number of servers in a
category. The CDF of the invisibility ratio distribution across
all the categories is illustrated Figure 2. Only around 10%
of categories from M_PB1 had the ratios lower than 30%,
meaning that the servers in those categories were likely to be
visible. For M_PB2, around 35% of categories had low ratios.

Fig. 2. Invisibility ratio distribution across all categories

Table II lists the top 5 largest visible malicious categories
in terms of their sizes. Most visible servers in M_PB1 were
compromised servers and had labels, such as “leads to”,
“iFrame”, and “JavaScript”. M_PB2, on the other hand, had
different distribution of malicious servers with more social-
engineering type of attacks like phishing and rogue software.
These servers, by their nature, were designed to be easily
accessible to unsuspecting users, and therefore were more
likely to be visible. Overall, less than half of servers, 356
(44.49%) in M_PB1 and 363 (31.33%) in M_PB2 belonged to
these categories.

TABLE II
TOP 5 LARGEST VISIBLE MALICIOUS CATEGORIES

M_PB1 M_PB2
Category # of servers Invisibility ratio Category # of servers Invisibility ratio

leads 246 25.20% unsafe 159 22.01%
spyware 21 28.57% highrisk 65 23.07%
iFrame 17 29.41% fake 27 25.93%

JavaScript 14 21.43% phishing 13 15.38%
compromised 5 0% rogue 53 0.25%

TABLE III
TOP 5 LARGEST INVISIBLE MALICIOUS CATEGORIES

M_PB1 M_PB2
Category # of servers Invisibility ratio Category # of servers Invisibility ratio
blackhole 31 90.32% malware 652 65.18%

- 21 52.386% malspam 215 64.65%
drive-by 5 66.66% zeus 81 60.49%

java 5 100% fake flash 34 73.53%
fake 4 100% putter panda 27 96.29%

As a comparison, Table III lists the top 5 largest invisible
malicious categories with their sizes. We can see that malware



and exploit servers, such as blackhole, Zeus and drive-by-
download, were among the most common invisible malicious
server types. For example, more than 90% of blackhole servers
and more than 96% of “putter panda” servers, which were
C&C servers used in a cyber espionage campaign, were hidden
from search engine crawlers.

Noting that the invisibility ratio for largest invisible ma-
licious category is not 100%. This is because that some of
them are actually compromised servers rather than malicious
servers. For example, northerningredients.com was
visible according to our visibility definition, and it was labeled
as malicious by both Malciousdomain.com and Virus-
Total. Further investigation on its Whois information and its
web contents revealed that the food company’s domain was
registered in 2006 with an expiration date in 2019. Such a long
history made us believe that it was a compromised legitimate
domain instead of a malicious server set up by cyber criminals.
In addition, other visible malicious servers usually shared
certain patterns in their contents or URLs, which could be
leveraged to efficiently detect a group of similar servers using
existing work such as EvilSeed [15] and PoisonAmplifier [33].

We further checked the visibility of M_Enter from the en-
terprise network. 67.51% of them were invisible, and 13.99%
of them belonged to the top 1 million Alexa web list, indicat-
ing that they were likely compromised or abused.

2) Visibility of Benign Servers: Next, we checked the
visibility of benign servers in B_Enter. As expected, only
very small portion of them, i.e., 6,626 (6.63%) were invisible.
To better understand the underlying causes for their invisibility,
we manually analyzed a set of randomly selected 100 servers.
We found that most of the benign invisible servers were: 1)
new servers which had not been indexed; 2) service providers
which actively blocked crawlers or chose not to be indexed by
search engines. As a result, we can leverage these characteris-
tics to distinguish them from their malicious invisible servers,
which we will elaborate in Section IV-B.

Lessons learned: As demonstrated above, there exist sig-
nificant and consistent differences between certain malicious
servers and legitimate servers in terms of their visibility status.
These findings suggest that visibility could be an effective
feature for malicious server identification. However, we also
note that visibility alone is not sufficient, as many legitimate
servers, although few percentages, may not be directly ac-
cessible to users through search engines for various reasons.
Therefore, we explore several new redirection-based features
to augment visibility and minimize false positives.

C. Visibility Study on Redirections

Based on the visibility of each server, we clustered the redi-
rections in R_Enter into four categories: visible to invisible
(1,063 (2.58%)), visible to visible (36,727 (89.17%)), invisible
to invisible (1,559 (3.78%)) and invisible to visible (1,841
(4.47%)). Unsurprisingly, the majority of redirections were
among visible servers, which were mostly benign redirections
with a few from one compromised server to another.

Many existing systems detect malicious redirections using
the characteristics of the full redirection chains [22, 28], such
as chain lengths, geolocations of landing and final servers, and
so on. Unfortunately, such features can be easily manipulated
when check them on the whole redirection chain. For exam-
ple, attackers can change the length of the redirection chain
by appending more/fewer compromised or malicious servers.
Alternatively, attackers can also add arbitrary inner domain
redirections since they can partially control compromised
servers and fully control their own malicious servers.

In contrast, only the transition from visible to invisible
servers is more resilient to manipulation whenever attackers
want to lure unsuspecting users to their malicious infrastruc-
tures. Therefore, we only focus on such kind of redirection
and inspect it from several different perspectives.

To collect ground truth, we used VirusTotal to label 1,063
redirections from visible servers to invisible servers. Specif-
ically, if an invisible server was labeled as malicious by at
least two anti-virus vendors, we considered the redirection
as malicious. In this way, we finally collected 27 malicious
redirections. To collect benign redirection cases, we checked
the Whois history of invisible servers for the remaining
redirections. We removed redirections whose invisible server
had a lifetime (the expiration date minus the creation date)
less than or equal to one year, which have a high chance to be
malicious but not yet been labeled by VirusTotal. As a result,
we collected 683 benign redirections.

Below we itemize our observations and lessons learned from
these redirections

1) Location Attributes: Typically attackers can not control
the place where the compromised benign servers are located
so that visible compromised servers and invisible malicious
servers would be located at different places. In VISHUNTER,
we characterize the location difference using IP address-
es, Whois information, and autonomous systems numbers
(ASNs). Specifically, we consider a redirection to be made
between different locations if its visible and invisible servers
do not locate under the same IP subnet (/24), do not share the
same Whois information, and do not have the same ASNs.
Otherwise, the two servers are likely to be co-located. In our
ground truth dataset, all but one malicious redirections had
different locations. On the other hand, 188 (27.53%) of benign
redirections had co-located visible and invisible servers. In
fact, those visible servers usually hosted the home page of
the company’s website while those invisible servers provided
internal or non-public services. These invisible servers may
actively block search engine crawlers and/or there is no way
for the crawlers to find them.

2) Structure Attributes: To capitalize on their resources, at-
tackers often compromise a large number of servers and point
them to a small set of their core malicious servers. Thus, we
assume there should be an authority structure in the malicious
redirections: multiple visible servers redirect to a few authority
invisible servers. To characterize this hub/authority structure,
we propose a metric “in-out ratio”, defined as the degree of
the invisible server over the degree of the visible server. A



ratio lower than 1.0 means that multiple visible servers redirect
to only a few invisible servers, making the invisible servers
authorities. On the other hand, a visible server that redirects
to many invisible servers will have a high in-out ratio and
become a hub in the redirection graph.

Looking at our ground truth dataset, 33.33% (9) of mali-
cious redirections had invisible authorities, and 7.41% (2)had
visible hubs. In comparison, for the benign redirections, only
3.22% (22) of them had invisible authorities while 80.23%
(548) of them had visible hubs. For all the hubs, we further
checked the number of IP addresses they redirected to. The
intuition here is that malicious hubs may redirect to multiple
domains hosted on the same IP address in order to minimize
cost and maximize server utilization. On the other hand,
benign hubs may redirect to multiple servers which belong
to different organizations and thus have a large number of IP
addresses. This intuition was also confirmed by our data: a
malicious hub indeed redirected to two domains that shared
the same IP address, whereas those benign hubs all redirected
to multiple IP addresses.

3) Role Attributes: Some benign redirections are caused
by advertisement networks. One notable characteristic of an
advertiser is that it can redirect to a large number of both
visible and invisible servers. In this work, we use the metric
Numvis, the number of redirections to visible servers, to
define advertisers, and find 467 advertisers in the benign
redirections with Numvis > 3 (68.37%). We also define
the reputation of an advertiser Rep as Numvis / Numinvis,
where Numinvis is the number of redirections to invisible
servers. Essentially, an advertiser is considered to be more
suspicious if it redirects to more invisible servers than visible
servers. In fact, such a pattern has been used by certain
cloaking servers, which redirect target users to either exploit
servers or legitimate websites depending on users’ operating
systems and browser versions. 174 (37.26%) of advertisers
redirected to more visible servers than invisible servers for
benign redirections; therefore, they were more likely to be
benign . In this dataset, there was no advertiser in malicious
redirections.

4) Relation Attributes: Benign redirections often serve a
purpose, for example, moving websites to another server, load
balancing, delivering contents from local data centers, etc. We
characterize such relationship from the following perspectives.

CDN: CDNs account for a large portion of the benign
redirections. In addition to whitelisting well-known CDNs
such as Akamai, CloudFront, etc., we apply a heuristic to
attribute a redirection to a CDN if two servers involved have
the same URL path and the path length4 is longer than 2.
19.18% (131) of benign redirection in our dataset fell into
this category whereas none of malicious redirections had a
CDN relationship.

Other general partner relation: To identify other general
partner relationships, we employ two heuristics leveraging
both historical information and search engines results. First,

4We measure the path length based on the number of slashes (“/”) in URLs.

if a specific redirection happens regularly over a long period
of time T 5, we consider the two servers have a stable partner
relationship. Second, we leverage search engines to reveal
potential partnership between two servers. More specifically,
we query two servers involved in the redirection in the search
engines at the same time, for example, search “visible.com
and invisible.com” in Google. If both of them appear in
the same search results, we believe that there likely ex-
ist relationship between these two servers. In our dataset,
most of such relationships were due to sharing contents and
were also reported by websites like siteslike.com and
websitesalike.com. To further eliminate potential false
positives that may be caused by security websites analyzing
a particular malicious server instance, we ignore such part-
ner relationship if the search results contains any security
related keywords such as “security”, “virus”, “malicious”, and
“malware”, etc. As a result, only 5 (18.52%) of malicious
redirections had partner relationships while 513 (75.11%) of
benign redirections had such relationships.

Lessons learned: Detecting malicious redirections is a
complicated task. Simply relying on features associated with
compromised servers is immediately subject to evasion, given
the attacker’s freedom to use public services or multiple
compromised servers. At the same time, detecting malicious
terminal servers is hindered by their diversities and various
cloaking techniques. However, observations from our measure-
ment study convey a positive message: malicious redirections
from visible servers to invisible servers exhibit distinguishable
behaviors from their benign counterpart, which are more
intrinsic to malicious infrastructures and difficult to evade.

IV. SYSTEM DESIGN

A. System Overview

Based on the study in Section III, we observe that there
exist certain categories of malicious servers that are always
invisible, and there exist notable differences between entrances
to malicious invisible infrastructures and benign invisible
infrastructures. Therefore, VISHUNTER focuses on the redirec-
tions from visible servers into invisible servers, and leverages
discriminative features to detect the entrances into malicious
web infrastructures, especially for the entrances to the exploit
infrastructure, where most traffic comes from compromised
servers to exploit servers.

Fig. 3. System overview.
An overview of VISHUNTER is shown in Figure 3.

VISHUNTER takes HTTP traffic as an input and extracts all
observed servers (nodes in 1©) as well as the redirections a-
mong them (edges between servers in 1©). Then, VISHUNTER

5In current implementation, we set T=1 month.



checks the visibility of each server and divides them into two
categories: visible servers and invisible servers ( 2©). Next,
only the redirections from visible servers to invisible servers
are submitted to the malicious entrance detection component,
where a trained classifier is used to identify malicious en-
trances (red edges in 3©).
B. Detecting Malicious Entrances

We define an “entrance” as a redirection from SLD of
a visible server to SLD of an invisible server. An entrance
is considered malicious if the destination invisible server is
malicious, i.e., belonging to attackers’ invisible malicious
web infrastructures. Based on our intensive study in Section
III-C, we propose 12 features that characterize the differences
between benign entrances and malicious entrances, which are
difficult for attackers to evade without a significant amount of
cost. As summarized in Table IV, the features leveraged by
VISHUNTER are divided into four groups.

TABLE IV
FEATURE SELECTION

Aspects Features Novelty

Location
IP location [22]

Whois location New
AS location [22]

Graph
In-degree of invisible server New
Out-degree of visible server New

In-Out-ratio [27]
IP diversity of invisible server [24]

Role Advertiser New
Reputation of advertiser New

Relation
CDN New

Partner based on history New
Partner based on search results New

Location-based Features: This group aims to capture the
location differences of the entrances. Since this group of fea-
tures are derived from the physical locations of the entrances,
it is difficult for attackers to forge.

Location-based features proposed in existing work are not
as resilient as our proposed features. For example, the location
differences between a landing server and a terminal server [22]
can be easily changed by adding another redirection to the
original server after an infection. An attacker can simply
add an iFrame in the malicious server such that it sends
users back to the landing server. In this way, it can evade
location features in [22]. On the other hand, as long as
attackers rely on compromised servers to redirect users to
their malicious web infrastructures, VISHUNTER will detect
the location difference.

Graph-based Features: This group aims to characterize
the structure of entrances based on graph properties. Attackers
would be required to change their fundamental operation struc-
tures for evasion. For example, to evade the invisible authority
feature, malicious invisible servers would be allowed to use
only a few compromised servers to redirect to them, which
effectively limits the effectiveness of attackers’ operations.

Role-based Features: This group aims to distinguish be-
tween benign and malicious entrances to advertisement in-
frastructures. To evade this group of features, attackers are
required to either abuse public known advertisers, for example,
googleadservices.com to redirect traffic, which is not

trivial since those services usually have strict scrutiny process-
es, or to directly redirect users using compromised servers,
which can be detected through other features (e.g., location-
based features).

Relation-based Features: The group aims to characterize
general entrances of benign infrastructures. CDN-based fea-
tures are hard to evade since malicious servers usually have
different paths with compromised servers. At first glance,
partner based on search results feature seems easier to evade,
e.g., attackers may circumvent search engine partner relation-
ships by posting compromised servers and malicious servers
together. However, such behavior could lead existing work
(e.g., EvilSeed [15] and PoisonAmplifier [33]) to find more
malicious servers easily.

As a result, 12 features are extracted for each entrance,
and a classifier (J48 decision tree) is trained with known
malicious and benign entrances to detect the entrances to
malicious web infrastructures. We acknowledge that attackers
may artificially manipulate some of our proposed features to
evade VISHUNTER. However, it is not trivial for attackers to
evade the detection based on the combined use of all features
without putting a significant amount of investment.

V. EVALUATION

A. Data Trace and Ground Truth

Enterprise Traffic: We collected 6 months (from July, 2013
to Oct, 2013 and from Nov, 2014 to Dec, 2014) traffic from
the same institute described in section III-A.

Online Public Malware Traffic: We also crawled mal-
ware traces from malware-traffic-analysis.net [5]
which provided more than 402 pcap traces of malware col-
lected from June, 2013 to Jan, 2015. Those traces showed
detailed analysis on how malware was delivered, typically
through compromised servers and drive-by-download exploit
kits. Specifically, 213 cases used various redirection methods
to deliver malware, including JavaScript redirection, iFrame
redirection, and HTTP header redirection. Among them, 159
redirections were from visible servers to invisible servers.
Others were either because the incomplete traces made it
impossible to obtain the corresponding compromised servers
or attackers leveraged public servers (e.g., dynamic DNS
server redirectme.net) as their exploit servers.

B. Time impacts on visibility

As the server visibility depends on search engine results
that may change dynamically, we measured the stability of
visibility over time. Specifically, we recorded the visibility of
each server in M_Enter and B_Enter when we collected the
dataset (June 2014) and then re-checked their visibility status
every two months. The results are summarized in Table V. We
can see that server visibility was relatively stable. Only about
2% of the servers, regardless of their maliciousness, changed
their visibility status after 6 months, though malicious servers
seemed slightly more volatile. Further investigation showed
that visible servers changed into invisible primarily because
their domain names expired and hence were removed from



search engine indexes. On the other hand, for those invisible
servers that changed into visible, it was mainly because those
servers were newly registered and recently indexed by search
engines or they completed website construction and unblocked
the crawlers in “robots.txt”.

TABLE V
STABILITY OF VISIBILITY

time visible → invisible invisible → visible
M_Enter B_Enter M_Enter B_Enter

Jun,2014 - - - -
Aug,2014 20 (1.12%) 1,043 (1.04%) 22 (1.23%) 885 (0.86%)
Oct,2014 34(1.91%) 1,782(1.78%) 30(1.68%) 1,306(1.31%)
Dec,2014 47(2.64%) 2,615(2.61%) 36(2.02%) 1,583(1.58%)

C. Search Engines Comparison

To evaluate the possible bias of the visibility results for
different search engines, we randomly select 100 servers from
B Enter and M Enter respectively, and test their visibility
on different search engines. We use visibility from Google
search results as the baseline. “+” means other search engines
find new visible servers, and “-” means other search engines
mislabel some visible servers to invisible servers. Table VI
shows the results. We can see that overall different search
engines return similar results. Bing and Yahoo have very sim-
ilar results since now Yahoo search engine is based on Bing.
Google only mislabels few visible servers as invisible servers.
The missed servers in M_Enter are probably because that
search engines refrain from showing known malicious sites.
In addition, the combination of different search engines can
provide a better view of visibility, which could be leveraged
in our future work.

TABLE VI
COMPARISON AMONG DIFFERENT SEARCH ENGINES

Visible servers in B_Enter Visible servers in M_Enter
Bing +4,-4 +3,-14,

Yahoo +4,-4 +4,-13,

D. Malicious Entrance Detection Results

To evaluate the performance of VISHUNTER, we first per-
formed a 10-fold cross validation of VISHUNTER’s classifier
with Strain, the ground truth dataset we used for the measure-
ment study on redirections in Section III-C. The J48 classifier
achieved an average true positive rate of 96.2% at a 0.9% false
positive rate.

We investigated the misclassified cases. The only missed
malicious redirection (false negative) was because a visi-
ble server redirected to two invisible servers with different
IP addresses, which was labeled as a benign advertisement
behavior. For six false positive cases, they all redirected
from a visible server to an invisible server. Two of the
redirections, even though their domains were not detected by
VirusTotal, included IP addresses labeled as malicious. For the
redirection deal4u.in → rggg.net, the invisible server
is now visible and for sale. The redirection eoaclk.com
→ paragonhondaoffers.com presented an interesting
case. paragonhondaoffers.com was the website of a
car company who blocked search engines’ crawlers. This was
not usual because car dealers would want to promote their
offers. We further checked its Whois information and found
that the domain was registered by a third party company that

provided marketing services. The remaining two false positive
redirections were essentially between the partner websites
that provided similar products. This could be addressed by
calculating topic similarity of two websites.

We further evaluated VISHUNTER with 6 months enterprise
traffic and the public malware traces. Table VII presents the
number of malicious entrances VISHUNTER detected. To get
the ground truth of those detected entrances, we checked
the invisible servers in the entrances against VirusTotal. If
at least two anti-virus softwares detected an invisible server
as malicious, we believed that the corresponding entrance
was malicious, and marked it as “confirmed”. If only one
anti-virus software detected it as malicious, we marked the
corresponding entrance as “suspicious”. If a domain was
expired, we marked it as “expired”. For all the remaining
servers, we manually verified them. If a server was reported
by other resources (security blogs, analysis reports, and etc) as
malicious, we marked the corresponding entrance as “manual”;
otherwise, it was considered to be a false positive.

TABLE VII
MALICIOUS ENTRANCE DETECTION RESULTS

VISHUNTER
2013 2014 13-14

Jul Aug Sep Oct Nov Dec Malware
59 26 36 41 34 69 135

Confirmed 34 11 15 21 12 27 135
Suspicious 9 1 6 6 8 17 0

Manual 0 1 2 1 7 3 0
Expired 9 8 4 2 0 0 0

False Positive 7 5 9 11 7 22 0
False Negative N/A N/A N/A N/A N/A N/A 24

Note that the false positives here were not
always benign entrances. Some of them did have
suspicious behaviors. For example, the redirection
???ssdns.com/wp-content/favicon1.png →
???cloudproxy.com/2devnulltracker, was
suspicious as it was from an image file favico1.png
to a proxy server. However, since we were unable to
procure an evidence to confirm its maliciousness, we
conservatively labeled it as a false positive. Some other
false positives were due to CDNs. For example, for
the entrance nv.ahcdn.com/axx/598132.flv →
88.208.57.3/bxx/598132.flv, the two servers shared
similar path patterns and the same filename. However, since
our CDN-related features required that two servers shared
the same URI, VISHUNTER detected the entrance as a false
positive. For the remaining false positives, we found that
they were the entrances to benign partner web servers. One
complementary feature to eliminate these false positives is to
check topic similarity of the two servers.

We also note that VISHUNTER was capable of detecting
new malicious invisible servers that were missed by VirusTo-
tal, even though one would expect that for data from 2013,
which were more than 2 year old, VirusTotal would have
already captured the most, if not all, malicious servers. In fact,
for the recent data from 2014, we have successfully submitted
several new malicious cases to VirusTotal. Therefore, we
believe that VISHUNTER, as a behavior-based approach, is
complementary to the widely used blacklisting and signature-
based methods (e.g., IDS), and has a potential to detect



targeted/stealthy attacks that elude public blacklists.
For the online malware traffic traces, VISHUNTER detected

84.9% of all malicious entrances. The missed cases were
mainly the visible servers redirecting to multiple invisible
servers with completely different IP addresses. Further in-
vestigation showed that this was because we aggregated all
the redirections over one and half year together. For a shorter
period of time, e.g. 1 month, the compromised servers or the
public proxy servers abused by attackers only redirected to a
limited number of invisible malicious servers.

For those confirmed malicious servers, we further extracted
the earliest timestamp when they were detected by VirusTotal
and compared it against our detection time. Figure 4 shows
the CDF of the detection time difference distribution. We can
see that when VISHUNTER detected those malicious servers,
around 50% of them were still not detected by VirusTotal.

Fig. 4. Detection time difference distribution

E. Comparison with Existing Work

Unlike VISHUNTER, existing work on malicious redirection
detection either target on specific attack channels or require
a large and diverse user base, which limits their practicality.
In this section, we quantitatively compare VISHUNTER with
existing work SURF [22], and defer the qualitative discussion
of the differences between VISHUNTER and other existing
systems such as SpiderWeb [28] in Section VII.

SURF makes use of 9 features to detect malicious servers
involved in a search poisoning attack. Three of them belong
to poisoning resistance, which are only applicable for a search
poisoning attack. Besides these attack-specific features, there
remain six features. Since all the redirections in VISHUNTER
from visible servers to invisible servers are already cross-
site redirections, we ignore “total redirections hops” and
“cross-site redirections hops”. In fact, as discussed, these two
features could be easily manipulated by attackers who have a
control over the compromised and/or malicious servers. Since
the information about “page to load/render errors” was not
available in our dataset, we implemented a classifier based on
the remaining three features for comparison.

Unfortunately, SURF missed all the malicious redirections
because most benign and malicious cases shared similar fea-
tures. 72.47% of benign redirections had different locations,
and 39.97% benign redirections also redirected from domain
names to IP addresses. Moreover, none of malicious redi-
rections used cloaking techniques. We acknowledge that our
comparison might not be comprehensive enough to draw a
solid conclusion partially due to the fact that we were not able
to completely reproduce SURF’s classifier, and the main goal

of SURF was to detect a search poisoning attack rather than
general malicious redirections. Nevertheless, it is worth to note
that redirection features alone are subject to circumvention by
attackers, and leveraging visibility as a complementary feature
allows VISHUNTER to achieve better detection accuracy and
to be more robust against manipulation.

VI. DISCUSSION

Overhead: The most significant overhead in VISHUNTER is
the visibility checking on the search engines. However, as
shown in Section V-B, visibility of servers are not changed
frequently. In other words, we do not need to check the
visibility of all the servers everyday.
Limitation: For some visible malicious servers hosted on
compromised servers, VISHUNTER may not guarantee to
detect them. However, since those visible malicious servers are
indexed by search engines, they become good targets for ex-
isting work, such as EvilSeed [15] and PoisonAmplifier [33],
which explore the shared patterns among the malicious servers
and use search engines to find them.
Evasion: An attacker who gains the knowledge of
VISHUNTER may attempt to circumvent it by either manip-
ulating the visibility of malicious servers or misleading the
VISHUNTER classifier.

To manipulate the visibility of malicious servers, attackers
can make their malicious domains to be public leading to
malicious redirection from visible servers to visible servers,
which will be filtered by VISHUNTER. One way to promote
malicious domains to be public is to inject them into other
compromised servers. However, this will make them easily
to be detected by the administrators of those compromised
servers. In addition, researchers can easily find all of the
compromised servers by searching the malicious domain in
search engines. In addition, if cyber criminals directly submit
their domains to search engines, such malicious servers will
not link with other benign servers. Therefore, we can use
other features such as the number of search results, to assign
some weights to the server visibility. Malicious servers will
be visible with less weights.

To mislead the classifier, as discussed in Section IV-B, those
features can not be easily evaded by attackers without causing
a significant amount of cost. Therefore, even some adversaries
may still find ways to bypass VISHUNTER, the resource
constraints would limit the effectiveness of the adversaries’
campaigns or raise higher cost for them.

VII. RELATED WORK

Studies on Malicious Web Infrastructures. Most of ex-
isting research on malicious web infrastructure study only
focused on specific attack channels associated with malicious
web infrastructures. Anderson et al. [8] studied the Internet
infrastructure used to host and support scams in terms of its
lifetime, stability, and so on. Li et al. [21] focused on malicious
web advertising, and built a system to inspect advertisement
delivery processes to detect malicious advertising activities.
Zhang et al. [31] studied the infrastructure of comment spam



and built a detection system based on the spamming behavior.
Recently, Li et al. [20] conducted a study on general malicious
web infrastructures based on the redirection topology, and
detected 12 times more malicious servers. However, their
system required initial malicious seeds for bootstrapping and
was not applicable to detect single malicious redirection.
Zhang et al. [32] detected malicious infrastructure by grouping
closely related servers from different perspectives, however, it
required multiple infections and malicious servers involved in.

Studies on Malicious Redirections. Leontiadis et al. [18]
conducted the first measurement study on a search poisoning
attack and found that some high-ranking websites were com-
promised to dynamically redirect users to online pharmacies.
Later, Lu et al.[22] detected malicious redirection chains in
a search poisoning attack using a group of features (e.g.,
poisoning resistance) specific to search poisoning activities.
Lee et al. [17] identified malicious redirections on Twitter
using the tweet features, such as appearing frequencies and
the correlation of redirection chains in tweets. Wang et al.
[29] proposed an approach to indirectly detect malicious redi-
rections based on the cloaking techniques used by attackers.
More similar to our work is that of Stringhini et al. [28] which
detected general malicious servers using the features extracted
from interactions between a crowd of web users’ browsers with
websites. However, an immediate limitation of the system is
its requirements for a large and diverse user base which may
limit its applicability in practice. VISHUNTER differs from the
previous work in that we designed 12 features (8 of them are
newly proposed) from visibility perspective to characterize the
differences between benign and malicious redirections, which
are more robust against manipulation.

VIII. CONCLUSION

In this paper, we conducted the first visibility study of mali-
cious web infrastructures. Our measurement study showed that
most core malicious servers in malicious web infrastructure
are not visible to benign users, and there exist significant dif-
ferences between benign and malicious entrances to invisible
web infrastructures. Leveraging our new findings, we designed
a lightweight yet effective system, VISHUNTER, to detect
the entrances to malicious web infrastructures. We believe
that VISHUNTER greatly complements the previous work on
detecting malicious web infrastructures in that VISHUNTER
leverages several new features that are harder to be evaded. In
the future, we will study the redirections from invisible servers
to invisible servers to find more malicious servers under the
malicious infrastructure.

IX. ACKNOWLEDGMENTS

This material is based upon work supported in part by the
the National Science Foundation (NSF) under Grant no. CNS-
1314823, CNS-1218929, and CNS-0954096, and the Air Force
Office of Scientific Research (AFOSR) under Grant No. FA-
9550-13-1-0077. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of NSF and
AFOSR.

REFERENCES
[1] Alexa Internet. http://www.alexa.com/.
[2] DNS-BH-Malware Domain Blocklist. http://www.malwaredomains.com/.
[3] Easylist. https://easylist.adblockplus.org/en/.
[4] Malware domain list. http://www.malwaredomainlist.com/.
[5] Malware traffic analysis. http://malware-traffic-analysis.net/.
[6] TLD List. https://wiki.mozilla.org/TLD List.
[7] Websense 2013 threat report. http://www.websense.com/assets/reports/websense-

2013-threat-report.pdf.
[8] D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker. Spamscatter: charac-

terizing internet scam hosting infrastructure. In USENIX Security Symposium’07,
2007.

[9] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and
D. Dagon. From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based
Malware. In USENIX Security Symposium’12, 2012.

[10] M. Antonakakis, P. R, W. Lee, N. Vasiloglou, and D. Dagon. Detecting malware
domains at the upper DNS hierarchy. In USENIX Security Symposium’11, 2011.

[11] K. Borgolte, C. Kruegel, and G. Vigna. Delta: automatic identification of unknown
web-based infection campaigns. In CCS, 2013.

[12] M. Cova, C. Kruegel, and G. Vigna. Detection and Analysis of Drive-by-Download
Attacks and Malicious JavaScript Code. In WWW’10, 2010.

[13] G. De Maio, A. Kapravelos, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. PExy:
The Other Side of Exploit Kits. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, 2014.

[14] C. Hsu, C. Huang, and K. Chen. Fast-flux bot detection in real time. In RAID’10,
2010.

[15] L. Invernizzi, S. Benvenuti, P. Comparetti, M. Cova, C. Kruegel, and G. Vigna.
EVILSEED: A Guided Approach to Finding Malicious Web Pages. In IEEE
Symposium on Security and Privacy (Oakland’12), 2012.

[16] M. Konte, N. Feamster, and J. Jung. Fast flux service networks: Dynamics and
roles in hosting online scams. Retrieved August, 13:2011, 2008.

[17] S. Lee and J. Kim. WarningBird: Detecting suspicious URLs in Twitter stream. In
NDSS’12, 2012.

[18] N. Leontiadis, T. Moore, and N. Christin. Measuring and Analyzing Search-
Redirection Attacks in the Illicit Online Prescription Drug Trade. In USENIX
Security Symposium’11, 2011.

[19] Z. Li, S. Alrwais, X. Wang, and E. Alowaisheq. Hunting the Red Fox Online: Un-
derstanding and Detection of Mass Redirect-Script Injections. In IEEE Symposium
on Security and Privacy, 2014.

[20] Z. Li, S. Alrwais, Y. Xie, F. Yu, and X. Wang. Finding the Linchpins of the Dark
Web: a Study on Topologically Dedicated Hosts on Malicious Web Infrastructures.
In IEEE Symposium on Security and Privacy (Oakland’13), 2013.

[21] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing your enemy: understanding
and detecting malicious web advertising. In CCS’12, 2012.

[22] L. Lu, R. Perdisci, and W. Lee. SURF: Detecting and Measuring Search Poisoning.
In CCS’11, 2011.

[23] N. Nikiforakis, F. Maggi, G. Stringhini, M. Z. Rafique, W. Joosen, C. Kruegel,
F. Piessens, G. Vigna, and S. Zanero. Stranger danger: exploring the ecosystem of
ad-based URL shortening services. In WWW, 2014.

[24] R. Perdisci, I. Corona, and G. Giacinto. Early Detection of Malicious Flux
Networks via Large-Scale Passive DNS Traffic Analysis. In IEEE Transactions
on Dependable and Secure Computing, 9(5), Sept.-Oct. 2012, pp. 714-726, 2012.

[25] S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero. Phoenix: DGA-based Botnet
Tracking and Intelligence. In DIMVA’14, 2014.

[26] C. Seifert, I. Welch, and P. Komisarczuk. HoneyC - The Low-Interaction Client
Honeypot. In NZCSRCS’07, 2007.

[27] J. W. Stokes, R. Andersen, C. Seifert, and K. Chellapilla. WebCop: Locating
Neighborhoods of Malware on the Web. In USENIX LEET, 2010.

[28] G. Stringhini, C. Kruegel, and G. V. . Shady Paths: Leveraging Surfing Crowds to
Detect Malicious Web Pages. In 20th ACM Conference on CCS, 2013.

[29] D. Y. Wang, S. Savage, and G. M. Voelker. Cloak and Dagger: Dynamics of Web
Search Cloaking. In CCS’11, 2011.

[30] B. Wu and B. D. Davison. Cloaking and redirection: A preliminary study. In
AIRWeb’05, 2005.

[31] J. Zhang and G. Gu. NeighborWatcher: A Content-Agnostic Comment Spam
Inference System. In NDSS’13, 2013.

[32] J. Zhang, S. Saha, G. Gu, S. Lee, and M. Mellia. Systematic mining of associated
server herds for malware campaign discovery. In ICDCS, 2015.

[33] J. Zhang, C. Yang, Z. Xu, and G. Gu. PoisonAmplifier: A Guided Approach of
Discovering Compromised Websites through Reversing Search Poisoning Attacks.
In RAID’12, 2012.


