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iiiABSTRACTA Randomized Memory Model and Its Applicationsin Distributed Computing. (December 2001)Hyunyoung Lee, B.S., Ewha University;M.S., Ewha University;M.A., Boston UniversityChair of Advisory Committee: Dr. Jennifer L. Welch
Randomization is a powerful tool in the design of algorithms. As summarizedby Motwani and Raghavan, and by Gupta et al., randomized algorithms are oftensimpler and more eÆcient than deterministic algorithms for the same problem. Sim-pler algorithms have the advantages of being easier to analyze and implement. A wellknown example is the factoring problem, for which simple randomized polynomial-time algorithms are widely used, while no corresponding deterministic polynomialtime algorithm is known. Randomized algorithms have a failure probability, whichcan typically be made arbitrarily small and which manifests itself either in the formof incorrect results (Monte Carlo algorithms) or in the form of unbounded runningtime (Las Vegas algorithms).In this dissertation, we propose a shared memory framework for distributed al-gorithms, in which the implementation of the shared memory can be randomized.In particular, read operations of read/write registers can return out-of-date values,and dequeue operations of queues can return out-of-order values with some smallprobability of lost values.We de�ne new conditions, which constrain this error probability, such that inter-



ivesting classes of popular algorithms will work correctly when implemented over suchrandomized data structures. At the same time, our conditions are suÆciently weak toallow certain kinds of probabilistic replicated systems to implement such memory.It is shown by Malkhi et al. that these replicated systems have very attractiveproperties, such as high scalability, availability and fault tolerance .As we will show, using this random memory model can result in improved load,availability in the face of server crashes, and message complexity, but seems to requirea special style of programming.We consider two interesting classes of algorithms as applications for our random-ized data structures: a class of iterative algorithms in the framework of �Uresin andDubois as an application for random registers and a class of randomized optimiza-tion algorithms by Aldous and Vazirani for random queues. Furthermore, we explorean application of our randomized data structures to mobile computing where a mo-bile computing entity can rely on some partial or out-of-date data to recon�gure itscomputing environment in response to physical movement.
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1CHAPTER IINTRODUCTIONA. OverviewRandomization is a powerful tool in the design of algorithms. As summarized in[31, 16], randomized algorithms are often simpler and more eÆcient than determinis-tic algorithms for the same problem. Simpler algorithms have the advantages of beingeasier to analyze and implement. A well known example is the factoring problem,for which simple randomized polynomial-time algorithms are widely used, while nocorresponding deterministic polynomial time algorithm is known. Randomized algo-rithms have a failure probability, which can typically be made arbitrarily small andwhich manifests itself either in the form of incorrect results (Monte Carlo algorithms)or in the form of unbounded running time (Las Vegas algorithms).In this dissertation, we de�ne a shared memory framework for distributed algo-rithms, in which the implementation of the shared memory can be randomized. Inparticular, read operations of read/write registers can return out-of-date values, anddequeue operations of queues can return out-of-order values with some small proba-bility of lost values. We de�ne new conditions, which constrain this error probability,such that interesting classes of popular algorithms will work correctly when imple-mented over our randomized data structures. At the same time, our conditions aresuÆciently weak to allow certain kinds of probabilistic replicated systems to imple-ment such memory. These replicated systems have very attractive properties, such ashigh scalability, availability and fault tolerance [30].Our focus is to show that randomization may provide a more eÆcient way toThe journal model is IEEE Transactions on Computers.



2implement distributed shared memory, not to show that using randomized distributedshared memory is more eÆcient than message passing. Evidence of advantages ofusing the shared memory abstraction instead of message passing is the volume ofwork in the area of distributed shared memory systems (cf. Chap 9 of [7] for anoverview).The main problem in replicated systems is to maintain consistency among thereplicas. Quorum systems try to maintain consistency by de�ning collections of sub-sets of replicas (quorums) and having each operation select and access one quorumfrom the collection. Traditional, or strict, quorum systems require all quorums inthe collection to intersect pairwise. Malkhi et al. [30] introduce the notion of aprobabilistic quorum system, in which pairs of quorums only need to intersect withhigh probability. Malkhi et al. show that this relaxation leads to signi�cant perfor-mance improvements in the load of the busiest replica server and the availability ofthe quorum system in the face of replica server crashes. We show that our de�ni-tion of randomized memory model captures similar properties, by accommodatingthe probabilistic quorum system as one possible implementation.As we will show, using this random memory model can result in improved load,availability in the face of server crashes, and message complexity, but seems to re-quire a special style of programming. Apparently there is a tradeo� between ease ofprogramming and performance, when randomized data structures are used. These re-sults are somewhat analogous to the situation with \weak", or \hybrid", consistencyconditions, which can be implemented quite eÆciently but require the applicationprograms to be data-race-free [1, 5].To the best of our knowledge, little existing work has focused on de�ning thesemantics of distributed data structures that sometimes return incorrect values, or ontrying to characterize classes of applications that can tolerate such data structures.



3We consider two interesting classes of algorithms as applications for our random-ized data structures: a class of iterative convergent algorithms in the framework of�Uresin and Dubois [38] as an application for random registers and a class of random-ized optimization algorithms by Aldous and Vazirani [4] for random queues.Furthermore, we explore an application of our randomized data structures tomobile computing where a mobile computing entity can rely on some partial or out-of-date data to recon�gure its computing environment in response to physical movement.B. ContentsThe dissertation is organized as follows:Chapter II presents our work on a random register. We de�ne a random read-write register that sometimes returns out-of-date values, show that the de�nition isimplemented by the probabilistic quorum algorithm of Malkhi et al. [30, 29], showhow to program with such registers using the framework of �Uresin and Dubois [38],and discuss the consequences in terms of convergence time and message complexity.The material in this chapter appears in the Proceedings of the 21st IEEE Interna-tional Conference on Distributed Computing Systems (ICDCS) [25]. An earlier ver-sion appears in the Proceedings of 19th ACM Symposium on Principles of DistributedComputing (PODC) [24].Chapter III discusses our work on a random queue. We present a speci�cationof a randomized shared queue that can lose some elements or return them out oforder, show that the speci�cation can be implemented with the probabilistic quorumalgorithm of [30, 29], and analyze the behavior of this implementation. Distributedalgorithms that incorporate the producer-consumer style of interprocess communica-tion are candidate applications for using random shared queues in lieu of the message



4queues. The behavior of an application { a class of combinatorial optimization algo-rithms { when it is implemented using random queues is analyzed. The material inthis chapter appears in the Proceedings of the 12th International Symposium on Algo-rithms and Computation (ISAAC) [27]. An earlier version appears in the Proceedingsof 20th ACM Symposium on Principles of Distributed Computing (PODC) [26].Chapter IV applies the randomized data structures to mobile computing. Weabstract the information dissemination problem for mobility management in mobile adhoc networks (MANETs) as distributed shared variables. We apply a variation of theprobabilistic quorum algorithm by Malkhi et al. to implement the shared informationdatabase, and compare the probabilistic quorum based implementation with the strictquorum based implementations of [20] by way of simulations. Chapter IV exploresexperimentally a variation of the random register of Chapter II for MANETs. Thesimilarities are:� The interface is same, that is, the interface of query (resp., update) is the sameas that of read (resp., write). Query and update are used for historical reasonsto be consistent with prior work.� Values returned were previously written.The di�erences are that the liveness properties, termination and the probabilityof reading stale values, depend on mobility patterns. An open question is how tospecify and characterize mobility patterns that allow precise statements of liveness.Chapter IV shows simulation results that could support such formal development.Chapter V concludes the dissertation with a discussion of further research.



5CHAPTER IIAPPLICATIONS OF PROBABILISTIC QUORUMS TO ITERATIVEALGORITHMSA. IntroductionIn this chapter, we propose a formal de�nition of a random read-write register. Theconsistency condition provided by our de�nition is a probabilistic variation on theconcept of regularity from Lamport's paper [23].We show that our de�nition of a random register can be implemented by theprobabilistic quorum algorithm of [30, 29], which has several advantageous propertiessuch that the load on the busiest replica server is limited and the availability in theface of server crashes is high.Next we show how registers satisfying our de�nition can be used to program iter-ative algorithms in the framework presented by �Uresin and Dubois [38]. The implica-tion is that we can use existing iterative algorithms for a signi�cant class of problems(including solving systems of linear equations, �nding shortest paths, constraint sat-isfaction, and transitive closure) in a system in which the shared data is implementedwith registers satisfying our condition, and be assured that the algorithms will con-verge with high probability. Furthermore, algorithms in the framework will inheritany positive attributes concerning load and availability from the underlying registerimplementation.Then we show how a reasonable, and easily implemented, modi�cation of ouroriginal de�nition can be analyzed to prove expected convergence time in the itera-tive framework. Simulation results show that there is a signi�cant bene�t from themodi�ed de�nition in that iterative algorithms converge faster.



6Finally, we prove that the use of random registers can lead to a signi�cant re-duction in message complexity compared to strict systems in at least one importantsituation.Section B describes related work. In Section C, we present our system modeland de�nition of a random register. Section D shows that the probabilistic quorumalgorithm of [30, 29] implements our de�nition. Section E reviews the frameworkfor the iterative algorithms from [38], and shows how those conditions are satis�edby our de�nition of random registers. In Section F, we describe a variation of ourde�nition, show its expected convergence behavior, and identify situations in whichit has superior message complexity. Section G presents our simulation results.B. Related WorkA number of consistency conditions for shared memory have been proposed over theyears, including safety, regularity and atomicity [22, 23], sequential consistency [21],linearizability [18], causal consistency [3] and hybrid consistency [6]. These de�nitionshave all been deterministic with little or no regard to possible errors.Afek et al. [2] and Jayanti et al. [19] have studied a shared memory model inwhich a �xed set of the shared objects might return incorrect values, while the othersnever do. This model di�ers from the one we are proposing, where every object hassome (small) probability of returning an incorrect value.If the type of error caused by a randomized implementation is that there issome (small) probability of not terminating instead of producing a wrong answer, thediÆculty in specifying the shared object is lessened, since any values returned willsatisfy the deterministic speci�cation. Examples of this situation include [37, 36, 15],discussed below.



7Randomized implementations have been proposed for several shared data struc-tures in various architectures, as we now discuss.Malkhi et al. [30, 29] have proposed a probabilistic quorum algorithm to imple-ment a read-write variable over a message passing system. Each read is translatedinto messages to a subset (\quorum") of the replicated servers to obtain the latestvalue, and each write is translated into messages to a quorum of the replicated serversto store the latest value. Each quorum is chosen randomly so that with high proba-bility the quorums overlap suÆciently for a read to obtain the latest value written.The smaller the quorums, the more eÆcient the algorithm is, but the larger the prob-ability that a read will observe an out-of-date value. Probabilistic quorums seem likea useful distributed building block, thanks to their good performance (analyzed in[30] and reviewed in Section 4). However, to make probabilistic quorums usable byprogrammers, a more complete semantics of the register which they implement mustbe given, together with techniques for programming e�ectively with them.Shavit and Zemach have implemented novel randomized synchronization mech-anisms called combining funnels [37] and di�racting trees [36] over simpler sharedobjects. In these algorithms, the e�ect of randomization is on the performance;wrong answers are never returned.Czumaj et al. [15] have implemented PRAM models over a recon�gurable mesh,using randomization to resolve con
icting accesses that occur at the same time stepquickly with high probability. Again, wrong answers are never returned. Malkhi etal. [30] reference two other PRAM simulations that use randomized data structures.In this chapter, we show that one class of iterative convergent algorithms canhandle infrequent out-of-date values. The �rst analysis of the convergence of iterativefunctions when the input data can be out of date was by Chazan and Miranker[12]. Subsequently a number of authors re�ned this work (cf. Chapter 7 of [8] for an



8overview). �Uresin and Dubois [38] give a general necessary and suÆcient condition onthe function for convergence. Essentially the same convergence theorem is presentedin Chapter 6 of [8]. This class of functions includes solutions to many practicalapplications, including solving systems of linear equations, �nding shortest paths,and network 
ow [8]. The convergence rates of iterative algorithms have been studiedin [8, 39]; the emphasis in these papers is on comparing the rate with out-of-date datato the rate with current data, under various scheduling and timing assumptions.C. Specifying a Random RegisterWe are interested in randomized distributed algorithms that implement a shared read-write register. Our �rst task is to specify the behavior of such a register. Although theparticular implementation to be discussed in this chapter is a message-passing one,we would like the speci�cation to be implementation-independent, so that it couldapply to any kind of implementation.1. A Read-Write RegisterA read-write register X shared by several processes supports two operations, readand write. Each operation has an invocation and a response. Readi(X) is theinvocation by process i of a read, Writei(X; v) is the invocation by i of a write of thevalue v, Returni(X; v) is the response to i's read invocation which returns the valuev, and Acki(X) is the response to i's write invocation. We will focus on multi-reader,single-writer registers; thus, the read can be invoked by all the processes while thewrite can be invoked only by one process.A register allows sequences of invocations and responses that satisfy certain con-ditions, including the following: (1) the �rst item in the sequence is an invocation,



9(2) each invocation has a matching response, and (3) no process has more than onepending operation at a time.In addition, the values returned by the read operations must satisfy some kind ofconsistency condition. Below we will present a randomized version of the consis-tency condition known as regularity. A register is regular if every read returns thevalue written either by an overlapping write or by the most recent write that precedesthe start of the read [23].De�ning a probabilistic consistency condition requires specifying a probabilityspace. We do so in the next few subsections.2. Processes and Their StepsA process is a (possibly in�nite) state machine which has access to a random numbergenerator. A process models the software at each node that implements the randomregister layer; it communicates with the shared memory application program aboveit and with some interprocess communication system below it. The process has adistinguished state called the initial state.We assume a system consisting of a collection of p processes.There is some set of triggers that can take place in the system. Triggers consistof operation invocations as well as system-dependent events (for example, the receiptof a message in a message-passing system). The occurrence of a trigger at a processcauses the process to take a step. During the step, the process applies its transitionfunction to its current state, the particular trigger, and a random number to generatea new state and some outputs. The outputs can include (at most) one operationresponse as well as some system-dependent events (for example, message sends in amessage-passing system). A step is completely described by the current state, thetrigger, the random number, the new state, and the set of outputs.



103. Adversaries and ExecutionsNo matter what the details of the implementation system, there will be three potentialsources of nondeterminism, from the viewpoint of the register implementation:1. the sequences of random numbers available to the processes (due to the randomnumber generators)2. the sequences in which operation invocations are made on the processes (due tothe application program that is using the shared register layer)3. uncertainties in the communication system used by the processes (for instance,variability in message delays for a message passing implementation, or variabil-ity in the response time for a shared memory implementation)In order to facilitate the speci�cation of probabilistic consistency conditions (aswell as the analysis of randomized algorithms), we will abstract the last two sourcesof nondeterminism into a construct called an \adversary."Formally, an adversary is a partial function from the set of all sequences of stepsto the set of triggers. That is, given a sequence of steps that have occurred so far, theadversary determines what trigger will happen next. Note that the adversary cannotin
uence what random number is received in the next step, only the trigger. Letrand be the set of all p-tuples of the form hR1; : : : ; Rpi where each Ri is an in�nitesequence of integers in f0; : : : ; Dg. D indicates the range of the random numbers. Ridescribes the sequence of random numbers available to process i in an execution |Rij is the random number available at step j. Call each element in rand a randomtuple.Given an adversary A and a random tuple R = hR1; : : : ; Rpi, de�ne an execu-tion exec(A;R) to be the sequence of steps �1�2 : : : such that



11� the current state in the �rst step of each process i is i's initial state;� the current state in the j-th step of process i is the same as the new state inthe (j � 1)-st step of i, for all processes i and all j > 1;� the trigger in �j equals A(�1 : : : �j�1), for all j � 1 (the trigger is chosen by theadversary);� the random number in �j equals Rij, where i is the process in �j's trigger (therandom number comes from R, not the adversary).If the adversary can generate arbitrary triggers, then it will be very diÆcult, ifnot impossible, to achieve anything sensible. Thus we put the following restrictionson the adversary:� The sequence of operation invocations at each process is consistent with theapplication layer above. That is, the operation invocations re
ect the sharedmemory accesses that the application wants to make. We assume that theapplication never has more than one operation pending per process at a time.More formally, for each �nite sequence of steps e, A(e) is an invocation forprocess i only if a response by i follows the latest preceding invocation for i ine.� Any conditions imposed by the nature of the underlying interprocess commu-nication medium are respected. (For example, a message is received only if itwas previously sent.)An execution e is complete if it is either in�nite and no application process isstarved or, in the case it is �nite, A(e) is unde�ned. This means that there is nothingfurther to do | the application is through making calls on the shared variables andno further action is required by the interprocess communication layer.
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W1 (a) W2 (b) W3 (c) W4 (b) W5 (c) W6 (c)

R

Fig. 1. Diagram for De�nition of Reads From4. A Random RegisterGiven an execution e, a read operation R in e is said to read from write operationW in e if (1)W begins before R ends, (2) the value returned by R is the same as thatwritten by W , and (3) W is the latest write satisfying the previous two conditions.Consider the example in Figure 1. If R returns a, then it is de�ned to read from W1;if it returns b, then it is de�ned to read fromW4; and if it returns c, then it is de�nedto read from W6.1A system is said to implement a random register if, for every adversary A,[R1] every operation invocation in every complete execution (of the adversary) hasa matching response,[R2] every read in every complete execution (of the adversary) reads from some write,and[R3] for every �nite execution e (of the adversary) such that A(e) is a write invo-cation, the probability that this write is read from in�nitely often is 0, if anin�nite number of writes are performed in the extension.Notice that this is a kind of \worst-case" probabilistic de�nition as the probabilistic1This de�nition might not capture the \real" write that is read from in a particularimplementation, which might occur earlier. However, this de�nition is suÆcient forproving that eventually each write stops being read from, which is what is requiredin this chapter.



13condition in [R3] must hold for every adversary and every write.To be more explicit about the probability mentioned in condition [R3] of the def-inition, note that e consists of a �nite number of steps, say m. Thus e = exec(A;Rm),where Rm is the \pre�x" of some random tuple R in which each component of Rmis the m-length pre�x of the corresponding component of R. Let S be the set ofall executions of the form exec(A;R0), where each R0 is an (in�nite) extension ofRm, i.e., each of these executions is a possible future for e, for the given adversary.The subset of S consisting of all executions with an in�nite number of writes is ourprobability space.Condition [R2] is where \errors" can creep in, as compared to the more restrictiveset of writes that can be read from in the original de�nition of regularity. However,[R3] limits these errors.D. Implementing a Random Register with Probabilistic QuorumsIn this section, we show that the probabilistic quorum algorithm presented by Malkhiet al. [30, 29] implements a random register. For simplicity, we �rst assume anasynchronous reliable message passing environment and no process failure.The following specializations are needed to the general model given in SectionC: Triggers include receiving a message from a process. Outputs include sendinga message to a process. Constraints on the adversary include: every message sentis eventually received, and every message received was previously sent but not yetdelivered.The algorithm uses the notion of a quorum, which is a subset of the set of allreplicas, of size k (the quorum size). We have simpli�ed the read-write registeralgorithm from [29] to assume only one writer and absence of failures. The shared



14register X is replicated over n servers. This replicated server system is used by pprocesses through the shared register subsystem associated with each process. Eachserver keeps a local replica of the register to be implemented. A timestamp is asso-ciated with the replica. To perform a read, the shared register subsystem queries aquorum and returns the value with the largest timestamp resulting from the query.To perform a write, the shared register subsystem for the writer causes the replicas ina quorum to be updated with the new value and its new timestamp. Each quorum ischosen randomly with uniform distribution from the set of all possible quorums (allk-subsets of the set of all replicas) [30].Each replica server r uses the following local variables:� valr : holds the value of its replica of the (logical) shared register. Initially valrholds the initial value of the shared register.� tsr : holds the timestamp associated with the value in valr. Initially tsr = 0.The shared register subsystem on each process i uses the following local variables:� rvali : holds the most recent value received from the replica servers in thecurrent quorum.� rtsi : holds the received timestamp associated with the value in rvali.� numrespi : holds the number of responses that i has obtained so far from thecurrent quorum.In addition, the shared register subsystem for the unique writer process w keeps a localvariable wtsw, which holds the timestamp of the last write performed by w. Initially,wtsw = 0. The code for each replica server and each shared register subsystem toperform when each event occurs is presented as Algorithm 1.Theorem II.1 The probabilistic quorum algorithm implements a random register.
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when Readi(X) occurs at process i: // invocation for a Read by process ipick a random quorum Q := fq1; : : : ; qkgrtsi := 0; numrespi := 0send query messages to q1; : : : ; qkwhen a query message is received by replica server r from process i:send a value(valr,tsr) message to iwhen a value(v,t) message is received by process i from replica server r:numrespi++if t > rtsi then rvali := v; rtsi := t endifif numrespi = k then Returni(X; rvali) endif // response for the Readwhen Writew(X; v) occurs at process w: // invocation for a Write by the writer wpick a random quorum Q := fq1; : : : ; qkgwtsw++; numrespw := 0send update(v,wtsw) messages to q1; : : : ; qkwhen an update(v,t) message is received by replica server r from process w:valr := v; tsr := tsend an ack message to wwhen an ack message is received by process w from replica server r:numrespw++if numrespw = k then Ackw(X) endif // response for the WriteFig. 2. Algorithm 1: (Simpli�ed) Probabilistic Quorum Algorithm [30, 29] to Imple-ment Shared Register X
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Proof. Condition [R1] is true since messages are always delivered. Condition [R2]is true by the way the values are stored and exchanged.We now show condition [R3]. Choose any adversary A and any �nite executione of A such that A(e) is a write invocation. Let W be this write. To show that theprobability thatW is read from in�nitely often is 0, we will show that the probabilitythat at least one of the replicas in W 's quorum survives ` subsequent writes goes to0 as ` increases without bound.Let k be the quorum size.Pr[at least one replica from W 's quorum survives ` subsequent writes]� k � Pr[a speci�c replica r from W 's quorum survives ` subsequent writes]= k � Pr[r is not in the quorum of any of the ` subsequent writes]= k � Pr[(r 62 Q1) T (r 62 Q2) T : : : T (r 62 Q`)]where Qi is the quorum of the i-th subsequent write= k � Ỳi=1Pr[r 62 Qi] since quorums are chosen independently= k �  n� kn !` since n� k out of the n replicas are not in a given quorum.
Clearly lim`!1 k � (n�kn )` = 0.To explain the advantages of the probabilistic quorum implementation, we reviewtwo important properties of quorum systems: availability and load.Availability is a measure of fault tolerance. The availability of a quorum systemis the minimum number of servers that must crash to cause at least one member ofevery quorum in the system to fail [34]. To achieve high availability of 
(n), the



17smallest quorum size of the strict quorum system must be �(n). This property issatis�ed by the majority quorum system, in which every quorum has size bn2 c + 1[34].Malkhi et al. [29] proposed handling server failures for strict quorums by contin-uing to access servers until a quorum has responded. However, in an asynchronoussystem with undetectable crash failures, this approach can break the probabilisticproperties of the probabilistic quorum algorithm. Therefore, we assume that we havesome kind of failure detection mechanism2.The load of a quorum system was de�ned in [32] to be the minimal access prob-ability of the busiest server, minimizing over all strategies for choosing the quorums.In [32] it was proved that the load of a strict quorum system with n servers is at leastmax( 1k ; kn), where k is the size of the smallest quorum. Malkhi et al. [30] showed thisresult also holds asymptotically for probabilistic quorum systems. Thus the optimal(smallest) load for both probabilistic and strict systems is achieved when the smallestquorum has size �(pn).Naor and Wool [32] showed that strict quorum systems have a trade-o� betweenavailability and load such that any strict quorum system with optimal load of � � 1pn�has only O (pn) availability. Malkhi et al. [30] showed that using probabilistic quo-rums breaks this trade-o� and achieves simultaneously high availability of �(n) andoptimal load of � � 1pn�.2One mechanism would be to use failure detector to eliminate all faulty servers,and choose quorum at random among all quorums that do not include a faulty server.



18E. Iterative Programs Using Random Registers1. A Framework for Iterative Algorithms�Uresin and Dubois [38] presented a suÆcient condition for the convergence of iterativealgorithms when out-of-date data is sometimes accessed. In this section, we give abrief summary of their framework and point out that random registers satisfy theircondition with probability 1. Thus, the same set of functions that converge in �Uresinand Dubois' model will converge with probability 1 in the random registers model.First, we give some background on �Uresin and Dubois' result. The class ofalgorithms considered are those in which a function is applied repeatedly to a vectorto produce another vector. In typical applications, each vector component may becomputed by a separate process, based on that process' current best estimate ofthe values of all the vector components | estimates which might be out of date.�Uresin and Dubois show that if the function satis�es certain properties and if theoutdatedness of the vector entry estimates is not too extreme, then this iterativeprocedure will eventually converge to the �xed point of the function.We use the following notation derived from [38].Let m be the size of the vector to be computed. If x denotes an m-vector, thenxi denotes component i of x. We consider a function F from S to S, where S is theCartesian product of m sets S1; : : : ; Sm.Let change be a function from N (the natural numbers) to 2f1;:::;mg, and let viewi,1 � i � m, be a function from N to N . These functions will be used to producea sequence of updated vectors, as detailed below. The value of change(k) indicateswhich vector components are updated during update k; the value of viewi(k) indicateswhich version of component i is used during update k. We require the change andview functions to satisfy these conditions:



19[A1] viewi(k) < k, for all i and k, implying that the view of a component must alwayscome from the past[A2] each i 2 f1; : : : ; mg occurs in change(k) for in�nitely many values of k, implyingthat each component is updated in�nitely often[A3] for each i 2 f1; : : : ; mg, viewi(k) takes on a particular value for only �nitelymany values of k. This condition restricts the asynchrony by stating that aparticular computed value for a component is used subsequently only �nitelyoften.Given a function F, an initial vector i, and change and view functions, de�ne anupdate sequence of F to be an in�nite sequence of vectors x(0), x(1), x(2); : : : suchthat� x(0) = i,� for each k � 1 and all i, 1 � i � m, xi(k) equals xi(k�1) if i is not in change(k),and equals Fi(x1(view1(k)); : : : ; xm(viewm(k))) if i is in change(k).�Uresin and Dubois show that [A1] through [A3] are equivalent to the followingcondition (which will be used in Section F): there exists an increasing in�nite se-quence of integers '(0) = 0; '(1); '(2); : : :, where updates '(K) through '(K+1)�1comprise pseudocycle K, such that[B1] each component of the vector is updated at least once in each pseudocycle, and[B2] during each update in pseudocycle K � 1, the view of each component i is avalue that was updated in pseudocycle K � 1 or later.Roughly speaking, a pseudocycle comprises at least one update to each vector com-ponent using information that is not too out of date.



20The function F is called an asynchronously contracting operator (ACO) ifthere is a sequence of sets D(0), D(1), D(2), : : :, where D(0) � S, satisfying thefollowing conditions:[C1] For each K, D(K) is the Cartesian product of n sets D1(K); : : : ; Dm(K).[C2] There exists some integer M such that D(K + 1) is a proper subset of D(K)for all K < M , and D(K) contains a particular single vector for all K � M .This single vector is the �xed point of the function.[C3] If x is in D(K), then F(x) is in D(K + 1), for all K.Theorem II.2 [38] If F is an ACO on D(0); D(1); : : :, then every update sequenceof F starting with i 2 D(0) converges to the �xed point of F.Their proof shows that after all the components are updated in the Kth pseudo-cycle the computed vector subsequently is always contained in D(K), and thus thevector converges to the �xed point in at most M pseudocycles.2. Using Random RegistersNow we show that if each vector component in the framework just described is im-plemented with a random register, according to our de�nition from Section C, thenTheorem II.2 is true with probability 1.An asynchronous iteration using random registers corresponds to an executionof the following algorithm. In this algorithm, responsibility for updating the m com-ponents of the vector x is partitioned among the p processes. For each j, 1 � j � m,component j of x, denoted xj, is held in a shared variable Xj, which is a randomregister. Recall that i is the initial vector on which the iterative algorithm is to com-



21
Code for each process i:while true dofor j := 1 to m do xj := read(Xj) // obtain a view of each componenty := F(x1; : : : ; xm) // compute updated vector locallyfor each j such that i is responsible for updating Xj dowrite(Xj; yj) // update j-th componentFig. 3. Algorithm 2: Asynchronous Iteration Using Random Registerspute. Each Xj is initialized to contain the value of component j of i. The code isgiven as Algorithm 2.Theorem II.3 If F is an ACO on D(0); D(1); : : :, then in every complete executionof Algorithm 2 using random registers initialized to a vector in D(0), the computedvector eventually converges to the �xed point of F with probability 1.
Proof. We show that the update sequence extracted from an execution satis�es[A1], [A2] and [A3] with probability 1. Then Theorem II.2 will hold with probability1. Condition [A1] is satis�ed in any execution thanks to part [R2] of the de�nitionof a random register, since the value returned by a read is always a value that waspreviously written. Condition [A2], which says that each vector component is updatedin�nitely often, is really a requirement on the application. This is satis�ed in anycomplete execution produced by an adversary, since the adversary must be consistentwith the application and the application has the necessary in�nite loop. Finally,



22condition [A3] is satis�ed with probability 1, since it is equivalent to part [R3] of thede�nition of a random register.F. Monotone Random RegisterIn this section, we de�ne a variation of a random register that satis�es two additionalproperties.One property is that the values returned by the register are monotone, meaningthat if a read reads from a certain write, then no subsequent read by the same processreads from an earlier write. This requirement should yield performance improvementby avoiding updates which might be wasted on reading more outdated values eventhough a more recent value has already been read in a previous update.The goal of adding this condition was to be able to analyze the expected conver-gence time of an iterative algorithm in the [38] framework. Our approach for doingso required us to make an additional, more technical, requirement on the register, interms of its probabilistic behavior. 1. De�nitionA random register is monotone if it satis�es the following two additional conditionsfor every adversary. The �rst additional condition is that the returned values aremonotone:[R4] In every execution (of the adversary), if read R by process i follows read R0 byprocess i then R does not read from a write that precedes the write from whichR0 reads.The second additional condition is needed in order to bound the convergence timewhen computing an ACO using monotone random registers. Assume the application



23program has an in�nite number of reads. Let Y be a random variable whose value isthe number of reads by a process after a writeW untilW or a later write is read fromby that process. The intuition is that q is the probability of \success" for a read; theprobability that r reads are required is (at most) the probability that r� 1 reads failand then the r-th read succeeds.[R5] There exists q, 0 < q � 1, such that for all r � 1, Pr(Y = r) � (1� q)r�1 � q.The probability space for [R5] is all writes in all complete executions of the adversary.2. ImplementationHere we sketch a monotone probabilistic quorum algorithm: The shared register sub-system for each process keeps track of the largest timestamp, as well as the associatedvalue, that it has returned so far during any read. If the queries to a read quorum allreturn smaller timestamps, then the saved value is returned, otherwise the originalalgorithm is followed.Theorem II.4 The monotone probabilistic quorum algorithm for n replicas with quo-rum size k implements a monotone random register with q = 1� �n�kk �=�nk�.Proof. Condition [R4] is clearly true. The rest of the proof shows that [R5] holds.Choose a particular write W in a particular execution and a particular processi. W or a later write will be read from by i if W is followed by a read whose quorumoverlaps W 's quorum. (There are other scenarios in which i can obtain a value laterthan W , but we do not consider them in this analysis.)The probability of a read R's quorum not overlapping W 's is �n�kk �=�nk�, sincethere are �nk� possible choices for R's quorum and there are �n�kk � choices for quorumsthat do not overlap W 's.



24The probability that Y = r is at most the probability that r � 1 reads havequorums that do not overlap W 's and then the r-th read's quorum does overlap W 's.The latter probability is (1� q)r�1 � q, since quorums are chosen independently.3. Expected Convergence Time for an ACOIn this section we show an upper bound on the expected number of rounds requiredper pseudocycle (cf. Section 1) in the execution of an ACO, if the vector componentsare implemented with a monotone random register.A round is a minimal length (contiguous) subsequence of an execution in whicheach process performs at least one execution of the while loop in Algorithm 2. (Ifthe system is synchronous, meaning that message delays and process step times areconstant, then each round consists of exactly one execution of the while loop by eachprocess.)Theorem II.5 In every execution of Algorithm 2 using monotone random registerswith parameter q, the expected number of rounds per pseudocycle is at most 1q .Proof. Consider any adversary A and any �nite execution e of A that has justcompleted pseudocycle h, for any h � 0. We will calculate how many rounds areneeded on average for pseudocycle h + 1 to complete. (Pseudocycle 0 needs just oneround since there are no values earlier than the initial values.)Condition [B1] in the de�nition of pseudocycle implies that at least one round isneeded.Condition [B2] implies that for all Xj and all processes i, i must read from awrite that is, or follows, the �rst write to Xj in pseudocycle h, before pseudocycleh+1 can end. Once this read occurs, by [R4] all subsequent reads by process i of Xj



25will be at least as recent.The required number of rounds is at most the random variable Y , as de�ned for[R5] in Section 1.EY = 1Xr=1 r � Pr[Y = r] by de�nition of expectation� 1Xr=1 r � (1� q)r�1 � q by [R5]= 1q by algebra.
Corollary II.6 Let F be an ACO that converges in M pseudocycles. The expectednumber of rounds taken by any complete execution of Algorithm 2 using monotonerandom registers with parameter q is at most M=q.We now provide an upper bound on the value of 1=q for the monotone proba-bilistic quorum algorithm with n replicas and quorum size k. Proposition 3.2 in [30]implies that �n�kk �=�nk� � (n�kn )k. Thus we have:Corollary II.7 For the monotone probabilistic quorum algorithm, the expected num-ber of rounds per pseudocycle is at most 11�(n�kn )k .4. Expected Message Complexity for an ACOIn this section, we compare the expected message complexity per pseudocycle whenexecuting an ACO for two implementation strategies of the vector components. Oneimplementation strategy is the monotone probabilistic quorum algorithm. The otherstrategy consists of strict quorum systems, in which all quorums overlap. We showthat although the number of rounds required for convergence is greater for the prob-abilistic case, there are some important situations in which the message complexity



26is smaller. To ease the comparison, we consider synchronous systems, in which eachprocess performs exactly one iteration of the loop in Algorithm 2 per round.Let Mprob(k) be the expected number of messages sent per pseudocycle with themonotone probabilistic quorum implementation, and Mstr(k) be that with a strictquorum implementation, where the parameter k indicates the size of the quorums.Inspecting the code shows that the total number of messages sent per round is 2pmk+2mk. Each of the p processes reads each of the m vector components once, and eachof the m vector components is written once. Each operation takes 2k messages. ThenMprob(k) = 2cnm(p+ 1)k (2.1)where cn is the expected number of rounds per pseudocycle. AndMstr(k) = 2m(p+ 1)k (2.2)since a strict quorum system uses one round per pseudocycle.We will compare the expected message complexity of the two strategies in twoextreme situations: quorum systems with high availability, and those with optimalload. (See Section D for de�nitions.)We �rst consider quorum systems with high availability of 
(n). For the proba-bilistic case, we set k = �(pn), which ensures high probability of intersection betweenread and write quorums and also gives 
(n) availability [30]. Plugging into Eqn. 1gives Mprob = � �2cnm(p + 1)pn� = � �mppn� (2.3)since 1 < cn < 2 for all n when the quorum size is pn (cf. Corollary II.7).For the strict case, 
(n) availability is only achieved when every quorum has size



27bn2 c+ 1. Setting k = bn2 c+ 1 in Eqn. 2 gives,Mstr = 2m(p + 1)��n2 �+ 1� = �(mpn)which is asymptotically larger than Mprob for any value of p.Now we consider quorum systems that have optimal load. For the probabilisticcase, again we set k = �(pn), which also gives optimal load. Then Mprob is the sameas Eqn. 3. There exist strict quorum systems in which a priori sets of servers formthe quorums (e.g., �nite projective planes [28], a grid construction [13], etc.). Someof these systems have k = �(pn), and Mstr = �(mppn), which yields the samemessage complexity as the probabilistic case. However, it trades o� with much loweravailability.G. Simulation Results for Expected Convergence TimeWe have simulated systems of non-monotone and monotone random registers im-plemented using the algorithms from Sections D and 2 with a speci�c ACO. Thesimulation results shed some light on the following issues:1. how much of an over-estimate is the upper bound derived in Corollary II.7 onthe expected number of rounds per pseudocycle for the monotone case,2. what is the convergence behavior in the original, non-monotone, case, and3. what is the di�erence between the synchronous and asynchronous cases.We took as our example application an all-pairs-shortest-path (APSP) algorithmpresented in [38] and shown there to be an ACO. The vector x to be computed istwo-dimensional, n by n, where n is the number of vertices in the graph. Initiallyeach xij contains the weight of the edge from vertex i to vertex j (if it exists), is 0 if



28i = j, and is in�nity otherwise. The function F applied to x computes a new vectorwhose (i; j) entry is min1�k�nfxik + xkjg:There are p = n processes, and process i is responsible for updating the i-th row vectorof x, 1 � i � n. The worst-case number of pseudocycles required for convergence ofF is dlog2 de, where d is the length of the longest simple path in the input graph.The sample input for our experiments is a directed graph on 34 vertices that is achain, with vertex 1 the sink and vertex 34 the source. Each edge has weight 1. Forthis graph, dlog2 33e = 6 pseudocycles are required for convergence. We chose thischain graph as our test input, because it has the largest d among all connected graphswith the given number of vertices. This results in a larger number of pseudocyclesand, thus, increased signi�cance of our measurements. We limited the graph size inorder to keep the running time of our simulator reasonable.We simulated the execution of this APSP application over random registers,implemented with both the monotone and original probabilistic quorum algorithmusing 34 replicas, over a range of quorum sizes, from 1 to 18. Once the quorum size isat least 18, all quorums overlap, so every read gets the value of the latest write, andthe randomization in the quorum choice has no e�ect. We simulated both synchronousand asynchronous systems. The message delays in the synchronous system are all thesame, whereas those in the asynchronous system are exponentially distributed.We measured the number of rounds until every process computes the APSPof given input graph. A round �nishes when every process completes at least oneiteration of the while loop in Algorithm 2. Thus in the synchronous execution, around consists of every process completing exactly one iteration of the while loop,whereas in the asynchronous execution, processes can complete various numbers of
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Fig. 4. Calculated Upper Bound and Simulation Results: Quorum Size vs. Rounds toConvergeiterations of the while loop until one round is �nished. At the end of each iteration ofthe while loop, the simulation compares each process's local copy of the row for whichthat process is responsible, against the precomputed correct answer for that row. Thesimulation completes when each comparison is equal. (Cf. [8, 39] for discussions ofthe issues involved in detecting termination for iterative algorithms.)The upper bounds on the expected number of rounds until convergence in themonotone case for the various quorum sizes were calculated using the formula fromCorollary II.7 and plotted in Figure 4. We simulated the four combinations ofmonotone/non-monotone and synchronous/asynchronous. For each of the four combi-nations, seven runs of the simulation were performed per quorum size and the numberof rounds required for convergence was recorded for each. The average of these sevenvalues was then plotted in Figure 4.The synchronous and asynchronous executions do not reveal much di�erence inthe results. We conjecture that this is because the structure of a round causes thedi�erences in the message delays, which are exponentially distributed, to average out.



30Each iteration of the while loop in Algorithm 2 involves 1190 round trip delays inseries (342 = 1156 for the reads and 34 for the writes), where each round trip delay isthe maximum of k parallel round trips (k is the quorum size). The phenomenon thatasynchronous executions sometimes terminated faster than synchronous executionsis explained by the di�erent order of information propagation, i.e., it is possiblethat more information is available to the processes in asynchronous executions thansynchronous executions after the same number of rounds has been �nished.The discrepancy between the calculated upper bound and the experimental valuefor the monotone case is quite large for very small quorums (e.g., 204 vs. 12.43 forsynchronous and 9.08 for asynchronous executions when k = 1), but it decreases asthe quorum size increases. One source of the overestimate is in the proof of TheoremII.5, where we did not take into account the fact that a read could obtain a valuemore recent than a given write without having to overlap any of that write's replicas.The data indicates that the performance of the original algorithm is certainlyworse than that of the monotone algorithm. In particular, for quorum sizes 1 to 3,the non-monotone simulation runs do not seem to converge in a reasonable amountof time. The open squares in Figure 4 indicate the number of rounds that elapsedin simulation runs that did not �nish in a reasonable amount of time; thus they arelower bounds on the actual values for both synchronous and asynchronous executions.Furthermore, for most of the other quorum sizes, the round numbers in the non-monotone case are larger than the computed upper bound for the monotone case.With monotone executions, notice how a small quorum (say 4) is as good as alarge one (large enough to be strict). This is in line with the intuition behind theoriginal probabilistic quorum paper [30].



31CHAPTER IIIRANDOMIZED SHARED QUEUES APPLIED TO DISTRIBUTEDOPTIMIZATION ALGORITHMSA. IntroductionQuorum systems have been receiving signi�cant attention because they provide con-sistency and availability of replicated data and reduce the communication bottleneckof some distributed algorithms (cf. [30] for references). The probabilistic quorummodel [30] relaxes the intersection property of strict quorum systems, such that pairsof quorums only need to intersect with high probability. In Chapter II, random regis-ters are de�ned as memory cells in which certain types of random errors can occur. Itis shown in Chapter II that random registers can be used as an abstraction of proba-bilistic quorum systems. In particular, the typical access operations (read, write) areshown to have lower message complexity for random registers implemented with theprobabilistic quorum algorithm of Malkhi et al. [30, 29] when compared to conven-tional shared memory implemented over strict quorum systems. At the same time,random registers inherit the known properties of the probabilistic quorum system,such as providing high availability and optimal load simultaneously [30]. Randomregisters were shown to be strong enough to implement an interesting class of itera-tive algorithms that converge with high probability.In this chapter, we extend the results of Chapter II, which considers only read-write registers, to one of the fundamental abstract data structures: the queue. Wepropose a speci�cation of a randomized shared queue data structure (random queue)that can exhibit certain errors | namely the loss of enqueued values | with somesmall probability. The random queue preserves the order in which individual processes



32enqueue, but makes no attempt to provide ordering across enqueuers. We showthat this kind of random queue can be implemented with the probabilistic quorumalgorithm of [29, 30].Queues are a fundamental concept in many areas of computer science. A com-mon application in distributed computing are message queues in communication net-works. Many distributed algorithms use high-level communication operations, suchas scattering or all-to-all broadcasts (cf. Chapter 1 of [8] for an overview). Thesealgorithms can typically tolerate inaccuracies in the order in which the queue returnsits elements, as the order of the elements in the message queue is typically impactedby the unpredictability of the communications network. Furthermore, we considerrandomized algorithms, in which the queue elements contain data that can be in-correct or otherwise inappropriate with some probability. Algorithms of this typecan typically tolerate the random disappearance of elements in the queue (with somesmall probability). We believe that this constitutes a large class of algorithms, whichcan take advantage of random queues and their bene�ts of optimal load and highavailability. As an example of applications from this class, we analyze the behaviorof a class of optimization algorithms [4], when used with random queues.In [42, 41], Yelick et al. propose several irregular data structures and a relaxedconsistency model for those data structures. For example, a task queue is an unorderedcollection of objects in which the priorities are locally, but not globally, observed. Suchtask queues can be used in the load balancing of the tasks of irregular applications.For the task queues of [42, 41], the randomization a�ects only the priorities. Thenumber of enqueued tasks is always preserved. In [11], Chakrabarti et al. proposeusing distributed priority queues for the load balancing of parallel processors withdynamic scheduling algorithms. Again, the distributed queues a�ect the performancegain in a realistic execution environment compared to that with a centralized queue.



33However, they do not specify any random behavior of queue operations.B. De�nitionsThe data type of a shared object is de�ned by a set of operations and set of allowablesequences of those operations. In all other respects, the system model is the same asthat in Section C of Chapter II.C. A Random QueueIn this section, we specify a randomized shared queue and propose an implementationfor it. We then analyze the behavior of the implementation.1. Speci�cation of Random QueueWe de�ne a random queue to be a randomized version of a shared queue, of whichsome properties are relaxed such that the number of enqueued data items is notpreserved and the items can be dequeued out of order.A queue Q shared by several processes supports two operations, Enq(Q; v) andDeq(Q; v). Enqi(Q; v) is the invocation by process i to enqueue the value v, Acki(Q) isthe response to i's enqueue invocation, Deqi(Q; v) is the invocation by i of a dequeueoperation, and Reti(Q; v) is the response to i's dequeue invocation which returns thevalue v. A possible return value is also ?, indicating an empty queue. The set ofvalues from which v is drawn is unconstrained.We will focus on multi-enqueuer, single-dequeuer queues; thus, the enqueue canbe invoked by all the processes while the dequeue can be invoked only by one process.We assume for notational simplicity that, in every execution, every enqueuedvalue is uniquely identi�ed.



34Given a real number p that is between 0 and 1, a system is said to implement ap-random queue if the following conditions hold for every adversary A.� In every complete execution (of the adversary),{ (Liveness) every operation invocation has a following matching response;{ (Integrity) every operation response has a preceding matching invocation;{ (No Duplicates) for each value x, Deq(Q; x) occurs at most once;{ (Per Process Ordering) for all i, if Enqi(Q; x1) ends before Enqi(Q; x2)begins, then x2 is not dequeued before x1 is dequeued.� (Probabilistic No Loss) For every enqueued value x, Pr[x is dequeued] � p.That is, each enqueued element is either never dequeued (which occurs withprobability at most 1�p) or is dequeued once (which occurs with probability at leastp). For a given adversary, the probability space is all extensions (of that adversary)of any �nite execution of the adversary that ends with the invocation to enqueue x.2. Implementation of Random QueueWe now describe an implementation of a p-random queue. The next subsectioncomputes the value of p, assuming that the application program using the sharedqueue satis�es certain properties.The random queue algorithm (Algorithm 3) is based on the probabilistic quorumalgorithm of Malkhi et al. [30]. There are r replicated memory servers.The construction of Algorithm 3 proceeds in two steps. We begin by describing arandom queue for the special case of a single enqueuer. The case of n � 1 enqueuersis implemented over a collection of n single enqueuer queues.



35The enqueue operation (Enq) mirrors the probabilistic quorum write operation:The local timestamp is incremented by one and attached to the element that is to beenqueued. The resulting pair is sent to the replicas in the chosen quorum, a randomlychosen group of k servers.The key notion in the dequeue operation (SingleDeq) is a timestamp limit (T ).At any given time, all timestamps that are smaller than the current value T areconsidered to be outdated. T is included in the dequeue messages to the replicaservers and allows them to discard all outdated values. Beyond this, SingleDeq mirrorsthe probabilistic quorum read operation: The client selects a random quorum, sendsdequeue messages to all replica servers in the quorum and selects the response withthe smallest timestamp td. It updates the timestamp limit to T := td+1 and returnsthe element that corresponds to td.Each replica server implements a conventional queue with access operations en-queue and dequeue. In addition, the dequeue operation receives the current times-tamp limit as input and discards all outdated values (e.g., by means of repeateddequeue operations). The purpose of this is to ensure that there are exactly k replicaservers that will return the element vT with timestamp T in response to a dequeuerequest. Thus, the probability of �nding this element (in the current dequeue opera-tion) is exactly the probability that two quorums intersect. This property is of criticalimportance in the analysis in the following section. It does not hold if outdated valuesare allowed to remain in the replica queues, as those values could be returned insteadof vT by some of the replica servers containing vT .For the case of n > 1 enqueuers, we extend the single-enqueuer, single-dequeuerqueue by having n single-enqueuer queues (Q1; : : : ; Qn), one per enqueuer. The i-thenqueuer (1 � i � n) enqueues to Qi. The single dequeuer dequeues from all n queuesby making calls to the function Deq(), which selects one of the queues and tries to



36

Algorithm 3a: Algorithm for client process { for single enqueuer and single dequeuerInitially local variable t = 0 // enqueue timestampT = 1 // expected dequeue timestampwhen Enq(Q; v) occurs:t := t+ 1send henq; v; ti message to a randomly chosen quorum of size k and wait for acksAck(Q) // response to applicationwhen SingleDeq(Q) occurs:send hdeq; T i to a randomly chosen quorum of size k and wait for replieschoose value v with smallest timestamp td(? is considered to have largest timestamp)if v is not ? then T := td + 1Ret(Q; v) // response to application
Fig. 5. Algorithm 3: Implementation of p-Random Queue Q
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Algorithm 3b: Algorithm for server process i, 1 � i � r:Initially local variable Qcopy, a queue, is emptywhen henq; v; T i is received from client j:enqueue (v; T ) to Qcopysend hacki to client jwhen hdeq; T i is received from client j:remove (dequeue) every element of Qcopy whose timestamp smaller than Tif Qcopy is empty let w = ?otherwise let w be the result of dequeue on Qcopysend hwi to client jAlgorithm 3c: Algorithm for a dequeuer extension for n > 1 enqueuersInitially local variable i = 0, shared queue Q = (Q1; : : : ; Qn)// an array of n single enqueuer queueswhen Deq(Q) occursi := (i mod n) + 1SingleDeq(Qi; v) // v is value returned by SingleDeqRet (Q; v) // response to applicationFig. 5. Continued



38dequeue from it.Deq() checks the next queue in sequence. The round-robin sequence used inAlgorithm 3 can be replaced by any other queue selection criterion that queries allqueues with approximately the same frequency. The selection criterion will impactthe order in which elements from the di�erent queues are returned. However, it doesnot impact the probability of any given element being dequeued (eventually), as thequeues do not a�ect each other, and the attempt to dequeue from an empty queuedoes not change its state.3. Analysis of Random Queue ImplementationFor this analysis, we assume that the application program invoking the operations onthe shared random queue satis�es a certain property. Every complete execution ofevery adversary consists of a sequence of segments. Each segment is a sequence ofenqueues followed by a sequence of dequeues, which has at least as many dequeues asenqueues. Fix a segment. Let me, resp., md, be the total number of enqueue, resp.,dequeue, operations in this segment. Letm = me+md. Let Yi be the indicator randomvariable for the event that the i-th element is returned by a dequeue operation (1 �i � me). In the following lemma, the probability space is given by the enqueue anddequeue quorums which are selected by the queue access operations. More precisely,let Pk(r) denote the collection of all subsets of size k of the set f1; : : : ; rg. Since thereare m enqueue and dequeue operations, we let 
 = Pk(r)m be the universe. Theprobability space for the following lemma is given by the �nite universe 
 and theuniform distribution on 
.Lemma III.1 The random variables Yi (1 � i � me) are mutually independent andidentically distributed with Pr(Yi = 1) = p = �1� (r�kk )(rk) �.
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Proof. Since the queues Q1; : : : ; Qn do not interfere with each other, they canbe considered in isolation. That is, it is suÆcient to prove the lemma for any givensingle enqueuer queue Qi. Consider any single enqueuer queue Qz and let mz denotethe number of enqueued elements. In order to prove mutual independence, we haveto show Pr(mẑi=1Yi = ai) = mzYi=1 Pr(Yi = ai) (3.1)for all possible assignments of f0; 1g-values to the constants ai, for which the proba-bility on the left-hand side is greater than zero. Thus, the following conditional prob-abilities are well-de�ned. For h = 1: trivially, Pr(V1i=1 Yi = ai) = Q1i=1 Pr(Yi = ai).For all 1 < h � mz:Pr( ĥi=1Yi = ai) = Pr(Yh = ahj h�1̂i=1 Yi = ai) � Pr(h�1̂i=1 Yi = ai) (3.2)Let j = maxfi < h : ai = 1g1. Clearly, the event Yh = 1 does not depend on anyevent Yi = ai for i < j. ThusPr(Yh = 1j h�1̂i=1 Yi = ai) = Pr(Yh = 1jYj = 1 ^ h�1̂i=j+1Yi = 0) :The condition corresponds to the following case: The last dequeue operation hasreturned the j-th element. The dequeue operation immediately following the dequeueoperation that dequeued j-th element misses elements j + 1 to h � 1. That is, thedequeue quorum R of the dequeue operation does not intersect the enqueue quorumSi of any element i 2 fj + 1; : : : ; h� 1g. ThusPr(Yh = 1jYj = 1 ^ h�1̂i=j+1Yi = 0) = Pr(R \ Sh 6= ;j h�1̂i=j+1R \ Si = ;)1To handle the case when ai = 0 for all i < h, de�ne Y0 = a0 = 1.



40= Pr(R \ Sh 6= ;) (3.3)= 0@1� �r�kk ��rk� 1A = p(3.3) is because quorums are chosen independently.In summary, for all 1 < h � mz and assignments of f0; 1g to ai,Pr(Yh = 1j h�1̂i=1 Yi = ai) = p :By the formula of total probabilities, Pr(Yh = 1) = p. Thus, returning to (3.2):Pr( ĥi=1Yi = ai) = Pr(Yh = ah) Pr(h�1̂i=1 Yi = ai) :Mutual independence (3.1) follows from this by induction.Theorem III.2 Algorithm 3 implements a random queue.
Proof. The Integrity and Liveness conditions are satis�ed since the adversarycannot create or destroy messages. The No Duplicates and Per Process Orderingconditions are satis�ed by the de�nition of the algorithm. The Probabilistic NoLoss condition follows from Lemma III.1, which states that each enqueued value isdequeued with probability p = �1� (r�kk )(rk) �.D. Application of Random Queue: Go with the WinnersIn this section we show how to incorporate random queues to implement a class ofrandomized optimization algorithms called Go with the Winners (GWTW), proposedby Aldous and Vazirani [4]. We analyze how the weaker consistency provided byrandom queues a�ects the success probability of GWTW. Our goal is to show thatthe success probability is not signi�cantly reduced.



411. The Framework of GWTWGWTW is a generic randomized optimization algorithm. A combinatorial optimiza-tion problem is given by a state space S (typically exponentially large) and an objectivefunction f , which assigns a `quality' value to each state. The task is to �nd a states 2 S, which maximizes (or minimizes) f(s). It is often suÆcient to �nd approximatesolutions. For example, in the case of the clique problem, S can be the set of allcliques in a given graph and f(s) can be the size of clique s.In order to apply GWTW to an optimization problem, the state space has tobe organized in the form of a tree or a DAG, such that the following conditions aremet: (a) The single root is known. (b) Given a node s, it is easy to determine if s isa leaf node. (c) Given a node s, it is easy to �nd all child nodes of s. The parent-child relationship is entirely problem-dependent, given that f(child) is better thanf(parent). For example, when applied to the clique problem on a graph G, there willbe one node for each clique. The empty clique is the root. The child nodes of a cliques of size k are all the cliques of size k + 1 that contain s. Thus, the nodes at depth iare exactly the i-cliques. The resulting structure is a DAG. We can de�ne a tree byconsidering ordered sequences of vertices.Greedy algorithms, when formulated in the tree model, typically start at the rootnode and walk down the tree until they reach a leaf. The GWTW algorithm followsthe same strategy, but tries to avoid leaf nodes with poor values of f , by doing severalruns of the algorithm simultaneously, in order to bound the running time and boostthe success probability (success means a node is found with a suÆciently good valueof f). We call each of these runs a particle { which carries with it its current locationin the tree and moves down the tree until it reaches a leaf node. The algorithm worksin synchronous stages. During the k-th stage, the particles move from depth k to



42depth k + 1. Each particle in a non-leaf node is moved to a randomly chosen childnode. Particles in leaf nodes are removed. To compensate for the removed particles,an appropriate number of copies of each of the remaining particles is added.The main theme to achieve a certain constant probability of success is to try tokeep the total number of particles at each stage close to the constant B.The framework of the GWTW algorithms is as follows: At stage 0, start with Bparticles at the root. Repeat the following procedure until all the particles are at leaves:At stage i, remove the particles at leaf nodes, and for each particle at a non-leaf nodev, add at v a random number of particles, this random number having some speci�eddistribution. Then, move each particle from its current position to a child chosen atrandom.We consider a distributed version of the GWTW framework (Algorithm 4), whichis a modi�cation from the parallel algorithm of [33]. Consider an execution of Al-gorithm 4 on n processes. At the beginning of the algorithm (stage 0), B particlesare evenly distributed among the n processes. Since, at the end of each stage, someparticles may be removed and some particles may be added, the processes need tocommunicate with each other to perform load balancing of the particles (global ex-change). We use shared-memory communication among the processes. In particular,we use shared queues to distribute the particles among processes. Between enqueuesand dequeues in Algorithm 4, we need some mechanism to recognize the total numberof enqueued particles in a queue. It can be implemented by sending one-to-one mes-sages among the processes or by having the maximum possible number of dequeuesper stage. (Finding more eÆcient, yet probabilistically safe, ways to end a stage iswork in progress.)When using random queues, the errors will a�ect GWTW, since some particlesdisappear with some probability. However, we show that this does not a�ect the
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Shared variables are random queues Qi, 1 � i � n, each dequeued by process i andinitially emptyCode for process i, 1 � i � n:Local variable: integer s, initially 0.Initially Bn particles are at the root.while true dos++for each particle at a non-leaf node v // clone the particlesadd at v a random number of particles, with some speci�ed distributionendforremove the particles at leaf nodesfor each particle j // move j to some process x's queuepick a random number x 2 f1; : : : ; ngEnq(Qx; j)endforwhile not all particles are dequeued // read from own queueDeq(Qi; j)endwhilemove each particle from its current position to a child chosen at randomendwhileFig. 6. Algorithm 4: Distributed Version of GWTW Framework



44performance of the algorithms signi�cantly. In particular, we estimate how the dis-appearance of particles caused by the random queue a�ects the success probabilityof GWTW. 2. Analysis of GWTW with Random QueuesWe now show that Algorithm 4 when implemented with random queues will work aswell as the original algorithms in [4].We use the notation of [4] for the original GWTW algorithm (in which no parti-cles are lost by random queues): Let Xv be a random variable denoting the numberof particles at a given vertex v. Let Si be the number of particles at the start of stagei. At stage 0, we start with B particles. Then S0 = B and Si = Pv2V` Xv; for i > 0,where V` is the set of all vertices at depth `. Let p(v) be the chance the particle visitsvertex v. Then a(j) = Pv2Vj p(v) is the chance the particle reaches depth j at least.p(wjv) is de�ned to be the chance the particle visits vertex w conditioning on it visitsvertex v. The values si; 1 � i < ` are constants which govern the particle reproduc-tion rate of GWTWs. The parameter � is de�ned to express the \imbalance" of thetree as follows: For i < j, �ij = a(i)a2(j) Pv2Vi p(v)a2(jjv), and � = max0�i<j�d0�ij.Aldous and Vazirani [4] proveLemma III.3ESi = Ba(i)si ; 0 � i � d; and varSi � �Ba2(i)si2 iXj=0 sja(j) ; 0 � i � d:We will use this lemma to prove similar bounds for the distributed version of thealgorithm, in which errors in the queues can a�ect particles. For this purpose, weformulate the e�ect of the random queues in the GWTW framework.More precisely, given any original GWTW tree T , we de�ne a modi�ed tree T 0,which accounts for the e�ect of the random queues. Given a GWTW tree T , let T 0



45be de�ned as follows: For every vertex in T , there is a vertex in T 0. For every edgein T , there is a corresponding edge in T 0. In addition to the basic tree structure ofT , each non-leaf node v of T has an additional child w in T 0. This child w is a leafnode. The purpose of the additional leaf nodes is to account for the probability withwhich particles can disappear in the random queues in Algorithm 4.Given any node w in T 0 (which is not the root) and its parent v, let p0(wjv)denote the probability of moving to w conditional on being in v. For the additionalleaf nodes w in T 0, we set p0(wjv) = 1� p, where 1� p is the probability that a givenparticle is lost in the queue. For all other pairs (w; v), let p0(wjv) = p � p(wjv). Thena0(i), a0(ijv), S 0i, s0i, X 0v, and �0 can be de�ned similarly for T 0.Given a vertex v of T , let �p(v) denote the probability that Algorithm 4, whenrun with a single particle and without reproduction, reaches vertex v. The term\without reproduction" means that the distribution mentioned in the �rst \for" loopof the algorithm is such that the number of added particles is always zero. The mainproperty of the construction of T 0 is:Fact III.4 For any vertex v of the original tree T , p0(v) = �p(v). Furthermore,Pr(Algorithm 4 reaches depth `) = p � Pr(GWTW on T 0 reaches depth `)for any ` � 0.Proof. We prove the �rst statement by induction on the depth of v. At depthd = 0 (base case), v is the root and p0(v) = �p(v) = 1. For the inductive step, letv 2 V`+1 for ` 2 IN . Let u 2 V` be the immediate ancestor of v. Now,p0(v) = p0(vju)p0(u) = p � p(vju)p0(u) = p � p(vju)�p(u) = �p(vju)�p(u) = �p(v):



46For the second statement, it is suÆcient to note thatPr(Algorithm 4 reaches depth `) = Xv2V` �p(v) = Xv2V` p0(v) = p � Xv2V 0̀ p0(v):We can now analyze the success probability of Algorithm 4 (a combination ofGWTW and random queues) by means of analyzing the success probability of baselineGWTW on a slightly modi�ed tree. This allows us to use the results of [4] in ouranalysis. In particular,Lemma III.5ES 0i = B0pi�1a(i)s0i ; 0 � i � d; and varS 0i � 1p�B0pi�1a2(i)s0i2 iXj=0 s0jpj�1a(j) ; 0 � i � dProof. We apply Lemma III.3 to the GWTW process on T 0 and show that �0 = �=pand a0(i) = pi�1a(i) for all i. Note that for any i � ` and v 2 Vi, p0(v) = p(v)pi.Thus, for any 1 < i � `a0(i) = Xw2V 0i p0(w) = Xw2V 0i Xv2Vi�1 p0(wjv)p0(v)= Xv2Vi�1 p0(v) Xw2Vi p(wjv) = pi�1 Xv2Vi�1 p(v) Xw2Vi p(wjv) = pi�1a(i)For any 0 � i < j � `,�0ij = a0(i)a02(j) Xv2V 0i p0(v)a02(jjv)= pi�1a(i)p2j�2a2(j) Xv2Vi p(v)pia2(jjv)p2(j�i�1)= p�1 a(i)a2(j) Xv2Vi p(v)a2(jjv) = �ij=pIn order to allow a direct comparison between the bounds of Lemmas III.3



47and III.5, it is necessary to relate the constants (si)1�i<` and (s0i)1�i<`. These con-stants govern the particle reproduction rate of GWTW and can either be set externallyor determined by a sampling procedure described in [4]. If we set s0i = pi�1si thenthe expectations of Lemmas III.3 and III.5 are equal and the variance bounds arewithin a factor of p of each other. The variance bound is used in [4] in connectionwith Chebyshev's inequality to provide a lower bound on the success probability ofGWTW. It follows that the negative e�ect of random queues on the GWTW variancebounds can be compensated for by increasing the number B of particles at the rootby a factor of 1=p.



48CHAPTER IVSHARED INFORMATION MANAGEMENT WITH QUORUMS IN MOBILE ADHOC NETWORKSA. IntroductionWe conjecture that randomization is a good approach to develop distributed algo-rithms in unpredictable and resource-poor communication environments, such as mo-bile ad hoc networks.A mobile ad hoc network (MANET) consists of mobile computing entitiesthat communicate with each other through wireless links, and has no �xed staticinfrastructure.As discussed in [17], mobile ad hoc networks di�er from mobile cellular tele-phone networks as follows. Mobile cellular telephone networks consist of two types ofcommunication components: Firstly, there are base stations which serve to maintainlocation table registers and store location databases. Base stations are not mobile andcommunicate among each other to forward the information regarding call requests.The second type of components are cell phones, which are mobile and communicatewith the base stations to make and receive calls.Typically, MANETs also consist of two types of functional components: Firstly,there are special participants, which perform administrative functions similar to thoseperformed by the base stations in cellular telephone networks (e.g. maintaining thelocation database). The di�erence of this special participant from the base station isthat the participant itself is a mobile entity, i.e. it does not have a �xed location. Theother class of functional components consists of mobile entities, which correspond tothe cell phones in the cellular telephone network, and which communicate with the



49special participant to get the needed information. These classes are `functional' inthe sense that a single physical device may participate in the network in both roles.Thus the di�erence between the mobile ad hoc network and the mobile cellulartelephone network is that in the latter, the location databases are stored in �xed (i.e.non-mobile) locations, whereas in the former, no �xed infrastructure exists.In mobile ad hoc communication environments, managing the mobility so as tokeep track of the current location of mobile hosts is an important problem. In [17], anad-hoc mobility management scheme is proposed, which routes most packets througharbitrary participants. This reduces the danger that the special participants maybecome a bottleneck. The role of the special participants is limited to storing locationtables and computing routes through the general network. As described in [20], theinformation dissemination problem in ad hoc wireless networks is to track the locationof each mobile node, and to gather information on the state of each mobile node.We abstract those problems described above as an information sharing problemover distributed shared variables. The mobile hosts communicate with each otherusing shared variables. Since mobile ad hoc networks have no �xed infrastructure,every mobile host must be capable of serving as a distributed shared informationserver. The shared variable is a single-writer and multiple-reader register, which isreplicated over every mobile host. Quorum based replica systems have been proposedin [17, 20] for this problem.The proposed scheme in [17] is a quorum system based scheme for dynamicdistributed construction of the location information database. In [20], Karumanchiet al. also propose a quorum based solution for the information dissemination problemin partitionable mobile ad hoc networks. To alleviate the problem of query failures,a set of heuristics is used in selecting servers for updates and queries, by maintaininga list of servers that are believed to be unreachable.



50The quorum systems employed in the two papers [17, 20] are strict quorumsystems, meaning that every pair of quorums intersect. A strict quorum system canbe constructed with the smallest quorum size of O(pn). Even though it may providea good complexity measure (relatively small cost to keep the needed information ona quorum of size O(pn)), such quorum systems may su�er from unbalanced load andlow availability in the face of node failures or unreachable nodes [30].We propose to apply the probabilistic quorum system of Malkhi et al. [29, 30].The probabilistic quorum system relaxes the quorum intersection property such thatevery pair of quorums intersect with high probability [30]. This implies that withsome small probability, the probabilistic quorum system may return outdated infor-mation. This appears to be a tolerable problem with respect to location information.Movement is continuous and typically slow in relation to the relevant distances. Itis already shown in [20] that the strict quorum systems can also return outdatedinformation in mobile ad hoc communication environments. Furthermore, proba-bilistic quorum systems provide optimal load and high availability simultaneously,breaking the tradeo� between load and availability of strict (or traditional) quorumsystems [30].It is shown in Chapter II that random registers can be used as an abstractionof probabilistic quorum systems. In particular, the typical shared memory accessoperations (read, write) are shown to have lower message complexity for randomregisters implemented with the probabilistic quorum algorithm of Malkhi et al. [30,29] when compared to conventional shared memory implemented over strict quorumsystems. At the same time, random registers inherit the known properties of theprobabilistic quorum system, such as providing high availability and optimal loadsimultaneously [30].In this chapter, we apply the random register model of Chapter II to imple-



51ment the location database to manage the mobility of mobile hosts in mobile ad hocnetworks. Furthermore, we compare the probabilistic quorum based implementationwith the strict quorum based implementation of [20] by way of simulations.We perform simulations to answer the following questions:� How does the probabilistic quorum model perform in mobile ad hoc communi-cation environments?� Do the probabilistic quorums perform better than the strict quorums in practicaland dynamic communication environments such as mobile ad hoc networks?� Can we characterize the behavior of those di�erent quorum systems in regardsof di�erent scenarios for the communication environment?We describe in detail the di�erent algorithms to implement the quorum basedreplica systems in Section B.To compare the performance of di�erent quorum implementation algorithms, wede�ne several performance measures in Section C.In Section D, we explain the simulation setup, including the protocols used ineach layer of the network, the sets of di�erent parameters simulated, and so on.Then we display the simulation results and discuss our observations. We also proposepossible extensions of the probabilistic quorum algorithm to take topology informationinto account when dynamically constructing quorums, in order to increase eÆciencywithout harming the quorum intersection property too much. Furthermore, we justifyhow to take advantage of mobility of the mobile hosts, hoping that the informationcarried on the mobile hosts is gradually propagated as the mobile hosts move around.



52B. The AlgorithmsWe de�ne the quorum-based shared information database system in mobile ad hocnetworks as follows.The shared information is stored in single-writer, multiple-reader variables. Theoperations performed on those variables are update and query, which correspondto the conventional shared memory operations, write and read, respectively.Each mobile host acts as both functional entities { a client and a server.As a server, the mobile host h keeps a replica Xh of the shared informationdatabase X. When h receives an update(j,v,t) message from the mobile host j, hupdates its replica Xhj with the new value v and the new timestamp t. Then h sendsj an Ack message to acknowledge the update. When h receives a query(j) messagefrom g, h sends g a response message with the value and timestamp of Xhj.As a client, to perform an update, the mobile host h increases its timestamp tby one, chooses a quorum Q, and sends out update(h,v,t) messages to every mobilehost q inQ. When h has received all theAcks from every q inQ, the update operationis said to be complete. To perform a query for j's data, h chooses a quorum Q, andsends out query(j) messages to every q in Q. When h receives all the response(v,t)messages, the query operation is said to be complete. It then chooses the v associatedwith the largest timestamp t, out of all the responses and its own local copy. Here weensure the monotonicity of the shared memory systems that is exploited in Chapter II.When h tries to choose a quorum, we count this as an attempt. When h hassuccessively gotten (or constructed) a quorum, we count this as a success. We studydi�erent strategies in choosing quorums in the following subsection.



531. Strategies in Selecting QuorumsFirstly, we discuss three di�erent strategies in selecting quorums in strict quorumsystems.In [20], a �nite projective plane (FPP) based quorum construction is used: Let nbe the number of mobile hosts serving as the replica servers. It is assumed that n is aperfect square. Then we can place the n servers in apn x pn square grid. In the FPPquorum construction, a quorum can consist of either a row or a column, i.e., there canbe a priori rule to choose a read quorum from the set of rows and a write quorum fromthe set of columns, or vice versa. We name this FPP quorum construction as SQ1.Thus, with SQ1, the quorum size is pn. SQ1 guarantees that there is always onemember in the intersection of a pair of read and write quorums. However, to increasethe availability of the quorum system in the mobile ad hoc network, Karumanchi etal. [20] union one row and one column to construct a quorum. We will call suchquorum construction as SQ2. With SQ2, there are n a priori quorums formed andthere are at least two members in the intersection of any pair of quorums. And thequorum size is 2 � pn� 1Furthermore, to get better performance, Karumanchi et al. keep a list of un-reachable hosts (unreachable nodes list: UNL) in case the network partitions or somecrash failures of servers occur. Three kinds of heuristics are used when choosing quo-rums: (1) Eliminate the quorums that have any of those nodes in the UNL, and thenuniformly randomly select one from the remaining quorums (Eliminate-Then-Select:ETS). (2) First select a quorum uniformly at random, and then eliminate those nodesin the UNL from the chosen quorum (Select-Then-Eliminate: STE). (3) Use ETS forupdates and STE for queries (Hybrid).We name the Hybrid strategy as SQ3. In this chapter, we perform simulations



54on SQ1, SQ2, and SQ3, as strict quorum implementations.For probabilistic quorum systems, we �rst eliminate the hosts in the unreachablelist, and then uniformly randomly choose k servers to dynamically form a quorum ofsize k, where k is an input parameter to the quorum system. We address in Section C,the issue when k servers are not available.C. Performance MeasuresWe employ four kinds of measures in order to compare the performance of quorumbased shared memory systems in mobile ad hoc networks:� The shared memory recency rate: indicates the correctness or consistency of thedistributed shared memory system. We count the number of outdated valuesreturned by query operations. We de�ne outdatedness as follows: a query tovariable x is outdated if it returns a value with a timestamp that is older thanthe timestamp of the most recent complete (cf. Section B) update of x. In oursimulation, the simulator compares the timestamps simultaneously at the timewhen the reply is given back to the application. Let Nc denote the number ofcompleted query operations and No the number of outdated values returned bythose queries. Then the recency rate is measured as Nc�NoNc .� The quorum availability rate: indicates the fault-tolerance of the quorum sys-tem. It re
ects network link stability, network partition possibility, and crashfailures of the nodes. Let Na be the number of attempts to choose quorums andNs the number of successes in choosing quorums. Then the availability rate ismeasured as NsNa .This way of measuring the availability rate is inappropriate for SQ1 and SQ2because they do not utilize the UNL when choosing quorums and instead blindly



55choose a random quorum out of the a priori set of quorums. Thus, the avail-ability rate for SQ1 and SQ2 would be always one (Na = Ns). Therefore, forSQ1 and SQ2, we count the number of timeouts as the number of quorum fail-ures. The timeout feature we adopt is explained in detail in Section D. Let Nfbe the number of failed shared memory operations due to timeout. Then theavailability rate for SQ1 and SQ2 is computed as 1� NfNa .� The average completion time per operation: indicates responsiveness of theshared memory system. Let T denote the total time for shared memory oper-ations and Nm the number of completed shared memory operations. Then theaverage time per operation is measured as TNm .� The shared memory system throughput: measures how eÆciently the systemperforms. It also re
ects the network load. The throughput is measured as thenumber of completed shared memory operations per unit time (second).D. SimulationIn our simulation, we use the ns-2 Network Simulator [40] with CMU/Monarch group'smobility extension [14]. We use TCP (Reno) for the transport layer and DSR (Dy-namic Source Routing) for the routing (network) layer, IEEE 802.11 MAC protocolfor the link layer, and Two Ray Ground Radio Propagation model for the physicallayer. The transmitter range is set as 250 meters.We modi�ed the telnet application so that it incorporates the shared memorysubsystem layer between the actual application that invokes update/query sharedmemory operations and the communication network layer. Each application processinvokes update and query operations periodically. An application can have at mostone pending query operation and one pending update operation simultaneously. The



56sequence of update operations is independent of the sequence of query operations ateach process. The �rst update for process Pi is invoked 2:05=(i+1) seconds after theprocess starts, while the �rst query for the process is invoked 2:1=(i+1) seconds afterthe process starts. Subsequently, the invocation of the next update (resp., query) isscheduled for 2 seconds after the invocation of the current update (resp., query). Ifthe current operation (query or update) has not yet �nished, then the invocation isrescheduled for one second later, until it succeeds.The essential role of the shared memory subsystem (SMS) is to interpret thememory operation invoked by the application process, to generate a set of messagesto a quorum, and to handle the response messages gotten from the quorum to gener-ate the result of the memory operation for the application process. We implementedthe shared memory subsystem with the four algorithms (PQ, SQ1, SQ2, and SQ3) de-scribed in Section B, ran each implementation with sets of parameters, and comparedtheir performance based on the four measures explained in Section C.The operations time out if some member(s) of the quorum does not respond in10 seconds. Then a new quorum is chosen and the time-out operation is repeated.Each application keeps the unreachable nodes list (UNL) by trying to �nd if thereexists a path to every other node in the system. This is done using the route requestfunction of DSR. The UNL is updated every second.We assume there are n = 25 mobile nodes in the system, placed at random in a2-D rectangular area. The maximum speed of each mobile node is 4 meter/sec. andeach of the 25 nodes acts as both client and server of the shared memory subsystem.The area where the nodes may move around is varied from 300x300 m2 to 1000x1000m2 with an increment of 100 meters in each direction. We ran each simulation for1200 seconds. For the PQ implementation, we vary the quorum size from 1 to 15.Each plot in the �gures is the computed average of seven runs on seven di�er-



57ent movement scenarios. We used the Random Waypoint mobility model from [9].Figures 7 to 10 show how the di�erent quorum sizes perform di�erently. Figures 11and 12 display the di�erent performance of the three strict quorum implementations.In �gures 13 and 14, we compare the SQs and the PQ of the corresponding quorumsizes (which are 5 and 9 in this simulation).1. Probabilistic Quorum ImplementationsFor the PQ implementation, we simulated two di�erent schemes: with and withouttimeout of the shared memory operation. In Figures 7 to 10, the left-hand side �guresare without timeout feature, i.e., once an update or query operation is invoked andthe corresponding messages are sent out, the shared memory subsystem inde�nitelywaits until all the responses are gotten back. It was an optimistic design of the mem-ory system because the SMS hoped that there would not have been much movementof nodes since last computation of the unreachable nodes list (UNL). However, thesimulation results revealed that this optimistic design is not appropriate for the mo-bile ad hoc network system we simulate. Along with the assumption that there is notmore than one update and query operation pending per node, this optimistic imple-mentation yielded very poor performance in terms of throughput. This phenomenonis displayed in the left-hand side of Figure 8.Thus, we adopted a timeout feature, so that when a certain amount of time (10seconds in this simulation) has elapsed since the current pending memory operationwas invoked, the SMS assumes some member(s) of the quorum is currently unreach-able, crashed, or the link has failed, and aborts the operation. Then the SMS retriesto perform the operation by sending out messages to the newly chosen quorum. Thetimeout feature increased the throughput greatly, as shown in Figure 8, with a littlecompensation of recency rate (cf. Figure 7). The recency rate, however, is almost the



58same for both schemes as long as the network is in a reasonable size of area so that thenetwork is not partitioned a lot; with timeout, the recency rate starts degrading asthe area and the quorum size become large (cf. 800x800 or larger area with quorumsize 12 or more). For small quorum sizes (say, 1 to 4), the timeout scheme yieldsbetter recency rate in most cases.As can be seen in Figures 9 and 10, using the timeout feature smoothed out theaverage time per operation and quorum availability rate, so that we can better predictthe performance of the system based on the system parameters such as the quorumsize and the area. The timeout feature helped a lot to get better average time peroperation.The quorum availability rate clearly displays how network partition a�ects suc-cess in choosing random quorums. As the area gets larger, the quorum availabilityrate signi�cantly drops. Even in small areas, it is often not possible to choose largequorums.Overall, it was noticed that having higher throughput by use of the timeoutfeature enabled us to obtain better statistics of the behavior of the system. Oneobservation here that was not explained by the theoretical results shown in Chapter IIis that having a large quorum size does not result in a better recency rate of the sharedmemory system for mobile ad hoc networks with network partitions.2. Strict Quorum ImplementationsAll three strict quorum implementations use the timeout feature similar to that ofthe probabilistic quorum implementation. SQ1 and SQ2 do not use the unreachablenodes list (UNL). They �rst choose a quorum randomly out of the a priori constructedset of quorums and send out the corresponding messages. Then if timeout occurs,it is considered (for some reason) that the quorum choice failed and the operation
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61is restarted by choosing a new quorum. This occasion of timeout is accounted asthe available rate. SQ3 uses UNL to implement the hybrid scheme with di�erentheuristics: for a query operation, choose a quorum and then eliminate those membersin UNL from the quorum, and for an update operation, �rst eliminate those quorumswith a member in UNL and then choose a quorum out of the remaining quorums.And then it uses timeout to avoid any inde�nite waiting situation resulting from themovement of nodes.In the left-hand side �gure of Figure 11, SQ1 shows quite good recency rate inrelatively small area (say, up to 600x600). It shows better recency rate than SQ2in all areas, and better than SQ3 in reasonably large areas (say, up to a little lessthan 900x900). Considering that SQ1 has quorum size 5 and 5 possible choices ofquorums, and SQ2 has quorum size 9 and 20 possible choices of quorums, this was anunexpected observation. SQ2 has very low recency rate as soon as the network startsgetting partitioned. As the area gets large such as 900x900, SQ3 performs better thanthe others, when SQ1 and SQ2 degrade quickly. Even though SQ3 has worst recencyrate in the mid-sized areas, it displays some lower bound, which indicates that it canguarantee some bounded deterioration of recency rate.The right-hand side �gure of Figure 11 show that SQ1 and SQ2 have almostconstant quorum availability rates. In this simulation, the heuristics adopted in SQ3perform poorly. The quorum availability rate of SQ3 drops signi�cantly as the areaincreases.In the left-hand side �gure of Figure 12, SQ1 shows the best performance of thethree in terms of throughput. However, it is a�ected by the area, and noticeablydrops as the area gets large (more than 600x600). This is shown again with theaverage time per operation in the right-hand side �gure, where the time of SQ1 startsincreasing with the area of 600x600. SQ2 performs poorly in terms of average time
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PQ2Fig. 13. Strict and Probabilistic Quorums: Area vs. Recency Rate and AvailabilityRateper operation.Overall, in a reasonable area (of size less than 600x600), SQ1 has quite goodperformance. SQ3 does not show in our simulation, the e�ectiveness of adopting theheuristics. Furthermore it seems to be a�ected a lot by system environment such asarea and system parameters such as time interval to update the UNL, and so on.Now we compare those strict quorum implementations with the probabilisticquorum in the following section.
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Fig. 14. Strict and Probabilistic Quorums: Area vs. Throughput and Avg Time PerOp 3. Comparison of Strict and Probabilistic ImplementationsTo compare the probabilistic quorum implementation with the three strict quorumimplementations, we re-plotted the two quorum sizes 5 (same size as SQ1's) and 9(same size as SQ2's and SQ3's) from the probabilistic quorum case together with theplots of SQs. We denote the plot of probabilistic quorum size 5 as PQ1 and that ofsize 9 as PQ2.In Figure 13, SQ1 has better recency rate than that of PQ1 in areas smaller than700x700, but as the area gets larger, SQ1's recency rate drops quickly, when PQ1'sstays almost constant. Similar phenomenon happens with SQ2 and PQ2, and PQ2 issuperior than any others, in terms of recency rate. PQ1 and PQ2 show better recencyrate than SQ3 even in very large area of 1000x1000.In terms of quorum availability rate, PQ1 is the best, as shown in the right-handside in Figure 13. This concurs with the theoretical result discussed in Chapter II.With the areas up to 600x600, PQ2 is still better than SQs, but as the area becomeslarger, PQ2's availability rate drops signi�cantly, yielding worse performance thanSQ1 and SQ2, but still better than SQ3.



64Figure 14 shows again PQ1 is the best in regards of throughput. PQ2 is betterthan SQ2 in areas smaller than 800x800, but worse than SQ2 in larger areas, andbetter than SQ3 in all areas.The average time per operation shown in the right-hand side of Figure 14 displaysthat PQ1 is again the best. SQ1 is better than PQ2 until the area is within 900x900,but seems to have increasing time per operation as the area becomes larger. Both PQ1and PQ2 show better performance than SQ3. However, it is noted that even in thebest case of PQ1, it takes about 2 seconds to complete one memory operation. Eventhough this time includes the time for retries by the shared memory system, whenconsidering this time as the response time to the application, it will be unrealisticallyslow to use this memory system in implementing time-critical applications. Thus,this shared memory system is desirable for applications that do not involve intensiveshared memory operations.Overall, probabilistic quorum implementations show improved performance inall measures with some trade-o�s between recency rate and quorum availability rate,for example.We would like to design a new quorum implementation algorithm that guaran-tees as high recency rate as PQ2 and provides as high quorum availability rate andthroughput as PQ1, while keeping the average response time small. One observationfrom the simulation is that many occasions of low performance resulted from the lackof knowledge about the topology changes of the network. This can be easily explainedfrom the simulation results we have discussed so far. Thus, we propose a new schemefor quorum construction: a topology-sensitive quorum system (TSQ), which takestopology information into account when dynamically constructing quorums. Basedon the observations from the simulation results, we conjecture that TSQs may beable to take advantage of topology information in order to increase eÆciency without



65harming the quorum intersection property too much. Furthermore, we expect thatTSQs would take advantage of mobility of the mobile hosts to propagate information.It remains as future work to design a concrete algorithm to implement the TSQ andanalyze its performance either theoretically or experimentally (or both).



66CHAPTER VSUMMARY AND FURTHER RESEARCHA. Dissertation SummaryIn this dissertation we performed three avenues of research related to randomizedmemory models and their applications in distributed computing. In Chapter II,we have suggested two speci�cations of randomized registers that can return wronganswers, namely two probabilistic versions of a regular register, non-monotone andmonotone. We showed that both speci�cations can be implemented with the prob-abilistic quorum algorithm of [29, 30]. Furthermore, our speci�cations can be usedto implement a signi�cant class of iterative algorithms [38] of practical interest. Weevaluated the performance of the algorithms experimentally as well as analytically,computing the convergence rate and the message complexity.In Chapter III, we have proposed a speci�cation of a randomized shared queuedata structure (random queue) that can exhibit certain errors | namely the loss ofenqueued values | with some small probability. The random queue preserves the or-der in which individual processes enqueue, but makes no attempt to provide orderingacross enqueuers. We showed that this kind of random queue can be implementedwith the probabilistic quorum algorithm of [29, 30]. We identi�ed, as potential ap-plications of random queues, distributed algorithms that have a particular patternof interprocess communication using message passing and that can tolerate a smallnumber of message loss and inaccuracies in the order in which messages arrive. Inthese algorithms, the message passing communication is to be replaced by enqueuingand dequeuing information on random queues. We believe that this constitutes alarge class of algorithms, which can take advantage of random queues and their ben-



67e�ts of optimal load and high availability. As an example of applications from thisclass, we analyzed the behavior of a class of combinatorial optimization algorithms(Go With the Winners [4]).In Chapter IV, we have applied the probabilistic quorum system of Malkhi etal. [29, 30] to implement the shared information database system in mobile ad hocnetworks. An application of such shared information system is location informationdatabase for mobility management of the mobile hosts. First we compared two dif-ferent implementations of probabilistic quorum: with or without timeout feature.The simulation results showed that employing timeout feature is more desirable toyield better performance. Then we compared, by way of simulation, the probabilisticquorum implementation with the timeout feature, to the three strict quorum imple-mentations (SQ1, SQ2, and SQ3), which are discussed in [20]. The observations are:our probabilistic quorum implementation performs better than the strict quorums,and the topology change due to the continuous movement of nodes has a signi�cant ef-fect on the performance of quorum systems. Thus, understanding the node movementpattern and the system environment of the mobile ad hoc network in consideration iscritical in providing an appropriate implementation algorithm for the shared databasesystem in the mobile ad hoc network.B. Further ResearchIn this section we describe a few directions along which the research in this dissertationcan be extended.



681. Random RegistersA number of challenging directions remain as future work. The de�nition of randomregister given here was inspired by the probabilistic quorum algorithm and was helpfulin identifying a class of applications that would work with that implementation. Itwould be interesting to know whether our de�nition is of more general interest, thatis, whether there are other implementations of it, or whether a di�erent randomizedde�nition is more useful.Another direction is how to design more powerful read-write registers and otherdata types in our framework. Malkhi et al. [30] mention building stronger kinds ofregisters, such as multi-writer and atomic, out of the registers implemented with theirquorum algorithms, by applying known register implementation algorithms. However,it is not clear how random registers can be used as building blocks in stronger registerimplementations.This dissertation has addressed the fault-tolerance of replica servers for appli-cations running on top of quorum implementations for shared data. In contrast, theissue of fault tolerance of clients for asynchronously contracting operators is anotherchallenge, and is ongoing work. We consider the approximate agreement problem tobe a good application for such a new model.2. Random QueuesAnother possible class of applications for a random queue is randomized Byzantineagreement algorithms in which the set of faulty processes can change from round toround (e.g. Rabin's algorithm [35, 31]). Random errors in the queue can be attributedto faulty processes. Issues to be resolved include how to adapt the message passingalgorithms to the situation when too few messages are received; also whether prob-



69abilistic quorum algorithms in [30] that tolerate Byzantine failures can be exploitedhere.Actually, the applications we identi�ed do not even require the per-process or-dering | a shared multiset would work just as well. An open question is whetherthere is a randomized implementation of a multiset, with no ordering guarantees,that is more eÆcient in some measure than the algorithm presented in Chapter III.A complementary question is to identify distributed applications that would need or-dering properties on a shared queue. Clearly one can imagine a variety of weakenedqueue de�nitions and a variety of implementations. Specifying and analyzing theseare challenges for future work.3. Applications on Mobile Ad Hoc NetworksIt remains as a future work to design and analyze an algorithm for a quorum systemthat takes topology information into account so as to obtain better performancewithout harming the quorum intersection property too much.It also remains as a future work to investigate whether read/write registers are themost suitable data structure for the location information database in mobile ad hocnetworks, or if di�erent (new) data structures may provide more eÆcient constructionof such database.
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