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ABSTRACT

A Randomized Memory Model and Its Applications
in Distributed Computing. (December 2001)
Hyunyoung Lee, B.S., Ewha University;

M.S., Ewha University;

M.A., Boston University

Chair of Advisory Committee: Dr. Jennifer L. Welch

Randomization is a powerful tool in the design of algorithms. As summarized
by Motwani and Raghavan, and by Gupta et al., randomized algorithms are often
simpler and more efficient than deterministic algorithms for the same problem. Sim-
pler algorithms have the advantages of being easier to analyze and implement. A well
known example is the factoring problem, for which simple randomized polynomial-
time algorithms are widely used, while no corresponding deterministic polynomial
time algorithm is known. Randomized algorithms have a failure probability, which
can typically be made arbitrarily small and which manifests itself either in the form
of incorrect results (Monte Carlo algorithms) or in the form of unbounded running
time (Las Vegas algorithms).

In this dissertation, we propose a shared memory framework for distributed al-
gorithms, in which the implementation of the shared memory can be randomized.
In particular, read operations of read/write registers can return out-of-date values,
and dequeue operations of queues can return out-of-order values with some small
probability of lost values.

We define new conditions, which constrain this error probability, such that inter-
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esting classes of popular algorithms will work correctly when implemented over such
randomized data structures. At the same time, our conditions are sufficiently weak to
allow certain kinds of probabilistic replicated systems to implement such memory.

It is shown by Malkhi et al. that these replicated systems have very attractive
properties, such as high scalability, availability and fault tolerance .

As we will show, using this random memory model can result in improved load,
availability in the face of server crashes, and message complexity, but seems to require
a special style of programming.

We consider two interesting classes of algorithms as applications for our random-
ized data structures: a class of iterative algorithms in the framework of Uresin and
Dubois as an application for random registers and a class of randomized optimiza-
tion algorithms by Aldous and Vazirani for random queues. Furthermore, we explore
an application of our randomized data structures to mobile computing where a mo-
bile computing entity can rely on some partial or out-of-date data to reconfigure its

computing environment in response to physical movement.
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CHAPTER 1

INTRODUCTION

A. Overview

Randomization is a powerful tool in the design of algorithms. As summarized in
[31, 16], randomized algorithms are often simpler and more efficient than determinis-
tic algorithms for the same problem. Simpler algorithms have the advantages of being
easier to analyze and implement. A well known example is the factoring problem,
for which simple randomized polynomial-time algorithms are widely used, while no
corresponding deterministic polynomial time algorithm is known. Randomized algo-
rithms have a failure probability, which can typically be made arbitrarily small and
which manifests itself either in the form of incorrect results (Monte Carlo algorithms)
or in the form of unbounded running time (Las Vegas algorithms).

In this dissertation, we define a shared memory framework for distributed algo-
rithms, in which the implementation of the shared memory can be randomized. In
particular, read operations of read/write registers can return out-of-date values, and
dequeue operations of queues can return out-of-order values with some small proba-
bility of lost values. We define new conditions, which constrain this error probability,
such that interesting classes of popular algorithms will work correctly when imple-
mented over our randomized data structures. At the same time, our conditions are
sufficiently weak to allow certain kinds of probabilistic replicated systems to imple-
ment such memory. These replicated systems have very attractive properties, such as
high scalability, availability and fault tolerance [30].

Our focus is to show that randomization may provide a more efficient way to

The journal model is IEEE Transactions on Computers.



implement distributed shared memory, not to show that using randomized distributed
shared memory is more efficient than message passing. Evidence of advantages of
using the shared memory abstraction instead of message passing is the volume of
work in the area of distributed shared memory systems (c¢f. Chap 9 of [7] for an
overview).

The main problem in replicated systems is to maintain consistency among the
replicas. Quorum systems try to maintain consistency by defining collections of sub-
sets of replicas (quorums) and having each operation select and access one quorum
from the collection. Traditional, or strict, quorum systems require all quorums in
the collection to intersect pairwise. Malkhi et al. [30] introduce the notion of a
probabilistic quorum system, in which pairs of quorums only need to intersect with
high probability. Malkhi et al. show that this relaxation leads to significant perfor-
mance improvements in the load of the busiest replica server and the availability of
the quorum system in the face of replica server crashes. We show that our defini-
tion of randomized memory model captures similar properties, by accommodating
the probabilistic quorum system as one possible implementation.

As we will show, using this random memory model can result in improved load,
availability in the face of server crashes, and message complexity, but seems to re-
quire a special style of programming. Apparently there is a tradeoff between ease of
programming and performance, when randomized data structures are used. These re-
sults are somewhat analogous to the situation with “weak”, or “hybrid”, consistency
conditions, which can be implemented quite efficiently but require the application
programs to be data-race-free [1, 5].

To the best of our knowledge, little existing work has focused on defining the
semantics of distributed data structures that sometimes return incorrect values, or on

trying to characterize classes of applications that can tolerate such data structures.



We consider two interesting classes of algorithms as applications for our random-
ized data structures: a class of iterative convergent algorithms in the framework of
Uresin and Dubois [38] as an application for random registers and a class of random-
ized optimization algorithms by Aldous and Vazirani [4] for random queues.

Furthermore, we explore an application of our randomized data structures to
mobile computing where a mobile computing entity can rely on some partial or out-of-

date data to reconfigure its computing environment in response to physical movement.

B. Contents

The dissertation is organized as follows:

Chapter II presents our work on a random register. We define a random read-
write register that sometimes returns out-of-date values, show that the definition is
implemented by the probabilistic quorum algorithm of Malkhi et al. [30, 29], show
how to program with such registers using the framework of Uresin and Dubois [38],
and discuss the consequences in terms of convergence time and message complexity.
The material in this chapter appears in the Proceedings of the 21st IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS) [25]. An earlier ver-
sion appears in the Proceedings of 19th ACM Symposium on Principles of Distributed
Computing (PODC) [24].

Chapter III discusses our work on a random queue. We present a specification
of a randomized shared queue that can lose some elements or return them out of
order, show that the specification can be implemented with the probabilistic quorum
algorithm of [30, 29], and analyze the behavior of this implementation. Distributed
algorithms that incorporate the producer-consumer style of interprocess communica-

tion are candidate applications for using random shared queues in lieu of the message



queues. The behavior of an application — a class of combinatorial optimization algo-
rithms  when it is implemented using random queues is analyzed. The material in
this chapter appears in the Proceedings of the 12th International Symposium on Algo-
rithms and Computation (ISAAC) [27]. An earlier version appears in the Proceedings
of 20th ACM Symposium on Principles of Distributed Computing (PODC) [26].
Chapter IV applies the randomized data structures to mobile computing. We
abstract the information dissemination problem for mobility management in mobile ad
hoc networks (MANETS) as distributed shared variables. We apply a variation of the
probabilistic quorum algorithm by Malkhi et al. to implement the shared information
database, and compare the probabilistic quorum based implementation with the strict
quorum based implementations of [20] by way of simulations. Chapter IV explores
experimentally a variation of the random register of Chapter II for MANETs. The

similarities are:

e The interface is same, that is, the interface of query (resp., update) is the same
as that of read (resp., write). Query and update are used for historical reasons

to be consistent with prior work.
e Values returned were previously written.

The differences are that the liveness properties, termination and the probability
of reading stale values, depend on mobility patterns. An open question is how to
specify and characterize mobility patterns that allow precise statements of liveness.
Chapter IV shows simulation results that could support such formal development.

Chapter V concludes the dissertation with a discussion of further research.



CHAPTER II

APPLICATIONS OF PROBABILISTIC QUORUMS TO ITERATIVE
ALGORITHMS

A. Introduction

In this chapter, we propose a formal definition of a random read-write register. The
consistency condition provided by our definition is a probabilistic variation on the
concept of regularity from Lamport’s paper [23].

We show that our definition of a random register can be implemented by the
probabilistic quorum algorithm of [30, 29], which has several advantageous properties
such that the load on the busiest replica server is limited and the availability in the
face of server crashes is high.

Next we show how registers satisfying our definition can be used to program iter-
ative algorithms in the framework presented by Uresin and Dubois [38]. The implica-
tion is that we can use existing iterative algorithms for a significant class of problems
(including solving systems of linear equations, finding shortest paths, constraint sat-
isfaction, and transitive closure) in a system in which the shared data is implemented
with registers satisfying our condition, and be assured that the algorithms will con-
verge with high probability. Furthermore, algorithms in the framework will inherit
any positive attributes concerning load and availability from the underlying register
implementation.

Then we show how a reasonable, and easily implemented, modification of our
original definition can be analyzed to prove expected convergence time in the itera-
tive framework. Simulation results show that there is a significant benefit from the

modified definition in that iterative algorithms converge faster.



Finally, we prove that the use of random registers can lead to a significant re-
duction in message complexity compared to strict systems in at least one important
situation.

Section B describes related work. In Section C, we present our system model
and definition of a random register. Section D shows that the probabilistic quorum
algorithm of [30, 29] implements our definition. Section E reviews the framework
for the iterative algorithms from [38], and shows how those conditions are satisfied
by our definition of random registers. In Section F, we describe a variation of our
definition, show its expected convergence behavior, and identify situations in which

it has superior message complexity. Section G presents our simulation results.

B. Related Work

A number of consistency conditions for shared memory have been proposed over the
years, including safety, regularity and atomicity [22, 23|, sequential consistency [21],
linearizability [18], causal consistency [3] and hybrid consistency [6]. These definitions
have all been deterministic with little or no regard to possible errors.

Afek et al. [2] and Jayanti et al. [19] have studied a shared memory model in
which a fixed set of the shared objects might return incorrect values, while the others
never do. This model differs from the one we are proposing, where every object has
some (small) probability of returning an incorrect value.

If the type of error caused by a randomized implementation is that there is
some (small) probability of not terminating instead of producing a wrong answer, the
difficulty in specifying the shared object is lessened, since any values returned will
satisfy the deterministic specification. Examples of this situation include [37, 36, 15],

discussed below.



Randomized implementations have been proposed for several shared data struc-
tures in various architectures, as we now discuss.

Malkhi et al. [30, 29] have proposed a probabilistic quorum algorithm to imple-
ment a read-write variable over a message passing system. Each read is translated
into messages to a subset (“quorum”) of the replicated servers to obtain the latest
value, and each write is translated into messages to a quorum of the replicated servers
to store the latest value. Each quorum is chosen randomly so that with high proba-
bility the quorums overlap sufficiently for a read to obtain the latest value written.
The smaller the quorums, the more efficient the algorithm is, but the larger the prob-
ability that a read will observe an out-of-date value. Probabilistic quorums seem like
a useful distributed building block, thanks to their good performance (analyzed in
[30] and reviewed in Section 4). However, to make probabilistic quorums usable by
programmers, a more complete semantics of the register which they implement must
be given, together with techniques for programming effectively with them.

Shavit and Zemach have implemented novel randomized synchronization mech-
anisms called combining funnels [37] and diffracting trees [36] over simpler shared
objects. In these algorithms, the effect of randomization is on the performance;
wrong answers are never returned.

Czumaj et al. [15] have implemented PRAM models over a reconfigurable mesh,
using randomization to resolve conflicting accesses that occur at the same time step
quickly with high probability. Again, wrong answers are never returned. Malkhi et
al. [30] reference two other PRAM simulations that use randomized data structures.

In this chapter, we show that one class of iterative convergent algorithms can
handle infrequent out-of-date values. The first analysis of the convergence of iterative
functions when the input data can be out of date was by Chazan and Miranker

[12]. Subsequently a number of authors refined this work (cf. Chapter 7 of [8] for an



overview). Uresin and Dubois [38] give a general necessary and sufficient condition on
the function for convergence. Essentially the same convergence theorem is presented
in Chapter 6 of [8]. This class of functions includes solutions to many practical
applications, including solving systems of linear equations, finding shortest paths,
and network flow [8]. The convergence rates of iterative algorithms have been studied
in [8, 39]; the emphasis in these papers is on comparing the rate with out-of-date data

to the rate with current data, under various scheduling and timing assumptions.

C. Specifying a Random Register

We are interested in randomized distributed algorithms that implement a shared read-
write register. Our first task is to specify the behavior of such a register. Although the
particular implementation to be discussed in this chapter is a message-passing one,
we would like the specification to be implementation-independent, so that it could

apply to any kind of implementation.

1. A Read-Write Register

A read-write register X shared by several processes supports two operations, read
and write. Each operation has an invocation and a response. Read;(X) is the
invocation by process i of a read, Write;(X, v) is the invocation by i of a write of the
value v, Return; (X, v) is the response to i’s read invocation which returns the value
v, and Ack;(X) is the response to i’s write invocation. We will focus on multi-reader,
single-writer registers; thus, the read can be invoked by all the processes while the
write can be invoked only by one process.

A register allows sequences of invocations and responses that satisfy certain con-

ditions, including the following: (1) the first item in the sequence is an invocation,



(2) each invocation has a matching response, and (3) no process has more than one
pending operation at a time.

In addition, the values returned by the read operations must satisfy some kind of
consistency condition. Below we will present a randomized version of the consis-
tency condition known as regularity. A register is regular if every read returns the
value written either by an overlapping write or by the most recent write that precedes
the start of the read [23].

Defining a probabilistic consistency condition requires specifying a probability

space. We do so in the next few subsections.

2. Processes and Their Steps

A process is a (possibly infinite) state machine which has access to a random number
generator. A process models the software at each node that implements the random
register layer; it communicates with the shared memory application program above
it and with some interprocess communication system below it. The process has a
distinguished state called the initial state.

We assume a system consisting of a collection of p processes.

There is some set of triggers that can take place in the system. Triggers consist
of operation invocations as well as system-dependent events (for example, the receipt
of a message in a message-passing system). The occurrence of a trigger at a process
causes the process to take a step. During the step, the process applies its transition
function to its current state, the particular trigger, and a random number to generate
a new state and some outputs. The outputs can include (at most) one operation
response as well as some system-dependent events (for example, message sends in a
message-passing system). A step is completely described by the current state, the

trigger, the random number, the new state, and the set of outputs.
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3. Adversaries and Executions

No matter what the details of the implementation system, there will be three potential

sources of nondeterminism, from the viewpoint of the register implementation:

1. the sequences of random numbers available to the processes (due to the random

number generators)

2. the sequences in which operation invocations are made on the processes (due to

the application program that is using the shared register layer)

3. uncertainties in the communication system used by the processes (for instance,
variability in message delays for a message passing implementation, or variabil-

ity in the response time for a shared memory implementation)

In order to facilitate the specification of probabilistic consistency conditions (as
well as the analysis of randomized algorithms), we will abstract the last two sources
of nondeterminism into a construct called an “adversary.”

Formally, an adversary is a partial function from the set of all sequences of steps
to the set of triggers. That is, given a sequence of steps that have occurred so far, the
adversary determines what trigger will happen next. Note that the adversary cannot
influence what random number is received in the next step, only the trigger. Let
RAND be the set of all p-tuples of the form (R',..., RP) where each R’ is an infinite
sequence of integers in {0,..., D}. D indicates the range of the random numbers. R
describes the sequence of random numbers available to process ¢ in an execution —
R;- is the random number available at step j. Call each element in RAND a random
tuple.

Given an adversary A and a random tuple R = (R!,..., R?), define an execu-

tion ezec(A, R) to be the sequence of steps o103 ... such that
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e the current state in the first step of each process ¢ is ¢’s initial state;

e the current state in the j-th step of process i is the same as the new state in

the (j — 1)-st step of i, for all processes i and all j > 1;

e the trigger in 0; equals A(oy...0;_4), for all j > 1 (the trigger is chosen by the

adversary);

i

e the random number in o; equals R,

where i is the process in o;’s trigger (the

random number comes from R, not the adversary).

If the adversary can generate arbitrary triggers, then it will be very difficult, if
not impossible, to achieve anything sensible. Thus we put the following restrictions

on the adversary:

e The sequence of operation invocations at each process is consistent with the
application layer above. That is, the operation invocations reflect the shared
memory accesses that the application wants to make. We assume that the
application never has more than one operation pending per process at a time.
More formally, for each finite sequence of steps e, A(e) is an invocation for
process i only if a response by 7 follows the latest preceding invocation for 7 in

€.

e Any conditions imposed by the nature of the underlying interprocess commu-
nication medium are respected. (For example, a message is received only if it

was previously sent.)

An execution e is complete if it is either infinite and no application process is
starved or, in the case it is finite, A(e) is undefined. This means that there is nothing
further to do  the application is through making calls on the shared variables and

no further action is required by the interprocess communication layer.
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W@ W,(b) Wi(c) W,u(b) Wg(c) Wg(o)

Fig. 1. Diagram for Definition of Reads From

4. A Random Register

Given an execution e, a read operation R in e is said to read from write operation
W in e if (1) W begins before R ends, (2) the value returned by R is the same as that
written by W, and (3) W is the latest write satisfying the previous two conditions.
Consider the example in Figure 1. If R returns a, then it is defined to read from Wi;
if it returns b, then it is defined to read from Wjy; and if it returns ¢, then it is defined
to read from Ws.!

A system is said to implement a random register if, for every adversary A,

[R1] every operation invocation in every complete execution (of the adversary) has

a matching response,

[R2] every read in every complete execution (of the adversary) reads from some write,

and

[R3] for every finite execution e (of the adversary) such that A(e) is a write invo-
cation, the probability that this write is read from infinitely often is 0, if an

infinite number of writes are performed in the extension.
Notice that this is a kind of “worst-case” probabilistic definition as the probabilistic

"This definition might not capture the “real” write that is read from in a particular
implementation, which might occur earlier. However, this definition is sufficient for
proving that eventually each write stops being read from, which is what is required
in this chapter.
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condition in [R3] must hold for every adversary and every write.

To be more explicit about the probability mentioned in condition [R3] of the def-
inition, note that e consists of a finite number of steps, say m. Thus e = exec(A, R,,),
where R, is the “prefix” of some random tuple R in which each component of R,,
is the m-length prefix of the corresponding component of R. Let & be the set of
all executions of the form exec(A,R'), where each R’ is an (infinite) extension of
R, i.e., each of these executions is a possible future for e, for the given adversary.
The subset of S consisting of all executions with an infinite number of writes is our
probability space.

Condition [R2] is where “errors” can creep in, as compared to the more restrictive
set. of writes that can be read from in the original definition of regularity. However,

[R3] limits these errors.

D. Implementing a Random Register with Probabilistic Quorums

In this section, we show that the probabilistic quorum algorithm presented by Malkhi
et al. [30, 29] implements a random register. For simplicity, we first assume an
asynchronous reliable message passing environment and no process failure.

The following specializations are needed to the general model given in Section
C: Triggers include receiving a message from a process. Outputs include sending
a message to a process. Constraints on the adversary include: every message sent
is eventually received, and every message received was previously sent but not yet
delivered.

The algorithm uses the notion of a quorum, which is a subset of the set of all
replicas, of size k (the quorum size). We have simplified the read-write register

algorithm from [29] to assume only one writer and absence of failures. The shared
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register X is replicated over n servers. This replicated server system is used by p
processes through the shared register subsystem associated with each process. Each
server keeps a local replica of the register to be implemented. A timestamp is asso-
ciated with the replica. To perform a read, the shared register subsystem queries a
quorum and returns the value with the largest timestamp resulting from the query.
To perform a write, the shared register subsystem for the writer causes the replicas in
a quorum to be updated with the new value and its new timestamp. Each quorum is
chosen randomly with uniform distribution from the set of all possible quorums (all
k-subsets of the set of all replicas) [30].

Each replica server r uses the following local variables:

e val, : holds the value of its replica of the (logical) shared register. Initially val,

holds the initial value of the shared register.

e ts, : holds the timestamp associated with the value in val,. Initially ts, = 0.
The shared register subsystem on each process ¢ uses the following local variables:

e rval; : holds the most recent value received from the replica servers in the
current quorum.

e rts; : holds the received timestamp associated with the value in rval;.

e numresp; : holds the number of responses that ¢ has obtained so far from the

current quorum.

In addition, the shared register subsystem for the unique writer process w keeps a local
variable wts,,, which holds the timestamp of the last write performed by w. Initially,
wts,, = 0. The code for each replica server and each shared register subsystem to

perform when each event occurs is presented as Algorithm 1.

Theorem II.1 The probabilistic quorum algorithm implements a random register.
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when Read;(X) occurs at process i: // invocation for a Read by process i
pick a random quorum @ := {q1,...,qx}
rts; :== 0; numresp; := 0
send QUERY messages to qi, ..., q

when a QUERY message is received by replica server r from process i:
send a VALUE(val,,ts,) message to i

when a VALUE(v,t) message is received by process i from replica server r:
numresp;+-+
if t > rts; then rval; := v; rts; := t endif

if numresp; = k then Return,; (X, rval;) endif // response for the Read

when Write,, (X, v) occurs at process w: // invocation for a Write by the writer w
pick a random quorum @ := {q1,...,qx}
Wisy,++; numresp, = 0
send UPDATE(v,wts,,) messages to qi, ..., gk

when an UPDATE(v,t) message is received by replica server r from process w:
val, :== v; ts, ;=1
send an ACK message to w

when an ACK message is received by process w from replica server r:
NUMTESPy+-+

if numresp,, = k then Ack,, (X) endif // response for the Write

Fig. 2. Algorithm 1: (Simplified) Probabilistic Quorum Algorithm [30, 29] to Imple-
ment Shared Register X
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PrOOF. Condition [R1] is true since messages are always delivered. Condition [R2]
is true by the way the values are stored and exchanged.

We now show condition [R3]. Choose any adversary A and any finite execution
e of A such that A(e) is a write invocation. Let W be this write. To show that the
probability that W is read from infinitely often is 0, we will show that the probability
that at least one of the replicas in W’s quorum survives ¢ subsequent writes goes to
0 as ¢ increases without bound.

Let k£ be the quorum size.

Pr[at least one replica from W’s quorum survives ¢ subsequent writes]
< k- Pr[a specific replica r from W’s quorum survives ¢ subsequent writes]
= k- Pr[r is not in the quorum of any of the ¢ subsequent writes]

= k-PrlrdQ)N(ré€Q)N...N(r¢Qu)

where (); is the quorum of the ¢-th subsequent write

‘
= k- H Pr[r ¢ Q] since quorums are chosen independently
i=1
n—k\"
= k- < : ) since n — k out of the n replicas are not in a given quorum.
n
Clearly limy_, k - ("=£)" = 0. O

To explain the advantages of the probabilistic quorum implementation, we review
two important properties of quorum systems: availability and load.

Availability is a measure of fault tolerance. The availability of a quorum system
is the minimum number of servers that must crash to cause at least one member of

every quorum in the system to fail [34]. To achieve high availability of 2(n), the
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smallest quorum size of the strict quorum system must be ©(n). This property is
satisfied by the majority quorum system, in which every quorum has size [5| + 1
(34].

Malkhi et al. [29] proposed handling server failures for strict quorums by contin-
uing to access servers until a quorum has responded. However, in an asynchronous
system with undetectable crash failures, this approach can break the probabilistic
properties of the probabilistic quorum algorithm. Therefore, we assume that we have
some kind of failure detection mechanism?.

The load of a quorum system was defined in [32] to be the minimal access prob-
ability of the busiest server, minimizing over all strategies for choosing the quorums.
In [32] it was proved that the load of a strict quorum system with n servers is at least
,£), where k is the size of the smallest quorum. Malkhi et al. [30] showed this
result also holds asymptotically for probabilistic quorum systems. Thus the optimal
(smallest) load for both probabilistic and strict systems is achieved when the smallest
quorum has size O(y/n).

Naor and Wool [32] showed that strict quorum systems have a trade-off between
availability and load such that any strict quorum system with optimal load of © (ﬁ)
has only O (y/n) availability. Malkhi et al. [30] showed that using probabilistic quo-
rums breaks this trade-off and achieves simultaneously high availability of ©(n) and
optimal load of © (ﬁ)

20ne mechanism would be to use failure detector to eliminate all faulty servers,
and choose quorum at random among all quorums that do not include a faulty server.
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E. TIterative Programs Using Random Registers

1. A Framework for Iterative Algorithms

Uresin and Dubois [38] presented a sufficient condition for the convergence of iterative
algorithms when out-of-date data is sometimes accessed. In this section, we give a
brief summary of their framework and point out that random registers satisfy their
condition with probability 1. Thus, the same set of functions that converge in Uresin
and Dubois” model will converge with probability 1 in the random registers model.

First, we give some background on Uresin and Dubois’ result. The class of
algorithms considered are those in which a function is applied repeatedly to a vector
to produce another vector. In typical applications, each vector component may be
computed by a separate process, based on that process’ current best estimate of
the values of all the vector components estimates which might be out of date.
Uresin and Dubois show that if the function satisfies certain properties and if the
outdatedness of the vector entry estimates is not too extreme, then this iterative
procedure will eventually converge to the fixed point of the function.

We use the following notation derived from [38].

Let m be the size of the vector to be computed. If x denotes an m-vector, then
x; denotes component ¢ of x. We consider a function F from S to S, where S is the
Cartesian product of m sets Sy,..., Sm,.

Let change be a function from N (the natural numbers) to 2t} and let view;,
1 < i < m, be a function from N to N. These functions will be used to produce
a sequence of updated vectors, as detailed below. The value of change(k) indicates
which vector components are updated during update k; the value of view;(k) indicates
which version of component i is used during update k. We require the change and

view functions to satisfy these conditions:
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[A1] wiew;(k) < k, for all i and &, implying that the view of a component must always

come from the past

[A2] each i € {1,...,m} occurs in change(k) for infinitely many values of &, implying

that each component is updated infinitely often

[A3] for each i € {1,...,m}, view;(k) takes on a particular value for only finitely
many values of k. This condition restricts the asynchrony by stating that a
particular computed value for a component is used subsequently only finitely

often.

Given a function F, an initial vector i, and change and view functions, define an

update sequence of F to be an infinite sequence of vectors x(0), x(1), x(2), ... such
that
e x(0) =i,

e foreach k > 1andalli, 1 <i <m, x;(k) equals z;(k—1) if i is not in change(k),

and equals F;(z; (view, (k)), ..., Ty, (view,, (k))) if i is in change(k).

Uresin and Dubois show that [A1] through [A3] are equivalent to the following
condition (which will be used in Section F): there exists an increasing infinite se-
quence of integers p(0) = 0, p(1), p(2),. .., where updates p(K) through (K +1)—1

comprise pseudocycle K, such that

[B1] each component of the vector is updated at least once in each pseudocycle, and

[B2] during each update in pseudocycle K > 1, the view of each component i is a

value that was updated in pseudocycle K — 1 or later.

Roughly speaking, a pseudocycle comprises at least one update to each vector com-

ponent using information that is not too out of date.
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The function F is called an asynchronously contracting operator (ACO) if
there is a sequence of sets D(0), D(1), D(2), ..., where D(0) C S, satisfying the

following conditions:
[C1] For each K, D(K) is the Cartesian product of n sets Dy (K), ..., Dp(K).

[C2] There exists some integer M such that D(K + 1) is a proper subset of D(K)
for all K < M, and D(K) contains a particular single vector for all K > M.

This single vector is the fixed point of the function.

[C3] If x is in D(K), then F(x) is in D(K + 1), for all K.

Theorem I1.2 [38] If F is an ACO on D(0),D(1),..., then every update sequence

of F starting with i € D(0) converges to the fized point of F.

Their proof shows that after all the components are updated in the Kth pseudo-
cycle the computed vector subsequently is always contained in D(K), and thus the

vector converges to the fixed point in at most M pseudocycles.

2. Using Random Registers

Now we show that if each vector component in the framework just described is im-
plemented with a random register, according to our definition from Section C, then
Theorem 11.2 is true with probability 1.

An asynchronous iteration using random registers corresponds to an execution
of the following algorithm. In this algorithm, responsibility for updating the m com-
ponents of the vector x is partitioned among the p processes. For each j, 1 < 7 < m,
component j of x, denoted x;, is held in a shared variable X;, which is a random

register. Recall that i is the initial vector on which the iterative algorithm is to com-
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Code for each process i:
while true do
for j := 1 to m do z; := read(X;) // obtain a view of each component
y := F(z1,...,2,) // compute updated vector locally
for each j such that 7 is responsible for updating X; do

write(X;, y;) // update j-th component

Fig. 3. Algorithm 2: Asynchronous Iteration Using Random Registers

pute. Each Xj is initialized to contain the value of component j of i. The code is

given as Algorithm 2.

Theorem I1.3 If F is an ACO on D(0),D(1),..., then in every complete execution
of Algorithm 2 using random registers initialized to a vector in D(0), the computed

vector eventually converges to the fixed point of F with probability 1.

Proor. We show that the update sequence extracted from an execution satisfies
[A1], [A2] and [A3] with probability 1. Then Theorem I1.2 will hold with probability
1.

Condition [A1] is satisfied in any execution thanks to part [R2] of the definition
of a random register, since the value returned by a read is always a value that was
previously written. Condition [A2], which says that each vector component is updated
infinitely often, is really a requirement on the application. This is satisfied in any
complete execution produced by an adversary, since the adversary must be consistent

with the application and the application has the necessary infinite loop. Finally,
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condition [A3] is satisfied with probability 1, since it is equivalent to part [R3] of the

definition of a random register. [

F. Monotone Random Register

In this section, we define a variation of a random register that satisfies two additional
properties.

One property is that the values returned by the register are monotone, meaning
that if a read reads from a certain write, then no subsequent read by the same process
reads from an earlier write. This requirement should yield performance improvement
by avoiding updates which might be wasted on reading more outdated values even
though a more recent value has already been read in a previous update.

The goal of adding this condition was to be able to analyze the expected conver-
gence time of an iterative algorithm in the [38] framework. Our approach for doing
so required us to make an additional, more technical, requirement on the register, in

terms of its probabilistic behavior.

1. Definition

A random register is monotone if it satisfies the following two additional conditions
for every adversary. The first additional condition is that the returned values are

monotone:

[R4] In every execution (of the adversary), if read R by process i follows read R' by
process ¢ then R does not read from a write that precedes the write from which

R’ reads.

The second additional condition is needed in order to bound the convergence time

when computing an ACO using monotone random registers. Assume the application
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program has an infinite number of reads. Let Y be a random variable whose value is
the number of reads by a process after a write W until W or a later write is read from
by that process. The intuition is that ¢ is the probability of “success” for a read; the
probability that r reads are required is (at most) the probability that r — 1 reads fail

and then the r-th read succeeds.
[R5] There exists ¢, 0 < ¢ < 1, such that for all 7 > 1, Pr(Y =7) < (1 —¢)" ! - q.

The probability space for [R5] is all writes in all complete executions of the adversary.

2. Implementation

Here we sketch a monotone probabilistic quorum algorithm: The shared register sub-
system for each process keeps track of the largest timestamp, as well as the associated
value, that it has returned so far during any read. If the queries to a read quorum all
return smaller timestamps, then the saved value is returned, otherwise the original

algorithm is followed.

Theorem I1.4 The monotone probabilistic quorum algorithm for n replicas with quo-

rum size k implements a monotone random register with g = 1 — (";k)/(;‘)

Proor. Condition [R4] is clearly true. The rest of the proof shows that [R5] holds.
Choose a particular write W in a particular execution and a particular process
1. W or a later write will be read from by ¢ if W is followed by a read whose quorum
overlaps W’s quorum. (There are other scenarios in which i can obtain a value later
than W, but we do not consider them in this analysis.)
The probability of a read R’s quorum not overlapping W’s is (";k)/(;l), since

there are (Z) possible choices for R’s quorum and there are (";k) choices for quorums

that do not overlap W's.
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The probability that Y = r is at most the probability that r — 1 reads have
quorums that do not overlap W’s and then the r-th read’s quorum does overlap W's.

The latter probability is (1 — ¢)" ! - ¢, since quorums are chosen independently. [

3. Expected Convergence Time for an ACO

In this section we show an upper bound on the expected number of rounds required
per pseudocycle (cf. Section 1) in the execution of an ACO, if the vector components
are implemented with a monotone random register.

A round is a minimal length (contiguous) subsequence of an execution in which
each process performs at least one execution of the while loop in Algorithm 2. (If
the system is synchronous, meaning that message delays and process step times are
constant, then each round consists of exactly one execution of the while loop by each

process.)

Theorem I1.5 In every execution of Algorithm 2 using monotone random registers

with parameter q, the expected number of rounds per pseudocycle is at most %

Proor.  Consider any adversary A and any finite execution e of A that has just
completed pseudocycle h, for any h > 0. We will calculate how many rounds are
needed on average for pseudocycle h + 1 to complete. (Pseudocycle 0 needs just one
round since there are no values earlier than the initial values.)

Condition [B1] in the definition of pseudocycle implies that at least one round is
needed.

Condition [B2] implies that for all X; and all processes i, i must read from a
write that is, or follows, the first write to X; in pseudocycle h, before pseudocycle

h+1 can end. Once this read occurs, by [R4] all subsequent reads by process i of X



25

will be at least as recent.
The required number of rounds is at most the random variable Y, as defined for

[R5] in Section 1.

EY = Y r-Pr[Y =r] by definition of expectation

r=1
< Yr-(1-¢"'-q byl[R5
r=1
1
= - by algebra.
q

O

Corollary I1.6 Let F be an ACO that converges in M pseudocycles. The expected
number of rounds taken by any complete execution of Algorithm 2 using monotone

random registers with parameter q is at most M/q.

We now provide an upper bound on the value of 1/¢ for the monotone proba-

bilistic quorum algorithm with n replicas and quorum size k. Proposition 3.2 in [30]

implies that (";k)/(;‘) < (£)*. Thus we have:

Corollary 11.7 For the monotone probabilistic quorum algorithm, the expected num-

ber of rounds per pseudocycle is at most ﬁ

4. Expected Message Complexity for an ACO

In this section, we compare the expected message complexity per pseudocycle when
executing an ACO for two implementation strategies of the vector components. One
implementation strategy is the monotone probabilistic quorum algorithm. The other
strategy consists of strict quorum systems, in which all quorums overlap. We show
that although the number of rounds required for convergence is greater for the prob-

abilistic case, there are some important situations in which the message complexity



26

is smaller. To ease the comparison, we consider synchronous systems, in which each
process performs exactly one iteration of the loop in Algorithm 2 per round.

Let M, (k) be the expected number of messages sent per pseudocycle with the
monotone probabilistic quorum implementation, and Mg, (k) be that with a strict
quorum implementation, where the parameter k£ indicates the size of the quorums.
Inspecting the code shows that the total number of messages sent per round is 2pmk+
2mk. Each of the p processes reads each of the m vector components once, and each

of the m vector components is written once. Each operation takes 2k messages. Then

Mprob(k) = 2cnm(p + 1)k (21)

where ¢, is the expected number of rounds per pseudocycle. And
Mg, (k) =2m(p+ 1)k (2.2)

since a strict quorum system uses one round per pseudocycle.

We will compare the expected message complexity of the two strategies in two
extreme situations: quorum systems with high availability, and those with optimal
load. (See Section D for definitions.)

We first consider quorum systems with high availability of Q(n). For the proba-
bilistic case, we set k = ©(y/n), which ensures high probability of intersection between
read and write quorums and also gives €2(n) availability [30]. Plugging into Eqn. 1

gives

My = © (2cnm(p + 1)\/5) =0 (mp\/ﬁ) (2.3)

since 1 < ¢, < 2 for all n when the quorum size is \/n (cf. Corollary I1.7).

For the strict case, Q(n) availability is only achieved when every quorum has size
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| 5] + 1. Setting & = |

NS

|+ 1 in Eqn. 2 gives,

Mg, =2m(p+1) QgJ + 1) = O (mpn)

which is asymptotically larger than My, for any value of p.

Now we consider quorum systems that have optimal load. For the probabilistic
case, again we set k = ©(y/n), which also gives optimal load. Then M, is the same
as Eqn. 3. There exist strict quorum systems in which a priori sets of servers form
the quorums (e.g., finite projective planes [28], a grid construction [13], etc.). Some
of these systems have £k = O(y/n), and My, = ©O(mpy/n), which yields the same
message complexity as the probabilistic case. However, it trades off with much lower

availability.

G. Simulation Results for Expected Convergence Time

We have simulated systems of non-monotone and monotone random registers im-
plemented using the algorithms from Sections D and 2 with a specific ACO. The

simulation results shed some light on the following issues:

1. how much of an over-estimate is the upper bound derived in Corollary I1.7 on

the expected number of rounds per pseudocycle for the monotone case,
2. what is the convergence behavior in the original, non-monotone, case, and
3. what is the difference between the synchronous and asynchronous cases.

We took as our example application an all-pairs-shortest-path (APSP) algorithm
presented in [38] and shown there to be an ACO. The vector x to be computed is
two-dimensional, n by n, where n is the number of vertices in the graph. Initially

each x;; contains the weight of the edge from vertex i to vertex j (if it exists), is 0 if
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1 = 7, and is infinity otherwise. The function F applied to x computes a new vector
whose (7, j) entry is

There are p = n processes, and process i is responsible for updating the i-th row vector
of x, 1 <4 < n. The worst-case number of pseudocycles required for convergence of
F is [log, d|, where d is the length of the longest simple path in the input graph.

The sample input for our experiments is a directed graph on 34 vertices that is a
chain, with vertex 1 the sink and vertex 34 the source. Each edge has weight 1. For
this graph, [log, 33] = 6 pseudocycles are required for convergence. We chose this
chain graph as our test input, because it has the largest d among all connected graphs
with the given number of vertices. This results in a larger number of pseudocycles
and, thus, increased significance of our measurements. We limited the graph size in
order to keep the running time of our simulator reasonable.

We simulated the execution of this APSP application over random registers,
implemented with both the monotone and original probabilistic quorum algorithm
using 34 replicas, over a range of quorum sizes, from 1 to 18. Once the quorum size is
at least 18, all quorums overlap, so every read gets the value of the latest write, and
the randomization in the quorum choice has no effect. We simulated both synchronous
and asynchronous systems. The message delays in the synchronous system are all the
same, whereas those in the asynchronous system are exponentially distributed.

We measured the number of rounds until every process computes the APSP
of given input graph. A round finishes when every process completes at least one
iteration of the while loop in Algorithm 2. Thus in the synchronous execution, a
round consists of every process completing exactly one iteration of the while loop,

whereas in the asynchronous execution, processes can complete various numbers of
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Fig. 4. Calculated Upper Bound and Simulation Results: Quorum Size vs. Rounds to

Converge

iterations of the while loop until one round is finished. At the end of each iteration of
the while loop, the simulation compares each process’s local copy of the row for which
that process is responsible, against the precomputed correct answer for that row. The
simulation completes when each comparison is equal. (Cf. [8, 39] for discussions of
the issues involved in detecting termination for iterative algorithms.)

The upper bounds on the expected number of rounds until convergence in the
monotone case for the various quorum sizes were calculated using the formula from
Corollary II.7 and plotted in Figure 4. We simulated the four combinations of
monotone/non-monotone and synchronous/asynchronous. For each of the four combi-
nations, seven runs of the simulation were performed per quorum size and the number
of rounds required for convergence was recorded for each. The average of these seven
values was then plotted in Figure 4.

The synchronous and asynchronous executions do not reveal much difference in
the results. We conjecture that this is because the structure of a round causes the

differences in the message delays, which are exponentially distributed, to average out.
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Each iteration of the while loop in Algorithm 2 involves 1190 round trip delays in
series (34?2 = 1156 for the reads and 34 for the writes), where each round trip delay is
the maximum of &k parallel round trips (k is the quorum size). The phenomenon that
asynchronous executions sometimes terminated faster than synchronous executions
is explained by the different order of information propagation, i.e., it is possible
that more information is available to the processes in asynchronous executions than
synchronous executions after the same number of rounds has been finished.

The discrepancy between the calculated upper bound and the experimental value
for the monotone case is quite large for very small quorums (e.g., 204 vs. 12.43 for
synchronous and 9.08 for asynchronous executions when k = 1), but it decreases as
the quorum size increases. One source of the overestimate is in the proof of Theorem
I1.5, where we did not take into account the fact that a read could obtain a value
more recent than a given write without having to overlap any of that write’s replicas.

The data indicates that the performance of the original algorithm is certainly
worse than that of the monotone algorithm. In particular, for quorum sizes 1 to 3,
the non-monotone simulation runs do not seem to converge in a reasonable amount
of time. The open squares in Figure 4 indicate the number of rounds that elapsed
in simulation runs that did not finish in a reasonable amount of time; thus they are
lower bounds on the actual values for both synchronous and asynchronous executions.
Furthermore, for most of the other quorum sizes, the round numbers in the non-
monotone case are larger than the computed upper bound for the monotone case.

With monotone executions, notice how a small quorum (say 4) is as good as a
large one (large enough to be strict). This is in line with the intuition behind the

original probabilistic quorum paper [30].
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CHAPTER III

RANDOMIZED SHARED QUEUES APPLIED TO DISTRIBUTED
OPTIMIZATION ALGORITHMS

A. Introduction

Quorum systems have been receiving significant attention because they provide con-
sistency and availability of replicated data and reduce the communication bottleneck
of some distributed algorithms (cf. [30] for references). The probabilistic quorum
model [30] relaxes the intersection property of strict quorum systems, such that pairs
of quorums only need to intersect with high probability. In Chapter 11, random regis-
ters are defined as memory cells in which certain types of random errors can occur. It
is shown in Chapter II that random registers can be used as an abstraction of proba-
bilistic quorum systems. In particular, the typical access operations (read, write) are
shown to have lower message complexity for random registers implemented with the
probabilistic quorum algorithm of Malkhi et al. [30, 29] when compared to conven-
tional shared memory implemented over strict quorum systems. At the same time,
random registers inherit the known properties of the probabilistic quorum system,
such as providing high availability and optimal load simultaneously [30]. Random
registers were shown to be strong enough to implement an interesting class of itera-
tive algorithms that converge with high probability.

In this chapter, we extend the results of Chapter II, which considers only read-
write registers, to one of the fundamental abstract data structures: the queue. We
propose a specification of a randomized shared queue data structure (random queue)
that can exhibit certain errors — namely the loss of enqueued values — with some

small probability. The random queue preserves the order in which individual processes
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enqueue, but makes no attempt to provide ordering across enqueuers. We show
that this kind of random queue can be implemented with the probabilistic quorum
algorithm of [29, 30].

Queues are a fundamental concept in many areas of computer science. A com-
mon application in distributed computing are message queues in communication net-
works. Many distributed algorithms use high-level communication operations, such
as scattering or all-to-all broadcasts (cf. Chapter 1 of [8] for an overview). These
algorithms can typically tolerate inaccuracies in the order in which the queue returns
its elements, as the order of the elements in the message queue is typically impacted
by the unpredictability of the communications network. Furthermore, we consider
randomized algorithms, in which the queue elements contain data that can be in-
correct or otherwise inappropriate with some probability. Algorithms of this type
can typically tolerate the random disappearance of elements in the queue (with some
small probability). We believe that this constitutes a large class of algorithms, which
can take advantage of random queues and their benefits of optimal load and high
availability. As an example of applications from this class, we analyze the behavior
of a class of optimization algorithms [4], when used with random queues.

In [42, 41], Yelick et al. propose several irregular data structures and a relazed
consistency model for those data structures. For example, a task queue is an unordered
collection of objects in which the priorities are locally, but not globally, observed. Such
task queues can be used in the load balancing of the tasks of irregular applications.
For the task queues of [42, 41|, the randomization affects only the priorities. The
number of enqueued tasks is always preserved. In [11], Chakrabarti et al. propose
using distributed priority queues for the load balancing of parallel processors with
dynamic scheduling algorithms. Again, the distributed queues affect the performance

gain in a realistic execution environment compared to that with a centralized queue.
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However, they do not specify any random behavior of queue operations.

B. Definitions

The data type of a shared object is defined by a set of operations and set of allowable
sequences of those operations. In all other respects, the system model is the same as

that in Section C of Chapter II.

C. A Random Queue

In this section, we specify a randomized shared queue and propose an implementation

for it. We then analyze the behavior of the implementation.

1. Specification of Random Queue

We define a random queue to be a randomized version of a shared queue, of which
some properties are relaxed such that the number of enqueued data items is not
preserved and the items can be dequeued out of order.

A queue (@) shared by several processes supports two operations, Enq(Q, v) and
Deq(Q, v). Eng;(Q, v) is the invocation by process i to enqueue the value v, Ack;(Q) is
the response to i’s enqueue invocation, Deq;(Q, v) is the invocation by i of a dequeue
operation, and Ret;(Q, v) is the response to i’s dequeue invocation which returns the
value v. A possible return value is also |, indicating an empty queue. The set of
values from which v is drawn is unconstrained.

We will focus on multi-enqueuer, single-dequeuer queues; thus, the enqueue can
be invoked by all the processes while the dequeue can be invoked only by one process.

We assume for notational simplicity that, in every execution, every enqueued

value is uniquely identified.
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Given a real number p that is between 0 and 1, a system is said to implement a

p-random queue if the following conditions hold for every adversary A.
e In every complete execution (of the adversary),

— (Liveness) every operation invocation has a following matching response;
— (Integrity) every operation response has a preceding matching invocation;
— (No Duplicates) for each value z, Deq(Q, z) occurs at most once;

— (Per Process Ordering) for all 4, if Enq;(Q,z;) ends before Enq;(Q, z5)

begins, then x5 is not dequeued before z; is dequeued.
e (Probabilistic No Loss) For every enqueued value z, Pr[z is dequeued]| > p.

That is, each enqueued element is either never dequeued (which occurs with
probability at most 1 — p) or is dequeued once (which occurs with probability at least
p). For a given adversary, the probability space is all extensions (of that adversary)

of any finite execution of the adversary that ends with the invocation to enqueue z.

2. Implementation of Random Queue

We now describe an implementation of a p-random queue. The next subsection
computes the value of p, assuming that the application program using the shared
queue satisfies certain properties.

The random queue algorithm (Algorithm 3) is based on the probabilistic quorum
algorithm of Malkhi et al. [30]. There are r replicated memory servers.

The construction of Algorithm 3 proceeds in two steps. We begin by describing a
random queue for the special case of a single enqueuer. The case of n > 1 enqueuers

is implemented over a collection of n single enqueuer queues.
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The enqueue operation (Enq) mirrors the probabilistic quorum write operation:
The local timestamp is incremented by one and attached to the element that is to be
enqueued. The resulting pair is sent to the replicas in the chosen quorum, a randomly
chosen group of k servers.

The key notion in the dequeue operation (SingleDeq) is a timestamp limit (7).
At any given time, all timestamps that are smaller than the current value T are
considered to be outdated. T is included in the dequeue messages to the replica
servers and allows them to discard all outdated values. Beyond this, SingleDeq mirrors
the probabilistic quorum read operation: The client selects a random quorum, sends
dequeue messages to all replica servers in the quorum and selects the response with
the smallest timestamp 4. It updates the timestamp limit to 17" := t; 4+ 1 and returns
the element that corresponds to .

Each replica server implements a conventional queue with access operations en-
queue and dequeue. In addition, the dequeue operation receives the current times-
tamp limit as input and discards all outdated values (e.g., by means of repeated
dequeue operations). The purpose of this is to ensure that there are exactly k replica
servers that will return the element vy with timestamp 7' in response to a dequeue
request. Thus, the probability of finding this element (in the current dequeue opera-
tion) is exactly the probability that two quorums intersect. This property is of critical
importance in the analysis in the following section. It does not hold if outdated values
are allowed to remain in the replica queues, as those values could be returned instead
of v by some of the replica servers containing vr.

For the case of n > 1 enqueuers, we extend the single-enqueuer, single-dequeuer
queue by having n single-enqueuer queues (@1, ..., Q,), one per enqueuer. The i-th
enqueuer (1 < i < n) enqueues to ;. The single dequeuer dequeues from all n queues

by making calls to the function Deq(), which selects one of the queues and tries to
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Algorithm 3a: Algorithm for client process — for single enqueuer and single dequeuer

Initially local variable ¢ = 0 // enqueue timestamp
T =1 // expected dequeue timestamp
when Enq(Q, v) occurs:
ti=t+1
send (enq, v,t) message to a randomly chosen quorum of size k and wait for acks

Ack(Q) // response to application

when SingleDeq(Q) occurs:
send (deq, T') to a randomly chosen quorum of size k and wait for replies
choose value v with smallest timestamp t,4
(L is considered to have largest timestamp)
if v isnot L then T:=t;+1

Ret(Q,v) // response to application

Fig. 5. Algorithm 3: Implementation of p-Random Queue @)
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Algorithm 3b: Algorithm for server process 7, 1 < i < r:

Initially local variable Qcopy, a queue, is empty
when (enq, v, T) is received from client j:
enqueue (v,7) to Qcopy

send (ack) to client j

when (deq, T') is received from client j:
remove (dequeue) every element of Qcopy whose timestamp smaller than T
if Qcopy is empty let w = L
otherwise let w be the result of dequeue on Qcopy

send (w) to client j

Algorithm 3c: Algorithm for a dequeuer extension for n > 1 enqueuers

Initially local variable i = 0, shared queue @ = (Q1, ..., Q)
// an array of n single enqueuer queues
when Deq(Q) occurs
i:= (i mod n)+1
SingleDeq(Q;,v) // v is value returned by SingleDeq

Ret (Q,v) // response to application

Fig. 5. Continued
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dequeue from it.

Deq() checks the next queue in sequence. The round-robin sequence used in
Algorithm 3 can be replaced by any other queue selection criterion that queries all
queues with approximately the same frequency. The selection criterion will impact
the order in which elements from the different queues are returned. However, it does
not impact the probability of any given element being dequeued (eventually), as the
queues do not affect each other, and the attempt to dequeue from an empty queue

does not change its state.

3. Analysis of Random Queue Implementation

For this analysis, we assume that the application program invoking the operations on
the shared random queue satisfies a certain property. Every complete execution of
every adversary consists of a sequence of segments. Each segment is a sequence of
enqueues followed by a sequence of dequeues, which has at least as many dequeues as
enqueues. Fix a segment. Let m,, resp., my, be the total number of enqueue, resp.,
dequeue, operations in this segment. Let m = m.+my. Let Y; be the indicator random
variable for the event that the i-th element is returned by a dequeue operation (1 <
i < m). In the following lemma, the probability space is given by the enqueue and
dequeue quorums which are selected by the queue access operations. More precisely,
let Pi(r) denote the collection of all subsets of size k of the set {1,...,r}. Since there
are m enqueue and dequeue operations, we let 2 = Py(r)™ be the universe. The
probability space for the following lemma is given by the finite universe {2 and the

uniform distribution on §2.

Lemma III.1 The random variables Y; (1 < i < m,) are mutually independent and

(ﬁf))l

()

identically distributed with Pr(Y;=1)=p= <1 -
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ProOOF. Since the queues @)1, ...,Q, do not interfere with each other, they can
be considered in isolation. That is, it is sufficient to prove the lemma for any given
single enqueuer queue ;. Consider any single enqueuer queue (), and let m, denote

the number of enqueued elements. In order to prove mutual independence, we have

to show
Pr(A\ Y =a;) = [[ Pr(Y; = a;) (3.1)
i=1 i=1

for all possible assignments of {0, 1}-values to the constants a;, for which the proba-
bility on the left-hand side is greater than zero. Thus, the following conditional prob-
abilities are well-defined. For h = 1: trivially, Pr(A}_,Y; = a;) = [1;_, Pr(Y; = q;).

Forall 1 < h <m,:

h h—1 h—1
Pr(/\ Y = a;) = Pr(Y, = ay| /\ Y =a;) - Pr( /\ Y = a;) (3.2)
i=1 i=1 i=1

Let j = max{i < h : a; = 1}!. Clearly, the event Y, = 1 does not depend on any

event Y; = a; for + < 5. Thus

h-1 h—1
Pr(Yy=1 AYi=a)=Pr(Y, =1]Y;=1A A\ Yi=0).
i=1 i=j+1

The condition corresponds to the following case: The last dequeue operation has
returned the j-th element. The dequeue operation immediately following the dequeue
operation that dequeued j-th element misses elements j + 1 to h — 1. That is, the
dequeue quorum R of the dequeue operation does not intersect the enqueue quorum

S; of any element i € {j +1,...,h — 1}. Thus

h—1 h—1
Pr(Y,=1Y;=1A A Yi=0) = Pr(RNS,#0 A\ RNS; =0)
i=j+1 i=j+1

'To handle the case when a; = 0 for all i < h, define Yy = ag = 1.
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— Pr(RNS, #0) (3.3)
- (s s >)

r
(+)
(3.3) is because quorums are chosen independently.
In summary, for all 1 < h < m, and assignments of {0, 1} to a;,

By the formula of total probabilities, Pr(Y, = 1) = p. Thus, returning to (3.2):

h h—1
Pr(A\Yi=a)= Pr(Y,=a,) Pr(\ YVi=ua) .
i=1 i=1
Mutual independence (3.1) follows from this by induction. L

Theorem II1.2 Algorithm 3 implements a random queue.

ProOOF. The Integrity and Liveness conditions are satisfied since the adversary
cannot create or destroy messages. The No Duplicates and Per Process Ordering
conditions are satisfied by the definition of the algorithm. The Probabilistic No

Loss condition follows from Lemma III.1, which states that each enqueued value is

) -

(+)
D. Application of Random Queue: Go with the Winners

dequeued with probability p = (1 —

In this section we show how to incorporate random queues to implement a class of
randomized optimization algorithms called Go with the Winners (GWTW), proposed
by Aldous and Vazirani [4]. We analyze how the weaker consistency provided by
random queues affects the success probability of GWTW. Our goal is to show that

the success probability is not significantly reduced.
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1. The Framework of GWTW

GWTW is a generic randomized optimization algorithm. A combinatorial optimiza-
tion problem is given by a state space S (typically exponentially large) and an objective
function f, which assigns a ‘quality’ value to each state. The task is to find a state
s € S, which maximizes (or minimizes) f(s). It is often sufficient to find approximate
solutions. For example, in the case of the clique problem, S can be the set of all
cliques in a given graph and f(s) can be the size of clique s.

In order to apply GWTW to an optimization problem, the state space has to
be organized in the form of a tree or a DAG, such that the following conditions are
met: (a) The single root is known. (b) Given a node s, it is easy to determine if s is
a leaf node. (¢) Given a node s, it is easy to find all child nodes of s. The parent-
child relationship is entirely problem-dependent, given that f(child) is better than
f(parent). For example, when applied to the clique problem on a graph G, there will
be one node for each clique. The empty clique is the root. The child nodes of a clique
s of size k are all the cliques of size k + 1 that contain s. Thus, the nodes at depth ¢
are exactly the i-cliques. The resulting structure is a DAG. We can define a tree by
considering ordered sequences of vertices.

Greedy algorithms, when formulated in the tree model, typically start at the root
node and walk down the tree until they reach a leaf. The GWTW algorithm follows
the same strategy, but tries to avoid leaf nodes with poor values of f, by doing several
runs of the algorithm simultaneously, in order to bound the running time and boost
the success probability (success means a node is found with a sufficiently good value
of f). We call each of these runs a particle — which carries with it its current location
in the tree and moves down the tree until it reaches a leaf node. The algorithm works

in synchronous stages. During the k-th stage, the particles move from depth k& to
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depth k£ + 1. Each particle in a non-leaf node is moved to a randomly chosen child
node. Particles in leaf nodes are removed. To compensate for the removed particles,
an appropriate number of copies of each of the remaining particles is added.

The main theme to achieve a certain constant probability of success is to try to
keep the total number of particles at each stage close to the constant B.

The framework of the GWTW algorithms is as follows: At stage 0, start with B
particles at the root. Repeat the following procedure until all the particles are at leaves:
At stage i, remove the particles at leaf nodes, and for each particle at a non-leaf node
v, add at v a random number of particles, this random number having some specified
distribution. Then, move each particle from its current position to a child chosen at
random.

We consider a distributed version of the GWTW framework (Algorithm 4), which
is a modification from the parallel algorithm of [33]. Consider an execution of Al-
gorithm 4 on n processes. At the beginning of the algorithm (stage 0), B particles
are evenly distributed among the n processes. Since, at the end of each stage, some
particles may be removed and some particles may be added, the processes need to
communicate with each other to perform load balancing of the particles (global ex-
change). We use shared-memory communication among the processes. In particular,
we use shared queues to distribute the particles among processes. Between enqueues
and dequeues in Algorithm 4, we need some mechanism to recognize the total number
of enqueued particles in a queue. It can be implemented by sending one-to-one mes-
sages among the processes or by having the maximum possible number of dequeues
per stage. (Finding more efficient, yet probabilistically safe, ways to end a stage is
work in progress.)

When using random queues, the errors will affect GWTW, since some particles

disappear with some probability. However, we show that this does not affect the
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Shared variables are random queues @;, 1 < i < n, each dequeued by process 7 and
initially empty
Code for process 7, 1 <1 < n:
Local variable: integer s, initially 0.
Initially g particles are at the root.
while true do
S+
for each particle at a non-leaf node v // clone the particles
add at v a random number of particles, with some specified distribution
endfor
remove the particles at leaf nodes
for each particle j  // move j to some process x’s queue
pick a random number x € {1,...,n}
Enq(Qs, )
endfor
while not all particles are dequeued  // read from own queue
Deq(Q;, j)
endwhile
move each particle from its current position to a child chosen at random

endwhile

Fig. 6. Algorithm 4: Distributed Version of GWTW Framework
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performance of the algorithms significantly. In particular, we estimate how the dis-
appearance of particles caused by the random queue affects the success probability

of GWTW.

2. Analysis of GWTW with Random Queues

We now show that Algorithm 4 when implemented with random queues will work as
well as the original algorithms in [4].

We use the notation of [4] for the original GWTW algorithm (in which no parti-
cles are lost by random queues): Let X, be a random variable denoting the number
of particles at a given vertex v. Let S; be the number of particles at the start of stage
i. At stage 0, we start with B particles. Then Sy = B and S; = 3°,¢cy, X, fori >0,
where V} is the set of all vertices at depth ¢. Let p(v) be the chance the particle visits
vertex v. Then a(j) = Y.y, p(v) is the chance the particle reaches depth j at least.
p(w|v) is defined to be the chance the particle visits vertex w conditioning on it visits
vertex v. The values s;,1 <1 < £ are constants which govern the particle reproduc-
tion rate of GWTWs. The parameter « is defined to express the “imbalance” of the
tree as follows: For i < j, k;; = aaz(—(?) S ver; P(v)a*(j]v), and k = maxo<icj<a kij-

Aldous and Vazirani [4] prove

Lemma III.3

- 2
ES, = Ba(l), 0<1<d, and  vars; < IiBa

Dy~ % g<i<a
j j:na(J)

We will use this lemma to prove similar bounds for the distributed version of the
algorithm, in which errors in the queues can affect particles. For this purpose, we
formulate the effect of the random queues in the GWTW framework.

More precisely, given any original GWTW tree T', we define a modified tree 7",

which accounts for the effect of the random queues. Given a GWTW tree T', let T"
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be defined as follows: For every vertex in T, there is a vertex in T7’. For every edge
in T, there is a corresponding edge in 7". In addition to the basic tree structure of
T, each non-leaf node v of T has an additional child w in T7". This child w is a leaf
node. The purpose of the additional leaf nodes is to account for the probability with
which particles can disappear in the random queues in Algorithm 4.

Given any node w in 7" (which is not the root) and its parent v, let p'(w|v)
denote the probability of moving to w conditional on being in v. For the additional
leaf nodes w in 7", we set p'(w|v) = 1 — p, where 1 — p is the probability that a given
particle is lost in the queue. For all other pairs (w,v), let p'(w|v) = p - p(w|v). Then
a'(i), d'(ilv), Si, &, X!, and k' can be defined similarly for 7".

Given a vertex v of T, let p(v) denote the probability that Algorithm 4, when
run with a single particle and without reproduction, reaches vertex v. The term
“without reproduction” means that the distribution mentioned in the first “for” loop
of the algorithm is such that the number of added particles is always zero. The main

property of the construction of 7" is:
Fact I11.4 For any vertex v of the original tree T, p'(v) = p(v). Furthermore,
Pr(Algorithm 4 reaches depth 0) = p- Pr(GWTW on T' reaches depth ()

for any £ > 0.

PrROOF.  We prove the first statement by induction on the depth of v. At depth
d = 0 (base case), v is the root and p'(v) = p(v) = 1. For the inductive step, let

v € Vyyq for £ € IN. Let u € V;, be the immediate ancestor of v. Now,

p'(v) = p'(vlu)p'(u) = p-poluw)p'(u) = p-plvlu)p(u) = p(vu)p(u) = p(v).
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For the second statement, it is sufficient to note that
Pr(Algorithm 4 reaches depth £) = Y p(v) = > p'(v) =p- > p'(v)
veVy veV) ’UEVZI
]
We can now analyze the success probability of Algorithm 4 (a combination of
GWTW and random queues) by means of analyzing the success probability of baseline
GWTW on a slightly modified tree. This allows us to use the results of [4] in our

analysis. In particular,
Lemma III.5

i-1 (s 1 i—1,2(:\ i s
ES = B'Y ?(Z), 0<i<d, and varS, < -kB"—" (©) S 0<i<d
S p S; §=0 p’ (L(])

PrOOF. We apply Lemma I11.3 to the GWTW process on 7" and show that k' = x/p
and a'(i) = p*'a(i) for all i. Note that for any i < £ and v € V;, p'(v) = p(v)p.

Thus, forany 1 <7 < /¢

d(i) = Y pw) =3 > pwwp(v)

wEVi’ weVi’ veVi_q
= Z p'(v) Z p(wv) =p! Z p(v) Z p(wv) :p’;la(i)
veVi_q weV; veVi_q weV;

Forany 0 <1< 7 </,

Z

Ky = ZP

UEV’
pz 1
- 2322 va a?(jlv)p?o =Y
p veV
- ali
va (jlv) = Kij/p
a UEV

O

In order to allow a direct comparison between the bounds of Lemmas II1.3
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and IIL5, it is necessary to relate the constants (s;)1<;<¢ and (s;)i1<i<,. These con-
stants govern the particle reproduction rate of GWTW and can either be set externally

s, then

or determined by a sampling procedure described in [4]. If we set s; = p'~
the expectations of Lemmas II1.3 and IIL.5 are equal and the variance bounds are
within a factor of p of each other. The variance bound is used in [4] in connection
with Chebyshev’s inequality to provide a lower bound on the success probability of
GWTW. It follows that the negative effect of random queues on the GWTW variance

bounds can be compensated for by increasing the number B of particles at the root

by a factor of 1/p.
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CHAPTER IV

SHARED INFORMATION MANAGEMENT WITH QUORUMS IN MOBILE AD
HOC NETWORKS

A. Introduction

We conjecture that randomization is a good approach to develop distributed algo-
rithms in unpredictable and resource-poor communication environments, such as mo-
bile ad hoc networks.

A mobile ad hoc network (MANET) consists of mobile computing entities
that communicate with each other through wireless links, and has no fixed static
infrastructure.

As discussed in [17], mobile ad hoc networks differ from mobile cellular tele-
phone networks as follows. Mobile cellular telephone networks consist of two types of
communication components: Firstly, there are base stations which serve to maintain
location table registers and store location databases. Base stations are not mobile and
communicate among each other to forward the information regarding call requests.
The second type of components are cell phones, which are mobile and communicate
with the base stations to make and receive calls.

Typically, MANETS also consist of two types of functional components: Firstly,
there are special participants, which perform administrative functions similar to those
performed by the base stations in cellular telephone networks (e.g. maintaining the
location database). The difference of this special participant from the base station is
that the participant itself is a mobile entity, i.e. it does not have a fixed location. The
other class of functional components consists of mobile entities, which correspond to

the cell phones in the cellular telephone network, and which communicate with the
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special participant to get the needed information. These classes are ‘functional’ in
the sense that a single physical device may participate in the network in both roles.

Thus the difference between the mobile ad hoc network and the mobile cellular
telephone network is that in the latter, the location databases are stored in fixed (i.e.
non-mobile) locations, whereas in the former, no fixed infrastructure exists.

In mobile ad hoc communication environments, managing the mobility so as to
keep track of the current location of mobile hosts is an important problem. In [17], an
ad-hoc mobility management scheme is proposed, which routes most packets through
arbitrary participants. This reduces the danger that the special participants may
become a bottleneck. The role of the special participants is limited to storing location
tables and computing routes through the general network. As described in [20], the
information dissemination problem in ad hoc wireless networks is to track the location
of each mobile node, and to gather information on the state of each mobile node.

We abstract those problems described above as an information sharing problem
over distributed shared variables. The mobile hosts communicate with each other
using shared variables. Since mobile ad hoc networks have no fixed infrastructure,
every mobile host must be capable of serving as a distributed shared information
server. The shared variable is a single-writer and multiple-reader register, which is
replicated over every mobile host. Quorum based replica systems have been proposed
in [17, 20] for this problem.

The proposed scheme in [17] is a quorum system based scheme for dynamic
distributed construction of the location information database. In [20], Karumanchi
et al. also propose a quorum based solution for the information dissemination problem
in partitionable mobile ad hoc networks. To alleviate the problem of query failures,
a set of heuristics is used in selecting servers for updates and queries, by maintaining

a list of servers that are believed to be unreachable.
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The quorum systems employed in the two papers [17, 20] are strict quorum
systems, meaning that every pair of quorums intersect. A strict quorum system can
be constructed with the smallest quorum size of O(y/n). Even though it may provide
a good complexity measure (relatively small cost to keep the needed information on
a quorum of size O(y/n)), such quorum systems may suffer from unbalanced load and
low availability in the face of node failures or unreachable nodes [30].

We propose to apply the probabilistic quorum system of Malkhi et al. [29, 30].
The probabilistic quorum system relaxes the quorum intersection property such that
every pair of quorums intersect with high probability [30]. This implies that with
some small probability, the probabilistic quorum system may return outdated infor-
mation. This appears to be a tolerable problem with respect to location information.
Movement is continuous and typically slow in relation to the relevant distances. It
is already shown in [20] that the strict quorum systems can also return outdated
information in mobile ad hoc communication environments. Furthermore, proba-
bilistic quorum systems provide optimal load and high availability simultaneously,
breaking the tradeoff between load and availability of strict (or traditional) quorum
systems [30].

It is shown in Chapter II that random registers can be used as an abstraction
of probabilistic quorum systems. In particular, the typical shared memory access
operations (read, write) are shown to have lower message complexity for random
registers implemented with the probabilistic quorum algorithm of Malkhi et al. [30,
29| when compared to conventional shared memory implemented over strict quorum
systems. At the same time, random registers inherit the known properties of the
probabilistic quorum system, such as providing high availability and optimal load
simultaneously [30].

In this chapter, we apply the random register model of Chapter II to imple-



ol

ment the location database to manage the mobility of mobile hosts in mobile ad hoc
networks. Furthermore, we compare the probabilistic quorum based implementation
with the strict quorum based implementation of [20] by way of simulations.

We perform simulations to answer the following questions:

e How does the probabilistic quorum model perform in mobile ad hoc¢ communi-

cation environments?

e Do the probabilistic quorums perform better than the strict quorums in practical

and dynamic communication environments such as mobile ad hoc networks?

e Can we characterize the behavior of those different quorum systems in regards

of different scenarios for the communication environment?

We describe in detail the different algorithms to implement the quorum based
replica systems in Section B.

To compare the performance of different quorum implementation algorithms, we
define several performance measures in Section C.

In Section D, we explain the simulation setup, including the protocols used in
each layer of the network, the sets of different parameters simulated, and so on.
Then we display the simulation results and discuss our observations. We also propose
possible extensions of the probabilistic quorum algorithm to take topology information
into account when dynamically constructing quorums, in order to increase efficiency
without harming the quorum intersection property too much. Furthermore, we justify
how to take advantage of mobility of the mobile hosts, hoping that the information

carried on the mobile hosts is gradually propagated as the mobile hosts move around.
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B. The Algorithms

We define the quorum-based shared information database system in mobile ad hoc
networks as follows.

The shared information is stored in single-writer, multiple-reader variables. The
operations performed on those variables are update and query, which correspond
to the conventional shared memory operations, write and read, respectively.

Each mobile host acts as both functional entities — a client and a server.

As a server, the mobile host h keeps a replica X" of the shared information
database X. When h receives an update(j,v,t) message from the mobile host j, h
updates its replica th with the new value v and the new timestamp ¢. Then h sends
j an Ack message to acknowledge the update. When h receives a query(j) message
from g, h sends g a response message with the value and timestamp of X";.

As a client, to perform an update, the mobile host h increases its timestamp ¢
by one, chooses a quorum (), and sends out update (h,v,t) messages to every mobile
host ¢ in (). When h has received all the Acks from every ¢ in (), the update operation
is said to be complete. To perform a query for j's data, A chooses a quorum (), and
sends out query (j) messages to every ¢ in (). When h receives all the response (v,?)
messages, the query operation is said to be complete. It then chooses the v associated
with the largest timestamp ¢, out of all the responses and its own local copy. Here we
ensure the monotonicity of the shared memory systems that is exploited in Chapter II.

When h tries to choose a quorum, we count this as an attempt. When h has
successively gotten (or constructed) a quorum, we count this as a success. We study

different strategies in choosing quorums in the following subsection.
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1. Strategies in Selecting Quorums

Firstly, we discuss three different strategies in selecting quorums in strict quorum
systems.

In [20], a finite projective plane (FPP) based quorum construction is used: Let n
be the number of mobile hosts serving as the replica servers. It is assumed that n is a
perfect square. Then we can place the n servers in a \/n x \/n square grid. In the FPP
quorum construction, a quorum can consist of either a row or a column, i.e., there can
be a priori rule to choose a read quorum from the set of rows and a write quorum from
the set of columns, or vice versa. We name this FPP quorum construction as SQ1.
Thus, with SQ1, the quorum size is /n. SQ1 guarantees that there is always one
member in the intersection of a pair of read and write quorums. However, to increase
the availability of the quorum system in the mobile ad hoc network, Karumanchi et
al. [20] union one row and one column to construct a quorum. We will call such
quorum construction as SQ2. With SQ2, there are n a priori quorums formed and
there are at least two members in the intersection of any pair of quorums. And the
quorum size is 2 - \/n — 1

Furthermore, to get better performance, Karumanchi et al. keep a list of un-
reachable hosts (unreachable nodes list: UNL) in case the network partitions or some
crash failures of servers occur. Three kinds of heuristics are used when choosing quo-
rums: (1) Eliminate the quorums that have any of those nodes in the UNL, and then
uniformly randomly select one from the remaining quorums (Eliminate-Then-Select:
ETS). (2) First select a quorum uniformly at random, and then eliminate those nodes
in the UNL from the chosen quorum (Select-Then-Eliminate: STE). (3) Use ETS for
updates and STE for queries (Hybrid).

We name the Hybrid strategy as SQ3. In this chapter, we perform simulations
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on SQ1, SQ2, and SQ3, as strict quorum implementations.

For probabilistic quorum systems, we first eliminate the hosts in the unreachable
list, and then uniformly randomly choose k servers to dynamically form a quorum of
size k, where k is an input parameter to the quorum system. We address in Section C,

the issue when k servers are not available.

C. Performance Measures

We employ four kinds of measures in order to compare the performance of quorum

based shared memory systems in mobile ad hoc networks:

e The shared memory recency rate: indicates the correctness or consistency of the
distributed shared memory system. We count the number of outdated values
returned by query operations. We define outdatedness as follows: a query to
variable z is outdated if it returns a value with a timestamp that is older than
the timestamp of the most recent complete (cf. Section B) update of z. In our
simulation, the simulator compares the timestamps simultaneously at the time
when the reply is given back to the application. Let A, denote the number of
completed query operations and N, the number of outdated values returned by

those queries. Then the recency rate is measured as %

e The quorum availability rate: indicates the fault-tolerance of the quorum sys-
tem. It reflects network link stability, network partition possibility, and crash
failures of the nodes. Let A, be the number of attempts to choose quorums and
N, the number of successes in choosing quorums. Then the availability rate is

measured as %5 .
a

This way of measuring the availability rate is inappropriate for SQ1 and SQ2

because they do not utilize the UNL when choosing quorums and instead blindly
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choose a random quorum out of the a priori set of quorums. Thus, the avail-
ability rate for SQ1 and SQ2 would be always one (N, = N). Therefore, for
SQ1 and SQ2, we count the number of timeouts as the number of quorum fail-
ures. The timeout feature we adopt is explained in detail in Section D. Let N}
be the number of failed shared memory operations due to timeout. Then the

availability rate for SQ1 and SQ2 is computed as 1 — j\\/fi

e The average completion time per operation: indicates responsiveness of the
shared memory system. Let 7 denote the total time for shared memory oper-
ations and N, the number of completed shared memory operations. Then the

average time per operation is measured as A%
m

e The shared memory system throughput. measures how efficiently the system
performs. It also reflects the network load. The throughput is measured as the

number of completed shared memory operations per unit time (second).

D. Simulation

In our simulation, we use the ns-2 Network Simulator [40] with CMU/Monarch group’s
mobility extension [14]. We use TCP (Reno) for the transport layer and DSR (Dy-
namic Source Routing) for the routing (network) layer, IEEE 802.11 MAC protocol
for the link layer, and Two Ray Ground Radio Propagation model for the physical
layer. The transmitter range is set as 250 meters.

We modified the telnet application so that it incorporates the shared memory
subsystem layer between the actual application that invokes update/query shared
memory operations and the communication network layer. Each application process
invokes update and query operations periodically. An application can have at most

one pending query operation and one pending update operation simultaneously. The
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sequence of update operations is independent of the sequence of query operations at
each process. The first update for process P; is invoked 2.05/(i + 1) seconds after the
process starts, while the first query for the process is invoked 2.1/(i + 1) seconds after
the process starts. Subsequently, the invocation of the next update (resp., query) is
scheduled for 2 seconds after the invocation of the current update (resp., query). If
the current operation (query or update) has not yet finished, then the invocation is
rescheduled for one second later, until it succeeds.

The essential role of the shared memory subsystem (SMS) is to interpret the
memory operation invoked by the application process, to generate a set of messages
to a quorum, and to handle the response messages gotten from the quorum to gener-
ate the result of the memory operation for the application process. We implemented
the shared memory subsystem with the four algorithms (PQ, SQ1, SQ2, and SQ3) de-
scribed in Section B, ran each implementation with sets of parameters, and compared
their performance based on the four measures explained in Section C.

The operations time out if some member(s) of the quorum does not respond in
10 seconds. Then a new quorum is chosen and the time-out operation is repeated.
Each application keeps the unreachable nodes list (UNL) by trying to find if there
exists a path to every other node in the system. This is done using the route request
function of DSR. The UNL is updated every second.

We assume there are n = 25 mobile nodes in the system, placed at random in a
2-D rectangular area. The maximum speed of each mobile node is 4 meter/sec. and
each of the 25 nodes acts as both client and server of the shared memory subsystem.
The area where the nodes may move around is varied from 300x300 m? to 1000x1000
m? with an increment of 100 meters in each direction. We ran each simulation for
1200 seconds. For the PQ implementation, we vary the quorum size from 1 to 15.

Each plot in the figures is the computed average of seven runs on seven differ-
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ent movement scenarios. We used the Random Waypoint mobility model from [9].
Figures 7 to 10 show how the different quorum sizes perform differently. Figures 11
and 12 display the different performance of the three strict quorum implementations.
In figures 13 and 14, we compare the SQs and the PQ of the corresponding quorum

sizes (which are 5 and 9 in this simulation).

1. Probabilistic Quorum Implementations

For the PQ implementation, we simulated two different schemes: with and without
timeout of the shared memory operation. In Figures 7 to 10, the left-hand side figures
are without timeout feature, i.e., once an update or query operation is invoked and
the corresponding messages are sent out, the shared memory subsystem indefinitely
waits until all the responses are gotten back. It was an optimistic design of the mem-
ory system because the SMS hoped that there would not have been much movement
of nodes since last computation of the unreachable nodes list (UNL). However, the
simulation results revealed that this optimistic design is not appropriate for the mo-
bile ad hoc network system we simulate. Along with the assumption that there is not
more than one update and query operation pending per node, this optimistic imple-
mentation yielded very poor performance in terms of throughput. This phenomenon
is displayed in the left-hand side of Figure 8.

Thus, we adopted a timeout feature, so that when a certain amount of time (10
seconds in this simulation) has elapsed since the current pending memory operation
was invoked, the SMS assumes some member(s) of the quorum is currently unreach-
able, crashed, or the link has failed, and aborts the operation. Then the SMS retries
to perform the operation by sending out messages to the newly chosen quorum. The
timeout feature increased the throughput greatly, as shown in Figure 8, with a little

compensation of recency rate (cf. Figure 7). The recency rate, however, is almost the
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same for both schemes as long as the network is in a reasonable size of area so that the
network is not partitioned a lot; with timeout, the recency rate starts degrading as
the area and the quorum size become large (cf. 800x800 or larger area with quorum
size 12 or more). For small quorum sizes (say, 1 to 4), the timeout scheme yields
better recency rate in most cases.

As can be seen in Figures 9 and 10, using the timeout feature smoothed out the
average time per operation and quorum availability rate, so that we can better predict
the performance of the system based on the system parameters such as the quorum
size and the area. The timeout feature helped a lot to get better average time per
operation.

The quorum availability rate clearly displays how network partition affects suc-
cess in choosing random quorums. As the area gets larger, the quorum availability
rate significantly drops. Even in small areas, it is often not possible to choose large
quorums.

Overall, it was noticed that having higher throughput by use of the timeout
feature enabled us to obtain better statistics of the behavior of the system. One
observation here that was not explained by the theoretical results shown in Chapter 11
is that having a large quorum size does not result in a better recency rate of the shared

memory system for mobile ad hoc networks with network partitions.

2. Strict Quorum Implementations

All three strict quorum implementations use the timeout feature similar to that of
the probabilistic quorum implementation. SQ1 and SQ2 do not use the unreachable
nodes list (UNL). They first choose a quorum randomly out of the a priori constructed
set. of quorums and send out the corresponding messages. Then if timeout occurs,

it is considered (for some reason) that the quorum choice failed and the operation
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is restarted by choosing a new quorum. This occasion of timeout is accounted as
the available rate. SQ3 uses UNL to implement the hybrid scheme with different
heuristics: for a query operation, choose a quorum and then eliminate those members
in UNL from the quorum, and for an update operation, first eliminate those quorums
with a member in UNL and then choose a quorum out of the remaining quorums.
And then it uses timeout to avoid any indefinite waiting situation resulting from the
movement of nodes.

In the left-hand side figure of Figure 11, SQ1 shows quite good recency rate in
relatively small area (say, up to 600x600). It shows better recency rate than SQ2
in all areas, and better than SQ3 in reasonably large areas (say, up to a little less
than 900x900). Considering that SQ1 has quorum size 5 and 5 possible choices of
quorums, and SQ2 has quorum size 9 and 20 possible choices of quorums, this was an
unexpected observation. SQ2 has very low recency rate as soon as the network starts
getting partitioned. As the area gets large such as 900x900, SQ3 performs better than
the others, when SQ1 and SQ2 degrade quickly. Even though SQ3 has worst recency
rate in the mid-sized areas, it displays some lower bound, which indicates that it can
guarantee some bounded deterioration of recency rate.

The right-hand side figure of Figure 11 show that SQ1 and SQ2 have almost
constant quorum availability rates. In this simulation, the heuristics adopted in SQ3
perform poorly. The quorum availability rate of SQ3 drops significantly as the area
increases.

In the left-hand side figure of Figure 12, SQ1 shows the best performance of the
three in terms of throughput. However, it is affected by the area, and noticeably
drops as the area gets large (more than 600x600). This is shown again with the
average time per operation in the right-hand side figure, where the time of SQ1 starts

increasing with the area of 600x600. SQ2 performs poorly in terms of average time
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per operation.

Overall, in a reasonable area (of size less than 600x600), SQ1 has quite good
performance. SQ3 does not show in our simulation, the effectiveness of adopting the
heuristics. Furthermore it seems to be affected a lot by system environment such as
area and system parameters such as time interval to update the UNL, and so on.

Now we compare those strict quorum implementations with the probabilistic

quorum in the following section.
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3. Comparison of Strict and Probabilistic Implementations

To compare the probabilistic quorum implementation with the three strict quorum
implementations, we re-plotted the two quorum sizes 5 (same size as SQ1’s) and 9
(same size as SQ2’s and SQ3’s) from the probabilistic quorum case together with the
plots of SQs. We denote the plot of probabilistic quorum size 5 as PQ1 and that of
size 9 as PQ2.

In Figure 13, SQ1 has better recency rate than that of PQ1 in areas smaller than
700x700, but as the area gets larger, SQ1’s recency rate drops quickly, when PQ1’s
stays almost constant. Similar phenomenon happens with SQ2 and PQ2, and PQ2 is
superior than any others, in terms of recency rate. PQ1 and PQ2 show better recency
rate than SQ3 even in very large area of 1000x1000.

In terms of quorum availability rate, PQ1 is the best, as shown in the right-hand
side in Figure 13. This concurs with the theoretical result discussed in Chapter II.
With the areas up to 600x600, PQ2 is still better than SQs, but as the area becomes
larger, PQ2’s availability rate drops significantly, yielding worse performance than

SQ1 and SQ2, but still better than SQ3.
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Figure 14 shows again PQ1 is the best in regards of throughput. PQ2 is better
than SQ2 in areas smaller than 800x800, but worse than SQ2 in larger areas, and
better than SQ3 in all areas.

The average time per operation shown in the right-hand side of Figure 14 displays
that PQ1 is again the best. SQI is better than PQ2 until the area is within 900x900,
but seems to have increasing time per operation as the area becomes larger. Both PQ1
and PQ2 show better performance than SQ3. However, it is noted that even in the
best case of PQ1, it takes about 2 seconds to complete one memory operation. Even
though this time includes the time for retries by the shared memory system, when
considering this time as the response time to the application, it will be unrealistically
slow to use this memory system in implementing time-critical applications. Thus,
this shared memory system is desirable for applications that do not involve intensive
shared memory operations.

Overall, probabilistic quorum implementations show improved performance in
all measures with some trade-offs between recency rate and quorum availability rate,
for example.

We would like to design a new quorum implementation algorithm that guaran-
tees as high recency rate as PQ2 and provides as high quorum availability rate and
throughput as PQ1, while keeping the average response time small. One observation
from the simulation is that many occasions of low performance resulted from the lack
of knowledge about the topology changes of the network. This can be easily explained
from the simulation results we have discussed so far. Thus, we propose a new scheme
for quorum construction: a topology-sensitive quorum system (TS(Q)), which takes
topology information into account when dynamically constructing quorums. Based
on the observations from the simulation results, we conjecture that TSQs may be

able to take advantage of topology information in order to increase efficiency without
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harming the quorum intersection property too much. Furthermore, we expect that
TSQs would take advantage of mobility of the mobile hosts to propagate information.
It remains as future work to design a concrete algorithm to implement the TSQ and

analyze its performance either theoretically or experimentally (or both).
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CHAPTER V

SUMMARY AND FURTHER RESEARCH

A. Dissertation Summary

In this dissertation we performed three avenues of research related to randomized
memory models and their applications in distributed computing. In Chapter II,
we have suggested two specifications of randomized registers that can return wrong
answers, namely two probabilistic versions of a regular register, non-monotone and
monotone. We showed that both specifications can be implemented with the prob-
abilistic quorum algorithm of [29, 30]. Furthermore, our specifications can be used
to implement a significant class of iterative algorithms [38] of practical interest. We
evaluated the performance of the algorithms experimentally as well as analytically,
computing the convergence rate and the message complexity.

In Chapter III, we have proposed a specification of a randomized shared queue
data structure (random queue) that can exhibit certain errors ~ namely the loss of
enqueued values — with some small probability. The random queue preserves the or-
der in which individual processes enqueue, but makes no attempt to provide ordering
across enqueuers. We showed that this kind of random queue can be implemented
with the probabilistic quorum algorithm of [29, 30]. We identified, as potential ap-
plications of random queues, distributed algorithms that have a particular pattern
of interprocess communication using message passing and that can tolerate a small
number of message loss and inaccuracies in the order in which messages arrive. In
these algorithms, the message passing communication is to be replaced by enqueuing
and dequeuing information on random queues. We believe that this constitutes a

large class of algorithms, which can take advantage of random queues and their ben-
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efits of optimal load and high availability. As an example of applications from this
class, we analyzed the behavior of a class of combinatorial optimization algorithms
(Go With the Winners [4]).

In Chapter IV, we have applied the probabilistic quorum system of Malkhi et
al. [29, 30] to implement the shared information database system in mobile ad hoc
networks. An application of such shared information system is location information
database for mobility management of the mobile hosts. First we compared two dif-
ferent implementations of probabilistic quorum: with or without timeout feature.
The simulation results showed that employing timeout feature is more desirable to
yield better performance. Then we compared, by way of simulation, the probabilistic
quorum implementation with the timeout feature, to the three strict quorum imple-
mentations (SQ1, SQ2, and SQ3), which are discussed in [20]. The observations are:
our probabilistic quorum implementation performs better than the strict quorums,
and the topology change due to the continuous movement of nodes has a significant ef-
fect on the performance of quorum systems. Thus, understanding the node movement
pattern and the system environment of the mobile ad hoc network in consideration is
critical in providing an appropriate implementation algorithm for the shared database

system in the mobile ad hoc network.

B. Further Research

In this section we describe a few directions along which the research in this dissertation

can be extended.
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1. Random Registers

A number of challenging directions remain as future work. The definition of random
register given here was inspired by the probabilistic quorum algorithm and was helpful
in identifying a class of applications that would work with that implementation. It
would be interesting to know whether our definition is of more general interest, that
is, whether there are other implementations of it, or whether a different randomized
definition is more useful.

Another direction is how to design more powerful read-write registers and other
data types in our framework. Malkhi et al. [30] mention building stronger kinds of
registers, such as multi-writer and atomic, out of the registers implemented with their
quorum algorithms, by applying known register implementation algorithms. However,
it is not clear how random registers can be used as building blocks in stronger register
implementations.

This dissertation has addressed the fault-tolerance of replica servers for appli-
cations running on top of quorum implementations for shared data. In contrast, the
issue of fault tolerance of clients for asynchronously contracting operators is another
challenge, and is ongoing work. We consider the approximate agreement problem to

be a good application for such a new model.

2. Random Queues

Another possible class of applications for a random queue is randomized Byzantine
agreement algorithms in which the set of faulty processes can change from round to
round (e.g. Rabin’s algorithm [35, 31]). Random errors in the queue can be attributed
to faulty processes. Issues to be resolved include how to adapt the message passing

algorithms to the situation when too few messages are received; also whether prob-
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abilistic quorum algorithms in [30] that tolerate Byzantine failures can be exploited
here.

Actually, the applications we identified do not even require the per-process or-
dering — a shared multiset would work just as well. An open question is whether
there is a randomized implementation of a multiset, with no ordering guarantees,
that is more efficient in some measure than the algorithm presented in Chapter III.
A complementary question is to identify distributed applications that would need or-
dering properties on a shared queue. Clearly one can imagine a variety of weakened
queue definitions and a variety of implementations. Specifying and analyzing these

are challenges for future work.

3. Applications on Mobile Ad Hoc Networks

It remains as a future work to design and analyze an algorithm for a quorum system
that takes topology information into account so as to obtain better performance
without harming the quorum intersection property too much.

It also remains as a future work to investigate whether read/write registers are the
most suitable data structure for the location information database in mobile ad hoc
networks, or if different (new) data structures may provide more efficient construction

of such database.
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