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ABSTRACT

In this paper, a new method of feature extraction with
rotation invariant property is presented. One of the main
contributions of this study is that a rotation invariant signa-
ture of 2-D contours is selected based on the fractal theory
is proposed. The rotation invariant signature is a measure of
the fractal dimensions, which is rotation invariant based on
a series of central projection transform (CPT) groups. As
the CPT is applied to a 2-D object, a unique contour is ob-
tained. In the unfolding processing, this contour is further
spread into a central projection unfolded curve, which can
be viewed as a periodic function due to the different orien-
tations of the pattern. We consider the unfolded curves to
be non-empty and bounded sets in IRn, and the central pro-
jection unfolded curves with respect to the box computing
dimension are rotation invariant. Some experiments with
positive results are conducted. This approach is applica-
ble to a wide range of areas such as image analysis, pattern
recognition, etc.

1. INTRODUCTION

The problem of invariant pattern recognition is consid-
ered to be a highly complex and difficult one. The tech-
nique of rotation invariance is one of the most important
branches of invariant pattern recognition. In this paper, we
are concerned in particular with the feature extraction of 2-
D patterns related to rotation invariance in the plane. The
proposed feature extraction technique has rotation invariant
properties which combines central projection transform and
fractal theory.

As fractal geometry is able to describe the world in
which we live it would seem like an ideal tool for image
processing and pattern recognition. The tendency of gener-
alized pattern recognition techniques to be computationally

expensive is the main motivation behind using fractal ge-
ometry for pattern recognition. As has already been stated,
one of the most powerful aspects of fractal geometry is its
ability to express complex sets as a few parameters. If these
parameters can be extracted for a general shape and com-
parisons made between shapes using these parameters then
this could form the basis of a completely new recognition
technique. In this paper, a new method of feature extrac-
tion with rotation invariant property is presented. One of
the main contributions of this study is that a rotation invari-
ant signature of 2-D contours is selected based on the frac-
tal theory is proposed. The rotation invariant signature is a
measure of the fractal dimensions, which is rotation invari-
ant based on a series of central projection transform (CPT)
groups.

2. ROTATION INVARIANCE BASED ON
BOX COMPUTING DIMENSION

Fractal theory is based on geometry and dimension the-
ories. Fractal is a compound object, which contains sev-
eral sub-objects. The global characteristic of this object is
similar to the local characteristics of each sub-object. Of
the wide variety of fractal dimensions in use, Hausdorff di-
mension is the oldest and probably the most important one
of the fractal dimensions. It has the following advantages:
(1)Hausdorff dimension can be defined for any set. (2)It
is mathematically convenient. (3)It is based on measures,
which are relatively easy to manipulate. However, the ma-
jor disadvantage of the Hausdorff dimension is that it is dif-
ficult to compute or to estimate in any cases. In practice,
the box computing dimension (BCD) is convenient to ap-
ply. Therefore, our study will focus on the box computing
dimension.



2.1 ESTIMATION OF THE 1-D FRACTAL DI-
MENSIONAL

Let F be a non-empty and bounded subset of IRn, 
 =
f!i : i = 1; 2; 3; :::g be covers of the set F . N�(F ) denotes
the number of covers, such that

N�(F ) = j
 : di � �j;

where di stands for the diameter of the i-th cover. This
equation means that N�(F ) is the smallest number of sub-
sets which cover the set F , and their diameters di’s are not
greater than �.

The upper and lower bounds of the box computing di-
mension of F can be defined by the following formulas:

dimBF = lim inf
�!0

log
2
N�(F )

� log
2
�

; dimBF = lim
�!0

log
2
N�(F )

� log
2
�

;

where the over line stands for the upper bound of dimension
while the under line for lower bound.

Definition 1 If both the upper bound dimBF and the lower
bound dimBF are equal, i.e.

lim inf
�!0

log
2
N�(F )

� log
2
�

= lim
�!0

log
2
N�(F )

� log
2
�

;

the common value is called box computing dimen-
sion(BCD)of F , namely:

dimB F = lim
�!0

log
2
N�(F )

� log
2
�

: (1)

Before showing the rotation invariant signature, we
would like to discuss some basic properties of BCD at first.
The BCD has many similar properties with Hausdroff di-
mensions [1]. Here we mainly interested in the two most
important and useful properties of its. It is closely corre-
lates with rotation invariant signature in the invariant tech-
nique for pattern recognition.

� Monotonicity Let E and F be non-empty and
bounded set in IRn. If E � F , we have established
the result: dimBF � dimBE.

� Stability Let E and F be non-empty and bounded
set in IRn. We can conclude that dimB(E [ F ) =
max(dimB(E); dimB(F )).

2.2 ROTATION INVARIANT SIGNATURE
(RIS)

As the central projection transform (CPT) is applied to
a 2-D object [2], a unique contour is obtained. In the un-
folding processing, this contour is further spread into a cen-
tral projection unfolded curve. In practice, the pattern can
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Figure 1. (a) The central projection unfolded curve of the
original pattern that can be viewed as a periodic function
f(t) of period 2�. (b) The f(t) is translated into the func-
tion f(t+ t0) due to the rotation.

be arbitrarily rotated, and the angle of the rotation can be
changed from 0 to 2�. Therefore, the unfolding process-
ing can also be arbitrarily started at any point on the con-
tour, and many functions are produced, say f(t), f(t+ t 1),
f(t+ t2), :::, f(t+ tn), which can be viewed as a periodic
function of period 2� at [0; 2�] with different initial phase
ti based on different starting unfolding pont. This can be
found in Figure 1, where a cyclic function f(�) is produced
by the central projection transform (CPT) and unfolding for
the helicopter image with different orientations.

3 RIS ALGORITHM

The novel RIS algorithm consists of four main pro-
cesses: (1) preprocessing, (2) the central projection trans-
form (CPT), (3) estimating the box computing dimension,
and (4) extracting the feature with rotation invariant prop-
erty.

3.1 PREPROCESSING

First, we convert a scanned image into digitized (binary)
image, i.e. an image with pixels 0 (white) and 1 (black).
After converting the image, we remove unnecessary pixels
(0) from the original image. For this purpose, we use the
following preprocessing.

� Find the center of gravity and translate to the center of
the image plan.
For a binary image of the pattern in the 2-D Cartesian
system:

f(x; y) =

�
1 if (x; y) 2 D;
0 otherwise ;

(1 � x; y �M):



The center of gravity (X;Y ) for the pattern is given by�
X = m10

m00

Y = m01

m00

where mpq =
P

M

x=1

P
M

y=1
xpyqf(x; y); denotes geo-

metrical moments of the pattern.

� Scale the input pattern by D

d

If the present standard distance is D, then the input
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d
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where (X;Y ) is the new coordinate of a point for a
pattern sample with standard size, (xj ; yj) is the coor-
dinate of a point for a pattern sample with the jth kind
of size, D is the standard size, dj stands for the jth
kind of size.

3.2 CPT OPERATION

After preprocessing, the system will convert the Carte-
sian coordinate system into the polar coordinate system,
similar to the first step in the Fourier-Mellin transform, then
transform the pattern from the image domain into the area
domain using central projection.

We denote each of the 2-D patterns in question by
f(x; y). Thus, the central projection of f(x; y) can be ex-
pressed as follows:

f(�k) =

MX
=0

f( cos �k;  sin �k);

where �k 2 [0; 2�]; k = 1; 2; : : : ; 360.
The above analysis can be summarized by Eq. (3). From

this equation, we can know that a rotated object can be rep-
resented by some rotated unique-contours in terms of the
CPT. Each contour is spread by the unfolding professing,
and a curve is obtained, which is called central projection
unfolded curve of the pattern. All the central projection un-
folded curves can be viewed as a periodic function.

f(x; y) ) f(x; y) � � ) CPT(f(x; y) � �) ) f(�)

# # # #

Original Rotated Central projection Unfolded
image image transformed image: image:

it is a unique-contour the rotated contour
pattern with the becomes a
property of periodic function
shape-invariance

(3)

3.3 ESTIMATING THE BCD

The estimated BCD can be used to measure the fractal di-
mension of the non-self-intersecting curve. The procedure

is analogous to moving a set of dividers of fixed length �

along this curve. Formally, the method finds the ‘�-cover’ of
the object, i.e. the number of pixels of length � (or circles of
radius �) required to cover the object. A more practical al-
ternative is to superimpose a regular grid of pixels of length
� on the object and count the number of ’occupied’ pixels on
the curve. Suppose that C is a non-self-intersecting curve,
and � > 0. Let M�(C) be the maximum number of ordered
sequence of points on curveC. Since the fractal dimensions
D of non-self-intersecting curves are asymptotic values, we
can derive their approximations based on the following ex-

pression: D =
logM� (C)

�log�
; when � is set to be small enough.

In Figure 2, for each of the three non-self-intersecting
curves, they have the same values of the fractal dimension
in 360 subdivisible angles:

D0;360 = D40;360 = D140;360 = 1:05113971:

Therefore, the fractal dimensions of the non-self-
intersecting curves are also called the rotation invariant sig-
nature (RIS) of themselves.

Rotation invariant signature (RIS) is defined as Dk;�,
which corresponds to its fractal dimension in the preset
value of subdivisible angle. The vector of rotation invari-
ant feature can be expressed by

(Dk;360; Dk;720; Dk;1080; : : : ; Dk;�)
T

where k = 1; 2; 3; :::; 360; � = 360; 720; 1080; :::; 360k.
In fact, the relationship between feature extraction and

interpolation is not an arbitrary one. Both involve the char-
acterization of as much useful source material as possible,
from which a target is derived. The essential difference be-
tween interpolation and feature extraction is that the for-
mer involves extracting a target that is the same quantity
as the source, whereas the latter involve a further transfor-
mation (for example, from elevation to morphometrics fea-
ture type). For the purposes of the RIS quality validation, a
fractal curve is created using the interpolator of composite
trapezoidal rule.

4 EXPERIMENTS

In our experiments, once we have these rotation invari-
ant signatures, we compared them to the training set by cal-
culating the weighted Euclidean distance (WED) between
the different feature vectors. With the WED classifier, the
smallest distance is considered to be the match.

4.1 EXPERIMENTAL PROCEDURE

In the next example, we outline the use of rotation in-
variant signatures for representing the rotated pattern. It is
composed of six major steps as follows:



Step 1 find the center of gravity and translate it to
the center of the original pattern plane;

Step 2 correspond to the scale normalization of
the pattern;

Step 3 the patterns are transformed by the central
projection operation;

Step 4 extract the contour based on the CPT;

Step 5 obtain the curve to be a cyclic function
according to the different starting points from
which we unfold the contour;

Step 6 construct the vectors of the rotation invari-
ant feature under the different subdivisible an-
gles.

The following example illustrates how to extract the fea-
ture with rotation invariant property for some 2-D objects.
Figure 2(a) shows the input patterns with different sizes
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Figure 2. Diagram of RIS approach to extract
rotation invariant feature.

and orientations. Figure 2(b) shows the results obtained
by size normalization. These patterns are transformed into

the unique contour patterns by the CPT, Figure 2(c) ex-
tracts these closed contours respectively. Then the contours
are unfolded into the non-self-intersecting curves. A cyclic
function according to different rotations in the central pro-
jection space is shown in Figure 2(d). In all orientations, the
fractal dimension of this image computed by our procedure
is 1.0511. We also computed the fractal dimension of other
objects – an apple and the letter “T” – for comparison, and
the resulting values were 1.0427 and 1.0083, respectively.

4.2 EXPERIMENTAL RESULTS

The proposed approach has been implemented in C++
and Matlab on a Sun workstation. A computer can be used
to produce the perfect data sets, which are free from quan-
tization noise and contains no ambiguous patterns. These
sets can show that rotation invariant signature retain suffi-
cient information for classification in the absence of noise,
and these results can be used to assess the performance of
this approach for invariant pattern recognition.

In order to demonstrate the feasibility of such a rota-
tion invariant signature classifier a small simulation was
performed. In the experiment, there are 600 Chinese char-
acters, 52 upper and lower case printed alphabets as well
as several aircraft patterns. We make rotated patterns of
300; 600; ::: and 3300 for all of the test patterns. The fi-
nal stage of the rotation invariant signature classifier was
trained on this data, and the progress on the test sets moni-
tored during training. The final classifier used the weighted
Euclidean distance (WED), it is used to distinguish the dif-
ferent feature vectors. The simulation result indicates that
The average recognition rated which using our new ap-
proach is almost 99:8%. The rotation invariant signatures
are sufficient to characterize contours for many 2-D pattern
recognition tasks. Results are presented demonstrating the
utility of this technique for invariant pattern recognition. In
future work, we are interested in attempting to extend this
technique to three dimensions, to extract features for recog-
nizing 3D objects.
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