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Abstract

This paper is concerned with the development of a com-
putational methodology based on fractal geometry for de-
termining 3D structure of protein with imagery projection
operations. In this investigation, the density-map image is
a 2D projection of the 3D electron density map according
to its depth of the density distribution along the projection
direction. We extract fractal features of the density-map im-
age in a region and use these features to look for candidate
regions with similar patterns of density-map. We analyze its
fractal signatures for determining 3D pattern of regions of
density distribution. This contribution presents preliminary
results of such a study, wherein the protein surface was as-
sumed to be a fractal, and computed fractal feature (fractal
dimension and fractal signature) were analyzed and found
to possess fairly reasonable pattern for improving the dis-
crimination abilities of the protein structure.

1 Introduction

A fundamental goal of research in molecular biology is
to understand protein structure. To come to an understand-
ing of complex biological macrolecules, we need to extract
the features from many different sources. Once these fea-
tures are recognized, this partial structure information can
be used to improve the determination of crystal structure.
A variety of computational methods have been proposed
to assist the interpretation of electron density maps. One
important method was proposed based on spatial reason-
ing (or computational imagery) to identify and categorize
patterns in electron density maps [3]. They suggest using
an array to represent the image, and then derive a descrip-
tion of its components in terms of their spatial relations,
and it also provides an abstract representation without sig-
nificant loss of information. However these representations
offer only limited possibilities, therefore many alternative
representations have developed to extend it for the interpre-
tation of electron density maps. The TEXTAL system is

a 3D pattern recognition approach to automating the inter-
pretation of electron density maps [4]. It employs the pat-
tern recognition technique of feature extraction to calculate
numeric values that characterize various geometric aspects
that make each local pattern of density unique. This novel
approach was able to efficiently and quickly identify can-
didate regions that are likely to have truly similar patterns
with a set of features. In order to explore the idea of pat-
tern matching in X-ray crystallography for developing a set
of features, we need to incorporate more powerful features
into the TEXTAL system. In this paper, we propose extract-
ing fractal features from the electron density maps to aid in
the determination of new protein structure for improving the
TEXTAL system.

The concept of fractals has recently been applied to a
number of properties of proteins. As was the case for other
new concepts, a fractal description appealed to many sci-
entists. As a result, there has been a rapid accumulation
of new information in this area, or at least the presentation
of existing information in a new form. Surface represen-
tations of proteins have provided a powerful approach for
characterizing the structure, folding, interactions, and prop-
erties [6, 7]. Fractal surface can be used to characterize the
roughness of protein surfaces. Therefore, this paper is con-
cerned with the development of a computational methodol-
ogy based on fractal geometry for determining 3D structure
of protein with imagery projection operations. We extract
fractal features of the density-map image in a region and
use these features to look for candidate regions with similar
patterns of density-map. We analyze the fractal signatures
of the density-map image for determining 3D pattern of re-
gions of density distribution.

2 3D to 2D Projection

A protein consists of a set of points in three dimensions.
Each point has an assigned identification number and a po-
sition defined by three coordinates in a Cartesian system
based on the electron density map. The determination of
molecular structures from x-ray diffraction data belongs to



the general class of image reconstruction exercises from in-
complete and/or noisy data. Researchers in artificial intelli-
gence and computer vision has long been concerned with
such problems. In recent years, the digitized range data
have become available from both active and passive sen-
sors, and the quality of these data has been steadily improv-
ing. The range data can be produced in the form of an array
of numbers, referred to as a range image (or density-map
image), where the numbers quantify the distances from the
projected plane to object surfaces within the field of view
along an arbitrary viewpoint. The 2D image region approx-
imates the 3D array data of the corresponding object sur-
faces in the field of view. Thus, considerable research has
been carried out on extracting 3D information from one or
more 2D images [1].

In this paper, we consider spatial relationships through
the use of coordinate systems. In this method, eachx; y

coordinate has an associated third dimension (z-coordinate)
representing pixel intensity (e.g. density value). For ref-
erence purposes, we assume the existence of a world co-
ordinate system that is placed at any convenient location.
Objects are positioned in space relative to this coordinate
system by means of translation and rotation parameters. We
refer to the translation parameters of an object as the vector
� and to the rotation parameters of an object as the vector
�. The number of parameters for each vector depends on
the dimension of the depth map recognition problem. For
example, the 2D problem requires a total of three parame-
ters. For the 3D case, we write the necessary six parameters
as follows: � = (�; �; ) and � = (�; �;  ):

We define our would modelW as a set of ordered triples
(object, translation, rotation):W = (An; �n; �n)g

N
n=1;

whereAn is the vector ofnth object with position�n and
orientation�n.

Let us assume an orthographic projection model. We
write the projection asf(x) = gA;�;�(x); wherex is the
vector of the spatial variables of the projection plane of the
object. Since objects do not occupy all space, we need a
convention for the value of the density-map function for
values of the spatial vectorf(�) = (x; y; z). It maps the
electron density distribution function� onto the 2D viewing
plane from the desired point of view. If the pointf(x;y)(�)
cannot lie on an object surface, we assign the value of�1

to f(�). Hence, we can write the three projections of a set
of M;N;L objects surface that correspond to theX;Y; Z
coordinates based on the orthographic projection model as
follows, respectively:

f(x;y)(�) =

LX

k=1

gAk;�k;�k(�);

f(x;z)(�) =

NX

j=1

gAj;�j ;�j(�);

f(y;z)(�) =

MX

i=1

gAi;�i;�i(�):

In this study, once the electron density function is known, it
can represent the density-map as an image in three dimen-
sions using the means of image processing. If we consid-
ered the pixel intensity as the height above a plane, then the
intensity surface of a density-map image can be viewed as
a fractal surface.

3 Computation of Fractal Dimension for Sur-
faces

For a fractal surface, there are relationships among frac-
tal dimension, scaling, power spectrum and area size. While
the definition of fractal dimension by self-similarity is
straightforward, it is often difficult to estimate or compute,
given the image data. However, a related measure of fractal
dimension, the box dimension, can be computed more eas-
ily from the image data [2, 5]. In our algorithm, the means
of estimatingN(L) is the key feature. Letp(m;L) define
the probability that there arem points within a box of size
L (i.e. cube of sideL), which is centered about a point
on the image surface (see Figure 1). For allL, p(m;L) is
normalized, as

PN

m=1(m;L) = 1; whereN is the number
of possible points within the box. LetS be the number of
image points (i.e. pixels in an image). If one overlays the
image with boxes of sideL, then the number of boxes with
m points inside the box is estimated to be(S=m)p(m;L).
Therefore, the expected total number of boxes needed to
cover the whole image is

hN(L)i =

NX

m=1

S

m
p(m;L) = S

NX

m=1

1

m
p(m;L):

Hence, if we letN(L) =
PN

m=1
1
m
p(m;L); this value

X

Z Box of side L, centered on each

Y

point of the fractal surface.
Fractal surface

Figure 1. Principle of computing the density
distribution that there are m points within a
box of side L, p(m;L).

is also proportional toL�D and the box dimension can



be estimated by calculatingp(m;L) and N(L) for var-
ious values ofL, and by doing a least square fit on
[log(L);� log(N(L))]. To estimatep(m;L), one must cen-
ter the cube of sizeL around an image point and count the
number of neighboring points over the image gives the fre-
quency of occurrence ofm. This is normalized to obtain
p(m;L). Values ofL are chosen to be even to simplify the
centering process. Also, the centering and counting activ-
ity is restricted to pixels having all their neighbors inside
the image. This obviously will leave out image portions of
width = L=2 on the borders. This reduced image is then
considered for the counting process. As is seen, large values
of L results in increased image areas from being excluded
during the counting process, thereby increasing uncertainty
about counts near border areas of the image. This is one
of the sources of errors for the estimation ofp(m;L) and
thereby fractal dimensionD. Additionally, the computation
time grows with theL value. Hence,L = 2; 4; 6; 8; : : : ; 32

were chosen for this work. A number of factors could intro-
duce uncertainty in the computation ofp(m;L) and thereby
in the estimates of fractal dimensionD. Using largerL
values effectively reduce the image available for computa-
tion of p(m;L) (border areas get excluded), and so statisti-
cal significance ofp(m;L) is reduced. This factor along
with computation time (which increases with L) dictates
the range ofL values that could be used. “Effects of lo-
cal slope” in the set[log(L);� log(N(L))] has been shown
to underestimate the value of fractal dimensionD. For sur-
faces with largeD values, it has been shown that there exists
a lower bound on the smallest box size that could be used to
obtain reasonable estimates of fractal dimensionD.

4 Fractal Features for Recognition Purposes

Recognition and segmentation of objects and regions in
natural scenes necessitates features which can provide un-
ambiguous discrimination, and at the same time be insen-
sitive to scene perturbations. Researchers have found that
fractal feature are quite effective for this purpose [2, 5].
Among the various fractal features which could be com-
puted from am image surface, the fractal dimensionD is
primary. Theoretically it is invariant to scaling, and known
to characterize the roughness of the surface. However, it has
been observed that two differently appearing surfaces could
have the same value ofD. To overcome this, Mandelbrot
[8] introduced the term called lacunarity, which quantifies
the denseness of an image surface. Many definitions of this
term have been proposed and the basic idea in all these is
to quantify the “gaps and lacunae” present in a given sur-
face. Here, this term is called the fractal signature of the
density-map image surface. One of the useful definitions of
this term as suggested by Mandelbrot [8] is( M

E(M)
� 1)2,

whereM is the mass of the fractal andE(M) the expected

mass. In other words, this definition measures the deviation
between the actual mass and the expected mass. Very sim-
ilar to the case of measuring the length of a coastline, the
mass of a fractal set is dependent on the length of the mea-
suring yardstick and the power lawM(L) = KLD, and is
a function ofL. Calculation of the fractal signatureFS(L)
is based on the second order statistics ofp(m;L). Defining
M(L) andM2(L), it is defined as the fractal signature (FS)
as follow:

M(L) =

NX

m=1

mp(m;L); M2(L) =

NX

m=1

m2p(m;L)

FS(L) = (
M2(L)� [M(L)]2

[M(L)]2
)� 100

Both the fractal dimension and fractal signature are func-
tions of the box sizeL.

Figure 2. Procedure for computing fractal di-
mension and fractal signature

5 Discrimination of Crystal Structures

The protein structure data in the Protein Data Bank can
be converted by Fourier transform into real 3D array data
of an electron density map. The problem of determining
the structure of a protein crystal from diffraction data be-
longs to the general class of image reconstruction problems.



Protein ID Chosen Regions Dmean V ar(D) FSmean V ar(FS)

1A0I.pdb Atom ]1-20 2.843 0.005 7.260 0.007
3NLL.pdb Atom ]1-20 2.600 0.008 5.436 0.003
3MDD.pdb Atom ]1-20 2.865 0.006 8.134 0.012
1AIE.pdb Atom ]1-20 2.132 0.006 1.271 0.003
3NUL.pdb Atom ]1-20 2.398 0.014 2.310 0.016

Table 1. Mean fractal dimensions Dmean, variances of the fractal dimension, mean fractal signature
FSmean, and variances of fractal signatures for different protein structures.

The goal of the reconstruction is to produce a complete
image which contains the integration of the available fea-
tures of the 3D representation in the protein structure. Fig-
ure 2 briefly illustrates the procedure of extracting fractal
features from the electron density map. At first, a 3D ar-
ray data of an electron density map is projected into three
2D density-map images with the imagery projection oper-
ation. Then, the density-map images are assumed to be
the fractal surfaces. For a fractal surface, we calculate the
value of fractal dimension for the fractal surfaces. The fea-
tures of a perfect fractal surface can be represented by a
single value fractal dimension. But, in practice, the real
surface found in density-map images are not perfect frac-
tal surfaces, and therefore do not have a constant fractal
dimension over all scales, hence, the features of real sur-
faces cannot depend on only a single value for the frac-
tal dimension. The normalized fractal signature provides
a way to create the fractal feature vector for analysis of
the density-map images in spite of the imperfect agreement
with fractal theory. We have applied our method to ex-
tract the fractal features from the 3D array representation
of five different electron density maps. Their feature vec-
tors fDmean; V ar(D); FSmean; V ar(FS)g

T are respec-
tively presented in Table 1 .

Once we have these feature vectors, we compared them
to the training set by calculating the weighted Euclidean
distance (WED) between the different features vectors, the
smallest distance was considered the match [4]. Results are
presented demonstrating the utility of this approach for pro-
tein crystal structure determination.

6 Conclusions

In this short contribution, the authors have investigated
and presented preliminary results on the use of fractal
features for discrimination of protein structures. The
success reported by researchers in using the imagery
projection operation and the fractal features extraction for
3D object recognition in the field of image analysis and
image processing has guided this work. Fractal analysis
can be useful in the interpretation of the available (but
complex) results. From the limited results on hand, it can

be conjectured that this novel approach appears promising
and further research is necessary to take full advantage of it
for automated protein structure determination.

This work was supported in part by grant number R21-
GM-59398 from the National Institutes of Health.
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