Notes on Back-chaining Algorithm
This is simpler version of the algorithm that backtracks over rules until each subgoal in the goal stack can be proved as a known fact.

Backchain(KB,query) // wrapper function

stack (new stack() // initialize

stack.push(query)

return BC(KB,stack)

BC(KB,stack) // the main recursive function

if stack.empty(), return True

goal (stack.pop()

 // a known fact was popped, recurse on rest of goals in stack

if goal (KB, return BC(KB,stack)

for each rule a1..an(goal in KB:

// choice point, might have to backtrack to try other rules

for each ai in antecedents:

stack (stack.push(ai) // push antecedents as subgoals

result (BC(KB,stack) // recurse

if result=True: return True

return False

This is a more sophisticated version of the algorithm that keeps track of the context of subgoals it is trying to prove, so it avoids circularities and getting stuck in infinite loops.

Backchain(KB,query) // wrapper function

stack (new stack() // initialize

stack.push(query)

context (new stack() // list of goals trying to prove

return BC(KB,stack,context)

BC(KB,stack,context) // the main recursive function

if stack.empty(), return True

goal (stack.pop()

 // a known fact was popped, recurse on rest of goals in stack

if goal (KB, return BC(KB,stack,context)
 context.push(goal)//add this to list of things trying to prove

for each rule a1..an(goal in KB:

// choice point, might have to backtrack to try other rules

if any ai is in context: continue//skip this rule, circular

for each ai in antecedents:

stack (stack.push(ai) // push antecedents as subgoals

result (BC(KB,stack,context) // recurse

if result=True: return True

return False

example

KB = {1. CanRideBikeToWork (CanGetToWork

2. CanDriveToWork (CanGetToWork

3. CanWalkToWork (CanGetToWork

4. HaveBike(Sunny (CanRideBikeToWork

5. OwnCar (CanDriveToWork

6. RentCar (CanDriveToWork

HaveMoney(TaxiAvailable (CanDriveToWork

Rainy

HaveBike

HaveMoney

RentCar

TaxiAvailable }

query = CanGetToWork ?
{CanGetToWork} initialize goal stack with query
pop top goal, match with consequent of rule 1 (choicepoint*),push antecedents onto stack

{CanRideBikeToWork}

{HaveBike,Sunny} use rule 4

{Sunny} pop HaveBike, is fact

backtrack since Sunny in not a fact and can’t be proved

make another choice at * above
{CanDriveToWork} rule 2

{OwnCar} rule 5
backtrack, not provable, choose another rule to prove CanDriveToWork
{RentCar} using rule 6

known fact
{} - success! empty goal stack, return True

