
 9/7/2014 2:14 PM

CSCE 420
Programing Assignment #2
due: Tues, Sept 30 (by start of class)

Objective

The goal of this assignment is to implement, test, and compare three different search algorithms - DFS,
BFS, and GREEDY - on a simple navigation (path-finding) problem.

The focus of this assignment is on implementing a queue-based version of the basic search algorithm.
That is, the search involves maintaining a frontier, in which nodes are popped, goal-tested, and then the
successor nodes are pushed in, and the process iterates until a goal node is found. Using this
framework, DFS, BFS, and GREEDY are almost identical. With BFS, you use a queue for the frontier.
With DFS, you use a stack. With GREEDY, you use a priority queue, with the nodes sorted based on
straightline distance to goal as the heuristic score.

The code must be written in C++. You will have to use queue, stack, and priority_queue from the
Standard Template Library (STL). You must use g++ as a compiler (e.g. on Unix command line) rather
than Visual Studio, which will facilitate the grader in compiling and testing your code.

This assignment is a stepping stone toward the next assignment, where you will be using the code
written here as infrastructure to implement A* search. This simplicity of this problem (with a finite
search space) will help you debug your algorithms.

The task is the same Navigation Task as from Assignment #1. For example, in the ATM graph below, we
could try to go from upper-left corner to lower right, (1,1) to (20,20). Or we could try to go from inside
the T on one side to the other, (7,6) to (13,6).

 9/7/2014 2:14 PM

In Assignment 1, you implemented the queue-based version of BFS. It should be trivially easy to change
it to DFS. All you have to do is change the data structure for the frontier from a queue to a stack.
GREEDY search can be implemented by switching the frontier to a priority_queue, where nodes a
popped in order of least distance to goal (i.e. using SLD as a heuristic). Note that one way to to this is to
pass the Goal coordinates into the constructor for the Node class, which can calculate the heuristics
score (using the Euclidean distance formula) for each node at its initialization. You will probably need to
define a comparison operator for Nodes that tells the priority_queue how to keep them sorted.

Evaluation

Then you will want to compare the performance of the three algorithms on example search problems.
Run each of the algorithms on the search problems above and answer the following questions: Which
algorithm is fastest (finds goal in fewest iterations)? Which is most memory efficient (smallest max
frontier size)? Which visits the fewest vertices? Which generates the shortest path length? (Is any of
them optimal?)

What to Turn in

 You will submit your code for testing using the web-based CSCE turnin facility, which is
described here: https://wiki.cse.tamu.edu/index.php/Turning_in_Assignments_on_CSNet

 You should include a Word document that shows example program traces (transcripts) for all 3

algorithms.

 You should also include a table of performance metrics for the 3 algorithms, for comparing

things such as number of iterations (goal tests), maximum queue size, mean solution path

length, etc., either for ≥5 selected problems, or averaged over ≥5 randomly chosen start/goal

combinations. Use the data to answer the questions listed above.

