
 10/23/2014 9:16 AM

CSCE 420
Programing Assignment #5
due: Sat, Nov 1 (by midnight, i.e. end of Saturday)

Objective

The goal of this problem is to implement an algorithm in C++ for solving Constraint Satisfaction
Problems. This is in preparation for the next assignment, where you will be using it to solve a multi-
agent coordination problem. But for simplicity, for this project, the application will be to solve the map-
coloring problem for Australia, as described in the textbook.

Implementation

The main goal of this assignment is to write the backtracking algorithm for CSPs in C++. Follow the
pseudo-code in the textbook (Figure 6.5, page 215). The algorithm is fairly straightforward, recursively
picking a value for an unassigned variable and then testing to see if any constraints are violated.

A critical part of this assignment will be writing the function that tests whether a partial variable
assignment violates any of the constraints, such as "bool satisfied(constraints,assignment)". Your
satisfied() function will have to handle and test all the types of constraints you use. For map coloring, all
the constraints are inequalities, such as "neq WA NT". For other CSP problems (as we will see in the
next project), you might have to extend this function to evaluate other kinds of constraints (but for now,
keep it simple). Importantly, you might not be able to evaluate all of the constraints given a partial
assignment if the variables involved in a constraint are not yet defined in the assignment.

Your CSP program should read in a problem specification file that gives the variables, domains, and
constraints that encode the problem. Your program should have a pre-processing phase to read in the
problems description and set up the internal data structures before invoking the backtracking search. To
illustrate the format, here is the input file that gives the specification of the problem by defining the
vars, domains for the Australia map-coloring problem:

 10/23/2014 9:16 AM

vars

WA NSW TA V NT QL SA

domains
WA red green blue
NSW red green blue
TA red green blue
V red green blue
NT red green blue
QL red green blue
SA red green blue
constraints
neq WA NT

neq WA SA

neq NT SA

neq NT QL

neq SA QL

neq SA NSW

neq SA V

neq QL NSW

neq NSW V

Minimum-Remaining Values (MRV) Heuristic

Note that if the regions of Australia are given in the (sub-optimal) order shown above, the CSP search is
rather inefficient, and a great deal of backtracking occurs (though it should still find a solution). It is
unfair to "give" the variables in the optimal order, since you general do not or do not have control over
this for most problems. Thus, you should incorporate the MRV heuristic into your search algorithm to
make more intelligent choices about the order of variables to work on. As described in the book, MRV
does this dynamically by keeping track of domain size. It requires a minor modification of the same
search routine where, instead of always choosing the next variable in the initial order, you choose the

variable with the least remaining values. (the specific line in the pseudo-code is: var ← Select-

Unassigned-Variable(csp)). This might involve testing all the remaining values for all the
unassigned variables each time you recursively call the search algorithm to determine which values will
violate a constraint (given the partial assignment at that stage), and discarding those values from the
domain of that variable.

Without the MRV heuristic, backtracking takes 42 iterations to solve the map-coloring problem. With
MRV, it only takes 8.

What to Turn in

 You will submit your code for testing using the web-based CSCE turnin facility, which is
described here: https://wiki.cse.tamu.edu/index.php/Turning_in_Assignments_on_CSNet

 Include a brief document that describes how to compile and run your code.

 Include a transcript showing the solving the Australia problem with and without MRV, using the

variable order shown above. Print out tracing information with each step, showing information

such as the partial assignment, which variables and values are selected, and when backtracking

occurs. (For the longer trace, you may abbreviate the output by chopping out the middle.)

Make sure the output shows the total number of iterations made during the search and the

final solution (variable assignment).

