CPSC 420h - Homework 3

due: Mon, April 3, 2006

1. Do problem 8.6 in the textbook (translating sentences into first-order logic).
2. Consider the following model for a first-order logic theory containing the constant a, the function f, and predicates P and Q : universe is $\mathcal{U}=\{1,2\}$; denotations are $a \mapsto 1, f(1)=2$ and $f(2)=1$; extensions are $P=\{\langle 2\rangle\}$, and $Q=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,2\rangle\}$. Determine the truth value of the following sentences in the model. Be sure to show all of your work.
a) $\forall X P(X) \rightarrow Q(f(X), a)$
b) $\exists X P(f(X)) \wedge Q(X, f(a))$
c) $\exists X \neg P(X) \wedge Q(X, a)$
d) $\forall X \exists Y P(X) \wedge Q(X, Y)$
e) $\neg \exists X \forall Y Q(f(Y), X)$
3. Show that the following first-order theory is satisfiable by giving a model that satisfies it. ${ }^{1}$

$$
\{\forall X \forall Y P(X, Y) \rightarrow Q(Y), P(a, f(b)), \neg Q(a) \wedge \neg Q(b)\}
$$

4. Determine whether or not the following pairs of predicates are are unifiable. If they are, give the most-general unifier and show the result of applying the substitution to each predicate. If they are not unifiable, indicate why. Variables are in capital letters; constants are lowercase.
a) $P(a, X, f(g(Y)))$ and $P(Z, f(Z), f(U))$
b) $Q(f(a), g(X))$ and $Q(Y, Y)$
c) $R(f(Y), Y, X)$ and $R(X, f(a), f(V))$
d) $P(a, Y, f(X))$ and $P(X, f(b), f(b))$
e) $Q(g(f(a)), g(X), Z)$ and $Q(Y, Y, f(X))$
f) $P(a, X, g(f(f(a)), X))$ and $P(Z, f(Z), g(Y), f(Z)))$
g) $Q(f(a, a), Y, Z)$ and $Q(X, f(Z, Z), Y)$
5. Using first-order rules of inference, prove that "there exists a vegetarian" from the following pieces of knowledge: anyone who does not eat meat is a vegetarian, tomatoes are not meat, carrots are not meat, and there is someone who eats only tomatoes and carrots. The initial sentences (premises) are translated into first-order logic for you below. The goal is to generate: $\exists X$ vegetarian (X). Be sure to explicitly label each new sentence with the one(s) it was derived from, along with the inference rule and any substitution used. (Hint: try existential elimination, implication elimination, and resolution.)
6. $\forall P(\forall X e a t(P, X) \rightarrow \neg$ meat $(X)) \rightarrow \operatorname{vegetarian}(P)$
7. $\forall X$ tomato $(X) \rightarrow \neg$ meat (X)
8. $\forall X \operatorname{carrot}(X) \rightarrow \neg \operatorname{meat}(X)$
9. $\exists P \forall X e a t(P, X) \rightarrow(\operatorname{tomato}(X) \vee \operatorname{carrot}(X))$
[^0]
[^0]: ${ }^{1}$ In this problem, X and Y are variables, while a and b are constant terms.

