
Search Algorithms
CSCE 420 – Spring 2022

read: Ch. 3

1/31/2022 1



Search as a Model of Problem Solving in AI

• many AI problems can be formulated as Search

• planning, reasoning, learning...

• define discrete states of the world, connected by possible actions

• find a path from the current state to a desired goal state, producing a 
sequence of actions

• we start by describing generic (uninformed) search algorithms (like 
DFS)

• then we will extend this to heuristic search algorithms (like A*) which 
utilize domain knowledge to make the search more efficient
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S

Search Tree:

G?

Example: Navigation 
as Search

• finding a path from an initial location (start) 
to a desired destination (goal)

• emphasis on discrete moves (city to city, or 
corner to corner as way-points

start

goal



actions = slide a tile up/down/left/right into empty space
a solution path is sequence of actions that transforms start state into the goal

move 6 left

move 4 down

move 2 right

...

move 5 
right move 2 

down

Example: Puzzles as Search



Example: Robot Motion Planning
as Search (in configuration space)

this is the physical
space of a 2-armed
robot, with 2 joint
angles it can adjust

many states are 
shown here

this is the abstract
configuration space
defined by joint
angles that the robot
can change

each point 
represents a distinct
state of the robot
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Framework for Formulating Search Problems

• states: a set of discrete representations/configurations of the world
• this defines the State Space, S = {s1,s2...}

• could be infinite

• operator: a function that generates successor states
• S |→ 2S ... mapping from S to powerset of S, i.e. subset of states

• op(si) = {sj}

• this encodes the legal “moves” or “actions” in the space that transform from 
one state to another (or possibly multiple successors, or none)

• example: think about moves in tic-tac-toe
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Search Framework

• the operator, applied recursively to the initial state, sinit, generates the 
State Space (or at least, the reachable part)

• visualize it as a tree (the search tree)

• define b as the ‘branching factor’: average number of successors for 
each state

• the size of the tree (nodes on each level) grow exponentially with b
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sinit

2 successors of sinit

4 successors of successors

8 nodes

16 nodes

b=2



Node

Search Framework

• nodes in the search tree represent states in the state space

• however, they are not quite the same

• a node represents a particular path (sequences of actions) to a state

• there might be multiple paths that generate the same state
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Search Framework

• goals: often specified in a domain-specific way as a set of requirements
• example: “winning states in tic-tac-toe have 3 X’s in a row or column or diagonal”
• abstractly: we can think of goals as a subset of states in the State Space, i.e. G={sj} ⸧ S

• for many AI problems, we would be happy to find any goal node 
• (doesn’t matter which one)
• we are interested in the path, which is the sequence of actions that transforms the 

initial state sinit into the goal sgoal

• in some cases, we might prefer the shortest path (fewest actions required)

• in other cases, if each operator has a different cost, we might be interested 
in finding the solution with the least path cost

• example: deciding to take a bus instead of a cab as part of a trip in order to 
minimize cost
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Uninformed Search (‘Weak’ Methods)

• Depth-first Search (DFS) –
expand children of 
children before siblings
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Uninformed Search (‘Weak’ Methods)

• Depth-first Search (DFS) –
expand children of 
children before siblings
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• Breadth-first Search (BFS) –
expand children of children 
AFTER siblings
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Uninformed Search (‘Weak’ Methods)

• the ‘frontier’ or ‘agenda’ is the set of nodes that have been expanded 
but not yet explored, where expanded means it is a child of a visited 
node and explored means goal-tested 
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A Unified Search Algorithm

• although it is easy to write pseudo-code for DFS and BFS separately, 
they can be unified in an iterative procedure using a data structure to 
hold the nodes in the frontier

• BFS: frontier = queue (FIFO)

• DFS: frontier = stack (LIFO)
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(ignore reached for now;
It is for GraphSearch, 
see slides below)
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A

B                                                         C

D                             E                        F                             G

H                I          J                K        L               M       N                O

P     Q      R    S    T      U     V     W   X     Y   Z      1     2     3      4     5

• frontier (queue) for BFS:
• A // [front | A | end]

• B C // pop A, push children on end

• // pop B from front

• // push children D E on end

• C D E 

• D E F G

• E F G H I // start adding next level

• F G H I J K

• G H I J K L M

• ...
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to change it to do DFS,
all you have to do is
replace the frontier
with a stack (LIFO):

frontier ← stack, initialized 
with start node as first element
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to change it to do DFS,
all you have to do is
replace the frontier
with a stack (LIFO):
i.e.
frontier ← stack,
initialized with start node 
as first element

Depth-First Search

LIFO
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A

B                                                         C

D                             E                        F                             G

H                I          J                K        L               M       N                O

P     Q      R    S    T      U     V     W   X     Y   Z      1     2     3      4     5

• frontier (stack) for DFS:
• A

• // pop A, push children B and C

• B C 

• // pop B, push D and E on front

• D E C

• H I E C // pop D, push H and I

• P Q I E C // pop H, push P and Q

• Q I E C // pop P

• I E C // pop Q

• R S E C // go to I, push R and S

• ....
note: when you expand a node, the order in which you push the children makes a difference
In this example, I am pushing the children in reverse order, e.g. C before B (as children of A)
what would the search order look like if we pushed the children in alphabetical order?



Graph Search

• in some Search Trees, there are multiple paths to the same state

• example: reversible operators (move, then move back); or think of a 
map; or think of circular moves in the tile puzzle

• detecting repeated (visited) states can greatly reduce redundancy in 
the search space
• if you have already explored children beneath node n, there is no need to do 

it again

• exception: if you find a shorter/cheaper path to n, you might want to 
keep track of the best such path found

• ‘reached’: you need a data structure (like a hash table) to keep track 
of these states
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• Graph Search
• in BFS on a grid, how badly would the size of the search tree scale up if we 

didn’t keep track of reached states?

• Assume each node has 4 neighbors, so b=4 (branching factor, wrst cs) (bavg=~3)

• level 0=1 node (initial state, at the center)

• level 1=4 nodes

• level 2=16 nodes

• level 3=64 nodes

• level 4=256 nodes

• ... 

• level i: 4i nodes

• and yet, there are only 25 distinct states in this space!
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reached is a data
structure (e.g. hash table)
for keeping track of
expanded states to avoid
repeating the search

note: that we check
reached before putting
nodes into the frontier,
not as we pull them out

If s *has* been reached before,
you might want to see if a shorter/cheaper
path has been discovered and 
keep track of that…

Graph Search (=BFS+checking for visited states)



Computational Complexity

• analysis of computational properties for comparison of DFS and BFS

• time-complexity: number of nodes goal-tested (# of loop iterations)

• space-complexity: maximum size to which the frontier grows

• completeness: if a goal exists, does ALGO guarantee to find it?

• optimality: does ALGO guarantee to find the goal node with the 
minimum path cost?
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Computational Complexity of BFS

• time-complexity: number of nodes goal-tested (# of loop iterations)
• if the shallowest node occurs at depth d, and branching factor is b,
• then nodes checked (worst case) will be all levels up to and including b
• 1+b+b2+....bd = O(bd+1)

• space-complexity: maximum size to which the frontier grows
• in worst case, have to store all children at level below goal, O(bd+1)

• completeness: if a goal exists, does ALGO guarantee to find it?
• yes (because every goal exists at a finite depth, and BFS explores each level)

• optimality: does ALGO guarantee to find the goal node with the minimum 
path cost?
• yes (assuming all operator have equal cost) (but no in general)
• in this case, the goal with least path cost is shallowest, and BFS will find it first, 

because it explores level-by-level)
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Computational Complexity of DFS

• time-complexity: number of nodes goal-tested (# of loop iterations)
• if the maximum depth of the tree is m,
• the worst case is when goal at depth d is on the right-most branch
• the nodes checked will be almost all in the tree (even deeper than d): O(bm)

• space-complexity: maximum size to which the frontier grows
• each time we expand a node, we pop 1 and push b children, (b-1)m = O(bm)

• completeness: if a goal exists, does ALGO guarantee to find it?
• no, in general (i.e. if any branch has infinite depth)
• yes, only in finite search spaces

• optimality: does ALGO guarantee to find the goal node with the 
minimum path cost?
• no (since it is not complete)
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Comparison of BFS and DFS

• so which is better? when would we prefer to use one over the other?

• although time-complexity could be exponentially worse for DFS 
(O(bm)>>O(bd)), DFS has linear space-complexity

• in practice, the size of the frontier is what limits AI search

• given modern CPU clock cycles, I can easily search a billion (109) 
nodes (10 ms per loop iteration=17 min), but storing a billion nodes 
takes too much memory (~100 bytes per node=100 Gb)
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BFS DFS

time-complexity O(bd+1) O(bm)

space-complexity O(bd+1) O(bm)



Iterative Deepening

• Is there a way to get the benefits of both BFS and DFS?

• how can we maintain a linear frontier size like DFS while still searching 
level-by-level like BFS?

• how can you maintain the linear space-complexity of DFS while 
avoiding descending infinitely deep down any single branch?

• answer: depth-limited search
• do DFS down to depth=1

• if goal not found, do DFS down to depth=2

• if goal not found, do DFS down to depth=3

• ...
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Iterative Deepening

• Complexity analysis:

• since using DFS, the frontier should never get bigger than (b-1)d, 
hence O(bd)

• and it should be complete and optimal (for equal operator costs)

• what about time complexity?
• it seems wasteful because you have to re-generate the top part of the search 

tree each iteration
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Iterative Deepening

• time complexity?
• 1+(1+b)+(1+b+b2)+(1+b+b2+b3)+...+(1+b+...+bd)
• ≤ (1+b+...+bd)+(1+b+...+bd)+... (1+b+...+bd) 
• ≤ d(1+b+...+bd) ≤ dSbi ≤ d(bd+1-1)/(b-1) = O(bd+1)

• it seems wasteful because you have to re-generate the top part of 
the search tree each iteration

• why not just “save” the part of the tree generated so far?

• because it will grow exponentially as depth limit increases, negating 
the benefit of the linear size of the frontier – you have to throw 
them away

• so it is a tradeoff:  you spend a little more time computing 
(expanding nodes), but you save memory (linear frontier size)
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Uniform Cost Algorithm

• suppose we want to find the goal node with the least path cost, when 
operators have different costs?

• the shortest path (number of actions) is not necessarily the cheapest path 
(sum of operator costs)

• in this case, BFS is not optimal

• however, we can use the same iterative search algorithm, but change the 
frontier to a priority queue

• keep the expanded-but-unexplored nodes sorted in order of increasing 
path cost

• nodes must keep track of cost; update when generating successors:
• cost(child) = cost(parent)+cost(opi)
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Uniform Cost Algorithm
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Uniform Cost Algorithm

• assumption: all operators have positive costs: cost(opi)>0 ≥  > 0

• Lemma: UC explores nodes in order of increasing total path cost
• sure, every node you pull out of the PQ has costs less than all other in the PQ

• but when you reach a goal g, how do you know there is not another cheaper 
goal g’ out there?

• a) there is always some node n on the path to each node that is in the PQ (even 
it is the initial state/root node)

• b) the nodes along each path always increase in cost (since all ops have pos cost)

• c) if n’ was on path to g’ and pathcost(g’)<pathcost(g) (by assumption), then 
pathcost(n’)<pathcost(g’) and n’ would have been pulled out of PQ before g
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Uniform Cost Algorithm

• comparison to Djikstra’s Algorithm
• UC and Djikstra both solve the single-

source shortest-path problem

• however, an important difference is 
that Djikstra is based on Dynamic 
Programming (DP)

• it uses a data structure (array) to 
maintain partial path distances from 
the source to all vertices V in the graph

• you can’t do this for most AI problems, 
especially if they have exponentially 
large or infinite State Spaces
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// from https://en.wikipedia.org/wiki/Dijkstra’s_algorithm

1  function Dijkstra(Graph, source):
3      create vertex set Q
4
5      for each vertex v in Graph:            
6          dist[v] ← INFINITY                 
7          prev[v] ← UNDEFINED                
8          add v to Q                     
9      dist[source] ← 0                       

10     
11      while Q is not empty:
12          u ← vertex in Q with min dist[u]                                            
14          remove u from Q
15         
16          for each neighbor v of u: 
17              alt ← dist[u] + length(u, v)
18              if alt < dist[v]:              
19                  dist[v] ← alt
20                  prev[v] ← u
21
22      return dist[], prev[]



Uniform Cost Algorithm

• Computational properties of UC
• time-complexity: O(b(1+C*/))

• where C* is the total path cost of the cheapest solution

• why? because each step costs at least , so goal occurs at depth C*/ in the 
worst case

• space-complexity: O(b(1+C*/))

• completeness: yes

• optimality: yes!
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Summary of Computational Properties of 
Search Algorithms
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or O(bd+1)
if cost(opi)=constant
for all operators

except for
finite search
spaces

or O(bd+1)

read for
yourself



Heuristic Search

• since AI search problems usually have exponential search spaces, the main 
focus is on how we can exploit domain knowledge to improve the efficiency 
of the search

• domain knowledge refers to anything we know about solving these types 
of problems
• rules of thumb, common solutions, way to decompose the problem into 

subgoals, useful sequences of actions, interactions/dependencies between 
operators... 

• in this context, domain knowledge will be encapsulated in a heuristic 
function, h(n)

• it is a ‘scoring’ function that maps every node (or state) to a real number

• the advantage is using any knowledge we have to guide the search toward 
the goal, and avoid searching ‘unproductive’ parts the search space
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Heuristic Search

• a heuristic function h(n) is an estimate of the distance (path cost) 
remaining from n to the closest goal

• hence it is a mapping from S Ͱ> R (State Space to real numbers) 

• generally, h(n)≥0, and h(n)=0 for goals

• abstractly, it is a quantification of how close a state is to being solved 
(higher is farther away)
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Heuristic Functions

• Example 1: hSLD for navigation
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• suppose our goal was to find a route from 
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are 
processed in counter-clockwise order)



Heuristic Functions

• Example 1: hSLD for navigation
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• suppose our goal was to find a route from 
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are 
processed in counter-clockwise order)

• BFS (FIFO): (expand in levels)
• frontier at each pass:
• S | O,A,R,F | Z,T,C,P,B | L,D,U,G | M,H,V



Heuristic Functions

• Example 1: hSLD for navigation
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• suppose our goal was to find a route from 
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are 
processed in counter-clockwise order)

• BFS (FIFO): 
• frontier at each pass:
• S | O,A,R,F | Z,T,C,P,B | L,D,U,G | M,H,V

• DFS (LIFO): (follows a single path)
• sequence of states visited:
• S,O,Z,A,T,L,M,D,C,R,P,B,F,G,U,H,E,V



Heuristic Functions

• Example 1: hSLD for Navigation
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• suppose our goal was to find a route from 
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are 
processed in counter-clockwise order)

• BFS (FIFO): 
• frontier at each pass:
• S | O,A,R,F | Z,T,C,P,B | L,D,U,G | M,H,V

• DFS (LIFO):
• sequence of states visited:
• S,O,Z,A,T,L,M,D,C,R,P,B,F,G,U,H,E,V

• hSLD: prioritize nodes in frontier based on 
straight-line distance to goal
• sequence of states visited: S, F, B, U, V



Heuristic Functions

• Example 2: heuristic functions for the Tile Puzzle
• how close is any given state to being solved?

• h1(n): # tiles out of place
• this is an under-estimate because it will take more than move to put each tile in its proper 

place

• still, it differentiates states that are almost solved for those that are very jumbled

• even if 1 block is out of place, it might be close or very far away

• h2(n): Manhattan distance
• for each tile out of place, count number of rows and columns it needs to move

• still an under-estimate of total moves because moving one tiles can put others out of place

• ironically, it can also be an over-estimate, because a sequence of moves could put multiple 
tiles in place

1/31/2022 43

ℎ2 𝑛 = ෍

𝑖=1

9

𝑐𝑢𝑟𝑟𝑅𝑜𝑤 𝑇𝑖 − 𝑔𝑜𝑎𝑙𝑅𝑜𝑤 𝑇𝑖 + |𝑐𝑢𝑟𝑟𝐶𝑜𝑙 𝑇𝑖 − 𝑔𝑜𝑎𝑙𝐶𝑜𝑙 𝑇𝑖 |



Heuristic Functions
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Greedy Search (best-first search with h(n))

• extending the iterative search algorithm to use a heuristic

• use a priority queue for frontier; sort nodes based on h(n)

• (go back and review the slide on finding a route from Sibiu to Vasliu using hSLD)
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where f is h(n)



Greedy Search
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• The problem with Greedy Search is that it 
can be ‘misled’ by the heuristic to go in the 
wrong direction and waste time searching 
unproductive regions of the search space

• This is known as the “garden path” problem

• Greedy Search would search the gray-boxed 
region first, before discovering it has to go 
around the T to get the goal(red)



• how sub-optimal can it be?  (in terms of cities expanded that are 
not actually on the solution path)

• what’s the worst garden-path pair of cities for Romania?

• is there a pair of cities that would force Greedy search to visit 
every node? 
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A* algorithm

• one of the most widely used and practical AI search algorithms

• essentially Best-first search (with priority queue), where nodes in 
frontier are sorted based on f(n)=g(n)+h(n)
• where g(n)=path cost so far (from root to n)

• and h(n)=heuristic estimate of remaining path cost (from n to closest goal)

• so f(n) is an estimate of total path cost going through n to goal
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A* algorithm

• use a priority queue for frontier; sort nodes based on f(n)=h(n)+g(n)
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where f=h(n)+g(n)



frontier:
V(0+235=235)
<V235>

1. pop V, push I and U
I(92+225=317)
U(142+220=362)
<I317 , U362>

2. pop I; push N
N(92+87+190=369)
<U362, N369>

3. pop U; push B, H
B(142+85+210=437)
H(142+98+250=490)
<N369,B437,H490>

4. pop N; <B437,H490>

5. popB; push F438=142+85+211

<F438,H490>

6. pop F

220

225

235

190

250

210

1

2

3

4

5

6

A* search of Vasiliu to Fagaras:

notice how f(n) for popped nodes keeps increasing: 
V(235), I(317), U(362), N(369), B(437), F(438)



Where Do Heuristics Come From?
• Heuristics encode knowledge you have about the problem

• rules of thumb
• common solutions that are often used
• way to decompose the problem into subgoals
• useful sequences of actions
• interactions/dependencies between operators... 

• This knowledge has to be formulated into a scoring function h(n) that 
estimates the distance of any state to the goal

• common strategy: approximate how many steps it would take to solve if we 
could relax the constraints
• counting tiles out of place implies we can fix them in 1 move
• Manhattan distance implies we can “slide tiles over each other”
• for navigation, straight-line distance is shorter than any road, but still useful
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Computational Properties A* Search

• what guarantees about completeness and optimality can we make?

• remember that h(n) could be inaccurate!
• it could tell us that many nodes down path are getting closer and closer, when 

in fact there is no way to reach the goal, and back-tracking is required

• first, we need to make an assumption...

• h(n) is admissible
• h(n) never over-estimates the true distance to the goal for any node n

• 0 ≤ h(n) ≤ c*(n) for all states in the State Space
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Computational Properties A* Search

• Theorem: A* is optimal (finds a goal with minimum path cost)
• although this sounds obvious because the PQ is sorted on f(n), it is deceptive 

because it only applies to nodes in the frontier, but not all states in the space

• suppose the optimal goal is g* but greedy returns g first, where c(g)>c(g*)

• let n* be a node on the optimal path to g* that is in the frontier at same time

• f(n*)=g(n*)+h(n*) ≤ cost(n0..n*)+cost(n*..g*) = cost(n0..g*) = c(g*)

• because of admissibility

• therefore, n* should have been dequeued before g (and so on, down the path 
to g*)

• Important point: Eventhough admissibility is desirable, it is not necessary: 
A* search can be made more efficient with a heuristic even if it is not 
admissible (however, the solution path found might not be minimal) 53



Computational Properties A* Search

• Lemma: f(n) scores increase monotonically down any path from root
• if a path is <n0..ni..g>, then f(n0)≤f(ni)≤f(g)

• in any step ni→ni+1, h(ni) includes a guess of the cost of opi, whereas g(ni+1) 
has the actual cost of that step, which could only be higher (by admissibility)

• also requires consistency of heuristic, which is slightly stronger than 
admissibility (see book)

• remember that at a goal node, f(g)=c*(g) for any goal because 
f(g)=g(g)+h(g)=c(*g)+0

• so f(n) could be an underestimate of total path length early in a path, but 
converges to c(g*) as you get closer to the goal

• Theorem: A* explores states in order of increasing f(n)  (see Fig 3.20)
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Computational Properties A* Search
• analysis of time complexity

• efficiency of A* is complicated because it depends on accuracy of the heuristic

• generally speaking, the more accurate the heuristic is, the faster the search

• boundary case 1: h(n)=0 – no help, exponential time like Uniform Cost, 
O(b1+C*/)

• boundary case 2: h(n)=c(n) – a heuristic that perfectly predicts the true 
distance to the goal for any node will lead A* right to it (in time linear in the 
path length)

• if the inaccuracy of the heuristic is bounded, search will be sub-exponential

• define “relative error” D =|h-h*|/h* (max over all nodes in the State Space)

• then time complexity of A* is O(bDL(g)) where L is the path length to the goal g

• if |h-h*|=O(log(h*)) for all n, then A* will search a sub-exponential number of 
nodes before finding the optimal goal

• however, this is rarely achievable in practice1/31/2022 55


