
Search Algorithms
CSCE 420 – Spring 2022

read: Ch. 3

1/31/2022 1

Search as a Model of Problem Solving in AI

• many AI problems can be formulated as Search

• planning, reasoning, learning...

• define discrete states of the world, connected by possible actions

• find a path from the current state to a desired goal state, producing a
sequence of actions

• we start by describing generic (uninformed) search algorithms (like
DFS)

• then we will extend this to heuristic search algorithms (like A*) which
utilize domain knowledge to make the search more efficient

1/31/2022 2

S

Search Tree:

G?

Example: Navigation
as Search

• finding a path from an initial location (start)
to a desired destination (goal)

• emphasis on discrete moves (city to city, or
corner to corner as way-points

start

goal

actions = slide a tile up/down/left/right into empty space
a solution path is sequence of actions that transforms start state into the goal

move 6 left

move 4 down

move 2 right

...

move 5
right move 2

down

Example: Puzzles as Search

Example: Robot Motion Planning
as Search (in configuration space)

this is the physical
space of a 2-armed
robot, with 2 joint
angles it can adjust

many states are
shown here

this is the abstract
configuration space
defined by joint
angles that the robot
can change

each point
represents a distinct
state of the robot

X O O
X

X

Framework for Formulating Search Problems

• states: a set of discrete representations/configurations of the world
• this defines the State Space, S = {s1,s2...}

• could be infinite

• operator: a function that generates successor states
• S |→ 2S ... mapping from S to powerset of S, i.e. subset of states

• op(si) = {sj}

• this encodes the legal “moves” or “actions” in the space that transform from
one state to another (or possibly multiple successors, or none)

• example: think about moves in tic-tac-toe

1/31/2022 6

X O O
O X
X

oper() = {
X O O

X O
X

X O O
X

X O

X O O
X

X O

}, , ,

Search Framework

• the operator, applied recursively to the initial state, sinit, generates the
State Space (or at least, the reachable part)

• visualize it as a tree (the search tree)

• define b as the ‘branching factor’: average number of successors for
each state

• the size of the tree (nodes on each level) grow exponentially with b

1/31/2022 7

sinit

2 successors of sinit

4 successors of successors

8 nodes

16 nodes

b=2

Node

Search Framework

• nodes in the search tree represent states in the state space

• however, they are not quite the same

• a node represents a particular path (sequences of actions) to a state

• there might be multiple paths that generate the same state

1/31/2022 8

Node 17State Depth=4
Parent=ptr…
Score...

X O O
X O

X

Node

State 81

X O O
X O

X

Node 52

State 81

X O O
X O

X

Node Node

Node

Search Framework

• goals: often specified in a domain-specific way as a set of requirements
• example: “winning states in tic-tac-toe have 3 X’s in a row or column or diagonal”
• abstractly: we can think of goals as a subset of states in the State Space, i.e. G={sj} ⸧ S

• for many AI problems, we would be happy to find any goal node
• (doesn’t matter which one)
• we are interested in the path, which is the sequence of actions that transforms the

initial state sinit into the goal sgoal

• in some cases, we might prefer the shortest path (fewest actions required)

• in other cases, if each operator has a different cost, we might be interested
in finding the solution with the least path cost

• example: deciding to take a bus instead of a cab as part of a trip in order to
minimize cost

1/31/2022 9cost 𝑠1. . 𝑠𝑛 = ෍
𝑖=1..𝑛

𝑐(𝑜𝑝𝑖) where s1=init, sn=goal, and si+1op(si)

Uninformed Search (‘Weak’ Methods)

• Depth-first Search (DFS) –
expand children of
children before siblings

1/31/2022 10

1

2

3 10

4 7 11 14

5 6 8 9 12 13

Uninformed Search (‘Weak’ Methods)

• Depth-first Search (DFS) –
expand children of
children before siblings

1/31/2022 11

• Breadth-first Search (BFS) –
expand children of children
AFTER siblings

1

2

3 10

4 7 11 14

5 6 8 9 12 13

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 ...

Uninformed Search (‘Weak’ Methods)

• the ‘frontier’ or ‘agenda’ is the set of nodes that have been expanded
but not yet explored, where expanded means it is a child of a visited
node and explored means goal-tested

1/31/2022 12

1

2 15

3 10

4 7 11 14

5 6 8 9 12 13

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 ...

A Unified Search Algorithm

• although it is easy to write pseudo-code for DFS and BFS separately,
they can be unified in an iterative procedure using a data structure to
hold the nodes in the frontier

• BFS: frontier = queue (FIFO)

• DFS: frontier = stack (LIFO)

1/31/2022 13

1/31/2022 14

(ignore reached for now;
It is for GraphSearch,
see slides below)

1/31/2022 15

A

B C

D E F G

H I J K L M N O

P Q R S T U V W X Y Z 1 2 3 4 5

• frontier (queue) for BFS:
• A // [front | A | end]

• B C // pop A, push children on end

• // pop B from front

• // push children D E on end

• C D E 

• D E F G

• E F G H I // start adding next level

• F G H I J K

• G H I J K L M

• ...

1/31/2022 16

to change it to do DFS,
all you have to do is
replace the frontier
with a stack (LIFO):

frontier ← stack, initialized
with start node as first element

1/31/2022 17

to change it to do DFS,
all you have to do is
replace the frontier
with a stack (LIFO):
i.e.
frontier ← stack,
initialized with start node
as first element

Depth-First Search

LIFO

1/31/2022 18

A

B C

D E F G

H I J K L M N O

P Q R S T U V W X Y Z 1 2 3 4 5

• frontier (stack) for DFS:
• A

• // pop A, push children B and C

• B C

• // pop B, push D and E on front

• D E C

• H I E C // pop D, push H and I

• P Q I E C // pop H, push P and Q

• Q I E C // pop P

• I E C // pop Q

• R S E C // go to I, push R and S

•
note: when you expand a node, the order in which you push the children makes a difference
In this example, I am pushing the children in reverse order, e.g. C before B (as children of A)
what would the search order look like if we pushed the children in alphabetical order?

Graph Search

• in some Search Trees, there are multiple paths to the same state

• example: reversible operators (move, then move back); or think of a
map; or think of circular moves in the tile puzzle

• detecting repeated (visited) states can greatly reduce redundancy in
the search space
• if you have already explored children beneath node n, there is no need to do

it again

• exception: if you find a shorter/cheaper path to n, you might want to
keep track of the best such path found

• ‘reached’: you need a data structure (like a hash table) to keep track
of these states

1/31/2022 19

• Graph Search
• in BFS on a grid, how badly would the size of the search tree scale up if we

didn’t keep track of reached states?

• Assume each node has 4 neighbors, so b=4 (branching factor, wrst cs) (bavg=~3)

• level 0=1 node (initial state, at the center)

• level 1=4 nodes

• level 2=16 nodes

• level 3=64 nodes

• level 4=256 nodes

• ...

• level i: 4i nodes

• and yet, there are only 25 distinct states in this space!

1/31/2022 20

1/31/2022 21

reached is a data
structure (e.g. hash table)
for keeping track of
expanded states to avoid
repeating the search

note: that we check
reached before putting
nodes into the frontier,
not as we pull them out

If s *has* been reached before,
you might want to see if a shorter/cheaper
path has been discovered and
keep track of that…

Graph Search (=BFS+checking for visited states)

Computational Complexity

• analysis of computational properties for comparison of DFS and BFS

• time-complexity: number of nodes goal-tested (# of loop iterations)

• space-complexity: maximum size to which the frontier grows

• completeness: if a goal exists, does ALGO guarantee to find it?

• optimality: does ALGO guarantee to find the goal node with the
minimum path cost?

1/31/2022 22

Computational Complexity of BFS

• time-complexity: number of nodes goal-tested (# of loop iterations)
• if the shallowest node occurs at depth d, and branching factor is b,
• then nodes checked (worst case) will be all levels up to and including b
• 1+b+b2+....bd = O(bd+1)

• space-complexity: maximum size to which the frontier grows
• in worst case, have to store all children at level below goal, O(bd+1)

• completeness: if a goal exists, does ALGO guarantee to find it?
• yes (because every goal exists at a finite depth, and BFS explores each level)

• optimality: does ALGO guarantee to find the goal node with the minimum
path cost?
• yes (assuming all operator have equal cost) (but no in general)
• in this case, the goal with least path cost is shallowest, and BFS will find it first,

because it explores level-by-level)
1/31/2022 23

෍

𝑖=0

𝑛

𝑏𝑖 =
𝑏𝑛+1 − 1

𝑏 − 1

෍

𝑖=0

𝑛

2𝑖 = 2𝑛+1 − 1

d

m

b

Computational Complexity of DFS

• time-complexity: number of nodes goal-tested (# of loop iterations)
• if the maximum depth of the tree is m,
• the worst case is when goal at depth d is on the right-most branch
• the nodes checked will be almost all in the tree (even deeper than d): O(bm)

• space-complexity: maximum size to which the frontier grows
• each time we expand a node, we pop 1 and push b children, (b-1)m = O(bm)

• completeness: if a goal exists, does ALGO guarantee to find it?
• no, in general (i.e. if any branch has infinite depth)
• yes, only in finite search spaces

• optimality: does ALGO guarantee to find the goal node with the
minimum path cost?
• no (since it is not complete)

1/31/2022 24

Comparison of BFS and DFS

• so which is better? when would we prefer to use one over the other?

• although time-complexity could be exponentially worse for DFS
(O(bm)>>O(bd)), DFS has linear space-complexity

• in practice, the size of the frontier is what limits AI search

• given modern CPU clock cycles, I can easily search a billion (109)
nodes (10 ms per loop iteration=17 min), but storing a billion nodes
takes too much memory (~100 bytes per node=100 Gb)

1/31/2022 25

BFS DFS

time-complexity O(bd+1) O(bm)

space-complexity O(bd+1) O(bm)

Iterative Deepening

• Is there a way to get the benefits of both BFS and DFS?

• how can we maintain a linear frontier size like DFS while still searching
level-by-level like BFS?

• how can you maintain the linear space-complexity of DFS while
avoiding descending infinitely deep down any single branch?

• answer: depth-limited search
• do DFS down to depth=1

• if goal not found, do DFS down to depth=2

• if goal not found, do DFS down to depth=3

• ...

1/31/2022 26

1/31/2022 27

Iterative Deepening

• Complexity analysis:

• since using DFS, the frontier should never get bigger than (b-1)d,
hence O(bd)

• and it should be complete and optimal (for equal operator costs)

• what about time complexity?
• it seems wasteful because you have to re-generate the top part of the search

tree each iteration

1/31/2022 28

d

m

DFS(l=1)

DFS(l=1)

DFS(l=2)
DFS(l=3) DFS(l=4)

DFS(l=5)

Iterative Deepening

• time complexity?
• 1+(1+b)+(1+b+b2)+(1+b+b2+b3)+...+(1+b+...+bd)
• ≤ (1+b+...+bd)+(1+b+...+bd)+... (1+b+...+bd)
• ≤ d(1+b+...+bd) ≤ dSbi ≤ d(bd+1-1)/(b-1) = O(bd+1)

• it seems wasteful because you have to re-generate the top part of
the search tree each iteration

• why not just “save” the part of the tree generated so far?

• because it will grow exponentially as depth limit increases, negating
the benefit of the linear size of the frontier – you have to throw
them away

• so it is a tradeoff: you spend a little more time computing
(expanding nodes), but you save memory (linear frontier size)

1/31/2022 29

Uniform Cost Algorithm

• suppose we want to find the goal node with the least path cost, when
operators have different costs?

• the shortest path (number of actions) is not necessarily the cheapest path
(sum of operator costs)

• in this case, BFS is not optimal

• however, we can use the same iterative search algorithm, but change the
frontier to a priority queue

• keep the expanded-but-unexplored nodes sorted in order of increasing
path cost

• nodes must keep track of cost; update when generating successors:
• cost(child) = cost(parent)+cost(opi)

1/31/2022 30

Uniform Cost Algorithm

1/31/2022 31

Uniform Cost Algorithm

• assumption: all operators have positive costs: cost(opi)>0 ≥  > 0

• Lemma: UC explores nodes in order of increasing total path cost
• sure, every node you pull out of the PQ has costs less than all other in the PQ

• but when you reach a goal g, how do you know there is not another cheaper
goal g’ out there?

• a) there is always some node n on the path to each node that is in the PQ (even
it is the initial state/root node)

• b) the nodes along each path always increase in cost (since all ops have pos cost)

• c) if n’ was on path to g’ and pathcost(g’)<pathcost(g) (by assumption), then
pathcost(n’)<pathcost(g’) and n’ would have been pulled out of PQ before g

1/31/2022 32

g

g’

n’

Uniform Cost Algorithm

• comparison to Djikstra’s Algorithm
• UC and Djikstra both solve the single-

source shortest-path problem

• however, an important difference is
that Djikstra is based on Dynamic
Programming (DP)

• it uses a data structure (array) to
maintain partial path distances from
the source to all vertices V in the graph

• you can’t do this for most AI problems,
especially if they have exponentially
large or infinite State Spaces

1/31/2022 33

// from https://en.wikipedia.org/wiki/Dijkstra’s_algorithm

1 function Dijkstra(Graph, source):
3 create vertex set Q
4
5 for each vertex v in Graph:
6 dist[v] ← INFINITY
7 prev[v] ← UNDEFINED
8 add v to Q
9 dist[source] ← 0

10
11 while Q is not empty:
12 u ← vertex in Q with min dist[u]
14 remove u from Q
15
16 for each neighbor v of u:
17 alt ← dist[u] + length(u, v)
18 if alt < dist[v]:
19 dist[v] ← alt
20 prev[v] ← u
21
22 return dist[], prev[]

Uniform Cost Algorithm

• Computational properties of UC
• time-complexity: O(b(1+C*/))

• where C* is the total path cost of the cheapest solution

• why? because each step costs at least , so goal occurs at depth C*/ in the
worst case

• space-complexity: O(b(1+C*/))

• completeness: yes

• optimality: yes!

1/31/2022 34

1/31/2022 35

4

1

1
1 8

6 7
3 2

3 3
1 4

2 8
9 21 1 8 3

4 2 1 1
2 3 7 1

2 1

6 3 2 9

12 9 10 6 5 3 11 13

14 16 10 11 18 12 7 9 14 6 11 10 13 12 16 14

A

B C

D E F G

H I J K L M N O

at queue
A0 C1 B2
C1 F2 B2 G9
F2 B2 M3 L5 G9
B2 E3 M3 L5 D6 G9
E3 M3 L5 K6 D6 G9 J10
M3 L5 K6 D6 G9 J10 a10 Z11
L5 Y6 K6 D6 G9 J10 a10 Z11 X14
Y6 opt. goal! (among leaf nodes)

P Q R S T U V W X Y Z a b c d e

Trace of UC - visit nodes in order
of least path cost

✓

✓

✓

✓

✓

✓

✓

suffixes are
path costs

2 (oper cost)

(path cost of nodes in green)

Summary of Computational Properties of
Search Algorithms

1/31/2022 36

or O(bd+1)
if cost(opi)=constant
for all operators

except for
finite search
spaces

or O(bd+1)

read for
yourself

Heuristic Search

• since AI search problems usually have exponential search spaces, the main
focus is on how we can exploit domain knowledge to improve the efficiency
of the search

• domain knowledge refers to anything we know about solving these types
of problems
• rules of thumb, common solutions, way to decompose the problem into

subgoals, useful sequences of actions, interactions/dependencies between
operators...

• in this context, domain knowledge will be encapsulated in a heuristic
function, h(n)

• it is a ‘scoring’ function that maps every node (or state) to a real number

• the advantage is using any knowledge we have to guide the search toward
the goal, and avoid searching ‘unproductive’ parts the search space

1/31/2022 37

Heuristic Search

• a heuristic function h(n) is an estimate of the distance (path cost)
remaining from n to the closest goal

• hence it is a mapping from S Ͱ> R (State Space to real numbers)

• generally, h(n)≥0, and h(n)=0 for goals

• abstractly, it is a quantification of how close a state is to being solved
(higher is farther away)

1/31/2022 38

Heuristic Functions

• Example 1: hSLD for navigation

1/31/2022 39

• suppose our goal was to find a route from
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are
processed in counter-clockwise order)

Heuristic Functions

• Example 1: hSLD for navigation

1/31/2022 40

• suppose our goal was to find a route from
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are
processed in counter-clockwise order)

• BFS (FIFO): (expand in levels)
• frontier at each pass:
• S | O,A,R,F | Z,T,C,P,B | L,D,U,G | M,H,V

Heuristic Functions

• Example 1: hSLD for navigation

1/31/2022 41

• suppose our goal was to find a route from
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are
processed in counter-clockwise order)

• BFS (FIFO):
• frontier at each pass:
• S | O,A,R,F | Z,T,C,P,B | L,D,U,G | M,H,V

• DFS (LIFO): (follows a single path)
• sequence of states visited:
• S,O,Z,A,T,L,M,D,C,R,P,B,F,G,U,H,E,V

Heuristic Functions

• Example 1: hSLD for Navigation

1/31/2022 42

• suppose our goal was to find a route from
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are
processed in counter-clockwise order)

• BFS (FIFO):
• frontier at each pass:
• S | O,A,R,F | Z,T,C,P,B | L,D,U,G | M,H,V

• DFS (LIFO):
• sequence of states visited:
• S,O,Z,A,T,L,M,D,C,R,P,B,F,G,U,H,E,V

• hSLD: prioritize nodes in frontier based on
straight-line distance to goal
• sequence of states visited: S, F, B, U, V

Heuristic Functions

• Example 2: heuristic functions for the Tile Puzzle
• how close is any given state to being solved?

• h1(n): # tiles out of place
• this is an under-estimate because it will take more than move to put each tile in its proper

place

• still, it differentiates states that are almost solved for those that are very jumbled

• even if 1 block is out of place, it might be close or very far away

• h2(n): Manhattan distance
• for each tile out of place, count number of rows and columns it needs to move

• still an under-estimate of total moves because moving one tiles can put others out of place

• ironically, it can also be an over-estimate, because a sequence of moves could put multiple
tiles in place

1/31/2022 43

ℎ2 𝑛 = ෍

𝑖=1

9

𝑐𝑢𝑟𝑟𝑅𝑜𝑤 𝑇𝑖 − 𝑔𝑜𝑎𝑙𝑅𝑜𝑤 𝑇𝑖 + |𝑐𝑢𝑟𝑟𝐶𝑜𝑙 𝑇𝑖 − 𝑔𝑜𝑎𝑙𝐶𝑜𝑙 𝑇𝑖 |

Heuristic Functions

1/31/2022 44

1 2

3 4 5

6 7 8

1 6

3 4 5

2 7 8

7 2 4

5 6

8 3 1

h1 = 8
the 1 needs to move 3 steps
the 2 needs to move 1 step
the 3 needs to move 2 steps
...
h2 = 3+1+2+2+2+3+3+2 = 18

h1 = 2
h2 = 2

h1 = 2
h2 = 8

Greedy Search (best-first search with h(n))

• extending the iterative search algorithm to use a heuristic

• use a priority queue for frontier; sort nodes based on h(n)

• (go back and review the slide on finding a route from Sibiu to Vasliu using hSLD)

1/31/2022 45

where f is h(n)

Greedy Search

1/31/2022 46

• The problem with Greedy Search is that it
can be ‘misled’ by the heuristic to go in the
wrong direction and waste time searching
unproductive regions of the search space

• This is known as the “garden path” problem

• Greedy Search would search the gray-boxed
region first, before discovering it has to go
around the T to get the goal(red)

• how sub-optimal can it be? (in terms of cities expanded that are
not actually on the solution path)

• what’s the worst garden-path pair of cities for Romania?

• is there a pair of cities that would force Greedy search to visit
every node?

1/31/2022 47

A* algorithm

• one of the most widely used and practical AI search algorithms

• essentially Best-first search (with priority queue), where nodes in
frontier are sorted based on f(n)=g(n)+h(n)
• where g(n)=path cost so far (from root to n)

• and h(n)=heuristic estimate of remaining path cost (from n to closest goal)

• so f(n) is an estimate of total path cost going through n to goal

1/31/2022 48

A* algorithm

• use a priority queue for frontier; sort nodes based on f(n)=h(n)+g(n)

1/31/2022 49

where f=h(n)+g(n)

frontier:
V(0+235=235)
<V235>

1. pop V, push I and U
I(92+225=317)
U(142+220=362)
<I317 , U362>

2. pop I; push N
N(92+87+190=369)
<U362, N369>

3. pop U; push B, H
B(142+85+210=437)
H(142+98+250=490)
<N369,B437,H490>

4. pop N; <B437,H490>

5. popB; push F438=142+85+211

<F438,H490>

6. pop F

220

225

235

190

250

210

1

2

3

4

5

6

A* search of Vasiliu to Fagaras:

notice how f(n) for popped nodes keeps increasing:
V(235), I(317), U(362), N(369), B(437), F(438)

Where Do Heuristics Come From?
• Heuristics encode knowledge you have about the problem

• rules of thumb
• common solutions that are often used
• way to decompose the problem into subgoals
• useful sequences of actions
• interactions/dependencies between operators...

• This knowledge has to be formulated into a scoring function h(n) that
estimates the distance of any state to the goal

• common strategy: approximate how many steps it would take to solve if we
could relax the constraints
• counting tiles out of place implies we can fix them in 1 move
• Manhattan distance implies we can “slide tiles over each other”
• for navigation, straight-line distance is shorter than any road, but still useful

1/31/2022 51

Computational Properties A* Search

• what guarantees about completeness and optimality can we make?

• remember that h(n) could be inaccurate!
• it could tell us that many nodes down path are getting closer and closer, when

in fact there is no way to reach the goal, and back-tracking is required

• first, we need to make an assumption...

• h(n) is admissible
• h(n) never over-estimates the true distance to the goal for any node n

• 0 ≤ h(n) ≤ c*(n) for all states in the State Space

1/31/2022 52

Computational Properties A* Search

• Theorem: A* is optimal (finds a goal with minimum path cost)
• although this sounds obvious because the PQ is sorted on f(n), it is deceptive

because it only applies to nodes in the frontier, but not all states in the space

• suppose the optimal goal is g* but greedy returns g first, where c(g)>c(g*)

• let n* be a node on the optimal path to g* that is in the frontier at same time

• f(n*)=g(n*)+h(n*) ≤ cost(n0..n*)+cost(n*..g*) = cost(n0..g*) = c(g*)

• because of admissibility

• therefore, n* should have been dequeued before g (and so on, down the path
to g*)

• Important point: Eventhough admissibility is desirable, it is not necessary:
A* search can be made more efficient with a heuristic even if it is not
admissible (however, the solution path found might not be minimal) 53

Computational Properties A* Search

• Lemma: f(n) scores increase monotonically down any path from root
• if a path is <n0..ni..g>, then f(n0)≤f(ni)≤f(g)

• in any step ni→ni+1, h(ni) includes a guess of the cost of opi, whereas g(ni+1)
has the actual cost of that step, which could only be higher (by admissibility)

• also requires consistency of heuristic, which is slightly stronger than
admissibility (see book)

• remember that at a goal node, f(g)=c*(g) for any goal because
f(g)=g(g)+h(g)=c(*g)+0

• so f(n) could be an underestimate of total path length early in a path, but
converges to c(g*) as you get closer to the goal

• Theorem: A* explores states in order of increasing f(n) (see Fig 3.20)
1/31/2022 54

Computational Properties A* Search
• analysis of time complexity

• efficiency of A* is complicated because it depends on accuracy of the heuristic

• generally speaking, the more accurate the heuristic is, the faster the search

• boundary case 1: h(n)=0 – no help, exponential time like Uniform Cost,
O(b1+C*/)

• boundary case 2: h(n)=c(n) – a heuristic that perfectly predicts the true
distance to the goal for any node will lead A* right to it (in time linear in the
path length)

• if the inaccuracy of the heuristic is bounded, search will be sub-exponential

• define “relative error” D =|h-h*|/h* (max over all nodes in the State Space)

• then time complexity of A* is O(bDL(g)) where L is the path length to the goal g

• if |h-h*|=O(log(h*)) for all n, then A* will search a sub-exponential number of
nodes before finding the optimal goal

• however, this is rarely achievable in practice1/31/2022 55

