
Game Search
CSCE 420 – Spring 2022

read: Ch. 5

2/15/2022 1

Game Search
• games are useful to study for AI because they represent adversarial

environments
• the world state is not controlled solely by the agent
• the world state can change because of actions by other agents (players)
• different agents might have different objectives
• this can lead to competitive behavior, or cooperative behavior

• there are many different kinds of games
• simultaneous vs. sequential vs. iterated
• single-player, two-player, multi-player
• stochastic games with an element of chance
• complete vs. incomplete information (partially observable)
• also applies to economics: pricing of goods, auctions, contract negotiations...

• Of course, DeepBlue and AlphaGo are widely-recognized successes in
AI, representing achievement of intelligent behaviour

2/15/2022
2

Simultaneous Games

• both agents act at same time, choosing from discrete action space

• usually characterized by a payoff matrix

• examples
• prisoner’s dilemma

• game of chicken

• rock-paper-scissors(-lizard-spock)

• agents can (unilaterally) decide what to do based on finding strategies
that are in Nash Equilibrium
• (not going to define it here)

• gets more interesting if game is iterated,

• i.e. played repeatedly by same players
2/15/2022 3

Prisoner’s
Dilemma

prisoner B
stays silent

prisoner B
betrays

prisoner A
stays silent

both A and B
serve 1 year

B goes free,
A serves 5 yrs

prisoner A
betrays

A goes free,
B serves 5 yrs

both A and B
serve 3 years

Game of
Chicken

driver B
swerves

driver B
doesn’t swerve

driver A
swerves

0 \ 0 -1 \ +1

driver A
doesn’t swerve

+1 \ -1 -5 \ -5

Although the AIMA textbook (Ch. 5) focuses on traditional
sequential games, there are a lot of other interesting
types of games, such as Simultaneous Games, that are
useful in AI applications, especially Intelligent Agents.
This is where AI research ties into Game Theory. (Sec 18.4)

Sequential Games

• multiple steps – players take turns

• each player has a utility function
• +1 for win; -1 for lose; 0 for draw (tic-tac-toe); 0 for non-terminal states

• money (poker)

• rewards for achieving goals - cost of actions or resources used

• simplest form: 2-player, 0-sum games
• Si ui(s) = 0 or u1(s) = -u2(s)

• examples: tic-tac-toe, checkers, chess...

2/15/2022 4

Minimax Search

• in a 2-player, 0-sum game like tic-tac-toe, how can we decide what
move to make?

• method 1: write a bunch of rules that encode a strategy

• method 2: use systematic search
• use look-ahead for each possible action to imagine what opponent response

might be
• key idea: we can what move the opponent will make because their utility is

assumed to be the opposite of ours
• thus the opponent will change the game in the way that is best for them,

which is worst for us
• recursion: of course, to simulate the opponent’s reasoning, they will have to

consider our response to their response, and so on...

2/15/2022 5

O
X X

Minimax Search

• recall that ui(s)=0 for non-terminal states

• label alternating levels in search tree as max nodes and min nodes

• define minimax value for each state s as follows:
ui(s) if s is a terminal state

minimax(s) = max { minimax(s’) for s’ succ(s) } if s is a max node

min { minimax(s’) for s’ succ(s) } if s is a min node

• decision at root node: argmax { minimax(s’) for s’ succ(s) }
• i.e. choose the action that leads to the successor with highest score, which has the

highest expected payoff

2/15/2022 6

Minimax Search

2/15/2022 7

double-recursion:
each function calls
the other

2/15/2022 8

2/15/2022 9

2/15/2022 10

representing player 1,
who wants to maximize u1(s)

representing player 2,
who wants to
maximize u2(s),
which is the same as
minimizing u1(s)

Minimax Search

• note: this only determines next move (by player 1)

• then player 2 chooses an action

• then we have to recompute the game tree from that state to decide
the next move

• minimax does not determine the entire sequence of play; you cannot
force the choices of the other player

• we assume the opponent will make optimal choices (for them)

• what happens if they make a sub-optimal move (e.g. a mistake)?

2/15/2022 11

Complexity of Game Search

• the problem with applying Minimax to most games is that the search
space is too large
• estimates for chess: avg game=70 moves, avg branching factor=35, state

space = ~3570 = ~10108

• so we can’t search all the way to leaves (end-games) where utility is defined
to propagate the minimax values back up

• solution 1: use intelligent pruning to reduce the search space
• sometimes we can infer parts of the space that do not need to be searched

2/15/2022 12

a/b-pruning

• at each node, keep track of 2 additional values a, b (along with
minimax value)

• these represent the lower- and upper-bound on what minimax(s)
could eventually be

• initially, set a, b = [-,+] at each node

• as we process children, update these
• at max nodes, update a: a=max{a, minimax(ch)} for each chsucc(s)}

• at min nodes, update b: b=min{b,minimax(ch)} for each chsucc(s)}

• pruning condition: when interval of node an parent no longer
overlap

2/15/2022 13

2/15/2022 14

(this example is for
a simplified version
of the alpha-beta pruning
algorithm where we
initialize alpha and
beta to the range [-,]
at every node (instead of
passing them in as
parameters), and the
pruning condition is
evaluated by checking
the overlap between the
range of each node and
it’s parent)

2/15/2022 15

max nodes update a prune if score becomes greater than upper-bound
of parent’s interval, since parent would never
choose this branch

min nodes update b

2/15/2022 16

[-,]
[-,3]

[-,]
[-,3]

[-,]
[-,3]
mm=3

[3,]
[3,2]x

a=3,v=2;
prune
remaining
children
since v<a

(min node)

[3,]
[3,2]x

[3,]

[3,]
[3,14]

[3,]
[3,2]x

[3,]
[3,14]
[3,5]
[3,2]x

update: no
update

finalize:

finalize:

this version
traces the
a/b algorithm
more faithfully

Complexity of Game Search

• solution 2: use a depth-limit while searching a game tree
• need a board-evaluation function to assign scores to internal nodes

(or non-terminal states, or non-end-games)
• the value estimates the probability of winning or expected payoff

from each state (heuristically)
• the computer can then perform Minimax (possibly with a/b-

pruning) down to a fixed level, apply the board evaluation function,
and propagate values upward

• choose depth limit based on time available (and CPU speed)
• expressed as number of “ply” (moves, or levels)
• 2-6 ply (a few sec): rudimentary chess performance (amateur skill level)
• 6-10 ply (a few min): much better moves due to deeper search/look-ahead

2/15/2022 17

Board Evaluation Functions

• a board evaluation function must guess the value (probable outcome)
of each state

• they are typically based on features

• examples from chess:
• piece differential (#PlayerPieces - #OpponentPieces)

• material value (pawn=1, knight/bishop=3, rook=5, queen=9)

• center control

• # of pieces threatened or constrained

• patterns or special arrangements of pieces

2/15/2022 18

Eval(s) = w1f1(s) + w2f2(s) + ... + wnfn(s)

Board Evaluation Functions

• problems with using board evaluation functions
• non-quiescence

• board evaluation function should only be applied to quiescent states, where the value
has stopped changing (i.e. “converged”)

• if there have been large changes in value, extend the search to allow it to quiesce

• rather than enforcing a strict depth limit, can be non-uniform

• use a dynamic IS-CUTOFF(s) test

• horizon effect
• sometimes, enough dodging moves can be made to forestall a bad outcome so it occurs

just beyond the depth limit (like moving a bishop back and forth to delay capture, or
repeatedly checking the opponent’s king)

• delaying the inevitable – it might change our decision if we knew this

• hard to detect and mitigate

2/15/2022 19

Deep Blue

• developed by IBM

• achieved grandmaster rating in 1990’s

• defeated Gary Kasparov in 1997

• a supercomputer with custom ASICs for very fast minimax search
• 30-node IBM RS/6000 SP computer; 120 MHz and 1GB per proc.
• 16 “chess chips” on each node, for generating moves and computing a board

evaluation function
• explored ~100 million moves/s, down to 10-12 ply (though non-uniform)

• included an end-game database (for example, once there are only 5
pieces left, lookup optimal moves in a pre-computed table)

2/15/2022 20

Connect4

2/15/2022 23

image obtained from
https://en.wikipedia.org/wiki/Connect_Four

• pieces are dropped in vertical columns; 4-in-a-row wins the game
• here is an online app you can play around with:

https://www.cbc.ca/kids/games/all/connect-4

• Challenge: Can you come up with a board evaluation function for
playing Connect4?
• it would not be hard to implement this on the command line (similar to tic-

tac-toe)

• the State Space is much larger, so you would have to use a depth cutoff in the
Minimax search and apply a board evaluation function to incomplete states

• (try pausing the animation above and estimating the value of the state)

.

.

.

.

.

. . X

. . X O O . .

Expectiminimax

• stochastic games – games with an element of
chance (e.g. dice, cards...)
• examples: backgammon, yahtze...

• can we apply minimax search?
• yes, if we interleave min and max nodes with a

level of chance nodes

• at chance nodes, the score is the weighted sum
over the children, weighted by probability, i.e.
“expected outcome”

2/15/2022 24

Expectiminimax(s) =
u1(s) if is a terminal node
max{Expectiminimax(s’)|s’succ(s)} if max node
min{Expectiminimax(s’)|s’succ(s)} if min node
Ss’succ(s) P(s’) Expectiminimax(s’) if chance node

a famous backgammon program called TDgammon
(by Gary Tesauro) used Reinforcement Learning

Monte Carlo Tree Search (MCTS)

• instead of exhaustively exploring search tree, sample random paths (“rollouts”) all
the way to terminal states (end-games with defined utility)

• the value of a state is taken as the statistical average outcome of trajectories passing
through it (“back-propagate” outcomes)

• also keep track of n (# trial trajectories passing through each node) and variance (s2)
at each state to assess certainty

2/15/2022 25

(Sec 5.4)

Monte Carlo Tree Search (MCTS)

• there are many choices about how to make move during simulation

• selection policy – which states to start simulation from?
• expansion vs. exploration

• is it better to refine value estimate at good nodes, or increase certainty of bad
nodes?

• allow occasional sub-optimal choices for the sake of seeing how they turn out

• playout policy
• just making subsequent random moves is not realistic

• it helps to define an “approximate strategy” to simulate reasonable moves by
both players

2/15/2022 26

Monte Carlo Tree Search (MCTS)

• using MCTS to learn strategy for Blackjack
• simulate >10,000 random games to learn policy

2/15/2022 27

H=hit
ST=stand
D=double-down

dealer’s card showing

total of
cards in
hand

expected prob.
of winning
for Hit, based
on mean of
rollouts

dealer’s card
showing

total of
cards in
hand

AlphaGO

• GO is played with b/w stones on a 19x19 board
• search space much larger than chess (bran. fact. starts at 361)

• from Google DeepMind, 2017

• after decades of attempts by other AI programs, AlphaGO
finally beat the human GO world champion

• learns from self-play (bootstrapping), >100,000 games

• trains a deep neural network (14 conv. layers) to represent
a value function (reinforcement learning, MCTS)

• reached grandmaster rating after 21 days (176 GPUs)

2/15/2022 28

image from
https://en.wikipedia.org/wiki/Go_(game)

Games with Imperfect Information

• in games like tic-tac-toe and chess, all information about state is
available to both players (i.e. on the board)

• in some games, some information might be private to individuals

• examples: card games like hearts, bridge, poker...

• (note: we are talking about the cards dealt and in the hands of others
• we are not talking about stochasticity of which cards will be drawn next)

• the optimal move often depends on information we don’t have
access to

• representative of “partially observable” environments

2/15/2022 29
images from https://en.wikipedia.org/wiki/Contract_bridge

Games with Imperfect Information

• simple view: payoff of actions is averaged over all possible opponent hands
(probability distribution)

• in some cases, we can infer what opponents hold by their actions

• there are sophisticated AI methods (POMDPs) for estimating and reasoning
over “belief states”

• interesting effect: in some cases, there is value in taking actions with a cost,
primarily for gaining information
• such as a real-estate developer paying for geological survey, because it will help them

better decide how to develop a property and estimate it’s potential value as a hotel
vs. mall vs. warehouse vs. drilling site

• in partially observable environments, there is value in information

• GIB - famous bridge-playing program (c.a. 1999) - uses Monte Carlo
• bidding phase is still challenging – communication relying on social conventions

2/15/2022 30

