
• The problem(s) with FOL involve expressing:

• default rules & exceptions

• degrees of truth

• strength of rules

Limitations of First-Order Logic
• FOL is very expressive, but...consider how to translate 

these:
• "most students graduate in 4 years"

• ∀x student(x) → duration(undergrad(x))≤years(4)  (all???)
• "only a few students switch majors"

• ∃s,m1,m2,t1,t2 student(s)^major(s,m1,t1)∧major(s,m2,t2) 
∧m1≠m2 ∧ t1≠t2   (exists???)

• "all birds can fly, except penguins, stuffed birds, plastic birds, 
birds with broken wings..."



Limitation of First-Order Logic

• FOL is not good at handling exceptions
• universal quantifier means ALL; can't say "most" birds fly
• ∀x bird(x)→flies(x)
• asserting bird(opus)∧¬flies(opus) in the KB would cause 

it to be inconsistent
• FOL is monotonic: if α |= β, then α∧ω |= β

• adding new facts does not undo conclusions

• we could say: ∀x bird(x)∧¬penguin(x) →flies(x)
• but we can't enumerate all possible exceptions

• what about a robin with a broken wing?
• what about birds that are made out of plastic?
• what about Big Bird?



• Uncertainty in reasoning about actions:
• If a gun is loaded and you pull the trigger, the 

gun will fire, right?
• ...unless it is a toy gun
• ...unless it is defective
• ...unless it is underwater
• ...unless the barrel is filled with concrete



Possible Solutions

• Add rule strengths or priorities
• common in early Expert Systems
• ...an old ad-hoc approach (with unclear semantics)
• penguin(x) →0.9 ¬flies(x)
• bird(x) →0.5 flies(x)



Solutions

• Default Logic/Non-monotonic logics
• Closed-World Assumption and Negation-as-failure 

in PROLOG
• Semantic Networks
• Fuzzy Logic
• Bayesian Probability



Non-monotonic Logics
• allow retractions later (popular for truth-maintenance 

systems)
• "birds fly", "penguins are birds that don't fly"

• ∀x bird(x)→fly(x)
• ∀x penguin(x)→bird(x), ∀x penguin(x)→¬fly(x)
• {bird(tweety), bird(opus)} |= fly(opus)
• later, add that opus is a penguin, change inference
• penguin(opus) |= ¬fly(opus)

• Definition: A logic is monotonic if everything that is 
entailed by a set of sentences α is entailed by any 
superset of sentences α∧β

• opus example is non-monotonic



Default Logic

• example syntax of a default rule:
• bird(x): fly(x) / fly(x) or      bird(x) ≻ fly(x) 
• analogous to ∀x bird(x) → fly(x) , but allows exceptions
• meaning: "if PREMISE is satisfied and it is not inconsistent to 

believe CONSEQUENT, then CONSEQUENT"
• {bird(tweety),bird(opus),¬fly(opus), bird(x): fly(x) / fly(x) } 

|={fly(tweet),¬fly(opus)}

• requires fixed-point semantics (different model theory 
and inference procedures)



Circumscription

• an alternative approach to default logic

• add abnormal predicates to rules
• ∀x bird(x)∧¬abnormal1(x)→fly(x)

• ∀x penguin(x) ^¬abnormal2(x) →bird(x) 

• ∀x penguin(x) ^¬abnormal3(x) →¬fly(x)

• algorithm: minimize the number of abnormals needed to 
make the KB consistent

• {bird(tweety),fly(tweety),bird(opus),penguin(opus), ¬fly(opus)} is 
INCONSISTENT

• {bird(tweety),fly(tweety),bird(opus),penguin(opus), ¬fly(opus), 
abnormal1(opus)} is CONSISTENT



Semantic Networks
• graphical representation of knowledge
• nodes, slots, edges, "isa" links
• procedural mechanism for answering queries

• follow links
• different than formal definition of "entailment"

• inheritance
• can override defaults



Fuzzy Logic

• some expressions involve "degrees" of truth, like "John 
is tall"

• membership functions
• "most students with high SATs have high GPAs"
• inference by computing with membership funcs.

• "only days that are warm and not windy are good for playing 
frisbee"

• suppose today is 85 and the wind is 15 kts NE
• T(A^B) = min(T(A),T(B))
• T(AvB) = max(T(A),T(B))

• popular for control applications (like thermostats...)
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Fuzzy Logic

• doing inference in FL involve computing truncation 
(min) and intersection with membership functions

• i.e. to evaluate satisfaction of antecedents of a rule
• (temp is warm) and (wind is not-windy) -> playFrisbee

2D: tempXwind



Handling Defaults in Prolog

• ∀x bird(x)∧¬penguin(x) →flies(x)
• bird(tweety)
• bird(woodstock)
• bird(opus) penguin(opus)

initial KB has 4 facts
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Handling Defaults in Prolog

• ∀x bird(x)∧¬penguin(x) →flies(x)
• bird(tweety)
• bird(woodstock)
• bird(opus) penguin(opus)

• ∀x bird(x)∧¬penguin(x) →flies(x)
• bird(tweety) ¬penguin(tweety)
• bird(woodstock) ¬penguin(woodstock)
• bird(opus), penguin(opus)

• ∀x bird(x)∧¬penguin(x)^ ¬emu(x) →flies(x)
• bird(tweety) ¬penguin(tweety) ¬emu(tweety)
• bird(woodstock) ¬penguin(woodstock) ¬emu(woodstock)
• bird(opus), penguin(opus) ¬emu(opus)

the problem here is that, if you add 
a qualifying condition like ¬penguin
to a rule in FOL, then you have to 
explicitly say whether
every individual is a penguin or not
(which is not scalable to large KBs)

if we add another condition
like ¬emu, then we have 
explicitly identify all the non-emus

initial KB has 4 facts



• other examples:
• a football player is eligible to play in a game, unless they 

have not passed a physical, or are on academic probation
• an item is on sale (50% off), unless it is already discounted
• a house can be sold, as long as it does not have a lien on it
• fish is a healthy option for protein, unless it has high 

mercury levels (shark, swordfish, orange roughy...)

• in all these cases, you would have to add a negative 
antecedent to a FOL rule, but then have to assert things 
like ¬academic_probation(<player>) for all players, or 
¬highMg(trout), ¬highMg(bass), ¬highMg(catfish)...



Handling Defaults in Prolog

• Potential problems:
• 1) can't assert negative facts, e.g. ¬penguin(tweety)
• 2) can't have negative literals as antecedents in definite 

clauses
dog(fido).

dog(snoopy).

canary(tweety).

canary(woodstock).

penguin(opus).

animal(X) :- mammal(X).

animal(X) :- bird(X).

dangerous_animal(X) :- animal(X),has_sharp_teeth(X),aggressive(X).

A^B -> C ... -Av-BvC
A^ -B -> C ... -A v B vC



Closed-World Assumption (CWA) 
in PROLOG

• every fact that is not explicitly asserted (or provable) is 
assumed to be false 

• can include negated antecedents in rules ("\+" = not) 
stench(1,2). // col,row
stench(2,3).
stench(1,4).
wumpus_free(X,Y) :- room(X,Y),adjacent(X,Y,P,Q),\+ stench(P,Q).

?- wumpus_free(1,3).
No
?- wumpus_free(2,2). 
Yes (because no stench in 2,1)

this prolog rule is equivalent to:
∀x,y,p,q room(x,y)^adjacent(x,y,p,q)^¬stench(p,q) → wumpus_free(x,y)
which is not a definite clause (because CNF has 2 positive literals), so
technically, we could not do back-chaining; can't put ¬stench on goal stack



• using CWA for default reasoning
bird(X) :- canary(X). ?- bird(tweety). Yes

bird(X) :- penquin(X). ?- canFly(tweety). Yes

canary(tweety). ?- bird(opus). Yes

penquin(opus). ?- canFly(opus). No

canFly(X) :- bird(X),\+ penguin(X).

• how is negation-as-failure implemented? 
• modify back-chaining to handle negative antecedents
• when trying to prove  ¬P(X) on goal stack, try proving 

P(X) and if fail then ¬P(X) succeeds

goal stack: canFly(tweety)

bird(tweety) ¬penguin(tweety)

canary(tweety) penguin(tweety)

*** fails***

succeeds

goal stack: canFly(opus)

bird(opus) ¬penguin(opus)

penguin(opus) penguin(opus)

***succeeds***

fails

X

X

X



Probability

• an alternative route to encoding default rules like 
"most birds fly" is to quantify it using probability, 
p(fly|bird)=0.95

• probabilistic reasoning has had a major impact on AI 
over the years

• conferences and journals on UAI (Uncertainty in AI)

• probabilistic models has led to major algorithms like:
• Hidden Markov Models (applications to speech, genomics...)
• SLAM (simultaneous mapping and localization) for robotics
• Bayesian networks/graphical models  (as knowledge bases)
• Kalman filters, ICA, POMPDs, ...
• Reinforcement Learning



Probability
• encode knowledge in the form of prior probabilities 

and conditional probabilities
• P(x speaks portugese)=0.012
• P(x is from Brazil)=0.007
• P(x speaks portugese|x is from Brazil)=0.9
• P(x flies|x is a bird)=0.9 (?)

• inference is done by calculating posterior
probabilities given evidence (using Bayes' Rule)

• compute P(cavity | toothache, flossing, dental history, 
recent consumption of candy...)

• compute P(fed will raise interest rate | 
unemployment=5%, inflation=0.5%, GDP=2%, recent 
geopolitical events...)

prior probs

conditional probs



Bayes' Rule

• product rule : joint prob P(A,B) = P(A|B)*P(B) 
• P(A|B) is read as "probability of A given B"
• in general, P(A,B)≠P(A)*P(B) (unless A and B are independent)

• Bayes' Rule: convert between causal and diagnostic

• joint probabilities: P(E,H), priors: P(H)
• conditional probabilities play role of "rules"

• people with a toothache are likely to have a cavity
• p(cavity|toothache) = 0.6

H = hypothesis (cause, disease)
E = evidence (effect, symptoms)

read about axioms of probability, etc. in Ch. 12
(you can skip sec 12.6 and 12.7)



Causal vs. diagnostic knowledge

• causal: P(x has a toothache|x has a cavity)=0.9
• diagnostic: P(x has a cavity|x has a toothache)=0.5

• typically it is easier to articulate knowledge in the 
causal direction, but we often want to use it in a 
diagnostic way to make inferences from 
observations



• Joint probability table (JPT)
• you can calculate answer to any question from JPT
• the problem is there are exponential # of entries (2N, 

where N is the number of binary random variables)

P(¬cavity | toothache) = ?
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= 0.4



• Joint probability table (JPT)
• you can calculate answer to any question from JPT
• the problem is there are exponential # of entries (2N, 
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A and B are conditionally independent given C if:
P(A,B|C) = P(A|C)P(B|C), or equivalently
P(A|B,C) = P(A|C)

• Applying Bayes' Rule in larger domains has a scalability problem
• the size of the JPT grows exponentially with the number of 

variables (2n for n variables)
• Solution to reduce complexity: 

• employ the Independence Assumption
• Most variables are not strictly independent; most variables are at 

least partially correlated (but which is cause and which is effect?).  
• However, many variables are conditionally independent.

Conditional Independence



Conditional Independence



• conditional independence gives us an efficient way to 
combine evidence

• consider P(Cav|toothache,catch)
• using Bayes' Rule:

• P(Cav|toothache,catch)  ∝ P(toothache^catch|Cav)*P(Cav)
• this requires a mini JPT for all combinations of evidence

• assuming toothache is conditionally independent of catch 
given Cavity:

• P(toothache^catch|Cav) = P(toothache|Cav)*P(catch|Cav)
• therefore...
P(Cav|toothache,catch) ∝ P(toothache|Cav)*P(catch|Cav)*P(Cav)



Bayesian Networks

• graphical models where edges represent 
conditional probabilities

• popular for modern AI systems (expert systems)
• important for handling uncertainty

=





• Many modern knowledge-based systems are based 
on probabilistic inference

• including Bayesian networks, Hidden Markov Models, 
(HMMs), Markov Decision Problems (MDPs)

• example: Bayesian networks are used for inferring user 
goals or help needs from actions like mouse clicks in an 
automated software help system (think 'Clippy')

• Decision Theory combines utilities with probabilities of 
outcomes to decide actions to tak

• the challenge is capturing all the numbers needed 
for the prior and conditional probabilities

• objectivists (frequentists) - probabilities represent 
outcomes of trials/experiments

• subjectivists - probabilities are degrees of belief

• probability and statistics is at the core of many 
Machine Learning algorithms
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