Planning (ch. 11, skip 11.4-5; Sec 7.7)

* finding a sequence of actions to achieve goals
* requires reasoning about actions

* knowledge-level representation of the successor()
function in search

* assumptions:

 actions are discrete (state changes) and deterministic
(no probability of failure)

e goals are conjunctive (not disjunctive goals or
maintenance goals, which require more complex algs)

\P"“b\e\ tat

Qoo state=

¢°\V do(pickup(A,table),
®O do(puton(B,C),

© do(pickup(B,A),
Sinit)))

Situation Calculus

do(pickup(b,a), S;,)
 for describing are reasoning about Actions in FOL
e assume actions are discrete state space, fanning out

from an initial state
* add a 'situation' argument to each predicate (fluent)
* could use S, to refer to initial state
» other states are denoted using the 'do' function, do(Act,State)
* like anonymous names for all states based on action sequence

* Vs,xy on(x,y,s)*clear(x,s)" gripperEmpty(s) —
holding(x,do(pickup(x,y),s))"clear(y,do(pickup(x,y),s))
e axioms are universal rules over generic +
situations s

* LHS=preconditions, RHS=effects

4/6/2023

A

pickup(B,A)

The Frame Problem [EFEm EEE

* The Frame Problem refers to the need to also specify all the things
that are not changed by an action (p. 239, 249)

* refers to animation frames or cells, background that remains constant

* for example, after we pickup(B,A), suppose we want to puton(B,C)
e preconditions: must be holding B, C must be clear

* holding(B) is a direct effect of pickup(B,A)

* Vs,xy on(xy,s)"clear(x,s)" gripperEmpty(s) —
holding(x,do(pickup(x,y),s))*clear(y,do(pickup(x,y),s))

* how do we know clear(C)??? not mentioned in rule for pickup(B,A), so how
can we prove it is true in successor state?

* there are ways to do this (called writing 'Frame Axioms'):
e Vs,x,y,z on(x,y,s)clear(x,s)” gripperEmpty(s)*z#x"z2y*—>
[clear(z,s) <> clear(z,do(pickup(x,V),s))]

2/6/2033 i.e. if clear(z) was true before the action, it will still be true after, and vice
versa, for any blocks other than xand y

define Poss()
for convenience;

Frame Axioms preconds ay wher
a given action

* Approach 1

» for a specific action and undaffected predicate, if preconds hold, then if
predicate was True before, it will be True after, and vice versa

» picking up a block does not affect whether any other block/is clear

e Vs,x,y,zon(x,y,s) clear(x,s) gripperEmpty(s)*z#x"z2y—
[clear(z,s) <> clear(z,do(pickup(x,y),s))]

e picking up a block does not affect whether the light is on in any room

* Vs,x,y,z on(x,y,s) clear(x,s)*gripperEmpty(s)*room(z)->
[lightOnlIn(z,s) <> lightOnlIn(z,do(pickup(x,y),s))]

e but you would have to do this for almost all |Actions X Predicates |notscalable

* Approach 2 - the light would stay on for any action except turnOff
e Vs,x,y on(x,y,s) clear(x,s)*gripperEmpty(s)— Poss(pickup(x,y),s)
e Vs,a,z Poss(a,s)Ma=turnOffLight(z)*ightOniIn(z,s)—lightOniIn(z,do(a,s)))
* Approach 3: for each pred in succ state, list the ways it could be T
e Vs,x,y lightOnlIn(z,do(a,s))«>[Poss(a,s) » (IightOnIn(z,s)Aa¢turnOffLi§ht(z)

4/6/2023)
either it was on before and not affected by action, or we turned it on Vv a=tu rnOnnght(Z))]

Planning via Inference

* one could use Precond and Effects and Frame axioms
to infer plans (sequences) of actions that entail the
goal, like proving "ds on(A,B,s)*on(B,C,s)" using
resolution refutation or natural deduction

* when proof succeeds, look at substitution for s in unifier:
{s/do(puton(A,B),do(pickup(A,table),do(puton(B,C),do(pick
up(B,A),Sinit)))}

* however, this is cumbersome and hard to control

* inference might take many, many steps

* the goal is to develop Planning Algorithms that are
more efficient at searching the space of sequences of
actions

PDDL - Planning Domain Description Language

e for describing operators/actions
* pre-conditions:
* list of literals that must be satisfied to execute action

e effects:

 add-list: list of positive literals that will become true

» delete-list: list of negative literals that will become
false

4/6/2023

Init(At(Cy, SFO) N At(Cy, JFK) N At(Py, SFO) N At(Ps, JFK)
A Cargo(Cy) N Cargo(Csy) A Plane(Py) A Plane(Ps)
A Airport(JFK) N Airport(SFO))
Goal(At(Cy, JFK) N At(Cy, SFO))
Action(Load(c, p, a),
PRECOND: At(c, a) A At(p, a) A Cargo(c) N Plane(p) N Airport(a)
EFFECT: = At(c, a) A In(c, p))
Action(Unload (e, p, a),
PRECOND: In(c, p) A At(p, a) N Cargo(c) A Plane(p) N Airport(a)
EFFECT: At(c, a) A = In(c, p))
Action(Fly(p, from, to),
PRECOND: At(p, from) N Plane(p) A Airport(from) N Airport(to)
EFFECT: = At(p, from) A At(p, to))

Figure 11.1 A PDDL description of an air cargo transportation planning problem.

Init(Tire(Flat) N Tire(Spare) N At(Flat, Azle) N At(Spare, Trunk))
Goal(At(Spare, Azle))
Action(Remove(obj, loc),
PRECOND: At(0bj, loc)
EFFECT: — At(obj, loc) A At(obj, Ground))
Action(PutOn(t, Azle),
PRECOND: Tire(t) N At(t, Ground) N — At(Flat, Azle) N — At(Spare, Azle)
EFFECT: = At(t, Ground) N At(t, Azle))
Action(Leave Overnight,
PRECOND:
EFFECT: = At(Spare, Ground) N — At(Spare, Azle) N — At(Spare, Trunk)
A = At(Flat, Ground) N — At(Flat, Azle) N — At(Flat, Trunk))

Figure 11.2 The simple spare tire problem.

Example of PDDL operators from Blocksworld

* pickup(x,y):
e pre-conds: on(x,y),clear(x),gripperEmpty()

e puton(x,y):

 effects: holding(x),clear(y),—clear(x),—on(x,y),— gripperEmpty()

e pre-conds: holding(x),clear(y)
 effects: on(x,y),clear(x),gripperEmpty(),—holding(x), —clear(y),

-

A

C

D

1

I

pickup(B,A)

A

C

D

note: for simplicity,
assume the table is
always clear

pre-conds: on(B,A), clear(B), gripperEmpty()

Effects: holding(B), clear(A),

-on(B,A), —gripperEmpty()

* State Progression

* given a set of literals describing a state, compute the
description of the successor state for a given action
using the state progression function:

"Progress()"

qua verb Progress(State,Op) = State \ Del(Op) w Add(Op)
notnoun o importantly, Progress(St,0Op) solves the Frame Problem!
(beIEEIuse all literals not mentioneet copied)

pickup(B,A)

Al |C D Al |C D

State s2=Progress(s1,pickup(B,A)):

State s1:

on(B,A) clear(B)
on(A,table) clear(C)
on(C,table) clear(D)
on(D,table) GE()

red=delete-list green=add-list

clear(A)
on(A,table) clear(C)
on(C,table) clear(D)
on(D,table) holding(B)

Forward State-Space Search® g, e

* The state progression function Progress() can be ..
used to calculate what is true in every state contains

on(A,B),
descended from S, ., on(8,C),

based on

e could use this to do a search for a state in which progress()
the goal literals are true

e use BFS? A*? what would a good heuristic be?

Al(Py, B

Fly(P,, A, B) ,[Al(P,, A
At(Py, A)
Al(P,, A) —

Fly(Ps, A, B) APy, A

Al(P,, B

ada

Goal Regression

* more efficient than forward State-Space Search

* Principle of Means-Ends Analysis (Newell&Simon)

* identify a difference between the current and goal state, and
find an operator that achieves that predicate as an effect

* more efficient than FSSS because it is goal-directed

* form plan by working backwards from goal(s)
* reduce goals to sub-goals

* analogous to Back-chaining inference (recursive)

\ /)]

-

APy, A)
AL(P,, B)

At(Py, B)
Al(P,, A)

N~

~—

Fly(P;, A, B)

Fly(PZ! As B)

At(Py, B)
AH(P,, B)

S

Goal Regression

Algorithm: REGWS(init-state, cur-goals, A, path)

from
Weld (1994) I. It init-state satisifes each conjunct in cur-goals.
2. Then return path. (con5|stenFy check,
3 see next slide)
3. Else do:
Means-Ends .) | | y | |
) (al Let Act = choose from A an action whose effect nvatches at leasi
Analysis: L

, one conjunct i cur-goals.
select action '

. (bl Let G = the result of regressing cur-goals thybugh Act.
that is relevant Y g

(¢) I no choice for Act was possible or|G1s undefined| or G 2 cur-goals.

(d) Then return failure,

(e) Else return REGWS(init-state, G, A, Concatenate(Act, path)).

Regress(Goals,Op) = Goals \ Add(Op) w Precond(Op)

* "weakest preimage": what is the minimal set of conditions which
would allow op to be executed as last step and achieve Goals?

Goal Regression

1 1he result of regressing cur-goals throneh Act 1s to make G nndelined
then any plan that adds Act 1o this poimt o the path wall Tail, What

consistenc : . :
y mieht make G ondelned? Recall that reeression returns the wealkes

heck: - ; : :
chec preconditions that st be troe b fore Act 1s execnied i order to make

cur-goals troe affer execution. Bot o what ol one of Act's elfects divect]y
conthets with cur-goals? That wonld make 1he weakest precondition
nndelined becanse oo maller what was true before Act, execntion wonld
roin thines, A cood example of this results when one tries 1o regress
(fon A B) (on B C)) throneh Move-A-from-B-to-Table. Since 1his
action negates (on & B) . the weakest preconditions are nndelined,

(this can cause backtracking, as we wil see...)

4/6/2023 13

* Example of Goal Regr

e goal: on(a,b),on(b,c)

* |n each step, underline
the selected subgoal to
be achieved; becomes an
effect of the action

underneath that is
selected to achieve it.

* can be read-off plan

backwards:
1. pickup(b,table)
2. puton(b,c)
3. pickup(a,table)
4. puton(a,b)

init Sgoal B

on(a,b),on(b,c) =S,

Touton(a,b)

holding(a),clear(b),on(b,c)

T pickup(a,table)
on(a,table),clear(b),clear(a),GE,on(b,c)

T puton(b,c)
on(a,table),holding(b),clear(c),clear(a)

T pickup(b,table)

on(a,table),on(b,table),clear(b),clear(c),clear(a)= S,

* Goal-Regression can it S

involve Back-tracking Al lB] |c C

* choice-points depend on
choices of which subgoal

goal B

to achieve, and which on(a,b),on(b,c) =S,
operator to use Touton(b,c)

* for example, if we chose on(a,b),holding(b),clear(c)
on(b,c) first, the Goal-

Regression would have
failed. because there is inconsistent preimage, so would have to back-track
)

T pickup(b,table)

not plan that ends in

puttingbonc on(a,b),on(b,c) =S

puton(a,b)

goal

puton(b,c)

puton(b;c) pickup(a,table) puton(a,b) pickup(b,table)

putori(a,b) X

. "Sussman anomaly” problem A
Subgoal Interactions - —
C B
* when achieving one subgoal B|[A C
. 1
undoes the achievement of Start State Goal State
another
try ..
e Sussman Anomaly achieving 2Seving B
> on(b,c) first
 goal: on(a,b), on(b,c) on(a,b) first C
* The lesson is that we need non- I A
linear planners that interleave —— e——
actions, rather than solving one now, to
subgoal at a time a achieve on(a,b),
solution: pickup(c,a) blue is for B C !c::r\:\e to unstack
puton(c,table) actionsfor I —
pickup(b,table) achieving on(a,b); now, to
puton(b,c) red is for actions achieve on(b,c),

puton(a,b) them...

4/6/2023 16

Other Planners

e SatPlan - translate into a Boolean Satifiability Problem
e graph-based planners (POP, GraphPlan)

* abstraction planners/hierarchical planners (ABSTRIPS)
* Ordered Binary Decision Diagrams

* handling uncertainty in planners

* schedulers

e complexity of planning is NP-hard or worse
(depending on expressiveness of the operator
language)

SatPlan (read Sec 7.7 in textbook)

* translate precond/effect/frame axioms into propositional logic

* make "ground versions" of sentences, one for each time step (for all
combinations of objects and timesteps)

* propositionalization (make ground predicates into prop syms, e.g.
"clear(A,t1)" -> "clear_A_t1"

* add axioms for preconds and effects of each action in each
timestep, like PickupAB1,PickupBA1l, PickupAC1...PickupAB2...
* PickupAB1->(ClearAl » OnAB1 * HoldingA2 " ClearB2)
* PickupAB2—>(ClearA2 » OnAB2 " HoldingA3 ~ ClearB3)

e sentences: {action axioms} U {init_state at t0) U {goals at tN)
* must anticipate the number of steps N
 {action axioms} U {onABO,clearAQ,gripperEmpty0) U {onBA4)

e solve as Boolean Satisfiability (e.g. using DPLL)

Z/e)itl§ "plan" is given by which action props are True in the molgel
e e.0. pickunAB1. putonAtable?2. pickunB3.putonBA4

SatPlan

At(Py, JFK)' & (At(Py, JFK)° A=(Fly(Py, JFK, SFO)° A At(Py, JFK)") 11 4
V (Fly(Py, SFO, JFK)® A At(Py, SFO)°) . (I1.1)

"if P1 is at JFK at t=1, then either
a) it was flown there, or

b) it was already there and not flown elsewhere"

alternatively:

Precond Axiom: Fly(P1,JFK,SFO)°>At(P1,JFK)° // what must be true at time t to do action?
Effects Axioms: Fly(P1,JFK,SFO)°—>At(P1,SFO)! // what would be true at time t+17?

...and copies for all time steps, and every package, and every pair of cities...
Fly(P1,JFK,SFO)!->At(P1,SFO)? ; Fly(P1,JFK,SFO)2->At(P1,SFO)3; Fly(P1,JFK,SFO)3->At(P1,SFO)*

or t if you think it will take t steps

planes swap places. Now, suppose the KB 1s
initial state N\ successor-state axioms /\ goall : (11.2)

which asserts that the goal is true at time 7' = 1. You can check that the assignment in which
Fly(Py, SFO, .]FK)O and Fly(P», JFK, SFO)0

are true, and all other action symbols are false 1s a model of the KB. So far, so good. Are

Mutual Exclusion axioms for actions

e at most on action proposition can be true in each timestep
 pickupAB1->-pickupAC12-pickupBA1*-pickupBC1A...
e pickupAC1->-pickupAB1/2-pickupBA1*-pickupBC1A...
 pickupAB2->-pickupAC2/2-pickupBA2*-pickupBC2A...

pickupAB1 pickupAB2 pickupAB3
pickupAC1 pickupAC2 pickupAC3
pickupBA1 pickupBA2 pickupBA3
pickupBC1 pickupBC2 pickupBC3
pickupCA1 pickupCA2 pickupBtable3
bickupCB1 pickupCB2 pickupCA3
putonAB2 pickupCB3
putonABL putonAC2 putonAB3
putonAC1 putonBA2 putonAC3
putonBA1 putonBC2 putonBA3

At| Spare, Trunk -
-m 1.5} Al Spare, Axs) [Finish
Al Fiat A e)

POP: Partial-Order Planning

* "non-linear planning"; search Aspsre T F'D'mﬁm-m”“\
the space of plan-graphs (no*::f:r::m S LTy] R P
just action sequences) .

* principle of "least (Spere,Trunk [Fomove(Spare, Trank]
commitment" - don't force el SEW |
ordering of actions till Lo e gy PO) e Tl
necessary stPat) | Fomove(Fiat Axie] /

 make a graph with actions as (2)
nodes ,, \ pick’up(a,table) [

ek holding(a

puton(a,b)

 add edges where effects of 1
action achieve preconditions
of another action

» detect conflicts*, and resolve
by adding edges to force
which action comes first

* inthe end, extract the plan as
a linearization (topological
sort) of the graph

‘ puton(c,table)

*conﬁ(}gﬁ%gre where effect of action C could undo precondition achieved by A (e.g. for
edgeA->B); add edge to force C to come before A or after B

GraphPlan (Blum and Furst)

e an even more complex graph-based planning
algorithm that achieves combinations of subgoals

in "layers"”

S Ag 51 Aq 5o
Al Spare, Trunk) {1 AlfSpare, Trunk) Al{Spare, Trumk)
\\l Rermove| Spare T fink) L\
P s | S, Tirwinik) -1 AtfSpare, Trunk) | —1 Al Spare, Trunk)
Fiarmiow e Flal Asda Remowve(F Ll Aosde)
AtfFlat, Axle) f O AljFiat, Axig)

At{Fiat, Axle) 0
'. J AL

= AlfFiat, Axis) | = AtfFiat, Axis)
| LeaveDv armigihi &
-1 Al Spare Axs) —1 Al Spare, Axie)

| LesvaDvamigm

= A¥Spare, Axie) '} fi) {})
“\ Pul O S pane Aoda) ﬁ At{Spare, Axig)
—v Al Flat, Grownd) {1 1 AlfFiat, Grownd | {} —1 AtfFiat, Ground)
IH‘ AtfFiat, Grownd) f {1 \‘\‘“ AtfFiat, Ground)
= AlfSpare, G rownd) 1 — AlfSpare, 5 rowind) ! {1 \i — At{Spare, Grournd)
A.‘."&:-are.ﬁrm'm:ﬂ{ a 1" ,q;,ﬁ;.a,zr% Ground)

4/6/2023

Complexity of Planning

e complexity: planning is NP-hard
* proved in (David Chapman, 1987, Al journal)

* depends on expressiveness of pre- and post-conditions,
e.g. disjunctive? conditional effects?...

* reduction from...Sat (Boolean Satisfiability)

* fight complexity by simplifying operators by
removing smaller details (pre-conditions that would
be easy to fill-in and achieve later) ("abstraction
planning")

* another approach: decompose the search space by
doing "hierarchical planning"”

Abstraction Planners

 focus on finding a correct sequence for the "big steps"

* try dropping/ignoring pre-conditions that are easily
achieved (later)

* similar to defining "relaxed operators" for search, like
sliding tiles over each other in the tile puzzles

* how do you automatically infer which preconditions are
less relevant?

* ABSTRIPS (Craig Knoblock)

* also try state abstraction

* drop variable or dimenstions of the state to reduce the size
of the state space

Hierarchical Planners

Hierarchical Task Networks (HTNs)

* reduces complexity of planning

uses "plan libraries" consisting of scripts for
different ways to achieve high-level
activities and low-level activities

HTNs work by elaboration: choose high-
level actions, then fill in actions to achieve
lower-level tasks

challenges:

* a) hard to accurately represent preconds and
effects of high-level tasks (before knowing low-
level actions)

Plan Library:

TO: find lodging for evening
(hotel, campsite, friend's
house...)

T1: setting up camp: put up
tents, build campfire, acquire
water...

T2: building a campfire: get
wood, clear space, assemble
kindling, light with match...
T3a: acquire water: get
bucket, get water from stream
T3b: acquire water: get jug
from backpack

T3c: acquire water: go to
water pump

T4: treating blisters...

T5: cooking fish

T6: cooking canned chili...

* b) does not allow for interactions between tasks

(especially positive: sharing/overlap of steps)

Hierarchical Plan (HTN) for Camping

find lodging for evening
A H 1
hotel..-~ " ™. friend's house
campsite N

-
-

-

1.put up tents, 2. build campfire, 3. acquire water

- w
- N
-
- N
e
- ~

clear space... get watef from
stream; Purify

get water from pump

N

1. get wood,
2. clear space,
3. assemble kindling,
4. light with match

Plan Library:

TO: find lodging for evening
(hotel, campsite, friend's
house...)

T1: setting up camp: put up
tents, build campfire, acquire
water...

T2: building a campfire: get
wood, clear space, assemble
kindling, light with match...
T3a: acquire water: get water
from stream;Purify

T3b: acquire water: get jug
from backpack

T3c: acquire water: get water
from pump

T4: treating blisters

Adaptive Planners

* plan monitoring and repair

* if something goes wrong (not as expected), do not
want to re-plan from scratch (new initial state)

e can you "modify" the original plan, or "re-use" the
search of the state space?

* online planning; contingent planning...

[0.15] [30.45] [60.75]

AddWheels] Inspectl
30 10
[85.85]
Finish
[60,60] [75,75]

™1 AddWheels2 - Inspect2
60 15 10

AddWheels1

Scheduling

what's the difference between planning and
scheduling?

* both have actions with precedence constraints

* in planning we are usually satisfied with finding any
sequence of actions that achieves the goal

* in scheduling
 actions have duration
* actions can overlap (parallel processes)
e actions can have resource/mutual exclusion constraints

* objective is usually to find a sequence of actions with
Y% minimum makespan (e.g. Critical Path Method, CPM)

28

