
 11/20/2017 7:56 AM

CSCE 625
Programing Assignment #2 - PROLOG
due: Thurs, Dec 7, 2017, 1:00pm

This assignment is intended to give you practice programming in Prolog, which will rely on your
understanding of back-chaining and unification. The questions represent different types of use
cases for Prolog, from database-like queries, to knowledge representation (concept definitions),
to numerical computations, to decision-making and problem-solving.

I recommend you use SWI Prolog (www.swi-prolog.org). You can run Prolog on the
departmental linux servers like compute.cs.tamu.edu by running
'/home/faculty/ioerger/bin/swipl' at the command line, or you can download and install it
yourself. For a brief intro, see http://faculty.cs.tamu.edu/ioerger/prolog.txt

Note: for this project, you should not use any special Prolog operators, like ';', '|', or '->'.
The only operator you will need is negation, '\+'.

1. Write rules in Prolog to infer various kinship relationships in terms of basic predicates like
parent(X,Y) and female(X) and male(Y). Input the following facts about people on The Simpsons:

parent(bart,homer).

parent(bart,marge).

parent(lisa,homer).

parent(lisa,marge).

parent(maggie,homer).

parent(maggie,marge).

parent(homer,abraham).

parent(herb,abraham).

parent(tod,ned).

parent(rod,ned).

parent(marge,jackie).

parent(patty,jackie).

parent(selma,jackie).

female(maggie).

female(lisa).

female(marge).

female(patty).

female(selma).

female(jackie).

male(bart).

male(homer).

male(herb).

male(burns).

male(smithers).

male(tod).

 11/20/2017 7:56 AM

male(rod).

male(ned).

male(abraham).

Write rules to define the following relationships: brother(), sister(),

aunt(), uncle(), grandfather(), granddaughter(), ancestor(), descendant(),

and unrelated(). Use the convention that relation(X,Y) means "the relation

of X is Y)". For example, uncle(bart,herb) means the uncle of bart is herb.

Use your rules to answer the following queries:
?- brother(rod,X).
X = tod ;
?- sister(marge,X).
X = selma ;
X = patty ;
?- aunt(X,patty).
X = bart ;
X = lisa ;
X = maggie ;
?- uncle(bart,X).
X = herb ;
?- grandfather(maggie,X).
X = abraham ;
?- granddaughter(jackie,lisa).
true
?- ancestor(bart,X).
X = homer ;
X = marge ;
X = abraham ;
X = jackie ;
?- unrelated(tod,bart).
true
?- unrelated(maggie,smithers).
true
?- unrelated(maggie,selma).
false

2. Using the following database, write a Prolog query to find all the

surgeons who live in Texas and make over $100,000/yr. You will have

to add some additional data, such as about different types of

surgeons, or city-state relationships.

occupation(joe,oral_surgeon).

occupation(sam,patent_laywer).

occupation(bill,trial_laywer).

occupation(cindy,investment_banker).

occupation(joan,civil_laywer).

occupation(len,plastic_surgeon).

occupation(lance,heart_surgeon).

 11/20/2017 7:56 AM

occupation(frank,brain_surgeon).

occupation(charlie,plastic_surgeon).

occupation(lisa,oral_surgeon).

address(joe,houston).

address(sam,pittsburgh).

address(bill,dallas).

address(cindy,omaha).

address(joan,chicago).

address(len,college_station).

address(lance,los_angeles).

address(frank,dallas).

address(charlie,houston).

address(lisa,san_antonio).

salary(joe,50000).

salary(sam,150000).

salary(bill,200000).

salary(cindy,140000).

salary(joan,80000).

salary(len,70000).

salary(lance,650000).

salary(frank,85000).

salary(charlie,120000).

salary(lisa,190000).

3. Write a prolog function to remove duplicates from a list:

 ?- remdups([1,3,4,2,4,3,6,8,6,5,4,2,3,4,9],X).

 X = [1, 8, 6, 5, 2, 3, 4, 9]

For this problem, you will need to know how lists are represented in Prolog, and how unification of [X|Y]

with a list binds X to the head and Y to the tail. see: https://en.wikibooks.org/wiki/Prolog/Lists

hint: define remdups() recursively; use member(.,.)

4. Implement prime factorization in Prolog. Here is an example:

 ?- factor(120,M).

 M = [5, 3, 2, 2, 2]

 ?- factor(7,P).

 P = [7]

Note: you can use a simple sieve algorithm that iterates from 2 up to N

(or sqrt(N)) and tests for divisibility using mod. for example:

 divisible(N,X) :- M is N mod X,M=0.

 11/20/2017 7:56 AM

You will probably want to write an auxilliary function that determines the

smallest factor for a given number, and then recursively builds up a list of

factors as you go.

5. Write a predicate to generate all bit vectors of a specified length:

 ?- bitvec(3,K).

 K = [0, 0, 0] ;

 K = [0, 0, 1] ;

 K = [0, 1, 0] ;

 K = [0, 1, 1] ;

 K = [1, 0, 0] ;

 K = [1, 0, 1] ;

 K = [1, 1, 0] ;

 K = [1, 1, 1] ;

 No

Use this to generate a system of bit vectors as 'codes', such as all those

bit vectors of length 5 with exactly 2 bits on. (This is a common system

used in bar-coding systems, such as on store products or postal mail,

where each code is represented by a pattern of bars of alternating

width or height and represents a different digit).

 ?- code(5,2,X).

 X = [0, 0, 0, 1, 1] ;

 X = [0, 0, 1, 0, 1] ;

 X = [0, 0, 1, 1, 0] ;

 X = [0, 1, 0, 0, 1] ;

 X = [0, 1, 0, 1, 0] ;

 X = [0, 1, 1, 0, 0] ;

 X = [1, 0, 0, 0, 1] ;

 X = [1, 0, 0, 1, 0] ;

 X = [1, 0, 1, 0, 0] ;

 X = [1, 1, 0, 0, 0] ;

 No

6. Write a logic program to compute the zeros of sin(x), that is the

values of x such that sin(x)=0, using Newton's method.

Newton's method says that, given a function f(x) and an initial guess or

starting point x0, it may be iterated to get closer and closer to a zero

by using this update equation: x_i+1 = x_i - f(x_i)/f'(x_i), where f'(x)

is the derivative.

You may assume a fixed value for f(x) and f'(x), i.e. sin(x) and

cos(x). Write your predicate as sin_zero(X,Y), where X is an input guess,

and Y is the output value, iterated to be within some threshold of

zero, e.g. -0.0001<sin(Y)<0.0001. Of course, the zeros of this

function are expected to be 0, pi, 2*pi, etc. So the query sin_zero(3,Y)

should return Y=3.1415, and sin_zero(10,Y) should return Y=9.4248.

 11/20/2017 7:56 AM

7. SEND + MORE = MONEY is a classical "cryptarithmetic" puzzle: the

variables S, E, N, D, M, O, R, Y represent digits between 0 and 9, and

the task is finding values for them such that the following arithmetic

operation is correct:

 S E N D

+ M O R E

 M O N E Y

Moreover, all variables must take unique values, and all the numbers

must be well-formed (which implies that M > 0 and S > 0).

By the way, if you want to print something in Prolog, you can use the

format(A,B) predicate, where A is a format string and B is a list of values.

For example: format('the square of ~s is ~s~n',[3,9]) prints "the square of 3

is 9" followed by a carriage return. See the documentation for more details.

8. Write rules in Prolog to determine the best move in Tic-Tac-Toe for any given board

configuration. Assume that the position of pieces is given by a predicate 'p'. For example,

consider the following board state:

x . x

. . .

o . o

% assert these facts as the state description

p(x,1,1).

p(x,1,3).

p(o,3,1).

p(o,1,3).

?- ttt_move(x,R,C). % query

go for win! % printed as a side-effect

R = 1, C = 2 ; % solution

Here is another example...

x . .

. . x

o . o

p(x,1,1).

p(x,2,3).

p(o,1,3).

p(o,3,3).

?- ttt_move(x,R,C).

move to block opponent!

 11/20/2017 7:56 AM

R = 3, C = 2 ;

?- ttt_move(o,R,C).

go for win!

R = 3, C = 2 ;

9. Write decision-making rules in Prolog for the Wumpus World. Assume the world is

described in terms of facts about sense inputs (stench and breeze), along with a predicate called

visited. Regardless of the current location of the agent, the available actions are to go to any

room adjacent to one that has been visited. Primarily, the agent would prefer to explore rooms

it can infer to be safe. (also assume that a wumpus, pit, and gold will never be in the same

room together). There might be more than one room with gold or pits, but only one wumpus

(which doesn't move). Note that your rules should work for any 4x4 cave, regardless of the

location of the pits and wumpus and gold (don't just assume they are like below).

As shown in the book, assume the coordinate system is (C,R) = (column,row).

For example, the gold in in room (2,3).

example scenario.

visited(1,1).

visited(2,1).

visited(1,2).

stench(2,1).

breeze(1,2).

?- candidate(X,Y). % just list unvisited rooms adjacent to visited ones

X = 1, Y = 3 ;

X = 2, Y = 2 ;

X = 3, Y = 1 ;

 11/20/2017 7:56 AM

?- move(X,Y). % the best choice, because it can be inferred to be safe

X = 2, Y = 2 ;

(Note, your implementation might give solutions in different order, or the same solution

multiple times; that is OK).

Now suppose we go to (2,2) and observe no stench or breeze.

visited(1,1).

visited(2,1).

visited(1,2).

stench(2,1).

breeze(1,2).

visited(2,2).

?- candidate(X,Y).

X = 1, Y = 3 ;

X = 3, Y = 1 ;

X = 2, Y = 3 ;

X = 3, Y = 2 ;

?- move(X,Y).

X = 3, Y = 2 ; % because it is inferred to be safe

X = 2, Y = 3 ; % another solution - both are safe

Here is another scenario, showing location of wumpus, gold, pits, and visited rooms (W,G,P,V):

. . . V

. . W V

. G P V

. . P V

visited(4,1).

visited(4,2).

visited(4,3).

visited(4,4).

stench(4,2).

breeze(4,3).

breeze(4,4).

?- ww_move(X,Y).

X = 3, Y = 1 ;

What to Turn in

 You will submit your Prolog code for testing using the web-based CSCE turnin facility, which is
described here: https://wiki.cse.tamu.edu/index.php/Turning_in_Assignments_on_CSNet

