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CSCE 625 
Programing Assignment #7 
due: Friday, April 3 (by start of class) 
 
Propositional Satisfiability Solver (DPLL) 
 
The goal of this assignment is to implement DPLL and to apply it to solving the Farmer-Fox-
Chicken-Grain problem.  Implementing DPLL is easy; the real objective of this assignment to see 
how Boolean satisfiability can be used to solve problems and produce intelligent behavior.  The 
Farmer-Fox-Chicken-Grain problem is a simple puzzle in which a farmer must use a canoe to 
ferry some items across a stream without letting the fox eat the chicken or the chicken eat the 
grain.  There is a sequence of actions that solves the puzzle.  It can be solved by many methods, 
including state-space search.  However, you can also encode this problem as Boolean 
expression such that it is satisfiable iff there is a solution.  Furthermore, the satisfying truth-
assignment tells you the sequence of actions that solves the puzzle (through Boolean variables 
representing actions).  This illustrates the broad generality and utility of propositional 
satisfiability algorithms for solving many different kinds of reasoning problems. 
 
Implementation 
 
You should implement DPLL pretty much as described in Figure 7.17 in the textbook.  You can 
use any programming language you like.  Your program will start by reading a set of input 
clauses in the same file format as in Programming Assignment #6 (each clause on a separate 
line, given as a list of literals (without the implicit disjunction symbols), and using a minus prefix 

to indicate negation).  For example, the clauses { A v B v C, B v D} would be written as 
follows: 
 
A B -C 

-B D 

 
DPLL is basically a recursive backtracking procedure that searches the space of truth 
assignments (over the propositional symbols mentioned in the clauses).  You start with an 
empty assignment.  Then, with each recursive call, the routine chooses the next unassigned 
variable (proposition), tries binding it to True, makes a recursive call to DPLL to extend it, and if 
that fails (does not yield a solution), then tries False.  DPLL is made more more efficient through 
the use of two heuristics: Unit Clause and Pure Symbol.  You will have to write functions for 
these that are called by DPLL and, given a set of clauses and a partial assignment, determines 
whether there is a variable/truth-value combination that has the Unit Clause or Pure Symbol 
property (remember to ignore clauses that are already satisfied by the partial model). 
 
When you develop your DPLL code, you should test it on a simple problem like the one we did 
in class, or the one shown in the transcript below.  You should print out the partial assignment 
with each call, along with other useful tracking information like which variable/truth-value is 
tried at each choice point, when backtracking occurs and why (i.e. which clause was violated), 
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and which variable/value combination is selected whenever the Unit Clause or Pure Symbol 
heuristic is invoked.  I recommend you start by developing the DPLL routine without the 
heuristics (just comment-out these steps) to get the initial backtracking mechanism working.  
Then you can add-in the heuristics.  You should see a reduction in the number of nodes of the 
state space searched, due to increased search efficiency.  For the example KB shown in the 
transcript,  I initially solved it using only backtracking, and it took 56 step.  When I added the 
Unit clause heuristic, the number of nodes searched went down to 34.  And with both 
heuristics, it went down to 16 (and backtracking steps were completely eliminated). 
 
 

DPLL mode nodes are searched before a solution is found 

backtracking alone 56 

backtracking with Unit Clause heuristic 34 

backtracking with Unit and Pure heuristics 16 

 
The Farmer-Fox-Chicken-Grain Problem 
 
The Farmer-Fox-Chicken-Grain problem is a simple puzzle in which a farmer must use a canoe 
to ferry some items across a stream without letting the fox each the chicken or the chicken eat 
the grain.  The farmer is returning from his field with a fox, a chicken, and some grain.  He 
arrives at the left back of a stream.  His goal is to get all the items across to the right bank.  
There is a canoe on the left bank, and the farmer can only take one item at a time in the canoe 
(or none).  The constraint is that, if the farmer ever leaves the fox alone with the chicken, the 
fox will eat the chicken.  Similarly, if he leave the chicken alone with the grain, the chicken will 
eat the grain.  Is there a sequence of actions (canoe crossings) by which the farmer can safely 
transport all the items to the right bank of the stream?  (This is a variant of many other well-
known puzzles, such as Missionaries-and-Cannibals.) 
 
How can this puzzle be encoded as a propositional satisfiability problem?  We need some 
Boolean variables (propositional symbols) to represent states and actions.  First, consider the 
location of an item like the chicken.  We could use two variables, ChL and ChR, representing 
whether it is on the left or right bank.  (Actually, since there are only 2 states, we could use a 
single variable, ChL, with 2 truth-values, T and F; but it is easier to write down the rest of the 
rules if we have ChL and ChR available, so we will simply add some additional clauses to 

constrain that these to have opposite truth values, e.g. { ChL  ChR, ChL ChR}).  
 
Now, the location of the chicken (and other objects) is time-dependent.   In the initial state, it is 
on the left, but the goal is to get it to the right.  So we can expand it to a series of variables 
prefixed by a time index.  For example, if we assume that a solution can be found in up to 7 
times steps, then the propositional variables for the location of the chicken at different times 
becomes: 
 
T0_ChL, T1_ChL, T2_ChL, T3_ChL, T4_ChL, T5_ChL, T6_ChL 
T0_ChR, T1_ChR, T2_ChR, T3_ChR, T4_ChR, T5_ChR, T6_ChR 
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Similarly, we can have time-dependent variables for the location of the farmer, fox, and grain. 
 
Next, we need variables representing actions.  One approach is to model this domain as having 
8 basic actions: moving the fox from one side to the other (L-to-R or R-to-L) in the canoe, 
moving the chicken, moving the grain, or going back across the river with no cargo.  These 8 
variables could be represented as something like this: mv_Fx_LR,_mv_Fx_RL, mv_Ch_LR, 
mv_Ch_RL, mv_Gr_LR, mv_Gr_RL, mv_No_LR, and mv_No_RL (the last 2 are for moving 
Nothing across).  In each case, it is implicit that the farmer must go across with the canoe.  Each 
of these actions can occur at different time steps.  Therefore these variables must also be 
expanded to include all these possibilities by prefixing time indices like this: 
 
T0_mv_Fx_LR, T1_mv_Fx_LR, T2_mv_Fx_LR,... T6_mv_Fx_LR 
T0_mv_Fx_RL, T1_mv_Fx_RL, T2_mv_Fx_RL,... T6_mv_Fx_RL 
T0_mv_Ch_LR, T1_mv_Ch_LR, T2_mv_Fx_LR,... T6_mv_Ch_LR 
... 
 
The action variable T0_mv_Fx_LR  means that the fox is moved from left to right at time 0.   
 
While there are a lot of action variables, only one action can be true at each time step.   Thus 
you will have to write clause that enforce that at least one action variable is true in each step, 
and at most one action variable is true in each time step. 
 
Since there will be a lot of these clauses and it is painful (and error-prone) to type them out by 
hand, you should write a simple script to enumerate all the clauses (by looping over time 
steps, objects, directions, etc.) 
 
Next, we need to add clauses that encode the preconditions and effects of actions.  Here is a 
general method for capturing knowledge about actions.  Suppose there are n possible actions in 
an environment, call them A1,...,An.  What we are looking for is a sequence of actions that 
solves the problem.  To represent this in a propositional way, create an expanded set of 
Boolean variables where each time step is prefixed to each action.  For example, if you assume 
the problem can be solve in t time steps, then let there be nXt variables like this: 
 
T0_A1, T0_A2, ... T0_An  
T1_A1, T1_A2, ... T1_An 
... 

T(t-1)_A1, T(t-1)_A2, ... T(t-1)_An 
 

A variable like T1_A2 means action A2 was done at time step 1. 

Only one of these actions can be true at each time step.  You will have to add clauses that 

enforce these constraints (i.e. that at least one action variable is satisfied at each time step, and 
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at most one action variable is satisfied at each time step.  Thus most of these action variables 

will be false in any solution, but there will be one action satisfied for each time step, from which 

you can read off the "solution" in the form of the sequence of actions that achieves the goal (in 

the final step).  For example, if the satisfied variables are T0_A3=True, T1_A9=True, 

T2_A4=True, then the plan that solves the problem is the sequence of actions: A3-A9-A4. 

For each action, you will then need to write clauses that express the knowledge about the 

preconditions and effects of that actions.  For example, suppose action A requires propositions 

P and Q to be true, and it results in proposition R being true (e.g. starting a car require that you 

have the key and are at the car, and results in the car running).  You can encode such 

knowledge by writing clauses saying that the action executed at any time i implies the 

preconditions hold in time i and the effects hold in the successor time i+1.  For example: 

Ti_A → [Ti_P  Ti_Q  T(i+1)_R] 

 

What these sentences mean is that, if action A occurs at time i, then this implies P and Q must 

have been true at time i and R must be true at time i+1.  More generally: 

 

Ti_A → [Ti_precondition_1  ... Ti_precondition_J  T(i+1)_effect_1  ... T(i+1)_effect_K] 

 

You will have to think about how to use this method to encode all the preconditions and effects 
of all the action variables in the Farmer-Fox-Chicken-Grain problem.  For example, consider a 
variable like T3_mv_Gr_RL.   This has the meaning that in time step 3, the grain was moved 
from right to left.  If this were true (in a model), this would imply that the farmer and the grain 
must be on the right side in time 3, and the farmer and the grain must be on the left side on in 
time 4.  So you need to generate a bunch of additional clauses that capture these "consistency" 
constraints (between each time i and i+1) for all the actions, which will ultimately connect the 
set of satisfied variables between each adjacent time step as a function of the action taken 
between them. 
 

Finally, you need to add a few more clauses for indirect (or "contingent") effects.  For reasons 
we will discuss later in the semester (in the section on Planning), you also have to include 
clauses describing all the things that do not change with each action.  For example, suppose the 
state of variable S is unaffected by the action A. Thus, if S were True in time i and A was 
executed at time i, then S would be True in the successor time i+1.  And if S were False at i and 
A was executed, then it would still be False at i+1.  Here are the propositional sentences 
corresponding to this example, which can easily be converted into clauses:   
 

Ti_A  Ti_S → T(i+1)_S 

Ti_A  Ti_S → T(i+1)_S 
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An example in this domain would be that the location of the fox does not change if the farmer 
transports the chicken across the river.  You need to capture all such indirect effects at all time-
steps by writing more clauses (or generating them with your clause-enumeration script). 
 
In the end you will probably have on the order of a hundred variables and a thousand clauses.  

Then you add a few facts representing the initial state and the goal.  Note that you need to 

'guess' the number of time steps required to achieve the goal ahead of time.  In this problem, it 

takes 5 steps just to shuttle the 3 items across the river one-by-one without worrying about the 

fox eating the chicken or the chicken eating the grain (I suggest you try to solve this simplified 

problem first, without the additional constraints), and it takes 7 steps to solve the full problem 

(with all the clauses).  So you would add facts like these to all your clauses, and then run DPLL. 

# init 

T0_FaL 

T0_FxL 

T0_ChL 

T0_GrL 

 

# goal 

T7_FaR 

T7_FxR 

T7_ChR 

T7_GrR 

 

This propositional satisfiability problem is complex enough that it will definitely require the 

heuristics (Unit Clause and Pure Symbol) to find a model.  However, it is surprisingly do-able.  

My implementation finds a solution after searching 526 nodes of the search space (partial 

assignments). 

 

What to Turn In (via CSNet): 

 your source code 

 a short document describing how to compile and run your program 

 a transcript of running your program on the abstract Boolean problem (see below) and 

the Farmer-Fox-Chicken-Grain problem 

 we will also test your code by running it on another set of propositional clauses 
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Example Transcript 
 
Consider the following example KB: 

 
Suppose you want to show that this set of clauses is satisfiable, and to produce a model (i.e. 
truth assignment) that satisfies it.  First, we represent the clauses in the input file format: 
 
example.kb: 

-a -f g 

-a -b -h 

a c 

a -i -l 

a -k -j 

b d 

b g -n 

b -f n k 

-c k 

-c -k -i l 

c h n -m 

c l 

d -k l 

d -g l 

-g n o 

h -o -j n 

-i j 

-d -l -m 

-e m -n 

-f h i 

 
Then we run DPLL on this, which finds and prints out a model at the bottom.   
 
201 sun> python dpll.py example.kb 

props: 

a b c d e f g h i j k l m n o 

initial clauses: 

0: (-a v -f v g) 

1: (-a v -b v -h) 

2: (a v c) 

3: (a v -i v -l) 

4: (a v -j v -k) 

5: (b v d) 

6: (b v g v -n) 
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7: (b v -f v k v n) 

8: (-c v k) 

9: (-c v -i v -k v l) 

10: (c v h v -m v n) 

11: (c v l) 

12: (d v -k v l) 

13: (d v -g v l) 

14: (-g v n v o) 

15: (h v -j v n v -o) 

16: (-i v j) 

17: (-d v -l v -m) 

18: (-e v m v -n) 

19: (-f v h v i) 

----------- 

model= {} 

pure_symbol on e=False 

model= {'e': False} 

pure_symbol on f=False 

model= {'e': False, 'f': False} 

pure_symbol on i=False 

model= {'i': False, 'e': False, 'f': False} 

pure_symbol on j=False 

model= {'i': False, 'j': False, 'e': False, 'f': False} 

pure_symbol on m=False 

model= {'i': False, 'm': False, 'j': False, 'e': False, 'f': False} 

pure_symbol on d=True 

model= {'e': False, 'd': True, 'f': False, 'i': False, 'j': False, 'm': False} 

pure_symbol on h=False 

model= {'e': False, 'd': True, 'f': False, 'i': False, 'h': False, 'j': False, 'm': 

False} 

pure_symbol on a=True 

model= {'a': True, 'e': False, 'd': True, 'f': False, 'i': False, 'h': False, 'j': 

False, 'm': False} 

pure_symbol on b=True 

model= {'a': True, 'b': True, 'e': False, 'd': True, 'f': False, 'i': False, 'h': 

False, 'j': False, 'm': False} 

pure_symbol on g=False 

model= {'a': True, 'b': True, 'e': False, 'd': True, 'g': False, 'f': False, 'i': 

False, 'h': False, 'j': False, 'm': False} 

pure_symbol on k=True 

model= {'a': True, 'b': True, 'e': False, 'd': True, 'g': False, 'f': False, 'i': 

False, 'h': False, 'k': True, 'j': False, 'm': False} 

pure_symbol on c=True 

model= {'a': True, 'c': True, 'b': True, 'e': False, 'd': True, 'g': False, 'f': 

False, 'i': False, 'h': False, 'k': True, 'j': False, 'm': False} 

trying l=T 

model= {'a': True, 'c': True, 'b': True, 'e': False, 'd': True, 'g': False, 'f': 

False, 'i': False, 'h': False, 'k': True, 'j': False, 'm': False, 'l': True} 

trying n=T 

model= {'a': True, 'c': True, 'b': True, 'e': False, 'd': True, 'g': False, 'f': 

False, 'i': False, 'h': False, 'k': True, 'j': False, 'm': False, 'l': True, 'n': 

True} 

trying o=T 

model= {'a': True, 'c': True, 'b': True, 'e': False, 'd': True, 'g': False, 'f': 

False, 'i': False, 'h': False, 'k': True, 'j': False, 'm': False, 'l': True, 'o': 

True, 'n': True} 

----------- 

nodes searched=16 

solution: 

a=True 

b=True 

c=True 

d=True 
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e=False 

f=False 

g=False 

h=False 

i=False 

j=False 

k=True 

l=True 

m=False 

n=True 

o=True 

----------- 

true props: 

a 

b 

c 

d 

k 

l 

n 

o 

 
It happens that in this case, the Pure Symbol heuristic gets used multiple times, and 
backtracking is totally avoided.  A model is found after searching 16 partial assignments (states 
in the search space).  However, if I turn off the Pure Symbol heuristic and use only the Unit 
Clause heuristic, more nodes (34) are searched and some backtracking occurs: 
 
202 sun> python dpll.py example.kb 

props: 

a b c d e f g h i j k l m n o 

initial clauses: 

0: (-a v -f v g) 

1: (-a v -b v -h) 

2: (a v c) 

3: (a v -i v -l) 

4: (a v -j v -k) 

5: (b v d) 

6: (b v g v -n) 

7: (b v -f v k v n) 

8: (-c v k) 

9: (-c v -i v -k v l) 

10: (c v h v -m v n) 

11: (c v l) 

12: (d v -k v l) 

13: (d v -g v l) 

14: (-g v n v o) 

15: (h v -j v n v -o) 

16: (-i v j) 

17: (-d v -l v -m) 

18: (-e v m v -n) 

19: (-f v h v i) 

----------- 

model= {} 

trying a=T 

model= {'a': True} 

trying b=T 

model= {'a': True, 'b': True} 

unit_clause on (-a v -b v -h) implies h=False 

model= {'a': True, 'h': False, 'b': True} 

trying c=T 
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model= {'a': True, 'h': False, 'c': True, 'b': True} 

unit_clause on (-c v k) implies k=True 

model= {'a': True, 'h': False, 'c': True, 'b': True, 'k': True} 

trying d=T 

model= {'a': True, 'c': True, 'b': True, 'd': True, 'h': False, 'k': True} 

trying e=T 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'h': False, 'k': True} 

trying f=T 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'f': True, 'h': False, 

'k': True} 

unit_clause on (-a v -f v g) implies g=True 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': True, 

'h': False, 'k': True} 

unit_clause on (-f v h v i) implies i=True 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': True, 

'i': True, 'h': False, 'k': True} 

unit_clause on (-c v -i v -k v l) implies l=True 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': True, 

'i': True, 'h': False, 'k': True, 'l': True} 

unit_clause on (-i v j) implies j=True 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': True, 

'i': True, 'h': False, 'k': True, 'j': True, 'l': True} 

unit_clause on (-d v -l v -m) implies m=False 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': True, 

'i': True, 'h': False, 'k': True, 'j': True, 'm': False, 'l': True} 

unit_clause on (-e v m v -n) implies n=False 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': True, 

'i': True, 'h': False, 'k': True, 'j': True, 'm': False, 'l': True, 'n': False} 

unit_clause on (-g v n v o) implies o=True 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': True, 

'i': True, 'h': False, 'k': True, 'j': True, 'm': False, 'l': True, 'o': True, 'n': 

False} 

backtracking 

trying f=F 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'f': False, 'h': False, 

'k': True} 

trying g=T 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'h': False, 'k': True} 

trying i=T 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': True, 'h': False, 'k': True} 

unit_clause on (-c v -i v -k v l) implies l=True 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': True, 'h': False, 'k': True, 'l': True} 

unit_clause on (-i v j) implies j=True 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': True, 'h': False, 'k': True, 'j': True, 'l': True} 

unit_clause on (-d v -l v -m) implies m=False 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': True, 'h': False, 'k': True, 'j': True, 'm': False, 'l': True} 

unit_clause on (-e v m v -n) implies n=False 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': True, 'h': False, 'k': True, 'j': True, 'm': False, 'l': True, 'n': False} 

unit_clause on (-g v n v o) implies o=True 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': True, 'h': False, 'k': True, 'j': True, 'm': False, 'l': True, 'o': True, 'n': 

False} 

backtracking 

trying i=F 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': False, 'h': False, 'k': True} 

trying j=T 
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model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': False, 'h': False, 'k': True, 'j': True} 

trying l=T 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': False, 'h': False, 'k': True, 'j': True, 'l': True} 

unit_clause on (-d v -l v -m) implies m=False 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': False, 'h': False, 'k': True, 'j': True, 'm': False, 'l': True} 

unit_clause on (-e v m v -n) implies n=False 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': False, 'h': False, 'k': True, 'j': True, 'm': False, 'l': True, 'n': False} 

unit_clause on (-g v n v o) implies o=True 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': False, 'h': False, 'k': True, 'j': True, 'm': False, 'l': True, 'o': True, 'n': 

False} 

backtracking 

trying l=F 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': False, 'h': False, 'k': True, 'j': True, 'l': False} 

trying m=T 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': False, 'h': False, 'k': True, 'j': True, 'm': True, 'l': False} 

trying n=T 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': False, 'h': False, 'k': True, 'j': True, 'm': True, 'l': False, 'n': True} 

trying o=T 

model= {'a': True, 'c': True, 'b': True, 'e': True, 'd': True, 'g': True, 'f': False, 

'i': False, 'h': False, 'k': True, 'j': True, 'm': True, 'l': False, 'o': True, 'n': 

True} 

----------- 

nodes searched=34 

solution: 

a=True 

b=True 

c=True 

d=True 

e=True 

f=False 

g=True 

h=False 

i=False 

j=True 

k=True 

l=False 

m=True 

n=True 

o=True 

true props: 

a 

b 

c 

d 

e 

g 

j 

k 

m 

n 

o 


